SECTION 200.00 ACCEPTANCE PROGRAM.

200.00.01 Test Result Dispute-Resolution.

200.01 Specifications Compliance and Expenditure of Public Funds.

200.01.01 Semi-Annual Status Report.

200.02 How the ITD Acceptance Program Applies to Various Types of Projects.

200.02.01 Rest Areas and Buildings.

SECTION 210.00 INSPECTION AND TESTING RESPONSIBILITY

210.01 Inspection and Testing at the Project Site.

210.02 Inspector Safety.

SECTION 215.00 MATERIALS OR WORK FAILING SPECIFICATIONS.

215.01 Check Tests.

215.02 Price Adjustments for Non-compliant Materials or Products.

SECTION 220.00 SAMPLING PROCEDURES

220.01 Sample Size.

220.01.01 Improper Sampling.

220.02 Frequency of Sampling

220.02.01 Inspection and Observations Made While Sampling and Testing.

220.03 Numbering

220.03.01 Numbering Check Tests.

220.04 Transporting Flammable and Hazardous Material Samples

220.04.01 U.S. POSTAL SERVICE

220.04.02 BUS.

220.04.03 AIR FREIGHT.

220.04.04 PARCEL SERVICES

SECTION 225.00 TESTING QUALIFICATIONS.
SECTION 230.00 ACCEPTANCE OF MATERIALS BY MANUFACTURER’S OR FABRICATOR’S CERTIFICATION.

230.01 General Provisions.

230.02 Certification Program Procedures for Portland Cement and Fly Ash.
 230.02.01 Portland Cement.
 230.02.01.01 Cement Testing.
 230.02.01.02 Cement Testing Appeal Process.
 230.02.02 Fly Ash
 230.02.02.01 Fly Ash Testing.
 230.02.02.02 Fly Ash Testing Appeal Process.

230.03 Steel.
 230.03.01 Steel Bridge Girders.
 230.03.02 Metal Reinforcement.
 230.03.03 Buy America.
 230.03.03.01 FHWA Q&A on Buy America.

230.04 Concrete Pipe Products.

230.05 Concrete Guardrail and Other Pre-cast Concrete Products.
 230.05.01 Pre-cast, Pre-stressed Concrete.

230.06 Concrete with Specified Strength 3000 psi or Less (Including Seal Concrete).

230.07 Corrugated Metal Pipe and Corrugated Plate Pipe.

230.08 Plastic Pipe.

230.09 Geosynthetics.
 230.09.01 Shipping Procedures.
 230.09.01.01 Geotextile:
 230.09.01.02 Geogrid:

230.10 Performance Graded Asphalt Binder.

230.11 Emulsified Asphalt.

230.12 Seeding.
230.13 Miscellaneous Items Accepted by Certification.

230.13.01 General Provisions.

230.13.02 List of Miscellaneous Materials Accepted on the Basis of the Manufacturer’s or Fabricator’s Certification.

SECTION 240.00 PRE-TESTED AND PRE-QUALIFIED MATERIALS.

240.01 Pre-tested Materials.

240.01.01 Bulk Material/Products Sampled at the Manufacturing Plant.

240.01.02 Materials/Products Sampled at the Project.

240.02 Pre-Qualified Materials.
SECTION 250.00 – ACCEPTANCE OF MATERIAL ON THE BASIS OF THE RESIDENT ENGINEER’S LETTER OF INSPECTION (FORM ITD-854)

SECTION 255.00 – PERFORMANCE GRADED BINDER QUALITY ASSURANCE PLAN

 255.01 Certification.
 255.02 Sampling.
 255.03 Binder Verification Unit.
 255.04 Testing.
 255.05 Appeal Process.

SECTION 256.00 - ASPHALT EMULSIONS QUALITY ASSURANCE PLAN (JANUARY 2015)

SECTION 260.00 – MIX DESIGNS

 260.01 Superpave Hot Mix Asphalt (HMA) (Standard Specification Section 405).
 260.01.01 Mix Design Requirements and Review Procedure.
 260.01.02 Definitions.
 260.01.03 Examples.
 260.02 Concrete Pavement (Standard Specification Section 409).
 260.02.01 Portland Cement Concrete Pavement.
 260.02.01.01 Items Provided to Central Materials Laboratory.
 260.02.01.02 Central Materials Laboratory Procedures.
 260.02.01.03 Confirmation.
 260.03 Structural Concrete (Standard Specification Section 502).
 260.03.01 Approval Procedures.
 260.04 Superpave Hot Mix Asphalt (HMA) (Special Provision Superpave HMA).
 260.04.01 Mix Design Requirements and Review Procedure.
 260.04.02 Definitions.
 260.04.03 Tolerances.

SECTION 265.00 – QUALIFIED AGGREGATE MATERIAL SUPPLIERS

 265.01 Qualified Asphalt Mix Aggregate and Base Aggregate Suppliers.
265.02 Qualified Concrete Aggregate Suppliers.

265.03 Other Specification Aggregate Items.
SECTION 200.00 ACCEPTANCE PROGRAM.

In order to implement the quality assurance elements outlined in Section 100.00, the Acceptance Program must provide a frequency guide, identify the location, and identify specific quality attributes for sampling and testing. Section 270.00 contains this information for each contract bid item and the ITD Quality Assurance Special Provision (QASP) has this information for bid items under the QASP.

Quality control sampling and testing results may be used as part of the acceptance decision provided the following requirements are met:

- The contract identifies items for which QC test results may be used in the acceptance decision.
- The sampling and testing must be performed by qualified laboratories and qualified sampling and testing personnel.
- The quality of the material must be validated by verification sampling and testing. The verification testing must be performed on samples taken independently of the quality control samples.
- The quality control sampling and testing must be evaluated by an Independent Assurance (IA) program.

If the results from the quality control sampling and testing are used in the acceptance program, then there must be a dispute-resolution system established.

200.00.01 Test Result Dispute-Resolution. When quality control and verification test results conflict and the conflict cannot be resolved, the Department has established a Test Result Dispute Resolution process in Section 106.07 of the Standard Specifications.

The Central Laboratory will perform all dispute resolutions unless a potential for conflict of interest exists or the Contractor requests an independent laboratory.

200.01 Specifications Compliance and Expenditure of Public Funds. The specifications and plans provide the minimum requirements that must be met for bidding and completing the contract. The Contractor commits to furnishing materials and completing work that will equal or exceed such requirements. The Engineer must be satisfied, through quality assurance measures, that the public is receiving what it is entitled to under the contract. Nothing less should be accepted. To do so is not only a disservice to the state, but would be giving undue advantage to the Contractor. Other Contractors who bid on the same work could contend that they would have offered a lower bid had they been able to anticipate that materials or work outside of specifications is acceptable.

When payment is made to the Contractor for materials furnished and work performed, the duly designated state officials must authorize disbursement of public funds for this purpose. Through the quality assurance program, the Resident Engineer and the project staff will acquire substantiating data in the form of tests,
inspection records, and measurements to justify acceptance of the Contractor’s work. Thus, the Engineer can be assured the Contractor has fulfilled the contract obligation and is entitled to payment. The Resident Engineer will withhold payment to the Contractor for any material where the required QC and Verification sampling, testing, and/or certification have not been accomplished.

In case of failure to meet the requirements, the quality assurance program data will constitute the basis for rejection of work deemed unfit for acceptance. This data may also be the basis for acceptance of the work upon appropriate contract price adjustment, if permitted under the provisions of the specifications.

Complete records, including tests and inspection reports covering acceptance or rejection of any materials, are kept in the project files and required copies are distributed to other offices as needed for review and documentation. The Resident Engineer is responsible for compiling the records to provide a Materials Summary Report (MSR) for each project. Follow the instructions in Section 400.00, Project Materials Certification for compiling the MSR. The MSR is used to complete the Materials Certification letter for each project.

200.01.01 Semi-Annual Status Report. The District Materials Section must monitor the Districts’ progress on a semi-annual basis and provide the Chief Engineer with reports of deficiencies. Deficiencies are defined as:

1. Payment for out-of-specification material
2. Payment for material that was not sampled, tested, or certified as required by the specifications
3. Failure to perform, or a lack of, Independent Assurance testing
4. Failure to submit the Materials Summary Report and the Materials Certification letter to the Chief Engineer within 60 days from the District Engineer’s final acceptance of the project.

200.02 How the ITD Acceptance Program Applies to Various Types of Projects. The ITD Acceptance Program applies to all project types according to the requirements shown in Table 200.02.1. There could be situations where more than one project type is included in a single contract. In these cases, the acceptance will be determined by the specifications that govern each contract item.

For example, a Department contract awarded by Contracting Services could contain several contract items for constructing local roadways and/or buildings which are covered by different local building codes in the contract. The local jurisdiction is responsible for the inspection and acceptance of the items. At the completion of the work, the local jurisdiction must provide a letter to the Department stating the contract item met the contract specifications.
Table 200.02.1: Acceptance Requirements According to the Type of Project

<table>
<thead>
<tr>
<th>Type of Project</th>
<th>Awarded By</th>
<th>Type of specifications</th>
<th>Materials Inspection & Acceptance</th>
<th>Materials Certification</th>
<th>Final Department Acceptance</th>
</tr>
</thead>
<tbody>
<tr>
<td>ITD Contract</td>
<td>ITD Contracting Services</td>
<td>ITD Standard Specifications</td>
<td>ITD Project Personnel per ITD QA Manual</td>
<td>Resident Engineer per Section 400.01</td>
<td>District Engineer per Section 400.01</td>
</tr>
<tr>
<td>ITD Contract</td>
<td>ITD Contracting Services</td>
<td>Public Works Specifications</td>
<td>Out-source to Consultant inspection per contract specifications</td>
<td>Resident Engineer per Section 400.01</td>
<td>District Engineer per Section 400.01</td>
</tr>
<tr>
<td>Local Agency Enhancement</td>
<td>Local Agency</td>
<td>Public Works or Local Specifications</td>
<td>Local Agency per contract and specifications</td>
<td>Local Agency provides letter to ITD District Engineer</td>
<td>District Engineer provides Final Acceptance after Final Inspection.</td>
</tr>
<tr>
<td>Local Agency Off-System Highway</td>
<td>Local Agency</td>
<td>ITD Standard Specifications</td>
<td>Local Agency per ITD QA Manual.</td>
<td>Local Agency provides letter to ITD District Engineer</td>
<td>District Engineer provides Final Acceptance after Final Inspection.</td>
</tr>
</tbody>
</table>

200.02.01 Rest Areas and Buildings. Rest Area and Building projects that have contract items with acceptance requirements different from ITD specifications will require the following:

1. The Architect of Record will issue a letter of acceptance based on field inspections and approval of required contract submittals for items governed by the Architectural Special Provisions. A copy of the inspections and approvals must be included with the letter.

2. Documented inspections by the Department of Building Safety for the applicable components.

3. Concrete governed by non-ITD specifications will require additional acceptance by:

 a) Department field-inspection personnel must observe Contractor field quality control sampling and testing for proper testing methods and procedures. Actions taken pertaining to Contractor field quality control sampling and testing activities will be recorded in the Construction Diary.

 b) The Department will perform field tests for air, slump, unit weight, and temperature from the same truck as every companion test cylinder set is made.

 c) The Contractor must provide companion test cylinder sets to the Department for acceptance testing at the concrete sampling frequency required by the contract.
4. Metal reinforcement bar governed by non-ITD specifications will require additional acceptance by Department field-inspection personnel in accordance with the Quality Assurance Manual, Section 270.00 Minimum Testing Requirements for 503 Metal Reinforcement.

5. Acceptance and documentation for items with the requirements contained in the Idaho Standards of Public Works Construction (ISPWC) will be accepted by manufacturer’s certification referencing the ISPWC specifications. Project inspection and acceptance of ISPWC items will be out-sourced by the owner (the Department or Local Agency).

Items that are not ITD specifications are exempt from the ITD Quality Assurance Manual Independent Assurance requirements.
SECTION 210.00 INSPECTION AND TESTING RESPONSIBILITY. Inspection personnel assigned to a project will inspect all portions of the day-to-day work. They will also inspect, test, and approve all material going into the work. Certification of some material is allowed. Use Section 230.00 for specific directions for accepting material by certification.

All testers and inspectors must be properly qualified in accordance with ITD specifications and policies. Sampling, testing, and inspection personnel are expected to know which materials must be sampled, when and where samples must be taken, the size of samples required, the proper methods of obtaining samples, and methods of field testing.

The ITD Standard Specifications for Highway Construction state the required sampling and testing methods or the required standard practice methods. Methods include AASHTO, ASTM, Idaho Standard Methods, etc. The QA Manual contains Western Alliance for Quality Transportation (WAQTC) FOPs, Idaho FOPs, and Standard Procedures that modify certain methods. The modifications in the QA Manual govern over the methods shown in the Standard Specification. The Standard Procedures govern over the WAQTC FOPs. The Standard Procedures are included at the end of each applicable method.

Diligent inspection of the work in progress and of each successively completed portion is important. There must be assurance when the work is finished that all parts are acceptable. No amount of sampling and testing can give this assurance without documenting observations at the same time.

210.01 Inspection and Testing at the Project Site. The project inspector must identify and check all materials received on the project before they are incorporated into the work and must ascertain that acceptable test and inspection reports are available for all items inspected by others.

Test reports must show the tester’s printed name and qualification number and be initialed or signed by the tester.

Any individual that signs the Checked By box or certify the test results on any materials testing report must have been qualified in the appropriate Sampler/Tester area at one time or be a licensed Professional Engineer in the State of Idaho. This individual can have an expired qualification or license, provided they are not suspended.

Materials that have been inspected by anyone other than project personnel must be reexamined for any damage or contamination that may have occurred subsequently, or for any defects that may not have been observed in the original inspection. Defects or contamination, unless satisfactorily remedied, may be cause for rejection in spite of prior approval.

The project inspector will sample and test as required all materials received on the project without prior inspection and approval. The Contractor is notified if the material was rejected. If the required tests cannot be performed at the project site, send appropriate samples to the District or the Central Laboratory for testing. Upon notification of the test results, the material will be accepted or rejected and the Contractor promptly
notified. The project inspector must know the appropriate options for disposition of any rejected or failing material and fully document the action taken.

Fabricated items accepted by certification must be visually inspected. See Section 230.00 for additional discussion on products or items accepted by certification.

Along with examining and checking all materials brought onto the project site, inspectors must maintain a continuing visual inspection of the Contractor’s operations where the materials are handled and incorporated into the work. Any procedures that result in damage or change in any material to the extent that it will fall outside the specification limits will not be permitted to continue. The affected materials will be rejected or the defects satisfactorily remedied.

210.02 Inspector Safety. Sampling and testing procedures may involve hazardous materials, operations, and equipment. The inspector must be aware of safety hazards and comply with established safety procedures. Department safety policies reinforce the necessity of protective clothing and equipment when working around construction equipment and machinery. Occupational Safety and Health Administration (OSHA) regulations must be followed for non-Department personnel on the project site. The Contractors are responsible for providing a safe working environment and a safe means of obtaining random samples. The Department is responsible for stopping any unsafe operations until corrective action is taken.

When there is a safety concern for the sampler, the Department will allow the Contractor, due to familiarity with their equipment or operation, to obtain the sample as long as a WAQTC-qualified sampler observes the sampling.

The sampling and testing technicians must limit the weight of aggregate sample increments to no more than 40 pounds per sack or bucket.
SECTION 215.00 MATERIALS OR WORK FAILING SPECIFICATIONS. For material or work that does not meet specification requirements:

- Reject or remove when incorporated.
- Accept with a price adjustment when allowed to remain in place.
- Correct or remedy, by the Contractor, and re-test.

Failing material that has not been incorporated into the work and can be remedied by further processing may be accepted after correction.

If completed work is found to contain material that is not within specifications, a determination must be made of the extent of the nonconformance with specifications, the limits of use of non-conforming material, and if it is feasible to be remedied.

The action taken must be fully documented by the project inspector or tester in the project file by reports, records covering samples, tests, measurements, and/or corrective action taken, if any. The Resident Engineer is responsible that disposition of the failing material is fully explained, including justification for acceptance, removal, or price reduction. See Standard Specifications Section 105.03.

215.01 Check Tests. Check tests are performed after an acceptance test fails to verify the material does, or does not, meet specifications in the scenarios presented below. Document and report all test results. For the numbering of Check Tests see Section 220.03.01 Numbering Check Tests.

When a failing test result is followed by a passing check test, the check test result becomes the basis for acceptance.

When a failing test result is verified with a check test, additional testing may be performed to define the boundaries of the unacceptable material for corrective treatment.

In all cases, if the check test results indicate the failing test results were caused by a faulty sample or faulty test, record both test results, but add comments to the faulty test data with appropriate reference to the check test.

The field report includes the type of failure, the corrective action taken to get the material back within specifications, and the disposition of the failing material. Include a full explanation of where the failing material was disposed of. After corrective treatment, retesting is required to document acceptability.

Compaction for Excavation, Borrow, Granular Borrow, Backfill: Perform the check test after there has been additional compaction effort and/or remedial efforts, such as drying out or reprocessing the material. The check test will be taken within 10 ft. of the original test and at the same elevation.

Concrete Field Acceptance: Perform the check test immediately after the failing test. Continue checking each load until 2 consecutive tests are passing.
Gradation for Sand Membrane Protection Blanket: Perform check test immediately after failing test. If check test fails, reject material.

215.02 Price Adjustments for Non-compliant Materials or Products. Non-compliant (failing or out of specification) material will be rejected/removed, or remedied by the Contractor, before payment is made to the Contractor. However, if it is not feasible to remove or remedy the non-compliant material incorporated into the project, a price adjustment must be made to the Contractor. The Contractor will not be paid full contract price for non-compliant material.

There are certain materials, listed below, that are subject to price adjustments when laboratory tests indicate the materials have failed the required specifications. All other non-specification material is handled as allowed by the contract.

The magnitude of the price adjustment, expressed as a percentage, will be based on the extent of deviation from the specifications as indicated from test results. The price adjustments are shown in the ITD Laboratory Operations Manual.

The determined price adjustment percentage will be applied to the quantity of material that is represented by the non-compliant test results. The cost amount of the price adjustment will be calculated by the Resident Engineer’s office using the actual invoice cost of the product, excluding freight, from the Contractor. The following materials or products are subject to price adjustments:

- Portland Cement.
- Fly Ash.
- Waterborne Traffic Line Paint.
- Coating Systems (all formulas).
- Liquid Deicer.
- Performance Graded Asphalt Binder.
- Emulsified Asphalt.
- Geosynthetics.
SECTION 220.00 SAMPLING PROCEDURES An ITD Sampler Tester Qualification Program (STQP)-qualified individual will take samples in accordance with the procedures required by the specifications. Samples are taken concurrently with the project operations or from actual material delivered to the project. A stratified random method will be used to obtain samples when required by the contract.

Standard methods of sampling are set forth in the specifications and in this QA Manual for nearly all materials. The District and the Central Laboratory are resources for guidance when a standard method of sampling is not available.

220.01 Sample Size. The required size of a sample for the various tests on a given material is stated in the standard method of sampling. These sample sizes are considered as minimums to avoid any deviation due to sample size alone.

When samples of materials are taken for testing by the Department, the samples are to be of the prescribed size and shipped in the specified type of container in accordance with Table 220.01.1. Consulting or independent laboratories may require slightly modified sample containers; however, the samples must be adequately protected and handled to maintain the sample’s condition before testing.

220.01.01 Improper Sampling. Any sample received that has not been properly sampled will not be tested. The laboratory will immediately notify the Resident Engineer and the sampler. Another sample must be obtained as soon as possible to replace the rejected sample. Lack of required samples is a project deficiency. The laboratory will document the improper sampling for the project files by creating a test report with a note to indicate the sample was improperly taken. The test report will be distributed as usual with one copy forwarded to the District IA Inspector. The District IA Inspector will complete a buff-colored IA evaluation form, obtain resolution, and distribute according to the usual procedures, including a copy submitted to the ITD Sampler Tester Qualification Committee (STQC) for action.

Quality control and verification samples must not be collected at the same location. They must be taken independently of each other.

220.02 Frequency of Sampling. The frequencies at which samples are taken will conform to the Minimum Testing Requirements (MTRs Section 270.00). The frequencies include fractions of quantity and are minimums. When the minimums are not met, this will constitute a deficiency on the project that could impact payment to the Contractor or funding to the Department. Department project personnel and the Contractor are responsible for meeting the daily minimum frequency and fraction thereof, thus ensuring adequate samples are taken for the total quantity of material used/paid.

220.02.01 Inspection and Observations Made While Sampling and Testing. Reliance must not be placed wholly on the sampling and testing results to determine the acceptability of the materials and construction work. The sampling and testing must be supplemented by sufficient visual inspection of the materials as a whole to ascertain whether the samples and tests are reasonably representative of the entire mass of material. In addition, there must be sufficient observation of the actual construction operations and processes to ascertain whether they can be expected to consistently produce uniform, satisfactory results.
220.03 Numbering. Field tests will be numbered consecutively starting with test number 1 for each contract item. When a variety of field tests are performed for the same contract item, multiple series of test numbers will be necessary. For example, gradation tests and compaction tests are required for aggregate base. Numbers 1 to 100 could be assigned to gradation tests and numbers 101 to 200 could be used for the compaction tests. Test numbering must be consecutive to verify tests were not skipped or not recorded.

220.03.01 Numbering Check Tests. Circle failing test numbers on the test result form, along with the failing test result. A check test will be performed and numbered as follows:

Compaction and Gradation: The sample numbering will continue sequentially with each test and check test. Add a remark on the check test report to indicate the test is a check test. Note the location where failing material is disposed.

Concrete: The sample numbering will continue sequentially with each test and check test. Add a remark on the check test report to indicate the test is a check test.

220.04 Transporting Flammable and Hazardous Material Samples. The following is reference information to help comply with the shipping regulations. Local conditions and/or regulations may vary and must be complied with when shipping flammable and/or hazardous materials.

220.04.01 U.S. POSTAL SERVICE: Flammable materials [flashpoint below 101°F] cannot be shipped by air mail but can be shipped by surface mail if properly labeled, packaged, and certified. Combustible materials [flashpoint between 101°F and 200°F] can be shipped by air mail when properly packaged, labeled, and certified.

220.04.02 BUS. All flammable and hazardous materials are prohibited – specifically mentions paints. Includes all flammable, combustible, corrosive, and/or caustic materials.

220.04.03 AIR FREIGHT. Flammable materials can be shipped by most air freight companies but must be properly packaged, labeled, and certified. Need to know exact chemicals involved, flashpoints, etc.

220.04.04 PARCEL SERVICES. Shipping of flammable materials is allowed under certain conditions depending on the exact chemical and amount. Packages must be labeled with a flammable sticker and a Hazardous Materials label filled out. The information for the Hazardous Materials label can be obtained by:

- Calling carrier and exactly identifying the chemical to be shipped

OR

- Referring to the carrier handbook, which gives hazard codes, packaging instructions, and certificates required for shipping

Nuclear density gauges have special shipping requirements. If help is needed in arranging for transportation of these devices, contact the Central Laboratory Radiation Safety Officer (RSO).
Table 220.01.1 Materials, Sample Size and Container for Shipping

<table>
<thead>
<tr>
<th>MATERIAL</th>
<th>MINIMUM SAMPLE SIZE</th>
<th>SAMPLING METHOD</th>
<th>TYPE OF CONTAINER¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGGREGATES:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Preliminary Base and Surfacing</td>
<td>400 lb</td>
<td>All aggregates will be sampled according to FOP for AASHTO T 2 / FOP for AASHTO R 76.</td>
<td></td>
</tr>
<tr>
<td>F.A. for Concrete</td>
<td>30 lb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.A. for Concrete</td>
<td>55 lb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.C.C. Pavement Design (Pit Run)</td>
<td>1,500 lb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.C.C. Pavement Design (Crushed)</td>
<td>500 lb Coarse 300 lb Fine</td>
<td>Minimum mass of field samples will be based on the maximum nominal size of the aggregates.</td>
<td>Canvas Sacks or 5 gallon Plastic Buckets</td>
</tr>
<tr>
<td>Base Course²</td>
<td>80 lb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surface Course</td>
<td>80 lb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cover Coat Material</td>
<td>60 lb</td>
<td>Samples for quality testing should be at least 60 lb</td>
<td></td>
</tr>
<tr>
<td>Mineral Filler</td>
<td>25 lb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Special Backfill</td>
<td>60 lb</td>
<td>Single aggregate sacks must not contain more than 40 lb</td>
<td></td>
</tr>
<tr>
<td>Borrow & Granular Borrow</td>
<td>60 lb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blotter</td>
<td>30 lb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SUPERPAVE HMA JOB MIX FORMULA (Submitted by Contractor for Confirmation)</td>
<td>See 405.03</td>
<td>FOP for AASHTO R 66</td>
<td>Screw Top Can</td>
</tr>
<tr>
<td>SUPERPAVE HMA</td>
<td>See 405.03</td>
<td>FOP for AASHTO T 168</td>
<td>Cardboard Box of approximate equal dimensions</td>
</tr>
<tr>
<td>ASPHALTs:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PG Binder</td>
<td>Three 1 qt containers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Emulsified Asphalts</td>
<td>1 qt</td>
<td>FOP for AASHTO R 66</td>
<td>Screw Top Plastic Jar</td>
</tr>
<tr>
<td>Anti-Strip Additive</td>
<td>4 oz</td>
<td></td>
<td>Glass or Plastic Bottle</td>
</tr>
<tr>
<td>CONCRETE:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cement/Fly Ash/Silica Fume</td>
<td>1 gal</td>
<td>Idaho IR 143</td>
<td>Cylinder Can</td>
</tr>
<tr>
<td>Cylinders</td>
<td>Set of 3</td>
<td>FOP for AASHTO T 23</td>
<td>Cylinder Cans</td>
</tr>
<tr>
<td>Curing Compound</td>
<td>1 qt</td>
<td>Idaho IR 7</td>
<td>Metal Screw Top Can</td>
</tr>
<tr>
<td>Water</td>
<td>1 gal</td>
<td></td>
<td>Plastic Bottle</td>
</tr>
<tr>
<td>Concrete for Chlorides</td>
<td>15 grams pulverized</td>
<td>Idaho IR 128</td>
<td>New 20-Gram Plastic Vial</td>
</tr>
</tbody>
</table>
GLASS BEADS
1-50 lb Sack

JOINT MATERIAL
24 in. x full width

LIME
1 gal AASHTO T 218 Plastic bucket

METALS:
- Reinforcing Steel (All Grades, All Sizes) Two - 36 in. Field sample from shipments delivered to project.
- Dowel Bars for Transverse Joints in Concrete Pavement Two – Special cut by the supplier. See Section 230.03.02
- Tie Bars for Longitudinal Joints in Concrete Pavement Two - At least 30 in.
- Prestressing Reinforcement 60 in. Length each heat number
- Welded Wire Fabric 24 in. Square

PAINT
- Waterborne 1 qt Idaho IR 7 Plastic Screw Top Can or Lined Metal Friction Top Can
- Solvent 1 qt Idaho IR 7 Lined Metal Friction Top Can

PIPE:
- Galvanized Coating (Steel Sheet) 2 in. Square AASHTO M 36 Cardboard Box

SALT
10 lb ASTM D632 1Plastic Wide Mouth or Cylinder Can

SEALANTS (SILICONE)
1 qt

SOIL & SOIL AGGREGATE MIX
- pH & Resistivity (T 288, T 289) 5 lb AASHTO R 13 Sealed Non-Metallic Container
- Soil Classification (M 145) 5 lb AASHTO R 13 Sealed Non-Metallic Container
- pH & Resistivity & Soil Classification (T 288, T 289, M 145*) 5 lb AASHTO R 13 Sealed Non-Metallic Container
- ‘R’ Value, Soil Classification, pH & Resistivity (IT 8, M 145*, T 90, T 176, T 288, T 289) Complete Soils Tests 26 lb AASHTO R 13 Sack/ Canvas Bag
- Complete Soils Tests (IT 8, M 145*, T 99, T 180. T 100, T 176, T 288, T 289) 50 lb AASHTO R 13 Sack/ Canvas Bag
Complete Soils Tests Plus Permeability
(IT 8, M 145*, FOP for T 99/T180,T 100, T 176, T 288, T 289, T 215)
100 lb
AASHTO R 13
2 Sacks/ Canvas Bags

Complete Soils Tests Plus Resilient Modulus (IT 8, M 145*, FOP for T 99, FOP for T 180, T 100, FOP for T 176, T 288, T 289, T 307)
100 lb
AASHTO R 13
2 Sacks/ Canvas Bags

*Note M 145 requires T 88, T 89, T 90 for Classification

GEOSYNTHETICS

Geotextiles
At least 6 LF across the entire roll width
See Section 230.09

Biaxial Geogrids
At least 6 LF across the entire roll width
See Section 230.09

Uniaxial Geogrids
At least 15 LF across the entire roll width
See Section 230.09

FENCING:

Barb Wire
6 LF
AASHTO M 280

Woven Wire
6 LF
ASTM A 116

Chain Link
3 LF
AASHTO M 181

Tension Wire
3 LF
AASHTO M 181

1Standard ITD Supply Inventory item; do not re-use a sample container; all sample containers must be new.
2If Idaho T 74 (vibrator compactor curve) is required; submit at least 100 lb of material for minus 3/4" material and 150 lb for minus 3" material.
SECTION 225.00 TESTING QUALIFICATIONS. Testing and sampling should be done strictly in accordance with the specified procedures. Standard testing procedures have been developed by organizations such as AASHTO, ASTM, AWS (American Welding Society), WAQTC, and ITD.

Section 590.00 is the ITD STQP and contains all the instructions for the required qualifications.

For areas not covered by STQP, qualification to the appropriate recognized standard is required. An example would be nondestructive testing related to welding inspection, which would be covered by qualification programs of the AWS and American Society for Nondestructive Testing (ASNT). The ITD District Materials Engineer, with the assistance of Construction/Materials and the Central Laboratory sections if necessary, will verify and document the qualification of those not covered by STQP qualification. The Independent Assurance Inspector will evaluate and document the competency of personnel qualified through STQP according to the IA Program. See Section 590.30
SECTION 230.00 ACCEPTANCE OF MATERIALS BY MANUFACTURER’S OR FABRICATOR’S CERTIFICATION. Standard Specification Subsection 106.04 allows the acceptance of certain materials based on certification provided by the manufacturer or fabricator. The certification must be complete and meet the criteria outlined in this section and any additional criteria if specified in the contract.

230.01 General Provisions. Standard ITD certification forms will be used. The standard forms are:

- ITD-914 Steel
- ITD-849 Geotextile and Geogrid
- ITD-851 Miscellaneous Items
- ITD-966 PG Asphalt Binder
- ITD-968 Cement / Fly Ash
- ITD-875 Non-Structural Concrete

The standard forms must be completed in their entirety and be signed by the manufacturer’s representative who has quality control responsibility for the manufacture or fabrication of the material.

When required by the contract, QC test results must be attached to the specified ITD standard form.

Certification does not preclude inspection, sampling, testing, or verification of certified test results of the material received on the project. Project inspectors will review all certification results for specification compliance before accepting the material. If the certified material is found to be outside acceptable specification limits, the material is subject to rejection.

Each shipment of certified material must be visually inspected for obvious defects and shipping/handling damage. Repair, reject, or replace damaged or defective material to the satisfaction of the Engineer. Where feasible, simple measurements of specified properties should be spot-checked at least once per project and recorded to verify certification. Examples would be length, mass per unit length, or thickness of steel items.

Withdraw acceptance of material by certification when sample test or inspection results show the material consistently fails to meet specifications requirements. Reestablishment of the certification acceptance may be achieved through Department pre-testing, pre-inspection, and review of historical certification records and test results of the material before its incorporation into a project. Additionally, the manufacturer’s QA program may require revision and reevaluation by the Department.

230.02 Certification Program Procedures for Portland Cement and Fly Ash. Cement or fly ash manufacturers approved under the ITD Qualified Products List (QPL) Program can supply cement and/or fly ash to Department projects by certification. The Central Laboratory determines which manufacturing plants have met the requirements for the certification program.

To be approved under the program, the Department will evaluate the following:

- A copy of manufacturer’s current quality control program.
• Historical certification records and copies of all test results.
• Certified Mill Analysis test reports for material delivered to Department projects.
• Acceptable verification tests on 10 samples submitted from Department projects.
• Other methods deemed necessary by the Department.

Once approved under the Department’s QPL Program, the manufacturer must continue to provide certified test results for all material produced.

If a project sample indicates out-of-specification material based on Department verification testing, additional testing may be conducted to define the extent of the problem. Price reduction or item removal will be required when specified tolerances are exceeded. In the event of continual non-conformance, the manufacturer will be removed from the certification program.

230.02.01 Portland Cement. The Department only accepts portland cement by certification from manufacturers approved by the Department’s QPL Program. Cement from manufacturers not approved under the QPL requires pre-approval before use.

The concrete supplier furnishing portland cement to any Department project from a manufacturer approved under the Department’s QPL Program must provide to the project inspector, at the end of each week in which concrete is placed, a completed ITD-968 Concrete Supplier’s Cement / Fly Ash Certificate form with the cement bill of lading attached with the mill analysis number.

Failure to submit the completed form with the appropriate signatures will result in material rejection.

The cement manufacturer must submit certified mill test reports to the Central Laboratory for all cement produced. The cement manufacturer's certified mill test reports must include:

• Name of the cement manufacture company.
• Location of the cement mill.
• Cement Type.
• Mill analysis number.
• Manufacturer’s bin or silo number from which cement was shipped.
• Mill analysis test report date and production period.
• Mill analysis test results pertinent to Idaho specifications.
• Certification statement indicating the cement meets all specification requirements pertinent to Idaho specifications.
• Signature, title, and date by the cement company chemist or other authorized official.

The test result data will be monitored for compliance with the specifications and for the manufacturer to remain under the certification program.

Cement samples must be taken for the project, in accordance with the Minimum Testing Requirements (Section 270.00) and Idaho IR-143, from the bulk tank during unload to the concrete plant silo. Samples must be immediately shipped to the Central Laboratory in Boise in moisture-proof containers. A 6" x 12" concrete cylinder container must be used for the sample, with the lid securely taped shut. The cylinder
container must be completely filled and immediately sealed to eliminate excess air in the sample and to avoid moisture absorption and aeration. Sample cans received that are not completely filled (discounting normal settling) may be rejected.

The Contractor or the supplier may take as many cement samples as they want for information only. Samples are tested for chemical and physical parameters to monitor production characteristics and to verify the certification.

230.02.01.01 Cement Testing. The Central Laboratory groups cement samples according to the manufacturer’s mill analysis numbers as the samples are received from projects. Samples with the same mill analysis number are referenced as a mill analysis unit.

The Central Laboratory performs a complete test on the first sample received in the mill analysis unit. The selected sample is tested for all specification parameters. If the first tested cement sample complies with the specifications, The Department will randomly choose one cement sample from the mill analysis unit and perform an alkali test for every 150 tons of cement received for Items 411 and 502 (500 tons for Item 409).

If a cement sample does not comply with the specifications, additional testing will be performed on samples from the mill analysis unit until the extent of the non-compliant material has been determined. The initial and additional test results for each specification item are averaged and the average value for each specification item will be considered the final value. These final values are used to determine compliance or noncompliance of the mill analysis unit.

When test results indicate the cement does not meet specifications, a price adjustment is applied to the entire quantity of material representing that mill analysis unit. The penalty is assessed according to Section 340.05.02 of the ITD Laboratory Operations Manual.

230.02.01.02 Cement Testing Appeal Process. The Central Laboratory retains sufficient cement material from each mill analysis unit for dispute resolution.

If the Contractor wishes to appeal the Department’s test results and price reductions, a written appeal request must be submitted within 14 calendar days of the reported test results. The appeal must state the grounds or the circumstances of the appeal. If the test results are in question, the appeal must be accompanied by all of the quality control test results that represent the mill analysis unit in question. The appeal must also be accompanied by Contractor-obtained test results for at least one complete cement test series conducted on the mill analysis in question. The state will not accept appeals when Contractor test results are out of specifications.

When an appeal is accepted, the appeal testing must include all specification parameters for the material in question.

If the appeal is not accepted, the Department will submit a denial letter to the Contractor stating the grounds for the denial.
Appeal testing will be conducted by an independent, AASHTO accredited laboratory, mutually acceptable to the Contractor and the Department. The AASHTO accredited laboratory will report the results to the Department. The results of such tests will be binding to both parties and any price reduction on the unit in question will be based on those test results. The Contractor will agree to bear the costs of the appeal testing if the tests verify noncompliance.

230.02.02 Fly Ash. The Department will accept fly ash by certification only from those manufacturers approved by the ITD QPL Program. Fly ash from manufacturers not approved under the certification program requires pre-approval before use.

The concrete supplier furnishing fly ash to any Department project from a manufacturer approved under the ITD QPL Program must provide to the project inspector, at the end of each week in which concrete is placed, a completed ITD-968, Concrete Supplier’s Cement/ Fly Ash Certificate form with the fly ash bill of lading attached with the Sample Identification Number.

Failure to submit the completed form with the appropriate signatures will result in material rejection.

The fly ash manufacturer must submit certified test reports to the Central Laboratory for all fly ash produced. The fly ash source’s certified laboratory test reports must include:

- Name of the fly ash source company.
- Plant Origin.
- Sample Identification number.
- Laboratory test report date and production period.
- Laboratory test results pertinent to Idaho specifications.
- Signature, title, and date by the testing laboratory chemist or other authorized official.

The test result data will be monitored for compliance with the specifications and for the fly ash source to remain under the certification program.

Fly ash samples must be taken, in accordance with the Minimum Testing Requirements (Section 270.00) and Idaho IR-143, from the bulk tank during unload to the concrete plant silo. Samples must be immediately shipped to the Central Laboratory in Boise in moisture-proof containers. A 6” x 12” concrete cylinder container will be used, with the lid securely taped shut. The cylinder container must be completely filled and immediately sealed to eliminate excess air in the sample and to avoid moisture absorption and aeration of the sample. Sample containers received that are not completely filled (discounting minor settling) may be rejected.

These samples are tested for chemical and physical parameters to monitor production characteristics and to verify the certification.

The Contractor or the supplier may take as many fly ash samples as they want for information only.

230.02.02.01 Fly Ash Testing. The Central Laboratory groups fly ash samples according to the manufacturer’s identification numbers as the samples are received from projects. Samples with the same identification number are referenced as a mill analysis unit.
The Department’s AASHTO accredited laboratory performs a complete test on the first sample received in the mill analysis unit. The selected sample is tested for all specification parameters.

If a fly ash sample does not comply with the specifications, additional testing will be performed on samples from the mill analysis unit until the extent of the non-compliant material has been determined. The initial and additional test results for each specification item are averaged and the average value for each specification item is considered the final value. These final values are used to determine compliance or noncompliance of the mill analysis unit.

When test results indicate the fly ash does not meet specifications, a price adjustment is applied to the entire quantity of material representing that mill analysis unit. The penalty is assessed according to Section 340.05.08 of the ITD Laboratory Operations Manual.

230.02.02.02 Fly Ash Testing Appeal Process. The Central Laboratory retains sufficient fly ash material from each mill analysis unit for dispute resolution.

If the Contractor wishes to appeal the Department’s test results and price reductions, a written appeal request must be submitted within 14 calendar days of the reported test results. The appeal must state the grounds or the circumstances of the appeal. If the test results are in question, the appeal must be accompanied by all of the quality control test results that represent the mill analysis unit in question. The appeal must also be accompanied by Contractor-obtained test results for at least one complete fly ash test series conducted on the mill analysis unit in question. The state will not accept appeals when Contractor test results are out of specifications.

When an appeal is accepted, the appeal testing must include all specification parameters for the material in question.

If the appeal is not accepted, the Department will submit a denial letter to the Contractor, stating the grounds for the denial.

Appeal testing will be conducted by an independent, AASHTO accredited laboratory, mutually acceptable to the Contractor and Department. The AASHTO accredited laboratory will report the results to the Department. The results of such tests will be binding to both parties and any price reduction on the unit in question will be based on those test results. The Contractor will agree to bear the costs of the appeal testing if the tests verify noncompliance.

230.03 Steel. The steel fabricator must complete the standard ITD-914, Steel Certification form for each shipment of a steel product to a project. Certified mill test reports from the steel mill for all heats in the shipment must be attached to the ITD-914 form, except as noted in the MTRs.

The certified mill test report must include the following:

- Name and location of the rolling mill.
- Consignee and/or destination of the shipment.
- Specification.
- Size.
- Heat number.
- Chemical analysis.
- Physical tests.
- Certificate number, order release number or shipment number, etc.
- Signature of authorized official.
- Buy America certification.

230.03.01 Steel Bridge Girders. The Construction/Materials Section will provide inspection during the fabrication of steel bridge girders. The district must contact the Construction/Materials Section as soon as the fabricator is known so the inspection can be scheduled. The inspection may be contracted to an independent company, hired by the Department, when the fabrication is out-of-state.

The Construction/Materials Section will obtain the required certifications, including form ITD-914, Steel Certification, during the fabrication of the steel girders.

The Construction/Materials Section will notify the Resident Engineer by departmental memorandum when the fabrication of the girders is satisfactorily complete and accepted for delivery to the project. Copies of the inspection and certification reports will be forwarded to the Resident Engineer for the project files.

Project personnel should contact the Construction/Materials Section before final erection of the steel girders to schedule an in-place inspection, including, paint, bolting, fabrication tolerances, and field welding.

230.03.02 Metal Reinforcement. The metal reinforcement (reinforcing steel or rebar and cable strand) supplier must submit the ITD-914 form and the certified mill test reports with each shipment of bars delivered to a project site (See Section 230.03).

Metal reinforcement is sampled in the field by Department personnel from shipments delivered to the project. A sample is defined as two 36-inch pieces cut from materials delivered to the project of the same size and heat number. A cable strand sample requires one 6-foot sample cut from every reel. Department inspectors must witness or perform the sampling at the project site.

See Standard Specification Section 503.

The two additional bars which replace the field samples, if from the same heat number, will not require sampling. It is not necessary to resample any bars from a heat number that has previously been tested for the project.

In the event the same heat number is used for a long bar and a shorter bar, the shorter bar will be used for the sample to minimize the cost for the replacement bar.

Some fabricated bent bars may not have a 36-inch length for sampling, however, the sample bars should be submitted and the Central Laboratory will determine if a test specimen can be obtained.
Sampling of bars comprised of spirals will be taken from the extra length of the spiral as required by the specifications. No cutting that would require splicing to obtain samples will be permitted.

In the event of a specialized, non-standard length or size bar, the Central Laboratory should be consulted for the correct sampling technique.

Samples must be promptly shipped or delivered to the Central Laboratory within two working days for testing. Next-day shipping is recommended when necessary. Tests are performed to detect non-specification steel for replacement before incorporation into the structure. Samples must be properly tagged and accompanied by ITD-914, ITD-1044, and the Mill Certifications.

When epoxy-coated steel is specified, the coater must mark the portion of ITD-914 referring to the epoxy-coating and provide a certification statement that the coating complies with ASTM A775. Copies of holiday tests and coating thickness tests representing the shipment will be included. An occasional check of coating thickness will be made on the sample bars during laboratory testing using a dry film paint thickness gauge.

Epoxy-coated steel must be visually inspected for coating damage upon delivery to the project, using criteria of ASTM A775. It is especially important to check the outside of bends for cracking, de-bonding, and rust.

230.03.03 Buy America. Buy America applies to any contract eligible for Federal Aid Highway funding within the scope of an applicable NEPA finding, determination, or decision regardless of the funding source of such contracts if at least one contract or phase of the project is funded with Federal-Aid highway funds. All permanently incorporated steel and iron materials must be certified that the steel and iron was manufactured in the United States of America including application of a coating. Certification must be provided before incorporation of the materials into the project. Materials that are only used or rented during the project construction, but not incorporated into the work (temporality installed), do not require certification.

The ITD-914 form will serve as Buy America Certification and be signed by a person having quality control responsibility for the company that manufactures or fabricates the material. The ITD-914 will be sent with mill tests reports attached, except as noted in the MTRs.

Small quantities of steel and iron may be accepted without Buy American Certification, so long as its total cost for the project does not exceed 0.1% of the contract amount or $2,500, whichever is greater. The total cost of steel and iron includes the cost of the material plus the cost of transportation to the project site, as evidenced by delivery receipt, but does not include labor cost involved in final assembly performed on the project site.

If Department project staff or consultant inspectors discover that foreign iron and/or steel products are incorporated into a federal-aid project that exceed the Buy America minimal use amount (the greater of $2,500 or 0.1% of the contract value), the FHWA Idaho Division must be contacted to resolve this after-the-fact discovery. All information on foreign iron and steel permanently incorporated into a project...
that exceeds the minimal use amount must be presented to FHWA to determine the appropriate resolution. The Department will not complete a project’s Material’s Certification without FHWA’s resolution when the project is not compliant with Buy America. The Department has no authority to complete such a resolution and cannot resolve Buy America compliance issues by use of non-Federal funds.

230.03.03.01 FHWA Q&A on Buy America. Additional information is available at the following website:

https://www.fhwa.dot.gov/construction/contracts/buyam_qa.cfm

Below is a commonly asked question concerning FHWA Buy America.

Question #13. Does Buy America apply to recycled steel?

Answer to #13. No. Although raw materials used in the steel manufacturing process may be imported, all manufacturing processes to produce steel products must occur domestically, including the addition of additives and the application of coatings. However, raw materials such as iron ore, limestone and waste products are not covered. The FHWA's November 25, 1983 final rule defined waste products to include scrap as steel that is no longer useful in its present form (e.g. steel from old automobiles, machinery, pipe, railroad tracks, etc.).

230.04 Concrete Pipe Products. Concrete pipe or related products (catch basins, manhole sections, elbows, etc.) delivered to a Department project will be accompanied by form ITD-851, Miscellaneous Items, completed by the manufacturer certifying that all material furnished was manufactured in accordance with the specifications set forth in the contract. All quantities and sizes included under the certification for that project must be listed on the ITD-851 form.

The ITD-851 form for reinforced concrete pipe (RCP) must certify the concrete strength (psi) and wall thickness of the pipe delivered to the project meets the requirements of the contract.

Manufacturers furnishing concrete pipe and related products must hold current certification under the NPCA Plant Certification Program, the ACPA Q-Cast Plant Certification Program, or PCI Plant Certification.

230.05 Concrete Guardrail and Other Pre-cast Concrete Products. Concrete Guardrail and other pre-cast concrete products are required to meet Standard Specification Section 502. Standard Form ITD-851 must be completed by the manufacturer and list all materials used.

Manufacturers furnishing pre-cast concrete products must hold current certification under the NPCA Plant Certification Program, the ACPA Q-Cast Plant Certification Program, or PCI Plant Certification.

230.05.01 Pre-cast, Pre-stressed Concrete. All manufacturers furnishing pre-cast, pre-stressed concrete girders are required to hold current PCI plant certification.

The Contractor is required to give the Resident Engineer advance notice before starting pre-cast operations for the State. Advance notice will allow Department personnel time to review items 1, 2, & 3,
and perform appropriate testing of items 4, 5, & 6 listed below. Items 4, 5, & 6 will be obtained by Department inspectors or during their presence.

Provide the following items to the Resident Engineer:

1. Shop drawings on 22”x34”, approved by the Department.
2. Production schedule for the entire project: what is being produced on what day and a tentative timeframe for pre-placement inspections and placing of concrete.
3. All submittal information and approved mix design.
4. Aggregate samples with ITD-1044 to confirm gradation.
5. Cement/Fly Ash/Slag Cement sample with ITD-1044, Mill Analysis, and Bill of Lading.

The Department requires 5 working days to review and test items mentioned above to ensure compliance with the specification.

The Department will conduct random inspections at precast facilities to verify release strengths before removal of forms, stressing release and the stressing of the cable strand during pre-placement operations.

Precast manufacturers are NOT to do any type of work on a Department item until a Department Inspector or equivalent has had the opportunity to inspect the product after it has been removed from the form. Once removed from the form, the product is to be set in the precast facilities storage area and await Department approval. The piece must be marked accordingly or communication must be made with precast facilities management.

The Contractor is required to give 48-hour notice to the Resident Engineer before shipping items to project site. This allows the Department time to check products in the precast yard for final inspection and sign-off. Products will have the precast facilities Quality Control Manager’s initials or signature on them before final plant inspection of the product. The Precast facility must furnish a tag or identification sticker to initial and apply to the product, signifying the Department has done a final inspection and the product is ready to be loaded and shipped.

The Department will provide on-site inspection of the manufacturing process of each member, including acceptance, field sampling, and testing as required per Section 270.00 Minimum Testing Requirements. The Department inspector will provide written acceptance of each girder to the Resident Engineer by interdepartmental memo. The Resident Engineer is required to perform on-site inspection for acceptance of the girder upon delivery to the project and throughout the installation of the member. No member will be accepted that contains failing material.
The documentation of the samples and testing, as well as required manufacturer’s certification, will be collected by the Department on-site inspector at the manufacturing plant and the originals provided to the Resident Engineer with the acceptance memo.

230.06 Concrete with Specified Strength 3000 psi or Less (Including Seal Concrete). When 3000 psi or less concrete is specified, the concrete may be accepted by certification if produced using a qualified aggregate source. Section 265.02 explains the requirements for qualification of aggregate sources. The concrete mix design must be submitted for review.

The concrete producer must furnish a signed, completed ITD-875 form with the class and concrete mix design designation listed. Department project personnel will provide project placement locations on the form.

The specifications require the producer or Contractor to perform quality control field tests and compressive strength tests for concrete placed on the project. The test results must be attached to the ITD-875 certification.

Follow the requirements of Section 230.03 when concrete products require metal reinforcement.

230.07 Corrugated Metal Pipe and Corrugated Plate Pipe. The supplier will furnish a completed ITD-914 Steel Certification form, covering the quantity of steel shipped to the project. The ITD form will be accompanied by mill test reports from the pipe manufacturer for all heats of steel involved. A certification will be attached to the ITD-914 and be accompanied with Quality Control test results from the galvanizer indicating the galvanized coating complies with the applicable specification. The appropriate AASHTO or ASTM specifications must be referenced on the form.

For aluminum corrugated metal pipe, the supplier must furnish a completed ITD-851 form from the pipe manufacturer, citing appropriate AASHTO or ASTM specifications in accordance with the contract.

Visual inspection is required at the project site to check for obvious defects, including damage in handling and shipping. Coated or bare galvanized pipe must always be checked for damage or visible gaps in the protective layers.

Bituminous coating must be verified by field inspection.

230.08 Plastic Pipe. The supplier will furnish a completed certification ITD-851 form from the pipe manufacturer, citing appropriate AASHTO or ASTM specifications in accordance with the contract. Final acceptance is subject to visual inspection for damage in shipping or handling or other obvious defects.

230.09 Geosynthetics. The Contractor must furnish the manufacturer’s certified test results and the completed ITD-849 form covering the quantity furnished to the project.

- The documentation and sampling for the Department will be in accordance with Standard Specifications Subsection 718.02 and 718.03 for geotextiles; the contract special provisions for Geogrid (See also Section 270.60, MTR Section 640).
• Silt Fence; see Section 270.10, MTR Section 212-1.

• Pavement Fabrics; see Section 270.30 MTR, Section 405.8, and Standard Specifications 718.02 and 718.08

• For handling and disputes; see Standard Specifications Section 106.06 and 106.07 respectively

230.09.01 Shipping Procedures. Follow the procedures below to ship the samples. Placing multiple samples in a capped tube is acceptable and preferred as follows.

230.09.01.01 Geotextile:
1. Fold the sample to match the uncut selvedge edges.*
2. After rolling the first sample, place the documents under the outside layer.
3. Use a paint pen (silver is preferable) to identify the sample with key #, pay item #, and sample #.
4. Roll the next samples on over the previous ones.
5. Shipping is available on the contracted freight trucks between the District Supply Offices and HQ. Tubes are returned to the district of origin.

230.09.01.02 Geogrid:
1. Fold the sample to match the uncut selvedge edges.*
2. Roll the sample from the fold and tie as necessary.
3. Place the required documents securely under the outside layer.
4. Ship as above.

*Selvedge - The longitudinal edges of a fabric are formed in such a way to prevent unraveling.

Acceptance of geosynthetics must be in accordance with ASTM D 4759 Standard Practice for Determining the Specification Conformance of Geosynthetics.

230.10 Performance Graded Asphalt Binder. The supplier must submit, on a yearly basis, a Quality Assurance plan to the Central Laboratory for Performance Graded Asphalt Binder, see Section 255.00.

230.10.01 Certification. ITD-966, PG Binder Supplier's Certification, accompanies the initial shipment of PG binder to the project. Qualified personnel must furnish this form with each lot change of PG binder shipped to the project. The Supplier will attach a completed ITD-966 form to the bill of lading that represents the first shipment of each new lot.

230.10.02 Sampling. The first load of asphalt binder delivered to the project must be sampled from the delivery truck. Thereafter, each shift that produces plant mix requires a binder sample comprised of three one-quart cans. The Department determines, at a random time, when to take the samples from the mix plant's asphalt-binder tank injection line. Representatives of the Department and the Contractor, one of which must be WAQTC Asphalt qualified, must obtain or witness the sampling. Both parties must then sign the ITD-859 sample identification form. The Department must retain all three
quarts of the samples. Purge at least one gallon from the injection line valve before taking the sample and adhere to FOP for AASHTO R 66.

Send all three cans to the Central Laboratory. Two quarts are for the Department’s verification testing and one quart is for dispute resolution. The Contractor or the supplier may take as many samples as they want for information only.

Note: Standard Specifications, Section 405.03.C – Mixing Plants, states "provisions shall be made for measuring and sampling contents of the (PG binder) storage tanks." Personnel must be aware that the injection line is usually under pressure. The Contractor must provide a safe means to obtain the random samples.

When mix plant operations are just starting or after being suspended for more than 48 hours, the sampling sequence must not begin with a completely random sample; instead, take this binder sample near the beginning or at the resumption of operations.

Samples must be submitted to the Central Laboratory for testing no later than 30 days after the sample date.

230.10.03 Binder Verification Unit. The quantity of binder used in one week’s production of plant mix, except as modified in the remainder of this subsection, constitutes a binder verification unit. A binder verification unit is comprised of daily binder samples.

A binder unit must include only one PG grade. Thus, if the PG grade is changed within a production day, one daily binder sample will be taken for each PG grade used and grouped with other daily binder samples representing the corresponding binder verification unit.

Complete the ITD-859 PG Binder Sample Identification Form. The daily binder sample, comprised of three individual quart cans, must be labeled with the sample identification numbers (i.e., 2001-C for the first day, 2002-C for the second day, etc.). Include the daily binder sample identification number and sample date on each sample. The Department and the Contractor must sign the form for each daily binder sample and indicate on the ITD-859 form the date when a supplier’s binder lot changes. Idaho IT-99, Presence of Anti-Strip, must be completed in accordance with the required frequency as shown in Section 270.30, Minimum Testing Requirements. Record these results on the ITD-859 form.

The Contractor is responsible for inspecting or certifying their storage tank for contamination.

230.10.04 Testing. The Central laboratory will randomly choose one daily binder sample from each unit to represent the entire unit and either completely or partially test the selected daily binder sample. If the tested PG grade complies with the specified PG grade properties, the binder unit will be accepted. If the PG grade does not comply with the specified PG grade, additional testing will be performed on the verification unit until the extent of the non-compliant material has been determined.

If multiple tests are conducted on the same binder sample, the initial and additional test results for each specification item will be averaged and the average value for each specification item will be considered
the final value. These final values will be used to determine compliance or noncompliance. Non-compliant materials will be subject to the price reduction as specified in the ITD Laboratory Operations Manual.

230.05 Appeal Process. The Central Laboratory will retain one daily binder sample for dispute resolution.

If the Contractor wishes to appeal the Department’s test results and price reductions, a written appeal request must be submitted within 21 calendar days of the reported test results. The appeal must state the grounds or the circumstances of the appeal. If the test results are in question, the appeal must be accompanied by all of the quality control test results and worksheets that represent each verification unit in question. The Contractor must also supply complete PG binder test results on all daily binder samples in question. The state will not accept appeals when Contractor test results are below the minimum specifications.

When an appeal is accepted, the appeal testing must include all specification parameters for the material in question. If the appeal is not accepted, the Department will submit a denial letter to the Contractor, stating the grounds for the denial.

Appeal testing must be conducted by an independent, AASHTO accredited laboratory, mutually acceptable to the Contractor and the Department. The AASHTO accredited laboratory will report the results to the Department. The results of such tests will be binding to both parties and any price reduction on the unit in question will be based on those test results. The Contractor will agree to bear the costs of the appeal testing if the tests verify noncompliance.

Anti-strip additives must be on the QPL before use, see Section 240.02.

230.11 Emulsified Asphalt. The supplier must submit, on an annual basis, a Quality Assurance Plan to the Central Laboratory for emulsified asphalt, see Section 256.00.

A supplier’s bill of lading must be furnished to the inspector with each load of liquid asphalt or emulsion supplied to the project. The bill of lading must contain the following information in accordance with Standard Specification Section 702.05 and 702.08:

- Date of delivery, project number, key number, county, bill of lading number, and name of customer.
- Product identification, tonnage, truck/trailer number, specific gravity, Saybolt viscosity for emulsified asphalt, and signed certification statement.
- Supplier’s name, address, and phone number.

Department project inspectors only sample undiluted emulsified asphalt, as received from the Supplier, for verification testing in accordance with the individual bid schedule items in Section 270.00 Minimum Testing Requirements.

Department project inspectors perform field viscosity testing on sealcoat emulsions as required by the Minimum Testing Requirements in Section 270.00, Section 403 from the truck on the project site or at a
location as close to the project as practical. The Contractor must provide a safe means for obtaining the emulsion samples, including but not limited to fall protection, heat resistant clothing and gloves, etc.

230.12 Seeding. For Contractor Furnished Seed, the Contractor must provide official certification tags with tests results for each seed species and verify it meets the contract specifications. The Contractor must verify the company or person(s) providing the seed holds a valid Idaho Seed Dealer’s License issued for the current year and must meet all provisions of the Idaho Pure Seed Law. Before acceptance, a member of the Association of Official Seed Certifying Agencies (AOSCA) or state laboratory must provide seed certification tags and test results as well as validate that the seed has been tested within the current year. The official AOSCA tag or report must accompany each species and be submitted to the Engineer at least sixty (60) working days before seeding. The official tag or report must indicate seed classification, seed germination rate, seed germination purity, lot number, number of weed seeds, number of noxious weed seeds, and number of crop seeds. All restricted, prohibited, and noxious weed seeds found during testing must be displayed in an official AOSCA tag or report. All seed bags (Department or Contractor-supplied) must have the analysis (certification) tag attached and secured to each bag or container.

No additional seed tests are required for Department-supplied seed if the project meets all of the following parameters:

- Project has two acres or less to be seeded.
- Project is using seed from district stored seed inventory.
- Seed to be used has original certification tags attached to the bag(s).
- Seed tags indicate seed tests were conducted within one year from the date of seeding or seed was tested at ISDA for purity and germination rates within one year of the date the project will be seeded.
- Seed samples are taken and tested to verify seed germination rate and purity as well as absence of noxious weeds. Seed germination and purity can be drastically reduced between the time it is originally tested and when it is actually seeded. For this reason, the Department requests seed to be tested 6 weeks before seeding. If there is inconsistency with seed germination and/or purity information on the tags and the current test results, the Department can adjust the seeding rates in the field to obtain optimal seed germination and increase the success rate.

One random sample from unblended and individually packaged seed containers from each species and each lot must be obtained and placed in a one-gallon size heavy-duty zipped plastic bag (See note 1 below). The samples must be submitted to the Idaho State Seed Laboratory for analysis and verification. The sample must not be taken from the top layer of the container. Send the completed ITD-1044 form to the test lab with a copy of the seed certification tags and seed samples. Refer to the instructions for the ITD-1044 so all required information is included. Allow 30 days for testing and receiving official test results. The test results must show the seed meets the contract specifications before seeding. ISDA will email the test results to the Resident Engineer and copy the HQ Roadside Program Manager. After receiving the test
results, contact the Roadside Program Manager for acceptable purity and germination limits and acceptable seeding rates before seeding. The test lab will return all useable seed if the Resident Engineer’s address is shown on the ITD-1044.

Address: Idaho State Seed Lab
2240 Kellogg Lane
Boise, ID 83712

Note 1: Fill the one-gallon bag approximately half full for medium seed species including wheatgrasses, squirreltail, and wildrye (150 g). Fill the one-gallon bag approximately full for large seed including grain, Lupines, Biscuitroot, Bitterbrush and similar size seed, as well as Brome species and Woods Rose (550 g). Fill the one-gallon bag approximately one-quarter full for small seed species including fescues, saltgrass, alfalfa, clover, and blue flax (70 g). Fill the one-gallon bag approximately one-eighth full for very small seed species including bluegrasses, penstemon species, sagebrush, rabbitbrush, globemallow, and yarrow, (40 g). All other large seed types require a full one-gallon bag. For species not covered here, refer to ISDA website for specific species sample weights:
http://www.agri.state.id.us/Categories/Laboratories/Seed/sampleWeights.php

The State Seed Lab will bill the Resident Engineer for the testing. Contact the District Business Manager or District Records Inspector for charging the costs to the project.

230.13 Miscellaneous Items Accepted by Certification. Certification of miscellaneous materials is acceptable as defined in this section.

230.13.01 General Provisions. In addition to the materials discussed individually in Section 230.00, the following miscellaneous items may also be accepted on the basis of the manufacturer’s or fabricator’s (not the supplier unless the supplier is also the manufacturer) certification, using form ITD-851 signed by the manufacturer’s representative who has quality control responsibility. The material must be manufactured in accordance with specification requirements. Each certification must detail the quantity of material furnished to the project under that certification. Laboratory test reports must also be furnished where applicable (e.g., steel mill test reports, wood preservative treatment reports).

230.13.02 List of Miscellaneous Materials Accepted on the Basis of the Manufacturer’s or Fabricator’s Certification. Table 230.1 lists miscellaneous items that may be accepted by certification. The manufacturer’s or fabricator's certification will not preclude the sampling and testing of the material or its final acceptance or rejection on the basis of the test results. Project samples are to be taken, as indicated in the Minimum Testing Requirements (Section 270.00), for verification testing. Samples may also be taken and tested at the option of the Materials Engineer or Resident Engineer.

Visual inspection for obvious defects and handling and shipping damage should always be done. Where feasible, simple measurements of specified properties must be spot-checked at least once per project and recorded to verify certification (e.g., measuring length, mass per unit length, thickness of steel items).
Table 230.1 Miscellaneous Materials Accepted by Certification

<table>
<thead>
<tr>
<th>Material</th>
<th>Standard Specification</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bearing Pads and Plates</td>
<td></td>
<td>507</td>
</tr>
<tr>
<td>Brick and Blocks, Masonry</td>
<td></td>
<td>Miscellaneous</td>
</tr>
<tr>
<td>Bridge Rail, Metal</td>
<td></td>
<td>504</td>
</tr>
<tr>
<td>Concrete, Rapid Set</td>
<td></td>
<td>Special Contract Provision</td>
</tr>
<tr>
<td>Delineators and Mileposts</td>
<td></td>
<td>617</td>
</tr>
<tr>
<td>Dowel Bars and Tie Bars for Concrete Pavement</td>
<td></td>
<td>409, 503, 510, 609, 611</td>
</tr>
<tr>
<td>Dust Oil</td>
<td></td>
<td>Miscellaneous</td>
</tr>
<tr>
<td>Electrical</td>
<td></td>
<td>Miscellaneous</td>
</tr>
<tr>
<td>Epoxies</td>
<td></td>
<td>Miscellaneous</td>
</tr>
<tr>
<td>Epoxy Patch</td>
<td></td>
<td>Miscellaneous</td>
</tr>
<tr>
<td>Guard Rail and Posts</td>
<td></td>
<td>612</td>
</tr>
<tr>
<td>H-Beam Piles</td>
<td></td>
<td>505</td>
</tr>
<tr>
<td>Illumination Poles and Bases</td>
<td></td>
<td>619</td>
</tr>
<tr>
<td>Joint Sealants and Sealers</td>
<td></td>
<td>409, 502, 625</td>
</tr>
<tr>
<td>Paint (only small quantities less than 25 gallons (100L))</td>
<td></td>
<td>504, 505, 627</td>
</tr>
<tr>
<td>Sewers (Storm and Sanitary)</td>
<td></td>
<td>605</td>
</tr>
<tr>
<td>Signs and Posts</td>
<td></td>
<td>616</td>
</tr>
<tr>
<td>Steel Shell Piling</td>
<td></td>
<td>505</td>
</tr>
<tr>
<td>Structural Bolts</td>
<td></td>
<td>504</td>
</tr>
<tr>
<td>Timber (Structural)</td>
<td></td>
<td>609, 612, 616</td>
</tr>
<tr>
<td>Traffic Signal Poles and Mast Arms</td>
<td></td>
<td>656</td>
</tr>
</tbody>
</table>
SECTION 240.00 PRE-TESTED AND PRE-QUALIFIED MATERIALS.

240.01 Pre-tested Materials. The following materials require pre-testing before acceptance on a project.

- Traffic Line Paint
- Glass Beads
- Curing Compound

The Department project personnel must verify the material/product is approved before use on a project. Those materials/products deemed acceptable will appear on the pre-approved list found on the ITD Central Laboratory Intranet page or on a list obtained from the Central Laboratory.

240.01.01 Bulk Material/Products Sampled at the Manufacturing Plant. A major portion of the pre-tested products are sampled at the manufacturer’s plant for bulk production. The Central Laboratory is responsible for obtaining the samples at the plants and testing such material.

240.01.02 Materials/Products Sampled at the Project. Department project personnel must obtain samples, or witness the sampling, at the project site when the lot/batch of traffic line paint, glass beads, or curing compound is not shown as pre-tested or pre-approved.

The samples will be obtained from the material delivered to the project and sent to the Central Laboratory for testing. Allow 30 days for the testing. The material must be accepted before use. The sample must be properly identified with sample date, sampler’s name, the product & manufacturer, and the lot or batch number.

240.02 Pre-Qualified Materials. The Department established a Qualified Products List (QPL) to formalize the process for the use of pre-qualified products on Department highway projects. The list of pre-qualified products is disseminated via the Department’s official website to department staff, materials suppliers, manufactures, consultants, and Contractors.

QPL products still need the appropriate tests and certifications required by the contract in order to be accepted on the project.

The QPL is administered by the Product Review Committee (PRC). Activities of the PRC are coordinated by the QPL Program Administrator. Details of the QPL program are described on the QPL webpage:

http://apps.itd.idaho.gov/apps/materials/QPL.aspx

Documentation (such as a printout of the QPL page showing approval of the item) must be placed in the project files and posted in the MSR for QPL items that were on ITD’s QPL at the time of the project.
SECTION 250.00 ACCEPTANCE OF MATERIAL ON THE BASIS OF THE RESIDENT ENGINEER’S LETTER OF INSPECTION (FORM ITD-854). The purpose of the ITD-854 form is for the Resident Engineer to document the inspection of certain materials and to document acceptable materials that meet the plans and specifications. In most cases, the Resident Engineer of the installation of these items is the most crucial element of the acceptance. The form should not be used as a catchall for items usually accepted by sampling and testing and inclusion on the form does not excuse the Resident Engineer from sampling and testing or obtaining manufacture certifications required by the Minimum Testing Requirements.

The ITD-854 form must provide accurate information of the total quantity of material accepted, the source of the material, and the date of the inspection/acceptance of the material. The project files must contain documentation to support the information on the form. The source should identify the manufacturer or fabricator, whenever possible, for future information regarding the material.

The Section 270.00 Minimum Testing Requirement (MTR) tables list materials accepted by the ITD-854 form. The specifications provide a complete description of the necessary inspection elements for acceptance of each item. The Resident Engineer must sign the ITD-854 form after inspecting the listed items for acceptance and verifying that the required material documentation is in the project item file.
SECTION 255.00 PERFORMANCE GRADED BINDER QUALITY ASSURANCE PLAN.
The Performance Graded (PG) binder supplier will conform to quality control testing and certification requirements in accordance with Subsection 702.08 of the Standard Specifications. The Supplier must have accreditation through the AASHTO Accreditation Program, (AAP) for PG Binder. The supplier must submit, on an annual basis, a Quality Assurance Plan to the Central Laboratory for PG Asphalt Binder that meets the requirements of AASHTO R 26 Certifying Suppliers of Performance Graded Asphalt Binders.
SECTION 256.00 ASPHALT EMULSIONS QUALITY ASSURANCE PLAN. The asphalt emulsion supplier will conform to quality control testing and certification requirements in accordance with Subsection 702.03 of the Standard Specifications. The Supplier must be accredited through the AASHTO Accreditation Program for Emulsion Testing by January 2018. The supplier will submit, on an annual basis, a Quality Assurance Plan to the Central Laboratory for emulsified asphalt.
SECTION 260.00 MIX DESIGNS. Mix designs are an essential part of both flexible and rigid pavements and structural concrete mixtures. This section provides additional information needed to prepare a Job Mix Formula (JMF) for asphaltic paving mixtures, portland cement concrete mix designs for concrete pavements, and portland cement concrete mix designs for structural concrete.

260.01 Superpave Hot Mix Asphalt (HMA) (Standard Specification Section 405). This section outlines the JMF confirmation process for Superpave HMA found in Subsection 405.03-A, Mix Design.

260.01.01 Mix Design Requirements and Review Procedure. The Contractor must submit a request for use of materials source(s) to the Resident Engineer, and if acceptable, its use will be approved in writing. The Superpave HMA mix design is the Contractor’s responsibility. The Contractor must submit the proposed mix design and all test reports, data, and worksheets used for each attempted trial design to the Resident Engineer. The Resident Engineer will submit the data to the Central Laboratory for mix design approval. The JMF must be approved before paving.

The Contractor’s mix design must develop the JMF for the project using an AASHTO Accredited laboratory that is qualified through the Department’s Laboratory Qualification Program. Mix designs must be prepared specifically for the project they are submitted for and each class of mix and grade of binder will have a separate mix design created, unless otherwise allowed. Refer to Standard Specification Section 405 Superpave HMA for the mix design specifications and a complete list of submittal requirements.

The Contractor’s mix design submittal must include all the information required in “A. Mix Design” of the Construction Requirements of Section 405.03.

The Central Laboratory will prepare a written recommendation and email copies to the Resident Engineer, District Materials Engineer, and District Engineering Manager.

The Contractor, or a designated representative, must perform a Superpave HMA mix design in accordance with the current version of AASHTO R 35, “Superpave Volumetric Design for Hot-Mix Asphalt.” The Asphalt Institute publication “Asphalt Mix Design Methods,” (MS-2), is available at www.asphaltinstitute.org. The proposed JMF shall specify a single aggregate gradation, optimum asphalt content, a theoretical maximum specific gravity, and a bulk specific gravity of a specimen compacted to N_design.

The Superpave Mix Design Technician (SPMDT) must maintain current qualifications for all test procedures performed during the mix design as shown in Section 405.03 A. Mix Design and Table 260.01.1. The Laboratory used to develop the Superpave Mix Design must be accredited through the AASHTO Accreditation Program and all tests must be performed in the qualified laboratory by the SPMDT or they may be subcontracted to an AASHTO accredited Laboratory and be performed by a qualified sampler tester. The SPMDT shall take responsibility for all test results obtained in the development of the mix design.
Table 260.01.1 contains standards referred to in AASHTO R 35 and not listed in 405.02. Column 3 indicates if the standard is required for the mix design. Column 4 indicates if the SPMDT must maintain a qualification in the listed standard or if an alternate standard qualification is required.

<table>
<thead>
<tr>
<th>AAASHTO Method</th>
<th>Name</th>
<th>Required for Mix Design</th>
<th>Qualification Required for SPMDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 320</td>
<td>Performance Graded Asphalt Binder</td>
<td>Yes</td>
<td>No (Performed by Binder Supplier on virgin binder and by subcontractor for RAP)</td>
</tr>
<tr>
<td>PP 60</td>
<td>Preparation of Cylindrical Performance Test Specimens Using the Superpave Gyratory Compactor (SGC)</td>
<td>Not used</td>
<td>No</td>
</tr>
<tr>
<td>T 100</td>
<td>Specific Gravity of Soils</td>
<td>Not used</td>
<td>No</td>
</tr>
<tr>
<td>T 195</td>
<td>Determining Degree of Particle Coating of Asphalt Mixtures</td>
<td>Not used</td>
<td>No</td>
</tr>
<tr>
<td>T 228</td>
<td>Specific Gravity of Semi-Solid Asphalt Materials</td>
<td>Not used</td>
<td>No</td>
</tr>
<tr>
<td>T 275</td>
<td>Bulk Specific Gravity (Gmb) of Compacted Hot Mix Asphalt (HMA) Using Paraffin Coated Specimens</td>
<td>Not used</td>
<td>AASHTO T 331</td>
</tr>
<tr>
<td>T 283</td>
<td>Resistance of Compacted Asphalt Mixtures to Moisture-Induced Damage</td>
<td>Not Used</td>
<td>ASTM D1075 and AASHTO T 167</td>
</tr>
<tr>
<td>T 320</td>
<td>Determining the Permanent Shear Strain and Stiffness of Asphalt Mixtures Using the Superpave Shear Tester (SST)</td>
<td>Not used</td>
<td>No</td>
</tr>
<tr>
<td>T 322</td>
<td>Determining the Creep Compliance and Strength of Hot Mix Asphalt (HMA) Using the Indirect Tensile Test Device</td>
<td>Not Used</td>
<td>No</td>
</tr>
<tr>
<td>TP 79</td>
<td>Determining the Dynamic Modulus and Flow Number for Asphalt Mixtures Using the Asphalt Mixture Performance Tester (AMPT)</td>
<td>Not used</td>
<td>No</td>
</tr>
</tbody>
</table>

When subcontracting ASTM D1075 and AASHTO T 167, perform the testing in an AASHTO accredited laboratory with a qualified Sampler Tester. The SPMDT may fabricate the samples in accordance with Section 405.03 A. Mix Design, Material and Sample Submittals, item 3, and deliver them to the subcontractor. The subcontractor shall prepare the samples and test them. The subcontractor will randomly select one of the eight samples and test by AASHTO T 308 and T 30 and will report the results as part of the Immersion-Compression results.
260.01.02 Definitions. The following definitions are from sources common to the HMA industry. These items require further definition because the form of the equation published in the reference text may be different from the form used by the Department or additional explanation is warranted. Asphalt Institute MS-2, 7th Edition is used in addition to AASHTO and ASTM methods.

Bulk Specific Gravity of Aggregate, \(G_{sb} \) The ratio of the weight in air of a unit volume of a permeable material (including both permeable and impermeable voids normal to the material) at a stated temperature to the weight in air of equal density of an equal volume of gas-free distilled water at a stated temperature. (FOP for AASHTO T 85 and Asphalt Institute MS-2). Use Idaho IT-144 and FOP for T 85 to determine the bulk specific gravity of fine and coarse aggregates respectively.

When the total aggregate consists of separate fractions of coarse aggregate, fine aggregate, and mineral filler, all having different specific gravities, the bulk specific gravity of the total aggregate is calculated using:

\[
G_{sb} = \frac{P_1 + P_2 + \ldots + P_n}{\left(\frac{P_1}{G_1}\right) + \left(\frac{P_2}{G_2}\right) + \ldots + \left(\frac{P_n}{G_n}\right)}
\]

where, \(G_{sb} \) = average bulk specific gravity
\(P_1, P_2, P_n \) = individual percentages by mass of aggregate, coarse and fine
\(P_1 + P_2 + \ldots + P_n = 100 \)
\(G_1, G_2, G_n \) = individual bulk specific gravities of aggregate, coarse and fine.

(Ashphalt Institute MS-2).

Because the amount of fine aggregate present in the coarse aggregate fraction and the amount of coarse aggregate present in the fine aggregate fraction is very small, this equation can be simplified and written as:

\[
G_{sb} = \left[\frac{100}{\left(\frac{P_{(+#4)}}{G_{(+#4)}}\right) + \left(\frac{P_{(-#4)}}{G_{(-#4)}}\right)} \right]
\]

where, \(G_{sb} \) = average bulk specific gravity for the total aggregate
\(P_{(+#4)}, P_{(-#4)} \) = individual percentages by mass of aggregate, coarse, (+#4) and fine, (-#4)
\(G_{(+#4)}, G_{(-#4)} \) = individual bulk specific gravities of aggregate, coarse, (+#4) and fine, (-#4)
When more than one materials source is used to provide the coarse aggregate fraction and/or more than one materials source is used to provide the fine aggregate fraction for a mix design or mineral fillers are used, the original form of the Asphalt Institute equation will be used.

Bulk Specific Gravity of Recycled Asphalt Pavement, (RAP), RAP

The bulk Dry Aggregate Specific Gravity of RAP aggregate, (RAP G_{sb}), is determined from Maximum Theoretical Specific Gravity, RAP G_{mm}, tests performed on the RAP material; the Effective Specific Gravity of Aggregate, G_{se}; and the asphalt absorption. Use Idaho IT-146 to determine the Bulk Dry Specific Gravity, (G_{sb}), of the RAP.

\[
RAP \ G_{se} = \left(\frac{(100 - Adjusted \ P_b)}{\left(\frac{100}{RAP \ G_{mm}} \right) - \left(\frac{Adjusted \ P_b}{G_b} \right)} \right)
\]

where,
- $RAP \ G_{se}$ = effective specific gravity of aggregate
- P_b = asphalt content (from AASHTO T 308)
- G_b = specific gravity of asphalt (from mix design)
- $RAP \ G_{mm}$ = maximum specific gravity of mix (no air voids)

\[
Adjusted \ P_b = \left(\frac{\text{Mass of RAP AC} + \text{Mass of Virgin AC added}}{\text{New RAP Mass}} \right)
\]

$RAP \ G_{sb}$ = dry bulk specific gravity of the RAP

$RAP \ G_{sb}$ = $RAP \ G_{se}$ – asphalt absorption

Estimate or assume the asphalt binder absorption of the RAP, P_{ba}

Asphalt absorption of RAP is assumed to be two-thirds of the water absorption of virgin aggregates used in the project.

Determine the water absorption values by FOP for AASHTO T 85 and Idaho IT-144 and calculate the total water absorption for the virgin aggregate by proportionately combining the coarse and fine absorption by the percent of each aggregate.

\[
P_{ba} = \text{water absorption} \times 0.667
\]

Calculate the stone bulk gravity (G_{sb}) of the RAP:

\[
G_{sb(RAP)} = \frac{G_{se(RAP)}}{\left(\frac{P_{ba(RAP)} \times G_{se(RAP)}}{100 \times G_b(RAP)} \right) + 1}
\]
Voids in the Mineral Aggregate, (VMA): The volume of intergranular void space between the aggregate particles of a compacted paving mixture that includes the air voids and the effective asphalt content, expressed as a percent of the total volume of the sample (Asphalt Institute MS-2). VMA can be calculated either as percent by weight of total mix or as a percent by weight of aggregate.

VMA will be calculated using the following formula when the mix composition is determined as percent by weight of total mixture:

\[
VMA = 100 - \left(\frac{G_{mb}P_s}{G_{sb}} \right)
\]

where,
\(VMA\) = voids in mineral aggregate, percent of bulk volume
(calculate to 0.01; report to 0.1)
\(G_{sb}\) = bulk specific gravity of total aggregate
\(G_{mb}\) = bulk specific gravity of compacted mixture (FOP for AASHTO T 166 Method A)
\(P_s\) = aggregate content, percent by total weight,
(this can be written as \(P_s = 100-\%AC\))

Air Voids, \(P_a\): the total volume of small pockets of air between the coated aggregate particles throughout a compacted paving mixture, expressed as a percent of the bulk volume of the compacted paving mixture. (Asphalt Institute Manual Series No. 2 (MS-2)).

\[
P_a = 100 - \left(\frac{100 \times G_{mb}}{G_{mm}} \right)
\]

where,
\(P_a\) = air voids in compacted mixture, percent of total volume
(calculate to 0.01; report to 0.1)
\(G_{mm}\) = maximum specific gravity of paving mixture (FOP for AASHTO T 209, Bowl Method)
\(G_{mb}\) = bulk specific gravity of compacted mixture (FOP for AASHTO T 166, Method A)

Note: MS-2, 7th Edition now defines Air Voids as \(P_a\) rather than \(V_a\). Using “P” for percent is the most commonly used abbreviation. Not all publications have changed at this time and the use of \(P_a\) or \(V_a\) to define the percent air voids by total volume is acceptable.

Voids Filled with Asphalt, (VFA): the portion of the volume of intergranular void space between the aggregate particles (VMA) that is occupied by the effective asphalt. (Asphalt Institute MS-2).

\[
VFA = 100 \times \left(\frac{VMA - P_a}{VMA} \right)
\]
where, \(VFA = \) voids filled with asphalt, percent of VMA

\(VMA = \) voids in mineral aggregate, percent of bulk volume

\(P_a = \) air voids in compacted mixture, percent of total volume

Dust-to-Binder Ratio \((DP = \frac{P_{-#200}}{P_{be}})\) The ratio between the percent of aggregate passing the No. 200 (0.075-mm) sieve and the effective binder content \((P_{be})\). (Asphalt Institute MS-2).

\[
DP = \left(\frac{P_{-#200}}{P_{be}} \right)
\]

where, \(DP = \) Dust Proportion, (dust-to-binder ratio)

\(P_{-#200} = \) aggregate passing the -#200 (0.075 mm) sieve, percent by mass of aggregate

\(P_{be} = \) effective asphalt content, percent by total mass of mixture

(Calculate to 0.01; report to 0.1)

The following equations are used to calculate \(P_{be} \):

Effective Asphalt Content, \(P_{be} \)

\[
P_{be} = P_b - \frac{P_{ba}}{100} (100 - P_b)
\]

Where, \(P_b = \) asphalt content (from FOP for AASHTO T 308)

\(P_{ba} = \) absorbed asphalt

Absorbed Asphalt, \(P_{ba} \)

\[
P_{ba} = \left(\frac{G_{se} - G_{sb}}{G_{sb} G_{se}} \right) G_b
\]

Where, \(G_{se} = \) effective specific gravity of aggregate

\(G_{sb} = \) bulk specific gravity of aggregate

\(G_b = \) specific gravity of asphalt (from mix design)
Effective Specific Gravity of Aggregate, \(G_{se} \)

\[
G_{se} = \left(\frac{100 - P_b}{\left(\frac{100}{G_{mm}} - \frac{P_b}{G_b} \right)} \right)
\]

Where,
- \(G_{mm} \) = maximum specific gravity of mix (no air voids)
- \(P_b \) = asphalt content (from FOP for AASHTO T 308)
- \(G_b \) = specific gravity of asphalt (from mix design)

260.01.03 Tolerances. The tolerances from Table 405.03.1 of the Standard Specifications will be applied to the Engineer’s test results when confirming the JMF.
260.02 Concrete Pavement (Standard Specification Section 409). Mix designs will be reviewed or confirmed according to the contract requirements.

260.02.01 Portland Cement Concrete Pavement. Central Laboratory will confirm concrete mix designs for Portland Cement Concrete Pavement in accordance with the following procedures.

All sampling and testing performed shall be in accordance with the sampling and testing methods as specified in the ITD Standard Specifications.

260.02.01.01 Items Provided to Central Laboratory. The Central Laboratory must receive the following items before the concrete mix design confirmation process will be initiated. All samples submitted to Central Laboratory must be accompanied by a completed ITD-1044 form. These items must be submitted 60 days in advance of proposed use:

1. A complete mix design including specific gravity (SSD) and absorption for both fine and coarse aggregates per AASHTO T 84 and FOP for T 5, respectively. The mix design must identify the aggregate source that will be used and the aggregate correction factor per FOP for AASHTO T 152.
2. For concrete aggregate sources identified during source approval as reactive per AASHTO T 303 baseline testing, ASTM C1293, or ASTM C295, the mix design must include ASTM C1567 or CRD C 662 test results for mitigation of Alkali-silica reaction (ASR) expansion.
3. Gradation test results representing the material that will be used.
4. Final Set time per AASHTO T 197M / T 197.
5. For projects over 2,500 CY, samples of the proposed aggregate, cement and admixtures. A minimum of 350 pounds of coarse aggregate, 200 pounds of fine aggregate, and 100 pounds of cement must be supplied to the Central Materials Laboratory. No sample container may weigh more than 50 pounds. All materials provided must meet the contract specifications.
6. Mill analysis test reports from the manufacturer must be included for the cement, fly ash, and/or silica fume submitted.
7. Copies of all data, test reports, and worksheets associated with the mix design.
8. Each mix design must be assigned a unique mix identification number identical to that which will be recorded on all batch tickets for concrete batched according to the mix design.

260.02.01.02 Central Materials Laboratory Procedures. The Central Laboratory will complete the following before batching the proposed mix design:

1. Verify the Contractor’s compressive strength test results are based on the average of three 28-day cylinders and indicate a minimum compressive strength of 5,600 psi. If this requirement is not met, the mix design will not be confirmed.
2. For aggregate sources identified as reactive for ASR, verify the Contractor’s ASR mitigation expansion testing (ASTM C1567 or CRD C 662) meets the following requirements:
a. Expansion of mortar bars shall not exceed 0.10 percent at 14 days with the addition of fly ash, lithium, or other ASR mitigation additives.

b. The aggregate blend percentages used in the testing are reported and are within 2% of the blend percentages proposed in the mix design and to be used on the project. Coarse and fine aggregates may also be tested separately.

c. The materials used in the expansion testing are the same materials (aggregate sources, cement, fly ash, mitigation additive) and at the same proportions reported in the proposed mix design and to be used on the project.

d. When lithium is used, ensure the lithium dosage is reported as a volume and as a percent of the standard or full dose.

If these requirements are not met, the mix design will not be confirmed.

3. Verify the aggregate is from an approved aggregate materials source. If the source has not been approved, no further testing will be conducted until source approval has been obtained.

4. Check the mix design for conformance with the contract specifications (i.e., cement content, air, slump, etc.). The design volume must be checked to ensure it totals 27 cubic feet. Should the mix design not meet contract requirements, the mix design confirmation process will not proceed and the mix design will not be confirmed.

5. Test the fine aggregate for gradation and sand equivalent. Verify the specific gravity and absorption of the coarse and fine aggregate. Should the gradation or sand equivalent testing indicate the aggregate does not meet the contract specifications, the mix design confirmation process will be halted until acceptable materials are submitted.

6. Additional testing of the individual materials (cement, aggregates, fly ash, silica fume, admixtures, mineral fillers) may be conducted to verify conformance with contract specifications.

Central Laboratory will batch the concrete in accordance with ASTM C192/C 192M at the proportions indicated in the Contractor’s mix design submittal. Admixture dosages may be adjusted in accordance with the manufacturer’s recommendations to achieve desired mix parameters. Coarse aggregate must be separated into individual-sized fractions and recombined to produce the gradation indicated in the Contractor’s submittal. The weight of coarse and fine aggregate to be used in the batch will be determined per sections 6.3.2.2 and 6.3.2.3 of ASTM C192/C 192M, respectively.

The following mixing sequence will be used by the Central Laboratory unless otherwise agreed to in writing:

1. Add coarse aggregate, ¾ of the mix water and the air-entraining agent (if required) dispersed in solution with the mix water and mix.
2. Add fine aggregate, cement, and fly ash (if required) and mix.

3. Add \(\frac{1}{4} \) of the mix water and the water reducing agent (if required) dispensed in solution with the mix water and mix.

If additional admixtures and/or silica fume are used in the mix, they will be added in the above sequence per the manufacturer’s written recommendations.

The above mixing sequence will not be altered unless the alternate sequence is pre-approved in writing by the admixture manufacturer(s) and the approved alternate mix sequence is provided with the mix design submittal. It is strongly recommended that all laboratories performing mix designs follow the mixing sequence as described above. This ensures results between labs will be as consistent as possible and enables the mix design confirmation process to be completed in as timely a manner as possible.

After mixing, the concrete must be tested for slump, air content, unit weight, and yield. Cylinders will be prepared for compressive strength testing.

For mixes using aggregates that are identified as ASR reactive, the Central Laboratory may conduct AASHTO T 303 (modified) testing using the proposed mitigation admixtures to confirm the Contractor’s testing.

260.02.01.03 Confirmation. The Contractor’s mix design will be confirmed for strength provided the Central Laboratory’s compressive strength test results, based on the average of three 28-day cylinders, indicate a minimum compressive strength of 5,300 psi.

When applicable, the Contractor’s mix design will be confirmed for ASR mitigation provided the Central Laboratory’s expansion test results indicate contract specifications are met (0.10% expansion or less at 14 days) or are within the established multi-laboratory precision of the Contractor’s passing expansion test results.

The mix design confirmation results will be reported to the District Resident Engineer via memo from the Central Laboratory.

260.03 Structural Concrete (Standard Specification Section 502). All sampling and testing methods performed shall be as specified in the ITD Standard Specifications. Concrete mix design requires concurrence by the Central Laboratory.

260.03.01 Approval Procedures. Complete the following:

1. Verify the complete mix design submittal for conformance with the contract specifications. Designs that do not meet ITD project requirements and specifications will not be approved.

2. The mix design must identify the approved aggregate source(s) and aggregate correction factor (FOP for AASHTO T 152).
3. Final Set time per AASHTO T 197M / T 197

4. For aggregate sources that are reactive according to AASHTO T 303 baseline testing, follow ASTM C1293 or ASTM C295 and review the ASTM C1567 or CRD C662 test reports.

5. For aggregate sources identified as reactive for ASR, concrete mix design approval requires the following be met for the ASTM C1567 or CRD C662 mitigation testing:

 a. Expansion of mortar bars shall not exceed 0.10 percent at 14 days with the addition of fly ash, mineral admixtures, or other ASR mitigation additives, except lithium. Expansion of mortar bars using lithium nitrate expansion shall not exceed 0.10 percent at 28 days.

 b. The aggregate blend percentages used in the testing are reported and are within 2% of the blend percentages proposed in the mix design. Aggregates may also be tested separately.

 c. The materials used in the expansion testing are the same materials (aggregate sources, cement, fly ash, mitigation additive) reported in the proposed mix design.

 d. When fly ash is used, ensure the calcium oxide content of the fly ash used on the project meets the 2% tolerance as established by the specifications.

 e. When lithium is used, ensure the lithium dosage is reported as a volume and as a percent of the standard or full dose.

6. Mill analysis test reports from the manufacturer must be included for the cement, fly ash, and/or silica fume, meet contract specifications, and be the same material to be used on the project. Check that any admixtures are approved. Central Laboratory in Boise keeps an updated qualified products list for concrete admixtures.

7. Verify that Basic Mix Strength and Design Mix Strength have been determined per Subsection 502.03 of the Specifications. Basic mix strength must equal or exceed the design mix strength calculated for the specified class of concrete. Classes 15 and 22 are exempt from this requirement.

8. Each mix design shall be assigned a unique mix identification number identical to that which will be recorded on all batch tickets for concrete batched according to the mix design.

9. Check the absolute volume of the mix design. Yield must be checked with air in the mid-range. Verify that the moisture content of the aggregate is included in the water content. In addition, efforts to mitigate ASR using lithium-nitrate admixture will increase the water content in the mix and must be adjusted for.
10. Calculate the volume using the maximum air content to ensure that the cement factor does not fall below specifications. (Do not base the mix design using maximum air for anything but checking cement content.)

11. Check the percentage of sand based on total weight of aggregate. Generally, this percentage is 30% to 42%. (When sand exceeds 42%, the slump will become more difficult to achieve and maintain because the surface area of the aggregate has increased and requires a larger volume of paste. If during mix design additional water is used to get the slump and workability, the w/c ratio goes up. The yield goes up, the cement content goes down, and strength goes down.)

12. The water-cement ratio must be designed at a realistic figure for the strength/class of concrete needed. At no time should the water-cement ratio be based on the maximum allowable specification. If the upper end of the water-cement ratio is to be targeted, stay at least 0.02 under the maximum specification, allowing for fluctuation in batch weights.

13. If Secondary Cementitious Materials (SCMs) are used, minimum and maximum content varies as calculated by total cementitious material (cement and SCMs) per specifications. The specific gravity of the SCM is required. The weight of SCM(s) is added to the weight of cement when calculating cement content and the water cement ratio.

Attached is an example of ITD-907 Concrete Mix Design Review for Structural or Pavement Design.
Example

Concrete Mix Design Review for Structural or Pavement Design

Projects No. TR-86 - 2 (0.35) 75
Concrete Supplier: ACME
Contract Item No.: 407
Concrete Mix Design No.: 3
County: Elmore
Source No.: EL-116
Concrete Class: 45 (5600/28-Day)
Date: 7/14/97

<table>
<thead>
<tr>
<th>Class or Concrete in 100 PSI</th>
<th>Minimum Cement Content LB/CY</th>
<th>Minimum Fly Ash Content LB/CY</th>
<th>Max W/C + Fly Ash Ratio LB/LB</th>
<th>Air Content A.E.A. Oz/CY</th>
<th>Slump Range Inches</th>
<th>Coarse Aggregate Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>56</td>
<td>467</td>
<td>116</td>
<td>0.47</td>
<td>4-7</td>
<td>1/2-3</td>
<td></td>
</tr>
</tbody>
</table>

% Sand = \(\frac{M_{s} - M_{F} }{M_{F}} \)
R = 34.5 %

\[W/C = 0.40 \]

Absolute Volume Method for Design of Concrete

<table>
<thead>
<tr>
<th>YIELD</th>
<th>27 CU FT./CU YD.</th>
<th>100.00 C.F. - Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATER</td>
<td>26.5 GAL./CU YD.</td>
<td>74.8 C.F. - W</td>
</tr>
<tr>
<td>CEMENT</td>
<td>3.105 x 62.4</td>
<td>196.56 C.F. - C</td>
</tr>
<tr>
<td>FLY ASH</td>
<td>0.830 C.F. - FLY ASH</td>
<td></td>
</tr>
<tr>
<td>SP GR</td>
<td>2.390 x 62.4</td>
<td>28,700 C.F.</td>
</tr>
<tr>
<td>AIR</td>
<td>Y x % AIR = 1.87%</td>
<td>1.87 C.F. - A</td>
</tr>
<tr>
<td>W + C + FLY ASH</td>
<td>8.831 C.F.</td>
<td></td>
</tr>
<tr>
<td>Y - (W + C + FLY ASH)</td>
<td>18.161 C.F. - C.A. F.A.</td>
<td></td>
</tr>
<tr>
<td>C A + F.A.</td>
<td>6.246 C.F. - F.A.</td>
<td></td>
</tr>
<tr>
<td>C A + F.A.</td>
<td>11.817 C.F. - C.A.</td>
<td></td>
</tr>
<tr>
<td>COARSE</td>
<td>19.08 LB. (DRY) (SSD)</td>
<td>1885 LB. (DRY) (SSD)</td>
</tr>
<tr>
<td>FINE</td>
<td>10.20 LB. (DRY) (SSD)</td>
<td>1002 LB. (DRY) (SSD)</td>
</tr>
<tr>
<td>BLEND</td>
<td>30.28 LB. (DRY) (SSD)</td>
<td>2887 LB. (DRY) (SSD)</td>
</tr>
</tbody>
</table>

Basic Batch Weights for a Cubic Yard Batch

CEMENT	467 LB.	467 LB.
FLY ASH	116 LB.	116 LB.
WATER	234 LB.	275 LB.
COARSE	19.08 LB. (DRY) (SSD)	
FINE	10.20 LB. (DRY) (SSD)	
BLEND	30.28 LB. (DRY) (SSD)	

Batch Weights Corrected for Moisture Absorption

CEMENT	467 LB.	467 LB.
FLY ASH	116 LB.	116 LB.
WATER	234 LB.	275 LB.
COARSE	19.08 LB. (DRY) (SSD)	
FINE	10.20 LB. (DRY) (SSD)	
BLEND	30.28 LB. (DRY) (SSD)	

Determination of the Yield

TOTAL BATCH WEIGHT	3745 LB.
TOTAL WEIGHT PER CUBIC FOOT	138.7 LB.
TOTAL WEIGHT PER CUBIC FOOT (FRESH CONCRETE)	138.8 LB.

Total Batch Weight

26.981 CU FT. (VOLUME OF CONCRETE PRODUCED)

Volume of Concrete Produced

0.999 Relative Yield

Correction for Moisture Content

% ABSORP. X LB. C.A.	22.9 LB. WATER
% ABSORP. X LB. F.A.	18.4 LB. WATER
BLEND SAND	LB. WATER
INCREASE THE MIXING WATER BY THE SUM OF THESE THREE	41.3 LB. WATER

Computation

- **Computed By:** D. T.
- **Checked By:** M.
- **Date:** 7/14/97
SECTION 265.00 QUALIFIED AGGREGATE MATERIAL SUPPLIERS. The District maintains current lists of qualified aggregate material suppliers. The lists are divided by the aggregate product category. To be included on a list means the aggregate supplier has provided the Department with adequate documentation to verify conformance with state specifications, including but not limited to Standard Specification Sections 106.09, 107.02, 107.17, 107.18, 703.12, and 703.13. Sampling and testing must be by an approved independent laboratory. The purpose of having the current lists is to provide Department personnel and Contractors with readily available information regarding aggregate suppliers that have met the requirements for aggregate quality and source clearance. The availability and quantity of the material in the source is not to be implied.

The lists do not imply acceptance of material should the quality change or the material not meet the contract requirements. The material must meet the contract requirements for acceptance.

The Resident Engineer has the authority to grant written approval for a Contractor to use an aggregate source from the qualified material suppliers list for a specific project, provided the District Materials Engineer or District Engineer concurs.

The aggregate supplier’s source must be identified by pit number and location. Combining stockpiles or aggregates from other sources that are not qualified will invalidate the qualification. The source may be included on the list for a period of not more than two years before the source must be re-evaluated by the District Materials Engineer. The re-evaluation will be based on the suppliers’ current operation and adequate documentation, including new test results when necessary, to determine specification compliance. An aggregate source may be removed from a list at any time should evidence of noncompliance exist.

ITD may test source aggregates to evaluate the submitted test results. The Contractor shall provide full access to the source, including raw and crushed materials, for ITD sampling and testing.

Refer to Subsection 106.09, Material Sources, in the Contract Administration Manual for administration of source approval.

265.01 Qualified Asphalt Mix Aggregate Suppliers. The District Materials Engineer will evaluate the source based on Standard Specifications Section 703 – Aggregates, and applicable asphalt mix specification requirements and notify the supplier if the source is qualified to be included on the list. In no case will inclusion on the list imply approval of a mix design, JMF, or specification material.

Mix designs or JMFs must be evaluated separately for each project based on Standard Specification Section 405.03.A Mix Design.

265.02 Qualified Concrete Aggregate Suppliers. The District Materials Engineer will evaluate the source based on Standard Specifications Section 703 – Aggregates, and applicable concrete specification requirements and notify the supplier if the source is qualified to be included on the list. Inclusion on the list does not imply approval of a concrete mix design or specification material.

265.03 Qualified Base Aggregate Suppliers. The District Materials Engineer will evaluate the source
based on Standard Specifications Section 703 – Aggregates, and applicable base aggregate specification requirements and notify the supplier if the source is qualified to be included on the list.

265.03 Other Specification Aggregate Items. Other aggregate items not included in the base, asphalt mix, or concrete categories that have quality requirements may be listed as qualified, provided the supplier submits adequate documentation to the district for evaluation to verify specification conformance.