Jack T. Coe, Division Administrator
U.S. Department of Transportation
Federal Highway Administration
Idaho Division
3050 Lakeharbor Lane, Suite 126
Boise, Idaho 83703-6217

Dear Mr. Coe:

This is to acknowledge receipt of the revised Attachment A of our Memorandum of Understanding which includes the Eastern Snake River Plain as a Sole Source Aquifer. We concur with the revision and have incorporated the language into our copy of the memorandum.

Sincerely,

[Signature]
Dana A. Rasmussen
Regional Administrator

cc: C. Rountree, ITD, Boise
MEMORANDUM OF UNDERSTANDING
Between
THE FEDERAL HIGHWAY ADMINISTRATION
REGION 10, PORTLAND, OREGON
and
THE ENVIRONMENTAL PROTECTION AGENCY
REGION 10, SEATTLE, WASHINGTON
and
THE IDAHO TRANSPORTATION DEPARTMENT
BOISE, IDAHO

Sole Source Aquifer
State of Idaho

Introduction
The purpose of this memorandum is to develop an understanding between the Environmental Protection Agency (EPA), the Federal Highway Administration (FHWA) and the Idaho Transportation Department (ITD) concerning the review of Federal-aid highway projects which may affect water quality of the designated sole source aquifer listed on Attachment A, hereinafter referred to as the Aquifers. The agreement area is the collective designated "sole source area" encompassing these Aquifers. This memorandum outlines basic criteria against which projects will be evaluated and the procedures to be followed by FHWA and EPA in conducting project evaluation and formal review within the State of Idaho.

Goal and Definitions
The goal of this memorandum is to assure that each highway project that is to receive FHWA financial assistance is designed and constructed in a manner that will prevent the introduction of contaminants into a "sole source" aquifer in quantities that may create a significant hazard to public health. A "significant hazard to public health" will be deemed to occur if the level of contaminants in an Aquifer would:

(a) exceed any maximum contaminant levels set forth in the National Primary Drinking Water Standards at any point where the water may be used for drinking purposes,

(b) exceed public health advisory levels for currently unregulated contaminants, and where treatment may be needed to achieve appropriate standards or levels,

(c) violate the intent of Executive Order 12088, "Federal Compliance with Pollution Control Standards"

In determining whether a level of contaminant would threaten public health, the following factors at a minimum shall be considered:

(1) the toxicity and transportation/transformation of the contaminants involved;

(2) the volume of contaminants which may enter the Aquifer; and

(3) Aquifer characteristics, i.e., geochemical, hydrological, geological, etc., and attenuation capability of the Aquifer.
Criteria and Procedures

ITD and FHWA will screen all Federal-aid highway projects to assure that action which may affect water quality in the sole source aquifers will be referred to EPA for evaluation. Examples of actions to be referred to EPA are listed in Attachment C. Maps and descriptions of designated sole source aquifers with the State are included in Attachment A.

EPA shall be provided an early opportunity to participate in the development and review all draft environmental documents for projects listed in Attachment C.

EPA agrees that all environmental documentation submitted by ITD/FHWA for evaluation or review purposes shall be responded to within thirty (30) calendar days of receipt unless:

(1) EPA requests in writing for an additional 30-day review period and request is concurred in by FHWA.

(2) EPA receives a citizen's petition prior to FHWA approval of the environmental documentation. EPA will immediately notify FHWA (in writing if time permits or by telephone if the end of the comment period is near). EPA will re-evaluate the project, and will notify FHWA within thirty (30) days of receiving such petition information of EPA's decision.

ITD agrees that all contracts for projects in the sole source aquifer area will contain adequate provisions for the cleanup of any petroleum spill.

FHWA and ITD agree to provide EPA with a copy of the contract plans and specifications for all projects previously submitted for EPA review, and to permit EPA inspection of their construction.

General Information

Environmental documents furnished EPA under this Memorandum of Understanding will be addressed to the attention of the Office of Ground Water in EPA's Region 10 Office in Seattle. Project review comments by EPA will be addressed to the Idaho Transportation Department District Office transmitting the document with a copy to the FHWA Idaho Division Office.

FHWA, EPA and ITD will assign a liaison officer to serve as a central contact point to be responsible for maintaining communications as to procedures and activities of their respective agency. The liaison officers are:

FHWA: Regional Environmental Program Manager
FHWA Region 10 Office
708 S.W. Third Avenue
Portland, Oregon 97204
(503) 221-2061 or FTS 423-2061
Environmental Coordinator
Division Administrator
FHWA Idaho Division
3010 W. State Street
Boise, Idaho 83703
(208) 334-1690 or FTS 554-1690

EPA: Chief, Office of Ground Water
U.S. Environmental Protection Agency
1200 Sixth Avenue, Mail Stop WD-139
Seattle, Washington 98101
(206) 442-1216 or FTS 399-1216

ITD: Environmental Planning Section Supervisor
Idaho Transportation Department
3311 West State Street
Boise, Idaho 83707
This Memorandum of Understanding is subject to revision upon agreement of the following parties.

IDAHO TRANSPORTATION DEPARTMENT

Kermit V. Kiebert
Director

Date: 3/31/88

FEDERAL HIGHWAY ADMINISTRATION

Jack T. Coe
Division Administrator

Date: October 31, 1988

M. Eldon Green
Regional Administrator

Date: Dec. 12, 1988

ENVIRONMENTAL PROTECTION AGENCY

Regional Administrator

Date: January 9, 1989
ATTACHMENT A

Pursuant to the Safe Drinking Water Act (42 USC 300 h-3e), EPA has determined that the aquifer listed below is the sole or principal drinking water source for their respective designated areas. As such, no commitment for Federal financial assistance may be entered into within the boundaries of the designated area for any project which EPA determines may contaminate any of the aquifers through their recharge area (watershed) so as to create a significant hazard to public health or the environment.

<table>
<thead>
<tr>
<th>Aquifer Name</th>
<th>Location</th>
<th>Federal Register Notice</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spokane Valley</td>
<td>Kootenai County, ID*</td>
<td>Vol. 43, No. 28</td>
<td>02/9/78</td>
</tr>
<tr>
<td>Rathdrum Prairie</td>
<td>(aquifer only)</td>
<td>5566 et. seg.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>38762 et. seg.</td>
<td></td>
</tr>
<tr>
<td>Eastern Snake River</td>
<td>South Eastern, ID**</td>
<td>Vol. 56, No. 194</td>
<td>10/7/91</td>
</tr>
<tr>
<td>River Plain</td>
<td></td>
<td>50635 et. seg.</td>
<td></td>
</tr>
</tbody>
</table>

* As indicated on the aquifer map (Attachment A(1)), the aquifer is surrounded by the Streamflow source area located in Bonner, Kootenai, Shoshone, Benewah, and Latah Counties.

** As indicated on the aquifer map (attachment A(2))

Projects listed in Attachment C and located in the Streamflow source area shall be submitted to EPA for review.
NOTICES

no later than March 23, 1978. All comments received will be made available to the public. Copies of all comments received and a verbatim transcript of the meetings will be available for public inspection on weekdays during normal working hours at the U.S. Environmental Protection Agency's Public Information and Reference Unit, Room 222, Waterside Mall, 401 M Street, S.W., Washington, D.C. 20460.

All communications and correspondence should be directed to U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, MD-12, Research Triangle Park, N.C. 27711, Attn: Mr. Joseph Padgett, 915-541-5204.

EDWARD F. TENER
Acting Assistant Administrator
for Air and Waste Management

[FR Doc. 78-247 Filed 1-4-78; 8:43 am]

[5566-01]

[FR Doc. 73-151]

SPOKANE VALLEY-RATHDRUM PRAIRIE AGUER

Determination

Notice is hereby given that pursuant to section 1424(e) of the Safe Drinking Water Act (Pub. L. 93-523) the Administrator of the Environmental Protection Agency has determined that the Spokane Valley-Rathdrum Prairie Aquifer is the sole or principal source of drinking water for an area in Idaho and Washington. The Aquifer supplies water to public water supplies and individual wells in Kootenai County, Idaho, and Spokane County, Wash.

BACKGROUND

The Safe Drinking Water Act was enacted on December 16, 1974. Section 1424(e) of the Act states: "(a) If the Administrator determines, on his own initiative or upon petition, that an area has an aquifer which is the sole or principal drinking water source for the area and which, if contaminated, would create a significant hazard to public health, he shall publish notice of that determination in the Federal Register. After the publication of any such notice, no commitment for Federal financial assistance (through a grant, contract, loan guarantee, or otherwise) may be entered into for any project which the Administrator determines may contaminate such aquifer through a recharge zone so as to create a significant hazard to public health; but a commitment for Federal financial assistance may, if authorized under another provision of law, be entered into to plan or design the project to assure that it will not so contaminate the aquifer."

During the fall 1978, petitions were presented on behalf of the Idaho Co-
NOTICES

803, Region X, 1200 6th Avenue, Seatle, Wash. 98101, and at the following public libraries: Spokane, Wash 99205 Main Street, Spokane County, East 11811 First Avenue, Wash, and 702 Lakeside, Coeur d'Alene, Idaho. The data includes:
(1) Maps outlining the Spokane Valley-Rathdrum Prairie Aquifer, recharge area and the streamflow source zone (major replenishment area)
(2) The exact coordinates of the designated area which includes the recharge area and the streamflow source zone
(3) A copy of the transcript of the public hearing and copies of public comments
(4) A technical support document for designation of the Spokane Valley-Rathdrum Prairie Aquifer under section 1424(e) of the Safe Drinking Water Act.

A copy of the above documentation is also available at the U.S. Environmental Protection Agency, Region 10, 401 M Street SW., Washington, D.C. 20460.

The proposed National Regulations for Implementation of section 1424(e) of the Safe Drinking Water Act (Pub. L. 93-523, Federal Register dated September 29, 1979) contain the procedures for review of Federal financially assisted programs or actions which may contaminate “sole source” aquifers through the recharge zone so as to create a significant hazard to public health.

EPA Region X is working with the Federal agencies, which may in the near future fund projects in the area of concern to EPA, to develop interagency procedures whereby EPA will be notified of proposed commitments for projects which could contaminate the aquifer. Although the project review process cannot be delayed, the Region X office in Region X will fully to the minimum extent possible upon any existing or future State and local control mechanisms that are in place (groundwater quality of the Spokane Valley-Rathdrum Prairie Aquifer).
After the publication of such notice, a commitment for federal financial assistance through a grant, contract, loan guarantee, or otherwise, may be entered into for any project which the Administrator determines may contain such aquifer through a recharge zone so as to create a significant hazard to public health, but a commitment for federal financial assistance may, if authorized under another provision of the law, be entered into to plan or design the project to assure that it will not so contaminate the aquifer.

On December 27, 1987, the Region 10 Office of the U.S. Environmental Protection Agency (EPA) received a petition from the Asotin County Public Utility District (PUD) requesting that EPA designate the "Russell Aquifer" as a sole source aquifer. The PUD provided additional information through a revised petition which was received by EPA on February 1, 1988.

The "Russell Aquifer" was defined on the upper 800 feet of the Grande Ronde Formation within the Lewiston Basin by a hydrogeological report published in 1982. EPA has combined the Grande Ronde Formation with other water-bearing strata of the Lewiston Basin and labeled the aquifer system as the Lewiston Basin Aquifer.

In order to obtain public comment, EPA distributed a press release on May 4, 1988, stating that (1) the EPA Regional Office was considering designation of the Lewiston Basin Aquifer as a sole source aquifer, (2) a Resource Document summarizing the basis for the proposal was available for review, (3) public comments were being requested, and (4) a public hearing was to be held on May 27, 1988. Legal notices announcing distribution of the Resource Document, the public hearing, and the closure date for public comment, were printed in the Lewiston Tribune on May 8, 1988, and in the Clarkston Valley American on May 11, 1988. The public hearing was held in Clarkston, Washington, as scheduled, and the public comment period remained open until June 2, 1988.

On May 31, 1988, EPA received a letter from the Idaho Water Resource Board which requested a 30 day extension of the public comment period. EPA granted the request. An additional public meeting was conducted in Lewiston, Idaho on July 14, 1988. Written testimony was received through August 8, 1988.

B. Basis For Determination

Among the determinations which the Regional Administrator must make in connection with the designation of an

[Sole Source Designation of the Lewiston Basin Aquifer, Asotin and Garfield Counties, WA, and Nez Perce and Lewis Counties, ID]

agency: U.S. Environmental Protection Agency.

action: Final determination.

summary: Pursuant to section 1424(e) of the Safe Drinking Water Act, the Regional Administrator of the U.S.
area under section 1424(e) are: (1)

whether the aquifer is the sole or
principal source of drinking water in the
area, and (2) whether, if contaminated, a
significant hazard to public health
would result.

Based on the information available to
this Agency, the Regional Administrator
has made the following findings, which
are the bases for the determination
noted above:

1. The Lewiston Basin Aquifer directly
supplies about 66 percent of the drinking
water used in the area.

2. No economically feasible
alternative drinking water sources exist
within the area or nearby which could
supply all those who now depend upon
the aquifer as their source of drinking
water.

3. Since the aquifer system represents
the principal source of drinking water
for the area, contamination of the
aquifer would pose a significant hazard
to public health.

III. Description of the Lewiston Basin
Aquifer

(Information in this section represents
an unfootnoted summary of material
from: Support Document for Designation
of the Lewiston Basin Aquifer as a Sole
Source Aquifer, issued in September of
1988 by the Region 10 Office of Ground
Water.)

The Lewiston Basin covers
approximately 500 square miles of
southeastern Washington and western
north-central Idaho, including part of the
Nez Perce Indian Reservation. The
structural and topographic basin, bounded
by faults and anticlinal folds, represents
a ground-water basin within the
Columbia Plateau.

Basalts of the Columbia River Group,
and especially those of the Grande
Ronde Formation, store and transmit
most of the ground water in the
Lewiston Basin. The basin itself is
dense and impermeable to water, but
the basal flows are fractured
throughout. Most ground water moves
drastically along flow paths (composed
of vesicular and broken basalt formed by
rapid cooling at the top of the flow), but
some water also moves between flow
paths through the entablature and
colonnade. Very thin basalt flows may
consist only of a flow top and an
intensely fractured base which forms a
good hydrologic connection with the
underlying flow top. The center portions
of thick flows, although not
impermeable, may restrict vertical
ground-water movement enough to act
as confining beds.

Sedimentary deposits between basin
flows, called interbeds, vary greatly in
their thickness and ability to transmit
water. Ground water moves easily
through coarse-grained interbeds but
hardly at all through fine-grained units.
Fine-grained interbeds, which act as
confining units, occur commonly in the
Wapakoneta and Saddle Mountains
Formations, but rarely between flows of
the Grande Ronde Member.

Unconsolidated sedimentary material,
composed mostly of gravel and sand
with some silt, covers much of the
triangular lowland at the confluence of
the Snake and Clearwater Rivers, and
parts of the Lapwai Valley. The
unconsolidated sediments do transmit
water to the underlying basin and,
where adequate recharge exists, form
water table aquifers atop the basin
aquifer system.

Major faults and anticlinal folds form
most of the hydrogeologic boundaries
of the Lewiston Basin. Faults act as
ground-water barriers by offsetting
highly permeable flow tops. Also, the
drawn rock in the fault zone
weathers to form sharp, narrow, rich planes
for low permeability. Tight folds, caused by
stress intense enough to severely deform
the basin, but not so strong as to offset
the beds. Crush and compact the flow
tops so that they transmit water much
more slowly. Major anticlinal folds,
where the strata dip downward from the
deep axis, also act as regional
ground-water divides. Faults and anticlinal
folds, as mapped by the U.S. Geological
Survey and Idaho Bureau of Mines and
Geology, form all the southerly
boundaries of the ground-water basin.

The southerly boundary has been
drawn along a major topographic divide
in the Blue Mountains which acts as a
regional ground-water divide. No water
budget studies for the basin, which
would serve to check the
hydrogeologic significance of the
boundaries, have been published.

Rivers and creeks flow across the
structural barriers which act as
boundaries for the ground-water basin.
Federal Financially assisted projects
located in the drainage basins of surface
streams which recharge ground water
within the Lewiston Basin may
contribute significant sources of
contamination to the aquifer. While the
entire streamflow source area includes
all of the Snake River drainage upstream
from Melba, Washington, only a portion
of the streamflow source area
immediately adjacent to the
ground-water basin has been delineated
for project review purposes.

The boundaries of the project review
area are shown on the 1,250,000
scale map in the Support Document, are
as follows: Beginning west from the
confluence of the Grande Ronde and
Snake River up to the Grande Ronde
River to Menan Creek; north up to
Menan Creek to the ridge separating
Menan Creek and Saddle Spring
Creek; northwest along the ridge
separating the two creek basins, over
Mt. Horrible, to the unimproved road
between Saddle Spring and Misery
Creek; northwest along the road to
Clearwater Range; south along the
road to the ridge separating the Chantey
and Pahala Creek basins to the
intersection of Washington State
highway 128, about 2 miles west of
Pahala; northwest about three miles to
the Sweeney Gulch Road; northwest on
the Sweeney Gulch Road, which
generally follows the ridge between the
Pahala and Alphonse Creek basins, to
U.S. Highway 12; east along Highway 12
to where the Vista Fault trace crosses
the highway, about 3 miles east of
the Head of Powa Whak Keel and about
2 miles west of Silcott, Washington;
northeast and east along the Vista Fault,
as mapped by the U.S. Geological
Survey, to a high-duty, mostly
unimproved road which extends from
U.S. Highway 125 to the north side of
the Snake River; northeast along the road
to U.S. Highway 125, about 3 miles
from its intersection with U.S.
Highway 95; northeast on U.S. highway
95 about 6 miles to the light-duty road
which leads east to Catholic Creek;
east, southeast, and east along the road
to Catholic Creek; north along the
Catholic Creek Road about 8 miles to its
intersection with the road to Howard
Gulch; east to Howard Gulch and then
north along the Howard Gulch Road to
the Nez Perce-Latah County line, east
along the latitude of the county line
about 7 miles, across Idaho state
Highway 3, to the light-duty road which
reaches the north bank of the
Clearwater River about 1 mile
downstream from the where Pine Creek
meets the Clearwater; south on that
road to the Clearwater River; southeast
for 2 miles along a prominent ridge to
the road between Cottonwood Creek
and the town of Summit; south along the
road through the towns of Gifford and
Lookout to the town of Reuben; south along
the railroad between Reuben and
Craig Junction generally southwest along
an old railroad grade to its end and about 4
miles southwest of Soldier's Meadow
Reservoir; west along the unimproved
road to Craig Mountain; south along the
unimproved Craig Mountain Road, and
then southwest to the Snake River along
the unimproved road which reaches the
river about 1 mile upstream from Shovel
creek Rapids; north to the confluence of
the Grande Ronde and Snake Rivers, the
point of beginning.
On a grand scale, ground water moves from the high elevation areas of the Lewiston Basin, mostly through the basin flow tops, towards the lower elevation areas of the basin.

Generalized water level contours for the Grande Ronde Basin range from over 5000 feet above sea level west of the Blue Mountains to less than 800 feet along the Snake River. However, geologic features within the basin act to intercept, direct, or dramatically slow the ground water flow.

Recharge to the Lewiston Basin aquifer system occurs primarily from streamflow infiltration. Streamflow infiltration to the basin aquifers occurs mostly where rivers and creeks flow over the basin flow tops, which happen where basalt beds dip more steeply than the surface drainage gradient. Although no streamflow data have been obtained to measure the amount of recharge, water level records to deep wells in the Lewiston-Clarkston area suggest excellent hydrologic communication between surface and ground water sources and the Grande Ronde Formation.

Precipitation easily recharges the basalt and unconsolidated sediments lying at or near the surface. At lower elevations, however, since precipitation and high evaporation rates probably allow recharge via precipitation on a sporadic basis only. Precipitation may significantly recharge the basin aquifers at higher elevations, but hydrogeologic impediments (canyons and dikes) may prevent much of the ground water from reaching the water supply wells in the Lewiston-Clarkston area.

Excess irrigation water, which recharges water table aquifers in the unconsolidated sediments, also partly recharges aquifers of the Wanapum and Saddle Mountains Formations in parts of the Lewiston-Clarkston area. Predominately lateral flow through the upper basalt and fine-grained interbeds combine to prevent most excess irrigation water from percolating to the Grande Ronde Basin before reaching a discharge point.

Shallow ground water discharges mostly as springs along deeply incised surface drainages, whereas production wells tap most of the deeper ground water in the Lewiston-Clarkston area. Earlier investigations have identified areas where ground water from the Grande Ronde Formation discharges naturally to the Snake River before construction of Lower Granite Dam. However, with the filling of the Lower Granite Reservoir (February of 1973), the static water levels in wells near the river rose but remained below the elevation of the reservoir.

It seems that the reservoir now provides partial recharge to the aquifers in the Lewiston-Clarkston area.

Rates of production from wells within the Grande Ronde Formation are considered to be lower than those of basalt and unconsolidated sediments. The Asotin County PUD wells produce at rates of 300 to 3200 gallons per minute (gpm) from the top 500 feet of the Grande Ronde Basin. In contrast, wells completed in the Wanapum and Saddle Mountains Formations average 10 to 30 gpm.

Public water supply wells in the Lewiston-Clarkston area produce excellent quality water from the Grande Ronde Formation. The water typically contains fewer than 300 parts per million (ppm) total dissolved solids (TDS), and requires no treatment before drinking. The chemistry of water withdrawn from the Grande Ronde Formation appears typical for ground water from Columbia River Basin.

Published reports have documented contamination of ground water in alluvial sediments of Lapwai Creek, probably from septic tank and drain field usage. Aquifers within the Lewiston Basin are vulnerable to contamination for one or more of the following reasons:

1. They occur at or near the surface, which precipitation, excess irrigation, and other artificial recharge can introduce contaminants to the subsurface.
2. They are extensively recharged by surface waters:
3. They are hydrologically connected to near-surface aquifers, either naturally or by wellborer.

The most valuable portion of the Lewiston Basin aquifer system is a drinking water standpoint, the upper 800 feet of the Grande Ronde Formation, also vulnerable to contamination from surface water recharge. Therefore, any project or activity which threatens the water quality of a possible surface water recharge area would pose a threat to the principal source of drinking water within the Lewiston Basin. The Grande Ronde Basin aquifer could also suffer if the overlying water-bearing strata become contaminated.

Aquifers in the unconsolidated strata and upper basalt units are susceptible to contamination from surface activity since they lie close to the surface. In the most popular portions of the Lewiston Basin, possible sources of contamination include improper storage, handling, and treatment of hazardous materials, septic tank effluent, storm runoff, pesticides, and chemical fertilizers. Although the shallow aquifer units serve far fewer people than the Grande Ronde formation, they do serve as the sole source of drinking water for numerous households. Also, they are hydrologically connected to the Grande Ronde Basin (although poorly in many areas), but most importantly they displace to surface water sources, which, in turn, recharge the Grande Ronde Formation.

The Lewiston-Clarkston area accounts for most of the drinking water consumed in the Lewiston Basin. The city of Lewiston uses water withdrawn from the Clearwater River for some of its needs but depends upon wells which produce from the Grande Ronde Formation for about 17 percent of its consumption. All other public water purveyors in the Lewiston Basin depend entirely upon wells which produce from the Grande Ronde Formation. Private users, such as food processors, who depend upon large volumes of high quality water derive their supplies exclusively from wells completed in the Grande Ronde Formation. Individual households which need small quantities of good water utilize the basalt and sediments which overlie the Grande Ronde Formation. Overall, ground water supplies about 68 percent of the water consumed within the basin, which is well above the 80 percent required for sole source designation.

Surface water supplies capable of serving the Lewiston Basin are physically and legally available, but using the available surface water would be economically feasible. The main water purveyors for the area, the city of Lewiston and the Asotin County PUD, only have water rights which would allow them to legally withdraw enough surface water to supply the whole area. In fact, the Asotin County PUD alone has legal access to approximately 93 million gallons per day from the Snake River—enough to supply the peak water usage for the entire basin. However, public and private water purveyors have not fully utilized surface water sources because the Grande Ronde Basin provides higher quality water at a far lower cost. Surface water from the Snake and Clearwater Rivers requires filtration and disinfection before municipal use. Also, surface water treatment, storage, transmission and distribution facilities cost considerably more to build and operate than systems using high quality ground water.

In order to be considered "economically feasible", according to EPA guidelines, an alternative water source must meet the typical household demand of about 0.3 to 0.5 cubic foot per day, or about 0.4 to 0.5 percent of the average annual household income for the area. Conservative cost estimates...
The comments from the Nez Perce Tribe, although neither in support of nor opposition to designation, are interpreted to underscore the value of ground-water protection in the Lewiston Basin. EPA will respect the Nez Perce Tribal authority and work appropriately with the Tribe on an equivalent basis as with state and local jurisdictions.

Implementation of the project review portion of section 1242(e) of the Safe Drinking Water Act will occur through memoranda of understanding (MOUs) between EPA and federal funding agencies. These MOUs will identify the types of projects EPA will review, and will specify timeframes for project reviews. Therefore, EPA will work directly through funding agencies on project review decisions and with local, state, and tribal governments on program coordination.

In response to the Idaho Water Resource Board, EPA reviewed its efforts to publicize the proposed action and made the Resource Document available to public officials, interested agencies, and the general public. The Agency is satisfied that appropriate steps were taken to enlist public comment. The technical criteria for evaluation of the aquifer for determination as a principal source of drinking water supply for the aquifer service area are well defined in EPA guidelines which were published in February 1987. The petitioners documented through their analysis that the aquifer meets the criteria for principal source definition. Region 10 offered to brief the Water Resource Board or its individual members. No new data were presented or suggested as being available. Nevertheless, EPA granted the request to extend the public comment period. Delaying the designation decision precluded local, state and tribal jurisdictions from eligibility to apply for sole source aquifer demonstration grants. To date, however, Congress has not appropriated any of the authorized funds.

During the extended public comment period, EPA received comments from the Nez Perce Tribe, the Asotin County Public Utility District (PUD), the Lewiston Orchards Irrigation District and the Idaho Water Resource Board. The Nez Perce Tribe confirmed in writing some of the comments submitted by telephone on June 1, 1988. The Asotin County PUD submitted a cost estimate addendum which demonstrates that the cost of replacing ground water with available surface water would be even higher than originally calculated. The Lewiston Orchards Irrigation District wrote in support of sole source designation, urging the Regional Administrator to make a determination by June 19, 1989. The Idaho Water Resource Board wrote to communicate continuing reservations about the proposed designation, although the Board stated that they “will not oppose” sole source designation of the Lewiston Basin Aquifer.

VI. Summary

Today's action only affects the Lewiston Basin Aquifer in Asotin and Garfield Counties, Washington, and Nez Perce and Lewis Counties, Idaho. This action provides a review process to ensure that necessary ground-water protection measures are incorporated into federal financially-assisted projects.

Robby C. Russell,
Regional Administrator.

Date: September 18, 1988.

[FR Doc. 89-22332 Filed 9-30-89; 8:45 am]

E B L U S I N G C O D E (305) 443-31-31
ATTACHMENT B

Projects that need not be referred to EPA:

Resurfacing; lighting; signing; pavement marking; guardrail; signalization; freeway surveillance and control system; railroad protective devices; glare screening; median barriers; energy attenuators; and the temporary replacement of highway facilities damaged by natural disasters or catastrophic failures.
ATTACHMENT C

Federally-funded projects within the designated aquifer listed below shall be submitted to EPA for evaluation and comment:

1. All projects documented by an Environmental Impact Statement or those which indicate in the environmental assessment possible adverse impacts on the aquifer.

2. All projects that include:
 a. Addition of drainage wells, detention or retention basins or new wetland areas;
 b. Extensive grading and/or blasting;
 c. Rest areas, weigh stations or scenic overlooks with new expanded sewage disposal stations;
 d. Use of any pesticides, herbicides, or fertilizers in excess of the labeling requirements for application methods and rates.
 e. Clean-up or containment facilities for trucks leaking substances that are or may be hazardous materials or petroleum products, or
 f. Opening of a new material source which could result in a potential contamination or in the use of mining tailings or aggregates containing radon gas.

3. Other projects in which FHWA determines may impact the aquifer.
NATIONAL PRIMARY DRINKING WATER REGULATIONS
(40 CFR Part 141)

<table>
<thead>
<tr>
<th>Inorganics</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Arsenic</td>
<td>0.05 mg/l</td>
</tr>
<tr>
<td>Barium</td>
<td>1.0 mg/l</td>
</tr>
<tr>
<td>Cadmium</td>
<td>0.010 mg/l</td>
</tr>
<tr>
<td>Chromium</td>
<td>0.05 mg/l</td>
</tr>
<tr>
<td>Lead</td>
<td>0.05 mg/l</td>
</tr>
<tr>
<td>Mercury</td>
<td>0.002 mg/l</td>
</tr>
<tr>
<td>Nitrate (as N)</td>
<td>10 mg/l</td>
</tr>
<tr>
<td>Selenium</td>
<td>0.01 mg/l</td>
</tr>
<tr>
<td>Silver</td>
<td>0.05 mg/l</td>
</tr>
<tr>
<td>Fluoride</td>
<td>4 mg/l</td>
</tr>
<tr>
<td>Endrin</td>
<td>0.0002 mg/l</td>
</tr>
<tr>
<td>Lindane</td>
<td>0.004 mg/l</td>
</tr>
<tr>
<td>Methoxychlor</td>
<td>0.1 mg/l</td>
</tr>
<tr>
<td>Toxaphene</td>
<td>0.005 mg/l</td>
</tr>
<tr>
<td>2,4 - D</td>
<td>0.1 mg/l</td>
</tr>
<tr>
<td>2,4,5 - TP Silvex</td>
<td>0.01 mg/l</td>
</tr>
<tr>
<td>Coliform bacteria</td>
<td>1/100 ml *</td>
</tr>
</tbody>
</table>

Microbiological

<table>
<thead>
<tr>
<th>Physical/Microbiological Turbidity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radium - 226 + radium - 228</td>
</tr>
<tr>
<td>Gross alpha particle activity</td>
</tr>
<tr>
<td>Beta particle and photon radioactivity</td>
</tr>
</tbody>
</table>

Radiological

<table>
<thead>
<tr>
<th>Volatile Organics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Trihalomethanes</td>
</tr>
<tr>
<td>Trichloroethylene</td>
</tr>
<tr>
<td>Carbon Tetrachloride</td>
</tr>
<tr>
<td>1,2 Dichloroethane</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
</tr>
<tr>
<td>Benzene</td>
</tr>
<tr>
<td>para - Dichlorobenzene</td>
</tr>
<tr>
<td>1,1 - Dichloroethane</td>
</tr>
<tr>
<td>1,1,1 Trichloroethane</td>
</tr>
</tbody>
</table>

* as a monthly average; individual samples may be higher
** up to 5 mCi/l in some circumstances

NATIONAL SECONDARY DRINKING WATER REGULATIONS
(40 CFR Part 143)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride</td>
<td>250 mg/l</td>
</tr>
<tr>
<td>Color</td>
<td>15 color units</td>
</tr>
<tr>
<td>Copper</td>
<td>1 mg/l</td>
</tr>
<tr>
<td>Corrosivity</td>
<td>Non-corrosive</td>
</tr>
<tr>
<td>Foaming Agents</td>
<td>Non-corrosive</td>
</tr>
<tr>
<td>Iron</td>
<td>0.5 mg/l</td>
</tr>
<tr>
<td>Manganese</td>
<td>0.3 mg/l</td>
</tr>
<tr>
<td>Odor</td>
<td>0.05 mg/l</td>
</tr>
<tr>
<td>pH</td>
<td>3 threshold odor number</td>
</tr>
<tr>
<td>Sulfate</td>
<td>6.5 - 8.5</td>
</tr>
<tr>
<td>TDS</td>
<td>250 mg/l</td>
</tr>
<tr>
<td>Zinc</td>
<td>500 mg/l</td>
</tr>
<tr>
<td>Fluoride</td>
<td>5 mg/l</td>
</tr>
<tr>
<td></td>
<td>2 mg/l</td>
</tr>
</tbody>
</table>

1) Regulated for health concerns
2) Regulated generally for aesthetic concerns
EPA PRIORITY LEACHERS *(Current as of October 21, 1987 but could change)*

<table>
<thead>
<tr>
<th>Acifluorfen</th>
<th>Gamma-chlordane</th>
<th>Disulfoton</th>
<th>Metribuzin DA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alachlor</td>
<td>Chlorothalonil</td>
<td>Disulfoton sulfone</td>
<td>Metribuzin DADK</td>
</tr>
<tr>
<td>Aldicarb</td>
<td>Cyanazine</td>
<td>Diuron</td>
<td>Metribuzin DK</td>
</tr>
<tr>
<td>Aldicarb sulfoxide</td>
<td>Cycloate</td>
<td>Endrin</td>
<td>Nitrates</td>
</tr>
<tr>
<td>Alachlor sulfoxide</td>
<td>Dalapon</td>
<td>Ethylene dibromide</td>
<td>Oxamyl</td>
</tr>
<tr>
<td>Atrazine</td>
<td>Dibromochloropropane</td>
<td>ETU</td>
<td>Pentachlorophenol</td>
</tr>
<tr>
<td>Atrazine, dealkylated</td>
<td>DCPA</td>
<td>Fenamiphos sulfone</td>
<td>Pichloram</td>
</tr>
<tr>
<td>Baygon</td>
<td>DCPA acid metabolites</td>
<td>Fenamiphos sulfoxide</td>
<td>Pronamide metabolite</td>
</tr>
<tr>
<td>Bromacil</td>
<td>Diazinon</td>
<td>Fluometuron</td>
<td>RH 24,580</td>
</tr>
<tr>
<td>Butylate</td>
<td>Dicamba</td>
<td>Heptachlor</td>
<td>Propachlor</td>
</tr>
<tr>
<td>Carbaaryl</td>
<td>5-hydroxy dicamba</td>
<td>Heptachlor epoxide</td>
<td>Propazine</td>
</tr>
<tr>
<td>Carbofuran</td>
<td>3,5-dichlorobenzoic acid</td>
<td>Hexachlorobenzene</td>
<td>Propamem</td>
</tr>
<tr>
<td>Carbofuran-30H</td>
<td>1,2 dichloropropane</td>
<td>Hexazinone</td>
<td>Simazine</td>
</tr>
<tr>
<td>Carboxin</td>
<td>Dieldrin</td>
<td>Methomyl</td>
<td>2,4,5-T</td>
</tr>
<tr>
<td>Carboxin sulfoxide</td>
<td>Dinoseb</td>
<td>Methoxychlor</td>
<td>2,4,5-TP</td>
</tr>
<tr>
<td>Chloramiben</td>
<td>Diphenamid</td>
<td>Methyl paraaxon</td>
<td>Tebuthiuron</td>
</tr>
<tr>
<td>Alpha-chlordane</td>
<td>Dinoseb</td>
<td>Metolachlor</td>
<td>Terbacil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Metribuzin</td>
<td>Trifluralin</td>
</tr>
</tbody>
</table>