(D) 129,000 Pound Pilot Project

Idaho

Transportation Department

129,000 POUND PILOT PROJECT

REPORT TO THE 62nd IDAHO STATE LEGISLATURE

JANUARY 2013

REPORT CONTENTS

Executive Summary 3
Background 4
National Research 5
Economic Impact 5
Data Collection 7
Discussion of Study Data 10
Issues Affecting Data Analysis 12
Conclusions 13
Appendix A, Route Information 15
Appendix B, Trip Information 24
Appendix C, Safety 32
Appendix D, Pavements 36
Appendix E, Bridges 38

EXECUTIVE SUMMARY

In 2003, the Idaho Legislature passed House Bill 395, which created a pilot project to test the effect of increasing the legal truck weights on State Highways. Trucks configured to increase gross vehicle weight (GVW) from 105,500 pounds to 129,000 pounds were permitted on 16 specified routes. In 2005 and 2007, an additional 19 routes were included for a total of 35 specified routes. At the time the Idaho pilot project began, four states that border Idaho (Montana, Utah, Nevada and Wyoming) already permitted trucks with gross vehicles weights greater than 105,500 pounds.

The Idaho Transportation Department (ITD) was tasked with studying the impacts of the pilot project on roadway safety, bridges, and pavement, and reporting to the Legislature every three years. Previous reports were submitted to the Legislature in 2007 and 2010. This is the final report of ITD's observations over the 10 years of the pilot project.

Between fiscal years 2004 and 2012, there were 264,169 pilot project trips made by 1,359 trucks from 127 different shipping companies. The main commodities hauled were sugar beets, hazardous waste, aggregates, agricultural feed, coal, and hay.

ITD did not observe any significant effect of the 129,000 pound pilot project trucks on pavements, bridges, or roadway safety. Project participants have reported economic benefits associated with this pilot project. Amalgamated Sugar Company estimated that they saved over $\$ 2.5$ million during the pilot project. US Ecology, Inc. estimated that they had a 6% reduction in the number of trips per year amounting to an estimated total of 7,800 loads since 2004 using pilot project trucks. Their estimated savings from trip reductions has been $\$ 70,000-\$ 180,000$ per year.

129,000 POUND PILOT PROJECT

BACKGROUND

For years, the trucking industry has requested that the Legislature increase the maximum allowable gross vehicle weight on State routes. They asserted that this weight increase would reduce the number of trips, therefore reducing costs.

House Bill 623 established the first 129,000 pound pilot project in 1998, allowing 129,000 pound gross vehicle weight trucks on two State routes. It ran from 1998-2001, but because of very limited participation, the results of industry savings or effect on pavements, bridges, or safety were inconclusive. The trucking industry reported that because of the limited routes and short project time frame, it was not economically feasible to purchase specialized vehicles or convert any of their current fleet.

In 2003, the Idaho Legislature reestablished the 129,000 pound pilot project program with the passing of House Bill 395. The bill established a new 10-year study similar to the one implemented in 1998, providing haulers the option to transport heavier loads (up to a GVW of 129,000 pounds) if they purchased a special permit from ITD and used trucks specifically configured to carry the extra weight (see Figure 1 for typical truck configuration). The bill also granted local public highway agencies the authority to allow or disallow the pilot project vehicles on roads in their jurisdiction. Additional routes were added in 2005 (House Bill 146) and 2007 (Senate Bills 1138 and 1180), for a total of 35 designated routes. Senate Bill 1390 in 2008 revised the descriptions of some of the routes for clarification.

House Bill 395 directed the Idaho Transportation Department to "report to the Legislature on the effect of the pilot project program. The Department shall report on the results of its monitoring and evaluation of all important impacts, including impacts to safety, bridges, and pavement on all the State pilot project routes designated." As required, previous reports were submitted to the Legislature in 2007 and 2010. This report is the final report including all observations over the past 10 years.

FIGURE 1

Typical truck configured for 105,500 pounds GVW. (8 axles)

Pilot project truck configured for 105,500 to 129,000 pounds GVW. (10 axles)

NATIONAL RESEARCH

The National Cooperative Highway Research Program (NCHRP) developed a Directory of Significant Truck Size and Weight Research under NCHRP Project 20-07, Task 303 to provide a brief, well organized summary of significant research related to large truck size and weight for use by decision-makers. The Directory was published in October, 2011. This research generated some pertinent information on pavements, bridges, and safety summarized below.

For pavements, axle weight is a more significant determinant of pavement damage than gross vehicle weight. Truck weight limits that allow a higher GVW distributed over more axles do not necessarily lead to higher pavement costs and can even produce savings. Pavement damage typically varies by design/road classification; the same weight vehicle will do exponentially more damage to a rural road than an interstate highway.

For bridges, proposed increases to truck size and weight limits are consistently predicted to increase infrastructure costs. The number of axles on a truck has little impact on bridges; bridge stress is affected more by the total amount of load than by the number of axles. Bridge stress generally increases with axle group weight and, except on some continuous bridges with long
 spans, generally decreases with the separating distance.

Regarding safety, with some consistency, heavier trucks were associated with less crashes due to fewer trucks needed, but higher crash severity. Oversized, overweight trucks were observed to have slightly higher crash rates due to vehicle handling and stability characteristics. Overall, results relating to truck configuration are inconclusive.

At the time the Idaho pilot project began, four states that border Idaho already permitted trucks with gross vehicle weights greater than 105,500 pounds. Because none of these states have changed their weight policies in many years, it is an indication that they do not consider the heavier trucks to be detrimental. Montana, Utah and Nevada allow gross weights of 129,000 pounds or higher using Federal Bridge Formula B. Wyoming allows 117,000 pounds on Interstate highways and higher gross weights for noninterstate routes. Federal Bridge Formula B is used to determine maximum axle weights and groups of axle weights as well as gross weight. These weight calculations are determined by the number of axles and the axle spacing of the vehicle configuration.

ECONOMIC IMPACT

House Bill 395, which established the 129,000 pound pilot project in 2003 contained the following in its Statement of Purpose:
"Idaho's sugar beet, potato, wheat and grain, milk and phosphate industries have identified a small number of state highways in southwest, south-central and southeastern Idaho that they would use if selected as test routes under the new pilot project that this bill creates. These industries calcu-
late that over the 10 year life of the new pilot project they will save millions of dollars in transportation costs because heavier trucks substantially reduce the total number of truck trips necessary to transport their commodities. Because the routes in the bill will be used by these industries, the data necessary to fully evaluate the use of 129,000 pound trucks can finally be obtained."

In order to determine how the pilot project has impacted industry, we looked at studies from other states and we received statements from the companies who have had the greatest participation in the pilot project.

According to the Directory of Significant Truck Size and Weight Research, increased truck size and weight limits consistently result in industry cost savings and the magnitude of industry cost savings varies by carrier type, the nature of transportation services offered, and typical commodities transported. Estimated industry cost savings - attributable to increased truck size and weight limits and subsequent use of alternative configurations - generally range from 1.4 to 11.4 percent of annual transport costs in the United States.

In a study titled Infrastructure and Economic Impacts of Changes in Truck Weight Regulations in Montana published by Montana State University in Transportation Research Record 1653, the authors note:
"The infrastructure costs ... are but one way in which truck weight limits affect the state's economy. The other economic effect, usually not addressed in truck size and weight studies, is the effect on economic productivity and its consequences."

The Montana study also states "An increase in maximum GVW has a positive impact on the state's economy."

In Idaho, US Ecology, Incorporated (USEI) reported a 3\% reduction in costs per year by reducing the number of trips and increasing the payload transported per load from 66,000 pounds to 78,000 pounds, while at the same time slightly reducing average axle weights. They estimate an approximate 6% reduction in the total number of trips per year amounting to an estimated total of 7,800 loads since 2004 using pilot project trucks. Their estimated savings from trip reductions has been $\$ 70,000-\$ 180,000$ per year. They also realized a large indirect benefit when the Mountain Home Highway District (MHHD) authorized pilot project trucks on roads under its jurisdiction in 2004. This provided an opportunity for USEI to partner with MHHD and the J.R. Simplot Company to pave Simco Road near their rail transfer facility in Elmore County. USEI was then able to bypass the city of Mountain Home and reduce truckmiles traveled, thereby reducing their costs. USEI has estimated their annual savings from paving Simco road to be $\$ 1 \mathrm{M}-\$ 2.1 \mathrm{M}$ per year depending on their yearly volume.

The Amalgamated Sugar Company, LLC uses Transystems, Inc. to haul their sugar beets. They reported a total three-year savings of $\$ 289,573$ for the first three years of the pilot project (2004-2006); a yearly savings between $\$ 250,000$ and $\$ 350,000$ for each year from 2007-2009; and a savings of over $\$ 450,000$ for each year from 2010-2012. They reported that tonnage hauled on pilot project routes has increased from roughly three-quarters of a million tons each year to over 1.3 million tons over the course of the ten years. In the 2011-2012 crop year they reported an estimated 6,212 round trips reduced and an estimated 54,855 gallons of diesel fuel saved through use of pilot project trucks.

Burns Concrete 11-axle bulk cement powder transfer truck for pilot program routes.

Burns Concrete 10-axle aggregate transfer truck and trailer for pilot program routes.

Burns Concrete 5-axle truck and 5-axle pup for pilot program routes.

Several of the industries noted in the Statement of Purpose for House Bill 395 have not been able to participate in the pilot project because the inability to use Interstate Highway routes has limited connectivity to important destinations for these industries. Without the connectivity, they cannot achieve sufficient cost savings to justify the cost of acquiring new trucks or converting existing trucks to be able to haul the additional weight.

DATA COLLECTION

Trips

As a condition of their permit, trucking companies were required to enter into a database the commodity, trip date, origin, destination, and routes traveled for each pilot project load hauled. They entered the information via an online data collection form within 30 days of the trip. Descriptive statistics on this data is presented in Appendix B. During the first three years of the pilot project, trucking companies were sent questionnaires aimed at determining strengths and weaknesses of the program.

Safety

The Office of Highway Safety continuously compiles crash data in an effort to identify disproportionately dangerous road segments and to track improvements in safety. Crashes are separated into categories of
vehicle crashes and commercial vehicle crashes. Pilot program truck crashes were not able to be tracked separately from commercial vehicle crashes. Truck crash rates include all commercial motor vehicle crashes and not just those trucks over 105,500 pounds gross vehicle weight. Commercial motor vehicles are buses, truck tractors, tractor-trailer combinations, trucks with more than two axles, trucks with more than two tires per axle, or trucks exceeding 8,000 pounds gross vehicle weight.

Crashes are tracked on each roadway segment and measured in total number of crashes and crash rate per hundred million vehicle miles traveled. Truck crash rates fluctuate more dramatically than vehicle crash rates because the numbers involved are much smaller, and a small change in the number of crashes can result in a large change in the crash rate.

Pavement

Pavement deterioration, over time, is caused by a variety of factors including but not limited to traffic volume and loading; moisture; allowable speed limit; terrain type; solar radiation; and temperature changes. Pavement data is collected annually by both a Pathways Profiler van that measures International Roughness Index and rutting depth, and by visual windshield survey for cracking on all state highways. This data is averaged over road segments to measure a cracking index, roughness index, and rutting depth.

Cracking Index: Repeated cycles of axle loads can cause progressive cracking which results in pavement deterioration. This cracking is due to both the axle weight of each vehicle and the accumulation of the incremental damage that occurs after each axle load passes.

A condition index (Cracking Index) between 0.0 and 5.0 is given to the pavement, based on size and location of cracks, percentage of the roadway surveyed that shows distress, and type of road surface. A 5.0 rating is good pavement with no visible distress and 0.0 is maximum distress. Additionally, the roadways are rated for 6 different types of cracking, and each of those cracking types is assessed for severity and extent (low, medium, and high).

Roughness Index: ITD uses a worldwide standard for measuring pavement smoothness called the International Roughness Index, or IRI. IRI was developed by the World Bank in the 1980's and is used in all of the states, as well as several countries. IRI is used to define a characteristic of the longitudinal profile of a traveled wheel track and constitutes a standardized roughness measurement. The commonly recommended units are meters per kilometer (m / km) or millimeters per meter (mm / m). IRI is gathered by the Profiler van.

The index measures pavement roughness in terms of the number of inches per mile that a laser, mounted on the

Profiler van, jumps as the van is driven along the roadway. Typically, the lower the IRI number, the smoother the ride; but IRI is not known as a direct measure of rider discomfort.

Idaho takes the measured IRI values for pavement and compresses them onto a 0.0-5.0 scale, similar to the Cracking Index scale, where 0.0 is very rough and 5.0 is very smooth. ITD calls this the pavement Roughness Index, or "RI". These numbers are collected and reported annually.

Rutting: Like cracking, rutting is dependent upon both the axle load and the number of passes of the axle load. However, because the characteristic (stiffness) of an asphalt pavement that helps it resist rutting can actually make the pavement more prone to cracking, rutting is measured independently to assure the pavement is providing the optimal service. Rutting is the average (in inches) of the rutting that occurs in the left and right wheel paths. This data is collected by the Pathways Profiler Van.

From 1995 to 2008 ITD used Pathway ${ }^{\circledR}$ Profiler van technology and its predecessors to gather the majority of the pavement data. In 2008 ITD purchased a new road profiler van that greatly enhances the quality and quantity of data that can be obtained and processed. The profiler van drives every mile of the state highway system annually and records its progress on video images of both the front view out of the van and the pavement surface. With the new van, the images are of much higher resolution and the rutting detection lasers have been vastly improved. Previous versions used five laser points to collect rutting data; the new van employs 1,280 points.

Bridges

The Code of Federal Regulations requires every state transportation department to conduct bi-annual bridge inspections (pilot route bridges were inspected annually) of all bridges on State routes for the National Bridge Inventory (NBI). As part of the NBI inspection bridge inspectors assign a condition rating for the bridge deck, superstructure, and substructure.

Deck: The bridge deck is the element most susceptible to damage from heavy vehicles. It can exhibit all the same distresses of pavements including rutting, and cracking. The deck rating is on a scale of $0-9$ where a 9 represents a new deck and 0 represents a bridge that is closed to service due to a poor deck condition.

Superstructure: The bridge superstructure includes all structural members of the bridge. The superstructure should be less susceptible to damage from heavy vehicles but the damage may be less apparent and more likely to cause a catastrophic failure. The superstructure rating is on a scale of $0-9$ where a 9 represents a new superstructure and 0 represents a bridge that is closed to service due to a poor superstructure condition.

Substructure: The bridge substructure includes piers, abutments, piles, fenders, and footings. Deterioration of the substructure is typically due to environmental conditions such as water flow and channel migration rather than traffic. The substructure rating is on a scale of $0-9$ where a 9 represents a new substructure and 0 represents a bridge that is closed to service due to a poor substructure condition.

DISCUSSION OF STUDY DATA

Trips

Reported data indicates 127 trucking companies with 1,359 trucks configured to haul a maximum of 129,000 pounds made 264,169 trips on the 35 specified pilot project routes. Of those trucking companies, 12 companies hauled 1 load, 43 companies hauled less than 10 loads, 79 companies hauled less than 100 loads, and 110 companies hauled less than 1,000 loads. Transystems, US Ecology, Inc. and Burns Concrete hauled more than 10,000 loads each, accounting for nearly 80% (180,991 loads) of the total loads. Transystems accounted for more than half of the total loads with 126,999 total loads. The most heavily utilized routes were SH-24, SH-25, and SH-78.

There was a 110% increase in participation in the pilot project between FY 2007 and FY 2008 due to the addition of 18 routes by the Legislature. There were 94,160 total trips made on these additional routes through FY 2012. It allowed additional shipping companies to participate in the pilot program and provided enhanced efficiency for those companies already participating.

Safety

For the purpose of analysis, a crash rate for all vehicles and trucks was calculated for individual pilot project routes, all project routes combined, the most utilized pilot project routes (SH-24, 25, 78) and all State Roads including the Interstate system. Crash rates were calculated for five time periods, one before the pilot project and four during the pilot project. For full results refer to Appendix C.

There was very little difference in the total vehicles crash rate between the pilot project routes, most utilized pilot project routes, and all routes. There was a slight increase (Table 1) in the crash rate for trucks on pilot routes compared to commercial crash rates on non-pilot routes. There was also an increase on the most utilized pilot project routes in comparison to the rest of the pilot routes and non-pilot routes.

Table 1: Commercial Vehicle Crash Rates per Hundred Million Vehicle Miles Traveled.

	FY 2001- $\mathbf{2 0 0 3}$	FY 2004- $\mathbf{2 0 0 6}$	FY 2007	FY 2008- $\mathbf{2 0 0 9}$	FY 2010- $\mathbf{2 0 1 2}$
All Pilot Routes	103.94	118.93	127.67	115.69	64.00
Pilot SH-24, 25, 78	227.78	301.45	209.46	141.92	152.63
All State Routes	86.74	90.31	87.99	85.62	36.30

None of the increases in crash rates observed are statistically significant. ITD was not able to track pilot project trucks separately from all trucks. ITD requested crash information from the two main haulers. US Ecology, Inc. reported that none of their pilot project trucks were involved in any crashes during the pilot project period. Transystems reported that pilot project trucks were involved in 17 total crashes during the pilot project of which one included an injury and one included a fatality.

Pavement

For the purpose of the analysis, all State Highways in Districts 3, 4, 5, and 6 were separated into two groups:

- Non-pilot project routes which are routes that were never part of the pilot project, and
- Pilot project routes which were at some point involved in the pilot project.

A subset of the most utilized pilot project routes (SH-24, 25, and 78) was also analyzed. A weighted average for the rutting depth, roughness index, and cracking index was calculated for each year. All segments with incomplete data were removed from the analysis.

The weighted average for rutting, cracking index, and roughness index for each year were plotted, the results are included in Appendix D. The difference between the weighted average in 2003 prior to the pilot project, and 2012, after the pilot project, are presented below in Table 2. This number represents the deterioration that occurred over that time span, a positive number indicates an improvement.

Table 2: Change in Pavement Indices from 2003-2012.

	Rutting	Cracking Index	Roughness Index
Pilot	0.015	0.434	0.074
Pilot 24, 25, 78	-0.011	0.227	-0.594
Non-Pilot	-0.005	0.412	0.098

For rutting depths, the pilot routes improved slightly while the non-pilot and most heavily traveled pilot routes deteriorated slightly.

The roughness index improved for both the pilot and non-pilot routes but it deteriorated on the most utilized routes. None of these differences were statistically significant.

The cracking index improved for all groups, improving most for the pilot routes and least for the most utilized pilot routes.

The improvement of rutting depth, roughness index and cracking index can be attributed to the pavement projects that were performed on these routes as part of the maintenance that our Districts perform to keep pavement serviceable to the public.

Bridges

For the purpose of analysis, all bridges on State Highways were split into groups: Bridges on Pilot Project routes since 2003 (120 bridges), non-pilot project bridges since 2003 (1,180 bridges), and the most utilized pilot project routes SH-24, SH-25, and SH-78 (16 bridges). For the pilot project routes that were added to the study in 2008 (133 bridges,) the Inspector bridge ratings were compared before and after their inclusion in the project. Bridges that were built during this time period (2003-2011), and bridges that did not have ratings for the entire 10 year period were removed from the analysis.

Table 3: Change in Bridge Condition Indices from 2003-2012.

	Deck	Superstructure	Substructure
Pilot	-0.031	-0.036	-0.030
Pilot SH-24, 25, 78	-0.025	-0.033	-0.024
Non-Pilot	-0.021	-0.007	0.000

Deck, superstructure, and substructure ratings for all three groups deteriorated, with the pilot routes deteriorating the most followed by the most utilized pilot routes, then the non-pilot routes. These results are interesting in that one would expect that if the pilot trucks were causing the observed increase in damage
between the pilot and non-pilot routes, you would see an increase in the deterioration on the most utilized routes over all the pilot routes, which was not the case.

No significant differences were observed in the rate of deterioration on deck, superstructure, and substructure inspector ratings for pilot project bridges, the heaviest used pilot project bridges, and non-pilot project bridges. No significant differences were observed in the rate of deterioration on deck, superstructure, and substructure inspector ratings for the added bridges before and after inclusion in the pilot project. Please refer to Appendix E for the full results.

ISSUES AFFECTING DATA ANALYSIS

There are several issues that have complicated the data analysis for the 129,000 pound pilot project:

- Small sample size
- Pilot project truck impacts vs. annual permit trucks and other truck impacts
- Pavement and bridge rehabilitation
- Route changes

Small sample size

The number of trips made by the project trucks represents a small portion of the total truck traffic on the study routes, and an even smaller portion of the total vehicle volume on most of the routes. Even for those highways most heavily used by study participants (i.e. portions of SH-24, SH-25 and SH-78), the pilot project trucks generally make up less than two percent of the total truck volume. For example, the highest volume of pilot project trips occurred on SH-24 where 97,969 trips were recorded during the past 10 years. By comparison, the ten-year total truck volume for this route was nearly 1.7 million trucks and the 10 -year total traffic was 38.4 million vehicles.

Pilot project truck impacts vs. annual permit trucks and other truck impacts

Pavement deterioration over time is caused by a variety of factors, such as traffic volume and loading, moisture, terrain type, allowable speed limit, and temperature changes. Repeated cycles of axle loads can cause progressive cracking which results in pavement deterioration. This cracking is due to both the axle weight of each vehicle and the accumulation of the incremental damage that occurs after each axle load passes. It is not possible to determine what portion of pavement cracking is attributable to pilot project trucks, what portion is due to all other trucks, and what portion is due to moisture and temperature changes.

Annual overweight permits are issued to companies to allow them to haul non-reducible loads in excess of legal weights on designated routes that include all of the pilot project routes. Each permit is issued for a specific truck, but the number and location of the trips made by these trucks is unknown, as they are only required to report the mileage that they travel. Due to the overall weights and the individual axle weights of the trucks allowed by these annual permits, they can exceed those allowed for pilot project trucks, and their effect on pavements and bridges may be considerable. The ratio of annual overweight permits issued compared to pilot project truck permits has been about 20:1.

Also, although the number of non-permitted (illegal) overweight trucks is not known, their impact can be quite significant. The weight carried by these trucks is often concentrated on a limited number of axles within a short wheelbase. This type of configuration is the most damaging to both pavements and bridges, and can also be a safety concern because the truck carries more weight than it was designed to handle.

Pavement and bridge rehabilitation

Planned pavement preservation projects, such as seal coats and maintenance overlays, continue to occur on pilot project routes. Maintenance and preservation projects like sealcoats and thin overlays improve a crack indices by 0.3 points. Larger and deeper projects, such as mill and inlays, cold in place recycles, and partial depth reclamations return a pavement to its best condition at 5.0. It is not possible to establish if there is any long-term pavement deterioration caused by the pilot project in these areas.

Since 2003, bridge rehabilitation and replacement projects on the pilot project routes have continued as scheduled. Since bridge condition is positively influenced by this work, it poses a problem in evaluating the effect of the pilot project on bridges similar to that discussed for pavements.

Route changes

A total of 16 pilot project routes were originally designated in House Bill 395 in 2003. In 2005, the Idaho Legislature passed House Bill 146 which corrected a segment of an originally designated route and resulted in a total of 17 designated routes. In 2007, Senate Bill 1138 was passed which corrected the descriptions of three routes and added 17 new routes for a total of 34 designated routes. Later in the same session. Senate Bill 1180 was passed and added one more route for a total of 35 designated routes.

The goal of adding new highway segments to the study was to increase participation. However, even though the addition of routes has resulted in a proportionate increase in permits, it also means that only half of the routes will have been monitored for the entire duration of the study.

CONCLUSIONS

ITD did not observe any significant effect of the 129,000 pound pilot project trucks on pavements, bridges, or safety. The pilot project trucks comprise a small percentage of the overall truck traffic. The collected data has a high variability due to untracked annual permits, illegal loads, and continued pavement and bridge rehabilitation.

There is no basis in national research or current pavement stress models to expect that more weight spread over more axles would cause more damage to flexible asphalt pavements, and none was observed. National research has suggested that rigid concrete pavement may experience increased damage due to some axle combinations, but this relationship has had mixed results in research. This research did not include any pilot project routes on concrete pavement.

National research has suggested that bridges may be more susceptible to damage from vehicles with a higher gross vehicle weight regardless of the amount of axles but it was not observed in this study. A 129,000 pound load exceeds the inventory rating on many State bridges but not the operating rating. According to AASHTO Guidelines (The Manual for Bridge Evaluation) allowing unlimited numbers of vehicles to use the bridge at operating level may shorten the life of the bridge.

Project participants have reported economic benefits associated with this pilot project. Amalgamated Sugar Company estimated that they saved over $\$ 2.5$ million during the pilot project. US Ecology, Inc. estimated that they had a 6% reduction in the number of trips per year amounting to an estimated total of 7,800 loads since 2004 using pilot project trucks. Their estimated savings from trip reductions has been $\$ 70,000-\$ 180,000$ per year.

APPENDIX A

Route Information

Pilot Project Routes

ROUTE	HIGHWAY	$\begin{gathered} \text { ITD } \\ \text { SEGMENT } \\ \text { CODE } \\ \hline \end{gathered}$	BEGIN MILEPOST	END MILEPOST	LENGTH	DESCRIPTION
e	SH-19	002050	9.070	19.860	10.790	Junction with US-95 (Wilder) to junction with 1-84B (Caldwell)
	Total Length $=$				10.790	Miles
f	SH-78	002190	0.000	76.004	76.004	Junction with SH-55 (Marsing) to junction with SH-51
	SH-51	002170	69.918	76.582	6.664	Junction with SH-78 to junction with SH-78
	SH-78	002190	82.680	98.640	15.960	Junction with SH-51 to junction with 1-84B (Hammett)
	Total Length =				98.628	Miles
g	SH-67	005320	0.000	2.735	2.735	Junction with SH-78 (Grandview) to milepost 2.735
	SH-67	016410	2.735	3.123	0.388	Milepost 2.735 to milepost 3.123
	SH-67	005320	3.230	16.319	13.089	Milepost 3.230 to Grandview Road
	SH-67	002180	1.471	8.948	7.477	Grandview Road to junction with SH-51 (Mountain Home)
	Total Length $=$				23.689	Miles
h	SH-55	001990	0.000	10.614	10.614	Junction with US-95 to junction with Farmway Road
	Total Length $=$				10.614	Miles
i	SH-25	002270	46.025	50.830	4.805	Junction with SH-27 (Paul) to its junction with SH-24.
	SH-25	025310	50.830	50.978	0.148	
	Total Length $=$				4.953	Miles
j	SH-25	002270	5.353	27.000	21.647	Junction with US-93 to milepost 27 (Hazelton)
	Total Length $=$				21.647	Miles
k	SH-24	002280	3.549	3.735	0.186	Junction with SH-25 to junction with old SH-25
	SH-24	002270	51.068	52.455	1.387	Junction with SH-25 to junction with SH-25
	SH-24	002280	5.120	67.533	62.413	Junction with SH-25 to junction with US-93
	Total Length $=$				63.986	Miles
I	US-20	002240	256.073	272.000	15.927	Junction with SH-22/33 to junction with US-26
	US-20	002070	263.770	303.512	39.742	Junction with US-26 to Shelley New Sweden Road
	Total Length $=$				55.669	Miles
m	SH-34	002360	7.620	50.476	42.856	Junction with US-91 to junction with US-30
	US-30	002040	386.450	387.020	0.570	Junction with SH-34 to milepost 387.020
	US-30	002040	399.026	405.543	6.517	Milepost 399.026 to junction with SH-34
	SH-34	002360	57.757	78.000	20.243	Junction with US-30 to milepost 78
	Total Length $=$				70.186	Miles
n	I-15B	001380	4.526	5.250	0.724	Yellowstone Avenue from junction with US-91 to Gallatin Road
	Total Length $=$				0.724	Miles
-	US-91	002350	120.561	122.866	2.305	Junction with Canyon Road to junction with l-15B
	US-91	001380	2.323	4.526	2.203	Junction with l-15B to junction with US-26 (Sunnyside Road)
	Total Length $=$				4.508	Miles
p	SH-22	002470	24.670	68.606	43.936	Junction with SH-33 to junction with I-15 NB ramps (Dubois)
	Total Length $=43.936$					Miles

ROUTE	HIGHWAY	$\begin{gathered} \text { ITD } \\ \text { SEGMENT } \\ \text { CODE } \end{gathered}$	BEGIN MILEPOST	END MILEPOST	LENGTH	DESCRIPTION
q	SH-45	002160	9.740	27.725	17.985	Junction with SH-78 to intersection of 2nd Street South and 11th Avenue (Nampa)
	SH-45	002161	27.580	27.650	0.070	Intersection of 3rd Street S and 12th Avenue to intersection of 3rd Street S and 11th Ave.
	1-84B	002040	57.935	58.665	0.730	Junction with SH-55 to intersection of 11th Avenue S and 3rd Street S (eastbound)
	I-84B	002042	57.904	58.670	0.766	Junction with SH-55 to intersection of 11th Avenue S and 2nd Street S (westbound)
	SH-45 Conn	015992	0.000	0.250	0.250	Junction with SH-78 to junction with SH-45
	Total Length $=$				19.801	Miles
r	SH-87	002520	0.000	9.133	9.133	Montana border to junction with US-20
	Total Length $=$				9.133	Miles
s	SH-33 Spur	002460	99.335	100.000	0.665	Junction with US-20 to junction with SH-33
	SH-33	002460	100.000	135.830	35.830	Junction with SH-33 Spur to MP 135.83
	SH-33	002460	136.000	149.622	13.622	MP 136.00 to junction with SH-31 (Victor).
	Total Length $=$				50.117	Miles
t	SH-28	002500	15.150	30.610	15.460	Junction with SH-22 to junction with SH-33
	Total Length =				15.460	Miles
u	SH-38	002320	0.689	1.318	0.629	Milepost 0.689 to milepost 1.318 at Malad
	Total Length =				0.629	Miles
v	SH-27	002290	0.000	21.807	21.807	Milepost 0 (Oakley) to junction with 1-84B
	1-84B	002290	21.807	24.106	2.299	Junction with I-84B to I-84 WB on-ramp IC\#208
	SH-27	002290	24.106	26.561	2.455	1-84 WB on-ramp IC\#208 to junction with SH-25 (Paul)
	Total Length $=\mathbf{2 6 . 5 6 1}$					Miles
w	SH-81	002310	0.000	33.978	33.978	Junction with SH-77 (Malta) to junction with US-30 (Burley)
	Total Length $=$				33.978	Miles
x	US-30	002040	223.505	257.481	33.976	Junction with SH-50 at Kimberly to junction with SH-27 at Burley
	1-84B	002040	257.481	258.723	1.242	Junction with SH-27 at Burley to junction with SH-81 at Burley
	Total Length $=$				35.218	Miles
y	US-93 Spur	002221	0.000	0.910	0.910	Junction with US-30 to junction with US-93 at Twin Falls
	Total Length $=$				0.910	Miles
z	US-93 B	002220	46.549	47.457	0.908	Junction with US-30 to junction with US-93 spur at Twin Falls
	Total Length $=$				0.908	Miles
aa	US-30	002040	172.595	212.078	39.483	Junction with 1-84B at Bliss to junction with US-93 east of Filer
	US-93 B	002040	212.078	216.899	4.821	Junction with US-30 east of Filer to Washington Street at Twin Falls
	US-30	002040	216.899	216.925	0.026	Addison Avenue from Washington Street to MP 216.925
	US-30	002040	217.186	217.915	0.729	MP 217.186 to junction with SH-74 (Shoshone Street)
	US-93 B	002043	217.199	217.282	0.083	Addison Avenue from Washington Street to 2nd Avenue N
	US-30	002043	217.282	217.931	0.649	2nd Avenue N from US-93 (Addison Avenue) to SH-74 (Shoshone Street)
	Total Length $=45.791$					Miles

ROUTE	HIGHWAY	ITD SEGMENT CODE	$\begin{gathered} \text { BEGIN } \\ \text { MILEPOST } \end{gathered}$	END MILEPOST	LENGTH	DESCRIPTION
bb	1-848	002240	138.600	138.970	0.370	Junction with US-30 (Bliss) to junction with I-84 WB on/off ramps IC\#141
	US-26	002240	138.970	165.928	26.958	Junction with I-84 WB on/off ramps IC\#141 to junction with SH-75 (Shoshone)
	Total Length $=$				27.328	Miles
cc	SH-46 Spur	002201	0.000	1.187	1.187	Junction with I-84 EB on/off ramps IC\#155 to junction with SH-46 (Wendell))
	Total Length $=$				1.187	Miles
dd	SH-46	002200	100.000	116.998	16.998	Junction with I-84 EB on/off ramps IC\#157 (Wendell) to MP 116.998
	SH-46	002202	116.998	118.951	1.953	Milepost 116.998 to milepost 118.951
	SH-46	002200	118.951	142.470	23.519	MP 118.951 to junction with US-20
	Total Length $=$				42.470	Miles
ee	1-84B	002170	93.538	95.308	1.770	Junction with SH-51 to Milepast 95.308
	$1-84 \mathrm{~B}$	002070	95.308	95.467	0.159	Milepost 95.308 to junction with US-20
	US-20	002070	95.467	105.940	10.473	Junction 1-84B to Milepost 105.94
	US-20	002070	106.000	112.910	6.910	Milepost 106.000 to Milepost 112.910
	US-20	002070	112.980	195.483	82.503	Milepost 112.980 to Milepost 195.483
	US-20	002070	195.530	196.039	0.509	Milepost 195.530 to junction with US-93 at Carey
	SH-51	002170	90.785	92.240	1.455	Junction with SH-67 to Jackson Street in Mountain Home
	SH-51	001021	4.062	4.206	0.144	Junction with I-84B to Jackson Street
	SH-51	001020	4.116	4.309	0.193	Junction with $1-84 \mathrm{~B}$ to end divided SH-51
	Total Length $=104.116$					Miles
ff	SH-51	002170	76.582	90.785	14.203	Junction with SH-78 to Junction with SH-67
	Total Length $=$				14.203	Miles
gg	SH-44	002130	0.000	16.180	16.180	Junction with 1-84 EB on/off ramps IC\#25 to begin Eagle Bypass (Eagle)
	SH-44	015914	16.180	17.640	1.460	Begin Eagle Bypass (Eagle) to Junction with SH-55 (Eagle)
	Total Length $=17.640$					Miles
hh	US-20	002070	9.647	22.129	14.203	Junction with US-95 (Parma) to junction with I-84 WB on/off ramps IC\#26
	Total Length $=$				14.203	Miles
ii	1-158	001380	5.250	6.315	1.065	Yellowstone Avenue from Gallatin Road to junction with US-20B (Broadway)
	US-20B	002240	333.044	334.374	1.330	Yellowstone Avenue from Broadway Avenue to Holmes Avenue
	US-20B	002073	2.270	3.717	1.447	Holmes Avenue from Yellowstone Avenue to Junction with US-20
	US-20	002070	309.883	338.927	29.044	Junction with US-20B at Holmes Avenue in Idaho Falls to junction with SH-33at Sugar City
	Total Length $=$				32.886	Miles

PILOT PROJECT ROUTE DESCRIPTIONS

2003 House Bill 395: Designated 16 pilot project routes.
2005 House Bill 146: Changed description of route (n), added 1 route.
2007 Senate Bill 1138:
2007
2008
Senate Bill 1180:
Changed description of routes (a), (n), and (q), added 17 routes.
Added 1 route.
Senate Bill 1390:
Changed several route descriptions to clarify beginning and end.

2003 PILOT PROJECT ROUTES (HB 395)

(a) Ashton to Kimberly to Twin Falls to Nevada using US-20, US-30, SH-33, US-93, SH-25, SH-50 and SH-74.
(b) US-91 from its junction with SH-34 to the Utah border.
(c) US-30 from its junction with I-15 to the Wyoming border.
(d) US-95 south from Fruitland to junction with SH-55.
(e) SH-19 between Wilder and Caldwell.
(f) SH-78 between Marsing and Hammett.
(g) SH-67 from Mountain Home to junction with SH-78 at Grandview.
(h) SH-55 from intersection with Farmway Road to junction with US-95.
(i) SH-25 from the intersection of SH-24 to Paul.
(j) SH-25 from intersection with US-93 to Hazelton.
(k) SH-24 from intersection with US-93 to intersection with SH-25.
(l) US-20 from its intersection with New Sweden Road to its junction with SH-22/33.
(m) SH-34 from milepost 78 to the junction with US-91.
(n) US-26 from the intersection with 45th West to the junction with US-91; and US-91 from the intersection with Canyon Road to the junction with US-26.
(o) SH-22 from Dubois to the junction with SH-33.
(p) SH-45 from junction with SH-78 to intersection with I-84 business loop; I-84 business loop to intersection with SH-55; SH-55 to I-84 interchange no. 35.

2005 PILOT PROJECT ROUTES (HB 146)

(a) through (m) remained the same
(n) US-26 from the intersection with 45th West to the junction with US-91; and US-26 from its junction with US-91 north to its intersection with Gallatin/West 23rd Street.
(o) US-91 from the intersection with Canyon Road to the junction with US-26.
(p) SH-22 from Dubois to the junction with SH-33.
(q) SH-45 from junction with SH-78 to intersection with I-84 business loop; I-84 business loop to intersection with SH-55; SH-55 to I-84 interchange no. 35.

2007 PILOT PROJECT ROUTES (SB 1138)

(a) Montana border to Kimberly to Twin Falls to Nevada using US-20, US-30, SH-33, US-93, SH-25, SH-50 and SH-74.
(b) through (m) remained the same.
(n) US-26 from its junction with US-91 north to its intersection with Gallatin/West 23rd Street in Idaho Falls.
(o) and (p) remained the same.
(q) SH-45 from junction with SH-78 to intersection with I-84 business loop; I-84 business loop to intersection with Nampa Boulevard.
(r) SH-87 from Montana border to junction with US-20.
(s) SH-33 from Victor to junction with US-20.
(t) SH-28 from junction with SH-22 to junction with SH-33.
(u) SH-38 from milepost 0.689 to milepost 1.318 at Malad.
(v) SH-27 from junction with SH-25 at Paul to Oakley.
(w) SH-81 from Malta to junction with US-30 at Burley.
(x) US-30 from junction with SH-81 at Burley to junction with SH-50 at Kimberly.
(y) US-93 spur from junction with US-30 to junction with US-93 at Twin Falls.
(z) US-93 from junction with US-93 spur to junction with US-30 at Twin Falls.
(aa) US-30 from junction with SH-74 at Twin Falls to junction with I-84 business loop at Bliss.
(bb) US-26 from junction with SH-75 at Shoshone to eastbound exit of I-84 interchange no. 141 at Bliss; I-84 business loop from eastbound exit of I-84 to junction with US-30 at Bliss.
(cc) SH-46 spur from junction with SH-46 at Wendell to I-84 interchange no. 155.
(dd) SH-46 from junction with US-20 to I-84 interchange no. 157 at Wendell.
(ee) US-20 from junction with US-93 at Carey to junction with I-84 business loop at interchange 95; I-84 business loop from interchange 95 to junction with SH-51; SH-51 to junction with SH-67.
(ff) SH-51 from junction with SH-67 to junction with SH-78.
(gg) SH-44 from junction with SH-55 at Eagle to junction with I-84 interchange no. 25.
(hh) US-20/26 from junction with US-95 at Parma to junction with I-84 interchange no. 26.

2007 PILOT PROJECT ROUTES (SB 1180)

(a) through (hh) remained the same.
(ii) US-20 from junction with US-33 at Sugar City south to junction with US-20 business loop/Holmes Avenue; US-20 business loop/Holmes Avenue south to junction with US-26/Yellowstone; US-26 from intersection with US-20 business loop/Holmes Avenue south to Gallatin.

2008 PILOT PROJECT ROUTES (SB 1390)

(a) US-20 Montana border to its junction with SH-33; SH-33 to its junction with US-20; US-20 to its junction with US-93; US-93 to its junction with SH-25; SH-25 to its junction with SH-50; SH-50 to its junction with US-30; US-30 to its junction with SH-74; SH-74 to its junction with US-93; US-93 to the Nevada border.
(b) and (c) remained the same.
(d) US-95 south from milepost 66 (Fruitland) to its junction with SH-55.
(e) SH-19 from its junction with US-95 (Wilder) to its junction with I-84B (Caldwell).
(f) SH-78 from its junction with SH-55 (Marsing) to its junction with SH-51; SH-51 to its junction with SH-78; SH-78 to its junction with I-84B (Hammett).
(g) SH-67 from its junction with SH-51 (Mountain Home) to its junction with SH-78 (Grandview).
(h) remained the same.
(i) SH-25 from its junction with SH-24 to its junction with SH-27 (Paul).
(j) SH-25 from its junction with US-93 to milepost 27 (Hazelton).
(k) SH-24 from intersection with US-93 to its intersection with SH-25.
(l) through (o) remained the same.
(p) SH-22 from its junction with I-15 northbound ramps (Dubois) to its junction with SH-33.
(q) SH-45 from its junction with SH-78 to its junction with I-84 business loop; I-84 business loop to its junction with exit 35 (Nampa Boulevard/Northside Boulevard).
(r) remained the same.
(s) SH-33 from its junction with SH-31 (Victor) to its junction with SH-33 spur; SH-33 spur to its junction with US-20.
(t$) \quad$ and (u) remained the same.
(v) SH-27 from its junction with SH-25 (Paul) to its junction with I-84B (Burley); I-84B to its junction with SH-27; SH-27 to milepost 0 (Oakley).
(w) SH-81 from its junction with SH-77 (Malta) to its junction with US-30 (Burley).
(x) through (aa) remained the same.
(bb) US-26 from its junction with SH-75 (Shoshone) to its junction with I-84 exit 141 westbound ramps (Bliss); I-84 business loop from its junction with I-84 exit 141 westbound ramps to its junction with US-30 (Bliss).
(cc) SH-46 spur from its junction with SH-46 (Wendell) to its junction with I-84 exit 155 eastbound ramps.
(dd) SH-46 from its junction with US-20 to its junction with I-84 exit 157 eastbound ramps (Wendell).
(ee) and (ff) remained the same
(gg) SH-44 from its junction with SH-55 (Eagle) to its junction with I-84 exit 25 eastbound ramps.
(hh) US-20/26 from its junction with US-95 (Parma) to its junction with I-84 exit 26 westbound ramps.
(ii) remained the same.

APPENDIX B
 Trip Information

PILOT PROJECT TRIPS BY MONTH AND YEAR

Pilot Project Trips by Month FY 2004 - FY 2012										
Month	FY 2004	FY 2005	FY 2006	FY 2007	FY 2008	FY 2009	FY 2010	FY 2011	FY 2012	
July	44	81	974	3,016	1,235	978	1,003	2,114	1,359	10,804
August	199	25	856	971	1,299	792	1,038	2,218	1,427	8,825
September	244	1,188	1,013	1,178	2,532	1,873	2,777	2,556	2,978	16,339
October	269	2,837	5,982	2,956	1,579	5,323	5,740	2,177	5,399	32,262
November	2,043	5,103	5,960	3,099	2,080	6,314	6,269	1,203	7,760	39,831
December	1,868	5,200	3,478	2,748	945	3,880	7,317	967	8,587	34,990
January	4,340	3,956	2,321	4,412	6,278	5,915	735	6,495	7,811	42,263
February	3,031	2,344	2,621	3,369	5,670	2,013	840	5,233	7,395	32,516
March	293	945	595	1,520	4,407	995	923	5,336	4,912	19,926
April	104	580	404	998	1,277	1,037	1,155	1,169	1,836	8,560
May	43	875	457	905	1,249	761	1,513	1,380	1,419	8,602
June	41	1,181	448	1,015	1,084	869	2,076	1,264	1,273	9,251
	12,519	24,315	25,109	26,187	29,635	30,750	31,386	32,112	52,156	

PILOT PROJECT TRIPS BY ROUTE FY 2004 - FY 2012

PILOT PROJECT TRIPS BY COMMODITY

FY 2004 - FY 2012

TRAFFIC VOLUMES PER HIGHWAY

	先			$\begin{aligned} & \stackrel{\circ}{\sim} \\ & \underset{\circ}{\circ} \end{aligned}$				$\begin{aligned} & 20 \\ & \\ & \\ & 0 \end{aligned}$	僉		$\begin{aligned} & \circ \stackrel{\circ}{0} \\ & \stackrel{0}{0} \end{aligned}$	\mid		$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \text { مें } \end{aligned}$				$\begin{aligned} & \text { ڭे } \\ & \text { Hín } \end{aligned}$	$\stackrel{\circ}{\circ}$								우우ํ		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{0}{0} \\ & \stackrel{0}{2} \end{aligned}$		$\begin{aligned} & \text { oì } \\ & \text { ob } \end{aligned}$				
		$\begin{gathered} \stackrel{e}{m} \\ \underset{\sim}{m} \end{gathered}$		$\begin{gathered} \underset{\sim}{\mathrm{N}} \end{gathered}$				$\begin{gathered} 1 \\ \underset{\sim}{2} \\ \underset{\sim}{2} \end{gathered}$						$\begin{aligned} & \text { ö̀ } \\ & \text { సo } \end{aligned}$				$\begin{aligned} & \stackrel{\text { Hin }}{\substack{n \\ \infty}} \end{aligned}$	$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{4} \\ \stackrel{n}{n} \\ 0 \end{array}\right\|$		$\begin{gathered} \stackrel{\circ}{\circ} \\ \stackrel{\rightharpoonup}{\top} \end{gathered}$							$\stackrel{\circ}{0}$	$\begin{gathered} \stackrel{\rightharpoonup}{\circ} \\ \stackrel{m}{\circ} \end{gathered}$		$\begin{aligned} & \text { oे̀ } \\ & \text { ob } \end{aligned}$				
	$\left\lvert\, \begin{aligned} & \overline{\mathrm{y}} \\ & \stackrel{\circ}{\circ} \end{aligned}\right.$	$$		N		$\stackrel{\sim}{7} \times$	∞	\mid	$\begin{aligned} & \text { ※ } \\ & \stackrel{\circ}{0} \end{aligned}$			$\stackrel{\sim}{m}$		足	$\stackrel{\text { ® }}{ }$	－			$\left\|\begin{array}{c} \tilde{\sim} \\ \underset{\sim}{n} \end{array}\right\|$		$$	$\underset{\substack{\circ \\ \underset{\sim}{2}}}{\substack{\infty \\ \hline}}$	$\vec{\infty}$		$\begin{aligned} & \overrightarrow{0} \\ & \underset{\sim}{\prime} \end{aligned}$		\cdots	sere	$\begin{gathered} \stackrel{\sim}{\sim} \\ \underset{\sim}{2} \end{gathered}$		m		$\stackrel{\text { in }}{\substack{n \\ i n}}$		先
	$\begin{gathered} \underset{7}{7} \\ \\ \frac{1}{7} \end{gathered}$	$\underset{\sim}{\underset{\sim}{\infty}}$		$\stackrel{\text { N／}}{\substack{\text { \％}}}$		7	$\checkmark \sim \sim$	1	$\begin{gathered} \stackrel{\sim}{\sim} \\ \sim \\ \sim \end{gathered}$		迺	$\stackrel{\sim}{m}$		$\underset{\sim}{\sim}$	$\stackrel{9}{2}$			$\begin{aligned} & \underset{\sim}{\underset{\sim}{N}} \\ & \underset{\sim}{*} \end{aligned}$	$\left\|\begin{array}{l} \mathbf{\infty} \\ \hline \end{array}\right\|$		$\begin{aligned} & \stackrel{\circ}{0} \\ & \underset{\sim}{n} \end{aligned}$	$\underset{\sim}{9}$	$\underset{6}{n}$		$\begin{aligned} & \text { U } \\ & \text { N } \\ & \underset{\sim}{n} \end{aligned}$		~ 1	$\underset{n}{n}$	$\begin{gathered} \underset{\sim}{\alpha} \\ \underset{\sim}{2} \end{gathered}$		m		$\underset{\sim}{\text { N }}$		\％
咅	$\mathfrak{l} \begin{aligned} & 9 \\ & \vdots \\ & \frac{1}{2} \end{aligned}$	$\stackrel{\circ}{\underset{N}{n}}$		N		$\sigma+$	，	$\underset{\sim}{7}$	\％		\％	\bigcirc		ন	!	O		$\begin{aligned} & \text { n } \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \end{aligned}$	$\left\|\begin{array}{c} \infty \\ \stackrel{\infty}{\infty} \\ \underset{\sim}{i} \end{array}\right\|$		$\stackrel{\text { 仡 }}{ }$	\％	m		$\stackrel{\square}{\square}$		\bigcirc	筞	\％	\％	\bigcirc		㪄		च
	$\left\|\begin{array}{c} 0 \\ 0 \\ \vdots \\ \vdots \\ \vdots \end{array}\right\|$	¢		出			\pm	${ }^{\text {N }}$	¢		－																								
	$\left\lvert\, \begin{aligned} & \overline{\mathrm{y}} \\ & \stackrel{y}{\circ} \end{aligned}\right.$			Nocce				$0 \begin{gathered} \infty \\ \infty \\ \infty \\ \\ \end{gathered}$				N	$\begin{gathered} \substack{\underset{\sim}{n} \\ 0 \\ 0 \\ 0 \\ \hline} \end{gathered}$				$\left\|\begin{array}{l} e_{n}^{e} \\ \underset{\sim}{2} \\ \hline 0 \end{array}\right\|$		$\begin{aligned} & \hat{N} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$		\square			A_{i}^{A}											
	$\begin{array}{\|c} \overline{7} \\ \hline 0 \\ \bar{Z} \\ \hline \end{array}$	or		Noid	O				$\left\lvert\, \begin{gathered} 0 \\ \hat{0} \\ \underset{\sim}{2} \\ \hline \end{gathered}\right.$			－				－	$\underset{\sim}{\sim}$		$\left\|\begin{array}{c} n \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}\right\|$																
			:ras	Bose				$\left\lvert\, \begin{gathered} \infty \\ \substack{\infty \\ \infty \\ \infty} \end{gathered}\right.$	(on			人̀	$\mathfrak{s i c}$		요	응	$\left\|\begin{array}{c} \infty \\ 0 \\ 0 \\ \tilde{A} \\ \mid \end{array}\right\|$		$\begin{array}{\|c} \underset{\sim}{2} \\ \mathbf{N} \\ \mathbf{N} \\ \hline \end{array}$	$\left\|\begin{array}{c} n \\ n \\ n \\ 0 \\ 0 \\ \hline \end{array}\right\|$							\mathfrak{c}			$\underset{\sim}{\sim}$					
	$\left\|\begin{array}{l} i \\ \vdots \\ \vdots \\ \vdots \\ \vdots \end{array}\right\|$					Cois		$\left\|\begin{array}{c} \underset{\sim}{2} \\ \underset{\theta}{0} \end{array}\right\|$																											
	$\left\lvert\, \begin{aligned} & \bar{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}\right.$							$\begin{aligned} & \dot{\sim} \\ & \underset{\sim}{g} \\ & \underset{\sigma}{2} \end{aligned}$				等			$\stackrel{0}{\infty} \underset{\infty}{ }$	－			N									\square							
								Oig	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \infty \\ \infty \end{array}\right\|$			－			역					$\begin{gathered} 0 \\ \vdots \\ \vdots \\ 0 \\ \\ \\ \hline \end{gathered}$															
寿	$\begin{aligned} & \substack{9 \\ \vdots \\ \frac{1}{2} \\ \hline} \end{aligned}$											先			nin				$\left\|\begin{array}{c} \tilde{y} \\ \substack{0 \\ 0 \\ 0 \\ 0} \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ \\ \\ \end{array}\right\|$															
	$\left\lvert\, \begin{gathered} 0 \\ \vdots \\ \vdots \\ \vdots \end{gathered}\right.$								$\left.\begin{gathered} 2 \\ 2 \\ n \\ n \\ n \\ 0 \end{gathered} \right\rvert\,$	（cols																									
				O				\％	$\stackrel{\sim}{\wedge}$			$\stackrel{0}{\square}$	Bob	By		O		\％	$\left\|\begin{array}{c} \infty \\ \\ \underset{m}{n} \end{array}\right\|$	$\left\|\begin{array}{c} \vec{g} \\ \stackrel{1}{n} \\ \dot{n} \end{array}\right\|$		웅						－							－
		Mr	Sic:c		$\mathfrak{c \| c}$	Ron		号			$\begin{gathered} n \\ \\ \\ \hline \end{gathered}$	\％		So		－	ob	盛	\mid	$\left\|\begin{array}{c} 0 \\ 0 \\ \tilde{n} \\ \underset{\sim}{n} \end{array}\right\|$		on		$\underset{\sim}{n}$				－							
号		$\mathfrak{c c}$		\qquad		on on ion in			Oion		OTO	\bigcirc	$\mathfrak{B l}$			ờ	$\left\|\begin{array}{c} 9 \\ \underset{\sim}{2} \\ \hline \end{array}\right\|$		$\begin{gathered} \stackrel{\rightharpoonup}{\tilde{N}} \\ \text { O} \end{gathered}$	$\left\|\begin{array}{c} \text { did } \\ \hline 0 \end{array}\right\|$		츶		Sal				家效	oid					On	20
\pm				\qquad		$\underset{-}{2}$		N				¢				$\stackrel{\sim}{\text { ָ }}$	$\begin{aligned} & 0 \\ & \\ & \hline \end{aligned}$	¢	吕		\mathfrak{c}							－	$\begin{array}{\|c\|c} \substack{0 \\ \\ \\ \\ \\ \hline \\ \hline} \\ \hline \end{array}$						（1）
	范	－		E			－	－		σ		－		\sim				$>$	3		\times	$>$	～		\％		용		꿍	\bigcirc			๕		

$$
\begin{aligned}
& \text { *SH-25b is in section a and j } \\
& \text { **US-20a is in section a and I } \\
& { }^{* * * U S-30 \text { i in in section a and aa }}
\end{aligned}
$$

Pilot Trucks by Volume of Total Traffic and Truck Traffic

Route	Vehicles	Trucks	P Trucks	\% Trucks	\% Vehicles
SH-24	$26,022,360$	$1,099,901$	97,969	8.907%	0.376%
SH-51	$2,279,309$	187,519	11,153	5.948%	0.489%
SH-78	$2,103,067$	500,912	27,405	5.471%	1.303%
SH-38	$2,146,964$	97,028	5,228	5.388%	0.244%
SH-67	$3,768,597$	409,569	18,055	4.408%	0.479%
SH-25	$15,186,838$	913,510	34,826	3.812%	0.229%
SH-45	$22,203,581$	627,768	20,982	3.342%	0.094%

APPENDIX C
 Safety

CRASHES AND CRASH RATES FOR ALL VEHICLES

	Total Crashes					Total Crash Rates					
	Before	After				Before	After				
	$\begin{array}{\|l\|} \hline 7 / 1 / 2000- \\ 6 / 30 / 2003 \\ \hline \end{array}$	$\begin{aligned} & 7 / 1 / 2003- \\ & 6 / 30 / 2006 \end{aligned}$	$\begin{aligned} & 7 / 1 / 2006- \\ & 6 / 30 / 2007 \end{aligned}$	$\begin{aligned} & 7 / 1 / 2007- \\ & 6 / 30 / 2009 \end{aligned}$	$\begin{aligned} & 7 / 1 / 2009- \\ & 6 / 30 / 2012 \end{aligned}$	$\begin{array}{\|l\|} \hline 7 / 1 / 2000- \\ 6 / 30 / 2003 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 7 / 1 / 2003- \\ 6 / 30 / 2006 \\ \hline \end{array}$	$\begin{aligned} & 7 / 1 / 2006- \\ & 6 / 30 / 2007 \end{aligned}$	$\begin{aligned} & 7 / 1 / 2007- \\ & 6 / 30 / 2009 \end{aligned}$	$\begin{aligned} & 7 / 1 / 2009- \\ & 6 / 30 / 2012 \end{aligned}$	Ave Change in Rate
Route A	914	918	288	757	951	113.1	110.3	100.6	109.6	93.3	-4.3\%
Route B	120	136	35	92	96	206.8	238.6	175.5	214.1	147.2	-5.1\%
Route C	292	314	89	146	219	69.9	80.5	86.4	69.7	72.4	1.7\%
Route D	199	187	81	135	157	124.8	113.5	117.0	95.3	73.4	-11.9\%
Route E	46	47	32	58	74	75.7	74.9	111.4	99.8	91.8	7.3\%
Route F	128	108	48	76	92	185.4	141.2	174.6	133.1	97.6	-12.7\%
Route G	87	61	21	57	31	83.2	53.5	55.0	93.1	36.0	-6.2\%
Route H	94	110	25	63	64	167.2	179.9	114.9	141.2	99.9	-8.7\%
Route I	31	26	6	21	29	124.7	99.6	65.0	131.2	112.9	8.3\%
Route J	32	25	9	14	19	186.4	141.7	139.2	103.4	84.3	-17.5\%
Route K	114	98	40	49	66	162.8	143.2	176.8	115.4	102.1	-8.7\%
Route L	105	84	33	68	84	95.0	72.6	83.9	84.3	63.3	-8.1\%
Route M	232	176	63	111	170	119.3	94.2	144.7	127.3	132.4	6.1\%
Route N	106	93	26	26	22	166.2	132.9	113.8	276.7	162.4	16.9\%
Route O	16	29	6	64	64	94.2	156.4	90.4	190.7	131.6	25.9\%
Route P	13	14	4	10	11	100.4	114.0	83.8	95.6	76.1	-4.8\%
Route Q	753	902	233	329	419	461.9	510.1	339.8	304.2	250.1	-12.8\%
These routes didn't take effect until 7/1/2007			Before	After				Before	After		
			$\begin{array}{\|l\|} \hline 7 / 1 / 2004- \\ 6 / 30 / 2007 \end{array}$	$\begin{array}{\|l\|} \hline 7 / 1 / 2007- \\ 6 / 30 / 2009 \end{array}$	$\begin{aligned} & \hline 7 / 1 / 2009- \\ & 6 / 30 / 2012 \end{aligned}$			$\begin{aligned} & \hline 7 / 1 / 2004- \\ & 6 / 30 / 2007 \end{aligned}$	$\begin{aligned} & \hline 7 / 1 / 2007- \\ & 6 / 30 / 2009 \end{aligned}$	$\begin{aligned} & \hline 7 / 1 / 2009- \\ & 6 / 30 / 2012 \end{aligned}$	Ave Change in Rate
Route R			9	7	28			96.2	91.3	270.5	95.6\%
Route S			303	181	157			182.9	140.9	86.7	-30.7\%
Route T			1	8	5			9.2	110.4	44.3	523.2\%
Route U			4	2	4			480.3	367.1	451.0	-0.4\%
Route V			278	215	262			236.9	261.8	213.1	-4.1\%
Route W			75	57	71			159.9	163.7	139.5	-6.2\%
Route X			181	165	186			160.6	236.1	177.6	11.1\%
Route Y			23	26	36			205.2	349.7	341.2	34.0\%
Route Z			54	23	20			350.1	207.1	113.5	-43.0\%
Route AA			263	177	223			123.9	122.7	98.1	-10.5\%
Route BB			38	32	45			73.6	93.8	80.4	6.5\%
Route CC			8	2	5			218.5	83.6	167.3	19.2\%
Route DD			122	73	65			122.1	110.1	61.3	-27.1\%
Route EE			295	191	272			135.1	134.6	126.5	-3.2\%
Route FF			48	20	22			261.5	137.4	107.0	-34.8\%
Route GG			384	227	301			188.7	162.6	145.2	-12.3\%
Route HH			79	44	55			120.6	92.1	67.8	-25.0\%
Route II			512	356	406			87.4	88.7	67.3	-11.3\%
	Total Crashes					Total Crash Rates					
	$\begin{array}{\|l\|} \hline 7 / 1 / 2000- \\ 6 / 30 / 2003 \end{array}$	$\begin{array}{\|l\|} \hline 7 / 1 / 2003- \\ 6 / 30 / 2006 \end{array}$	$\begin{array}{\|l\|} \hline 7 / 1 / 2006- \\ 6 / 30 / 2007 \end{array}$	$\begin{aligned} & \hline 7 / 1 / 2007- \\ & 6 / 30 / 2009 \end{aligned}$	$\begin{aligned} & \hline 7 / 1 / 2009- \\ & 6 / 30 / 2012 \end{aligned}$	$\begin{array}{\|l\|} \hline 7 / 1 / 2000- \\ 6 / 30 / 2003 \end{array}$	$\begin{array}{\|l\|} \hline 7 / 1 / 2003- \\ 6 / 30 / 2006 \\ \hline \end{array}$	$\begin{aligned} & \hline 7 / 1 / 2006- \\ & 6 / 30 / 2007 \end{aligned}$	$\begin{aligned} & \hline 7 / 1 / 2007- \\ & 6 / 30 / 2009 \end{aligned}$	$\begin{array}{\|l\|} \hline 7 / 1 / 2009- \\ 6 / 30 / 2012 \end{array}$	Ave Change in Rate
All Pilot Routes*	3,192	3,257	1,018	3,986	4,731	137.8	137.6	124.3	130.8	103.4	-7.9\%
All State Routes	32,053	34,358	10,475	20,592	24,692	136.9	140.7	124.0	124.8	98.9	-10.0\%

*All Pilot Routes only include Routes A through Q through the time period ending June 30, 2007. All Pilot Routes for
time periods after July 1, 2007, include Route A through Route II.
The 2012 crash data and 2012 AVMT are preliminary and subject to change.

CRASHES AND CRASH RATES FOR TRUCKS

	Truck Crashes					Truck Crash Rates					
	Before	After				Before	After				
	$\begin{aligned} & \hline 7 / 1 / 2000- \\ & 6 / 30 / 2003 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 7 / 1 / 2003- \\ & 6 / 30 / 2006 \end{aligned}$	$\begin{aligned} & \hline 7 / 1 / 2006- \\ & 6 / 30 / 2007 \end{aligned}$	$\begin{aligned} & \hline 7 / 1 / 2007- \\ & 6 / 30 / 2009 \end{aligned}$	$\begin{aligned} & \hline 7 / 1 / 2009- \\ & 6 / 30 / 2012 \end{aligned}$	$\begin{aligned} & \hline 7 / 1 / 2000- \\ & 6 / 30 / 2003 \end{aligned}$	$\begin{aligned} & \hline 7 / 1 / 2003- \\ & 6 / 30 / 2006 \end{aligned}$	$\begin{aligned} & \hline 7 / 1 / 2006- \\ & 6 / 30 / 2007 \end{aligned}$	$\begin{aligned} & \hline 7 / 1 / 2007- \\ & 6 / 30 / 2009 \end{aligned}$	$\begin{aligned} & \hline 7 / 1 / 2009- \\ & 6 / 30 / 2012 \end{aligned}$	Ave Change in Rate
Route A	110	123	49	136	98	88.6	93.0	108.5	115.9	57.5	-5.5\%
Route B	6	9	5	11	5	144.0	217.1	370.6	404.3	132.8	15.8\%
Route C	76	95	27	34	48	61.5	80.6	85.5	56.8	60.6	2.6\%
Route D	44	32	16	20	9	247.0	161.8	195.5	121.0	36.0	-30.5\%
Route E	7	11	5	10	5	117.8	173.0	155.1	174.6	71.1	-2.6\%
Route F	19	22	5	13	18	145.5	154.6	99.2	125.7	107.5	-4.3\%
Route G	9	8	2	3	3	197.6	165.2	121.8	91.2	61.8	-25.0\%
Route H	11	14	5	4	5	260.5	296.9	260.2	103.9	70.8	-22.6\%
Route I	4	5	1	2	5	325.0	409.6	236.4	172.2	261.2	2.1\%
Route J	5	2	2	2	1	334.4	90.9	127.8	63.8	20.0	-37.7\%
Route K	14	24	8	7	8	212.8	340.1	292.8	127.9	89.2	-10.2\%
Route L	8	3	3	11	6	57.3	21.0	58.9	108.9	38.5	34.4\%
Route M	28	14	5	16	9	78.9	42.1	78.7	132.1	52.5	12.0\%
Route N	11	14	2	1	1	205.6	251.7	114.1	126.0	84.1	-13.8\%
Route O	1	2	2	9	2	166.8	251.1	699.2	404.0	59.4	25.4\%
Route P	1	4	3	1	5	35.1	129.0	252.9	39.4	176.2	156.5\%
Route Q	34	59	17	20	11	558.8	894.9	714.3	578.3	206.2	-10.9\%
			Before					Before			
These routes didn't take effect until 7/1/2007			$\begin{array}{\|l\|} \hline 7 / 1 / 2004- \\ 6 / 30 / 2007 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 7 / 1 / 2007- \\ 6 / 30 / 2009 \\ \hline \end{array}$	$\begin{aligned} & 7 / 1 / 2009- \\ & 6 / 30 / 2012 \\ & \hline \end{aligned}$			$\begin{aligned} & 7 / 1 / 2004- \\ & 6 / 30 / 2007 \end{aligned}$	$\begin{aligned} & 7 / 1 / 2007- \\ & 6 / 30 / 2009 \\ & \hline \end{aligned}$	$\begin{aligned} & 7 / 1 / 2009- \\ & 6 / 30 / 2012 \\ & \hline \end{aligned}$	Ave Change in Rate
Route R			2	3	7			200.7	462.6	721.6	93.2\%
Route S			22	20	5			156.7	212.8	43.6	-21.9\%
Route T			0	0	1			0.0	0.0	31.1	
Route U			0	0	0			0.0	0.0	0.0	0.0\%
Route V			21	18	16			240.0	304.0	175.2	-7.9\%
Route W			8	7	6			93.4	121.5	66.8	-7.4\%
Route X			33	28	14			213.3	241.1	85.6	-25.7\%
Route Y			0	1	2			0.0	250.5	334.5	66.8\%
Route Z			6	0	3			827.4	0.0	427.4	
Route AA			23	12	12			163.6	96.6	62.5	-38.1\%
Route BB			8	7	10			83.5	108.5	101.0	11.5\%
Route CC			2	0	1			568.2	0.0	279.8	
Route DD			17	3	3			137.8	37.2	25.8	-51.9\%
Route EE			35	16	18			144.0	99.0	75.5	-27.5\%
Route FF			4	3	2			258.9	267.6	114.8	-26.9\%
Route GG			33	21	9			387.5	374.4	103.2	-37.9\%
Route HH			13	1	4			279.7	32.2	75.6	23.0\%
Route II			44	24	12			70.8	57.5	19.6	-42.3\%
			Truck Crashes					uck Crash Rat			
	$\begin{aligned} & \hline 7 / 1 / 2000- \\ & 6 / 30 / 2003 \end{aligned}$	$\begin{array}{\|l\|} \hline 7 / 1 / 2003- \\ 6 / 30 / 2006 \end{array}$	$\begin{array}{\|l\|} \hline 7 / 1 / 2006- \\ 6 / 30 / 2007 \end{array}$	$\begin{array}{\|l\|} \hline 7 / 1 / 2007- \\ 6 / 30 / 2009 \end{array}$	$\begin{aligned} & \hline 7 / 1 / 2009- \\ & 6 / 30 / 2012 \end{aligned}$	$\begin{array}{\|l\|} \hline 7 / 1 / 2000- \\ 6 / 30 / 2003 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 7 / 1 / 2003- \\ 6 / 30 / 2006 \\ \hline \end{array}$	$\begin{aligned} & \hline 7 / 1 / 2006- \\ & 6 / 30 / 2007 \end{aligned}$	$\begin{aligned} & \hline 7 / 1 / 2007- \\ & 6 / 30 / 2009 \end{aligned}$	$\begin{array}{\|l\|} \hline 7 / 1 / 2009- \\ 6 / 30 / 2012 \end{array}$	Ave Change in Rate
All Pilot Routes*	371	432	153	453	364	103.9	118.9	127.7	115.7	64.0	4.1\%
All State Routes	3,102	3,366	1,147	2,153	1,340	86.7	90.3	88.0	85.6	36.3	-0.4\%

*All Pilot Routes only include Routes A through Q through the time period ending June 30, 2007. All Pilot Routes for
time periods after July 1, 2007, include Route A through Route II.
The 2012 crash data and 2012 AVMT are preliminary and subject to change.

SAFETY

Truck Crash Rate

Pilot Project Routes
Pilot Project Routes SH-24, 25, 78
Non Pilot Project Routes

APPENDIX D
 Pavements

PAVEMENT

Pavement Condition

Pilot	855 Segments	1288 Miles
Non-Pilot	1778 Segments	2865 Miles

Rutting (Inches)

Roughness Index

Cracking Index

[^0]
APPENDIX E
 Bridges

National Bridge Inventory Ratings by Fiscal Year on State Bridges

	FY 2003	FY 2004	FY 2005	FY 2006	FY 2007	FY 2008	FY 2009	FY 2010	FY 2011	FY 2012	Deterioration
Pilot 2003-2012 (120)											
Deck	6.42	6.41	6.44	6.41	6.39	6.37	6.24	6.18	6.14	6.14	-0.031
Super	6.64	6.59	6.54	6.50	6.50	6.46	6.39	6.35	6.34	6.31	-0.036
Sub	6.18	6.15	6.13	6.11	6.12	6.06	5.98	5.98	5.94	5.92	-0.030
Non-Pilot 2003-2012 (1180)											
Deck	7.00	6.28	6.24	6.22	6.20	6.15	6.11	6.11	6.09	6.11	-0.099
Super	6.64	6.59	6.54	6.52	6.49	6.44	6.39	6.37	6.35	6.34	-0.033
Sub	6.20	6.15	6.12	6.10	6.08	6.04	6.02	6.00	5.99	5.99	-0.024
SH-24, 25, 78 (16)											
Deck	6.44	6.38	6.38	6.38	6.38	6.38	6.38	6.31	6.25	6.25	-0.021
Super	6.31	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25	6.25	-0.007
Sub	6.00	5.94	5.94	5.94	6.00	6.00	6.00	6.00	6.00	6.00	0.000
	Year 1	Year 2	Year 3	Year 4	Year 5	Year 1	Year 2	Year 3	Year 4	Year 5	
Pilot 2008-2012 (133)											
Deck	6.00	6.37	6.35	6.29	6.28						0.070
Super	6.55	6.49	6.49	6.47	6.44						-0.028
Sub	6.32	6.26	6.25	6.22	6.20						-0.028
Pilot 2008-2012 (133)											
Deck						6.19	6.17	6.12	6.13	6.12	-0.017
Super						6.38	6.36	6.32	6.26	6.25	-0.032
Sub						6.14	6.10	6.07	6.02	6.02	-0.030

解 2. Bridges with no inspections in FY 2002 or FY 2003 were removed from consideration.
3. Increases in ratings are largely due to improvements on bridges or a change of the bridge inspector.
4. Bridges were added in FY 2008. These bridges have been analyzed separately they are not included in Pilot 2003-2012 or Non-Pilot 2003-2012 numbers. 5. Rate of deterioration for Pilot and Non-Pilot 2003-2012 was calculated by taking FY 2012 \# - FY 2003 \#/ 9 years 6. Rate of deterioration for the Pilot 2008-2012 group calculated based on years available

BRIDGES

Charts comparing NBI Ratings on 120 Bridges participating in Pilot Project from FY 2003 - FY 2012 with 1180 bridges not part of Pilot Project from FY 2003 - FY 2012

Superstructure

Substructure

Pilot Project Routes
Pilot Project Routes SH-24, 25, 78
Non Pilot Project Routes

Structure Type
Tee Beam

Multiple Box Beam
Multiple Box Beam
Multiple Box Beam

	$\stackrel{\text { H }}{\stackrel{\circ}{\sim}} \stackrel{\stackrel{O}{\circ}}{\stackrel{\circ}{\circ}}$	
	$\stackrel{\sim}{\sim}$	
	N -	-

Idaho Transportation Department
Bridge Inspection $8 / 29 / 2012$
Pilot Project Structures

 Idaho Transportation Department
Bridge Inspection 8/29/2012
Pilot Project Structures

$\begin{array}{ll}\stackrel{m}{\infty} & \stackrel{\rightharpoonup}{\infty} \\ \sum_{\infty}^{\infty} & \stackrel{\infty}{\infty} \\ \stackrel{\rightharpoonup}{w} & \stackrel{\rightharpoonup}{w}\end{array}$

Concrete Continuous
Concrete Continuous
$\stackrel{\otimes}{\sim} \stackrel{\circ}{\sim}$ $\div \div$ $\sim \sim$
THREE MILE CREEK

Structure Type
Stringer/Girder

Stringer/Girder
Stringer/Girder
Stringer/Girder
Stringer/Girder
Stringer/Girder
Stringer/Girder
Stringer/Girder
Stringer/Girder
Stringer/Girder
Stringer/Girder
Stringer/Girder
Stringer/Girder
Stringer/Girder

Slab

Stringer/Girder

Span Lgth	Sq.Ft.	Material Type
64	6606	Steel
59	7868	Steel Continuous
64	29407	Steel Continuous
164	39143	Steel Continuous
212	34810	Steel Continuous
320	50266	Steel Continuous
59	7868	Steel Continuous
185	28395	Steel Continuous
150	13493	Steel Continuous
212	15960	Steel Continuous
125	10538	Steel Continuous
258	26006	Steel Continuous
105	13184	Steel Continuous
93	15758	Steel Continuous

Features	\# Spans
I 84 EB-WB;PARMA IC	4

```
3
```


S.FK.TETON RIVER
SNAKE RIVER(MARSING BR)
ROCK CREEK
HENRY'S FK. SNAKE RIVER
UPRR \& CANAL; TOPAZ OP
S.FK.TETON RIVER
SNAKE RIVER;HOMEDALE BR.
I 84 EB-WB;W.WENDELL IC
CANYON CREEK
HENRY'S FK. SNAKE RIVER
SNAKE RIVER;HANSEN BR.
SH 48;RIGBY GS
I 15 NB-SB;SAGE JCT IC

N. GOODING LATERAL 1465
N. GOODING LATERAL 1465
HENRY'S LAKE OUTLET
HENRY'S LAKE OUTLET
HENRY'S FK. SNAKE RIVER HENRY'S FK. SNAKE RIVER
BLACKFOOT RIVER
PORTNEUF RIVER PORTNEUF RIVER
DEER CROSSING TEXAS SLOUGH
 N.FK.TETON RIVER
SNAKE R.(WALTERS FERRY) TETON RIVER SNAKE RIVER DRY BED CNL PORTNEUF RIVER INDIAN CREEK

Structure Type

 ㅎ
믄
©
©
든

 은
은
D
©
©

 응
으
응
D
든
©

Milepost	Features	\# Spans	Span Lgth	Sq.Ft.	Material Type
061.714	'M' CANAL	1	46	1991	Prestressed Concrete
265.043	BIG LOST RIVER	1	58	2422	Prestressed Concrete
359.645	PORTNEUF RIVER;MCCAMMON	3	69	15726	Prestressed Concrete
325.020	MENAN CANAL	1	43	1916	Prestressed Concrete
387.030	BUFFALO RIVER;PONDS BR.	3	59	10818	Prestressed Concrete
326.201	SNAKE RIVER;LORENZO BR.	6	107	28654	Prestressed Concrete
060.815	I 84 EB-WB;US 95 IC	5	73	18557	Prestressed Concrete
323.575	SNAKE RIVER DRY BED CNL	1	71	3089	Prestressed Concrete
008.098	LOW LINE CANAL	2	35	3892	Prestressed Concrete
057.912	UPRR;SODA'S 3RD E.ST OP	1	77	6209	Prestressed Concrete
406.711	UPRR; SODA SPRINGS OP	1	111	5188	Prestressed Concrete
311.338	STC 6708; ST LEON RD	1	111	4806	Prestressed Concrete
004.700	I 84 EB-WB;KIMBERLY IC	3	50	15500	Prestressed Concrete
191.356	SILVER CREEK	1	61	2497	Prestressed Concrete
372.434	DEER CROSSING	1	75	4026	Prestressed Concrete
062.682	'R' CANAL	1	54	2336	Prestressed Concrete
350.701	S.FK.FALL RIVER CANAL	2	37	8719	Prestressed Concrete
320.851	BURGESS CANAL	1	88	8224	Prestressed Concrete
313.448	STC 6706; HITT RD	1	116	5023	Prestressed Concrete
325.574	MENAN-LORENZO RD.	1	97	4488	Prestressed Concrete
001.846	CUB RIVER	1	72	5291	Prestressed Concrete
094.608	SNAKE R.;INDIAN COVE BR.	8	68	17642	Prestressed Concrete
000.263	I 84;MALTA-YALE RD IC	3	49	7223	Prestressed Concrete
325.019	MENAN CANAL	1	43	1916	Prestressed Concrete
354.049	FALL RIVER	2	55	4779	Prestressed Concrete
352.066	FALL RIVER CANAL	1	31	1410	Prestressed Concrete
236.417	TWIN FALLS MAIN CANAL	2	74	5426	Prestressed Concrete
369.047	PORTNEUF RIVER	2	105	14842	Prestressed Concrete
339.406	N.FK.TETON RIVER	1	99	4413	Prestressed Concrete
328.067	TEXAS SLOUGH	1	61	2796	Prestressed Concrete
315.226	SH 43;WEST BELT BRIDGE	4	63	10223	Prestressed Concrete
359.597	UPRR;N.MCCAMMON OP	3	67	14133	Prestressed Concrete
176.038	BIG WOOD RIVER	3	76	7772	Prestressed Concrete
016.369	UPRR	1	93	8630	Prestressed Concrete
325.572	MENAN-LORENZO RD.	1	97	4488	Prestressed Concrete
326.200	SNAKE RIVER;LORENZO BR.	6	107	28514	Prestressed Concrete
315.227	SH 43;WEST BELT BRIDGE	4	73	10289	Prestressed Concrete
016.588	I 84;KARCHER IC	2	104	16382	Prestressed Concrete
046.084	BEAR RIVER;GRACE BRIDGE	7	75	27868	Prestressed Concrete
313.447	STC 6706; HITT RD	1	116	5023	Prestressed Concrete

BrKey	Structure No.	Route
17600	09320B 61.70	US 93
13200	02020F 265.04	US 20
12015	03020N 359.65	US 30
12485	02020K 325.04	US 20 WBL
12680	02020L 387.03	US 20
12500	02020K 326.23	US 20 WBL
18095	09520A 60.82	US 95
12470	02020K 323.60	US 20 WBL
14690	05510A 8.10	SH 55
14035	03410C 57.91	SH 34
13740	03020P 406.67	US 30
12373	02020K 311.33	US 20 EBL
14525	05010A 4.68	SH 50
15105	02010B 191.36	US 20
13720	03020P 372.52	US 30
17610	09320B 62.66	US 93
12645	02020K 350.71	US 20 WBL \& EBL
12435	02020K 320.85	US 20
12384	02020K 313.45	US 20 WBL
12489	02020K 325.58	US 20
17456	09120A 1.86	US 91
15300	07810B 94.61	SH 78
16625	08112A 0.27	SH 81B SPUR
12480	02020K 325.03	US 20 EBL
12665	02020K 354.05	US 20
12650	02020K 352.06	US 20 WBL
13656	03020L 236.42	US 30
13711	03020N 369.05	US 30
12590	02020K 339.42	US 20 EBL
12515	02020K 328.06	US 20 EBL
12400	02020K 315.23	US 20 EBL
12020	03020N 359.60	US 30
15070	02010A 176.04	US 20
14722	05510A 16.37	SH 55
12487	02020K 325.57	US 20
12495	02020K 326.22	US 20 EBL
12405	02020K 315.24	US 20 WBL
14729	05510A 16.59	SH 55
14020	03410B 46.08	SH 34
12383	02020K 313.44	US 20 EBL

				0 0 0 0 0 0 0 0 0 0 0 0
		 		$\stackrel{\boxed{0}}{\infty}$
	$\bigcirc \times \sim$		® ¢ 毋 ¢	-

					\pm ∞ $\stackrel{+}{0}$ \vdots

BrKey	Structure No.	Route
12414	02020K 317.89	US 20 WBL
19850	16710A 0.80	SH 167
13646	03020L 230.13	US 30
12374	02020K 311.34	US 20 WBL
Count: 64		
13000	02410B 7.99	SH 24
17827	08710A 0.06	SH 87
17829	08710A 1.14	SH 87
Count: 3		
16611	08110A 25.08	SH 81
18045	09520A 30.37	US 95
15100	02010B 187.15	US 20
13175	09320C 200.06	US 93
12620	02020K 347.04	US 20 EBL \& WBL
14365	04610A 117.90	SH 46
12625	02020K 347.35	US 20 EBL \& WBL
14030	03410B 47.26	SH 34
19393	09320B 48.66	US 93
16606	08110A 23.61	SH 81
17566	09320A 25.08	US 93
13190	09320C 204.55	US 93
13185	09320C 204.38	US 93
13180	09320C 200.90	US 93
13165	09320C 198.27	US 93
13155	09320C 177.63	US 93
13170	09320C 199.28	US 93
Count: 17		
12535	02020K 331.93	US 20 WBL
12550	02020K 333.41	US 20 EBL
12530	02020K 331.92	US 20 EBL
12555	02020K 333.42	US 20 WBL
Count:		
14297	04410C 16.86	SH 44
Count: 1		
12583	03310A 99.42	SH 33 SPUR

[^0]: $\begin{array}{ll} & \text { Pilot Project Routes } \\ & \text { Project Routes SH-24, 25, } 78\end{array}$
 Non Pilot Project Routes

