Quality Assurance Manual

SECTION 100.00 – QUALITY ASSURANCE PROGRAM INTRODUCTION

- SECTION 200.00 ACCEPTANCE PROGRAM
- SECTION 210.00 INSPECTION AND TESTING RESPONSIBILITY
- SECTION 215.00 MATERIALS OR WORK FAILING SPECIFICATIONS
- **SECTION 220.00 SAMPLING PROCEDURES**
- **SECTION 225.00 TESTING QUALIFICATIONS**
- SECTION 230.00 ACCEPTANCE OF MATERIALS BY MANUFACTURER'S OR
 - **FABRICATOR'S CERTIFICATION**
- SECTION 240.00 PRE-TESTED AND PRE-QUALIFIED MATERIALS
- SECTION 250.00 ACCEPTANCE OF MATERIAL ON THE BASIS OF THE
 - **RESIDENT ENGINEER'S LETTER OF INSPECTION (FORM ITD-854)**
- SECTION 255.00 PERFORMANCE GRADED BINDER QUALITY ASSURANCE
 - PLAN
- **SECTION 260.00 MIX DESIGNS**
- SECTION 265.00 QUALIFIED AGGREGATE MATERIAL SUPPLIERS
- **SECTION 270.00 MINIMUM TESTING REQUIREMENTS**
- SECTION 275.00 ITD QUALITY ASSURANCE STANDARD PROCEDURES
- SECTION 300.00 INDEPENDENT ASSURANCE PROGRAM
- SECTION 310.00 INDEPENDENT ASSURANCE EVALUATIONS
- SECTION 320.00 DISTRICT INDEPENDENT ASSURANCE INSPECTOR
- SECTION 330.00 SELECTION AND FREQUENCY OF INDEPENDENT

ASSURANCE EVALUATIONS

SECTION 340.00 – TESTING OF DUPLICATE INDEPENDENT ASSURANCE

SAMPLES

SECTION 350.00 – NUMBERING INDEPENDENT ASSURANCE EVALUATIONS

- SECTION 360.00 REVIEW OF INDEPENDENT ASSURANCE RESULTS
- SECTION 370.00 INDEPENDENT ASSURANCE TEST LOG (ITD-860)
- SECTION 380.00 NOT USED
- SECTION 390.00 ACCEPTABLE VARIATIONS IN DUPLICATE TEST RESULTS
- SECTION 400.00 PROJECT MATERIALS CERTIFICATION
- SECTION 410.00 REPORTS AND DOCUMENTATION
- SECTION 420.00 MATERIALS SUMMARY REPORT
- SECTION 425.00 COMPLETING THE MSR
- SECTION 430.00 RESIDENT ENGINEER'S LETTER OF INSPECTION (ITD-854)
- SECTION 440.00 INDEPENDENT ASSURANCE TEST LOG (ITD-860)
- SECTION 450.00 MATERIALS CERTIFICATION CHECKLIST (ITD-852)
- SECTION 460.00 DISTRICT AUDIT OF MATERIALS SUMMARY REPORT
- SECTION 470.00 MATERIALS CERTIFICATION LETTER
- SECTION 480.00 SUBMITTAL OF MATERIALS SUMMARY REPORT AND
 - MATERIALS CERTIFICATION LETTER TO HQ MATERIALS
- SECTION 490.00 HQ MATERIALS REVIEW OF CERTIFICATION LETTER AND

MATERIALS SUMMARY REPORT

SECTION 500.00 – IDAHO STANDARD METHODS & PRACTICES

TEST METHOD REFERENCE LIST

SECTION 510.00 – AGGREGATES

- SECTION 520.00 BITUMINOUS MATERIALS
- SECTION 530.00 CONCRETE
- SECTION 540.00 PAINT
- SECTION 550.00 SOILS

SECTION 560.00 – MISCELLANEOUS

SECTION 570.00 – WAQTC FIELD OPERATING PROCEDURES (FOPS)

1/13

SECTION 580.00 – IDAHO FIELD OPERATING PROCEDURES (FOPS)SECTION

585.00 -BLANK

SECTION 590.00 IDAHO SAMPLER / TESTER QUALIFICATION PROGRAM AND

TEST METHOD PERFORMANCE EXAM CHECKLISTS (ONLY)

ABOUT THE QUALITY ASSURANCE MANUAL

The Idaho Transportation Department's Quality Assurance Manual contains the Department's Quality Assurance Program which is comprised of the Acceptance Program, the Independent Assurance Program and Final Materials Certification. The Quality Assurance Program is developed in accordance with the Code of Federal Regulations, Part 637 of Title 23 and is approved by the Federal Highway Administration.

The Quality Assurance Manual is a web based manual maintained by the Quality Assurance Engineer.

In accordance with subsection 106.03 of the ITD Standard Specifications for Highway Construction, the Quality Assurance Manual is contractual on ITD contracts.

A new edition of the QA Manual will be released in conjunction with the release of each set of ITD Supplemental Specifications. The QA Manual edition and the Supplemental Specifications will be dated with the same month and year, enabling users to identify which edition of the QA Manual contractually applies to a specific project.

Prior editions of the QA Manual can be accessed on the web page.

Manual Contact Information:

Muhammad Zubery, P.E. Quality Assurance Engineer

(208) 334-8021 muhammad.zubery@itd.idaho.gov

Summary of Edition Changes – January 2013 QA Manual

QA Manual Master Table of Continents

• Added BLANK AND (MOVED TEST METHOD PERFORMANCE EXAM CHECKLISTS (ONLY))" to 590.00 Section

Section 200.00-265.00

1. Table 220.1 Materials, Sample Size and Container for Shipping

• Added new Section for Soils.

Section 230.02.02.01 and 230.02.02.02 Fly Ash Testing

• Added new Section for Fly Ash Testing and Appeal Process

Section 230.10 Performance Graded Asphalt Binder.

 Added (The supplier will submit, on a yearly basis, a Process Control Plan (Quality Control Plan) to the Engineer and the HQ Central Laboratory for Performance Graded Asphalt).

SECTION 250.00 - 265.00 ASPHALT EMULSIONS QA PLAN (2015)

• Added new section 256.00

Section 260.00-Mix Designs

• Added (Disclaimer: Section 260.01 Refers To HVEEM Design, Which Is Not Part Of The Specification Currently)

Section 260.04.02 Definitions.

 Added Bulk Specific Gravity of Recycled Asphalt Pavement, (RAP), RAP-G_{sb}

Summary of Edition Changes – January 2013 QA Manual

Section 265.00 QUALIFIED AGGREGATE MATERIAL SUPPLIERS

• Second to the last paragraph added (ITD may test source aggregates to evaluate the submitted test results. The Contractor shall provide full access to the source, including raw and crushed materials, for ITD sampling and testing).

Section 270.10 Section 212-1 Erosion and Sediment Control

Deleted (Straw Bale) and added (Fiber Wattles)

Section 270.30 section 406-07 Road Mix and Scrub coat

- Added PG Binder
- Deleted 412 Plant Mix Seal

Section 270.60 Section Miscellaneous Items

• Deleted Acceptance Certification Row in the Traffic Line Paint Item

Section 275.00 ITD Quality Assurance Standard Procedures

Deleted Appendix to AASHTO R35

Section 460.00 DISTRICT AUDIT OF MATERIALS SUMMARY REPORT

• Rewrote section

SECTION 100.00 – QUALITY ASSURANCE PROGRAM INTRODUCTION 100.1 Conflict of Interest. 110.1 Quality Assurance Specification Team.

SECTION 100.00 – QUALITY ASSURANCE PROGRAM INTRODUCTION

The Code of Federal Regulations, Part 637 of Title 23, specifies all state highway agencies, which includes the Idaho Transportation Department, shall develop a quality assurance program. The program will assure that materials and workmanship incorporated into each federal-aid highway construction project on the NHS are in conformity with the requirements of the approved plans and specifications, including approved changes. The program must be approved by the Federal Highway Administration and must contain certain elements identified in the federal regulation.

The ITD Quality Assurance Program has been approved by FHWA and will apply to all projects, whether federal-aid or state funded. The ITD QA program contains the three required elements; namely, the Acceptance Program (Section 200.00), the Independent Assurance Program (Section 300.00), and the Project Materials Certification (Section 400.00).

The ITD Quality Assurance Program defines three levels of evaluation.

1. Quality Control (Producer)

Quality control of construction materials is the responsibility of the contractor and is performed during the production of the material and/or at the point of delivery. The test results provide information to substantiate the uniformity of the material as it is produced and the conformity of the product to specification requirements. A useful tool in quality control is the control chart or run chart. It charts each test result on a graph that shows the average, the variation about the average, and any change in the process during production.

2. Acceptance (Buyer)

This level of evaluation encompasses all factors that comprise ITD's determination of the quality of the product as specified in the contract requirements. In addition to inspection, these factors include:

- For specification items in the contract using QC results for acceptance, verification sampling and testing must be performed. If QC results meet specified verification result guidelines, then QC results are used for acceptance.
- For the remainder of the specification items in the contract, ITD is responsible for acceptance sampling and testing.

The results of acceptance evaluation are used by ITD to accept, reject, or accept at a reduced rate the material represented by the tests.

3. Independent Assurance

Independent assurance is an unbiased and independent evaluation of all the sampling and testing procedures used in the acceptance program. It is a procedure and equipment check and is not directly a part of acceptance or rejection of a product.

100.1 Conflict of Interest. In order to avoid an appearance of a conflict of interest, any qualified ITD or non-state laboratory shall perform only one of the following types of testing on the same project.

- Verification testing
- Quality control testing
- IA testing
- Dispute resolution testing

110 Quality Assurance Specification Team. In 1996, an ongoing Quality Team was formed to implement Quality Assurance within the Division of Highways. The team was formed to oversee implementation of Quality Assurance measures in accordance with the CFR and to ensure the quality of materials and construction on Idaho's roadways by partnering with contractors.

In spring of 2003 the team was reestablished and renamed the Quality Assurance Specification Team. The Highways Program Oversight Engineer will serve as the team's executive sponsor to accomplish the following charge:

To provide continued development and improvement of the Department's Quality Assurance specifications, measures and programs to assure quality materials are incorporated into ITD projects.

Team members are appointed by the Highways Program Oversight Engineer based on knowledge and experience and consist of HQ and District representatives from Materials, Training and Construction; an FHWA member, and representatives from the consultant and contracting communities. Contracting members will be recommended by the Association of General Contractors and consulting members will be recommended by the Association of Consulting Engineers, each to serve for 4 years. Materials Engineers and Regional Engineers will be rotated every 4 years. Reappointments will be allowed based on expertise and interest.

The Quality Assurance Specification Team will have authority for establishing, maintaining and promoting Quality Assurance Specifications and programs for the Department.

SECTION 200.00 – ACCEPTANCE PROGRAM

200.01 Specifications Compliance and Expenditure of Public Funds.200.01.01 Semi-annual Status Report.200.02 How the ITD Acceptance Program Applies to Various Types of Projects.200.02.01 Rest Areas and Buildings.

SECTION 210.00 – INSPECTION AND TESTING RESPONSIBILITY

210.01 Inspection and Testing at the Project Site. 210.02 Inspector Safety.

SECTION 215.00 - MATERIALS OR WORK FAILING SPECIFICATIONS

215.01 Check Tests. 215.02 Price Adjustments for Non-compliant Materials or Products.

SECTION 220.00 – SAMPLING PROCEDURES

220.01 Sample Size.
220.01.01 Improper Sampling.
220.02 Frequency of Sampling.
220.03 Numbering Samples.
220.03.01 Numbering Check Tests.
220.04 Transporting Flammable and Hazardous Material Samples.

SECTION 225.00 – TESTING QUALIFICATIONS

SECTION 230.00 – ACCEPTANCE OF MATERIALS BY MANUFACTURER'S OR FABRICATOR'S CERTIFICATION

230.01 General Provisions.

230.02 Certification Program Procedures for Portland Cement and Fly Ash.

230.02.01 Portland Cement.

230.02.01.01 Cement Testing.

230.02.01.02 Cement Testing Appeal Process.

230.02.02 Fly Ash.

230.02.02.01 Fly Ash Testing

230.02.02.02 Fly Ash Testing Appeal Process

230.03 Steel.

230.03.01 Steel Bridge Girders.

230.03.02 Metal Reinforcement.

230.04 Concrete Pipe Products.

230.05 Concrete Guardrail and Other Pre-cast Concrete Products.

230.06 Concrete with Specified Strength 3000 psi (20.5 MPa) or Less (Including Seal Concrete).

230.07 Corrugated Metal Pipe and Corrugated Plate Pipe.

230.08 Plastic Pipe.

230.09 Geotextiles and Geogrids.

230.10 Performance Graded Asphalt Binder.

230.11 Liquid or Emulsified Asphalt.

230.12 Seeding.

230.13 Miscellaneous Items Accepted by Certification.

230.13.01 General Provisions.

230.13.02 List of Miscellaneous Materials Accepted on the Basis of the Manufacturer's or Fabricator's Certification.

SECTION 240.00 – PRE-TESTED AND PRE-QUALIFIED MATERIALS

240.01 Pre-tested Materials.

240.01.01 Bulk Material/Products Sampled at the Manufacturing Plant.

240.01.02 Materials/Products Sampled at the Project. 240.02 Pre-qualified Materials.

SECTION 200.00 - ACCEPTANCE PROGRAM

In order to implement the quality assurance elements outlined in Section 100.00, the Acceptance Program must provide a frequency guide, identify the location, and identify specific quality attributes for sampling and testing. Section 270.00 contains this information for each contract bid item and the ITD Quality Assurance Special Provision (QA SP) has this information for bid items under the QA SP.

Quality control sampling and testing results may be used as part of the acceptance decision provided the following requirements are met:

- The contract must identify a particular specification item as an item for which contractor test results may be used in the acceptance decision.
- The sampling and testing must be performed by qualified laboratories and qualified sampling and testing personnel.
- The quality of the material must be validated by verification sampling and testing performed independent of the quality control samples.
- The quality control sampling and testing must be evaluated by an IA program.

If the results from the quality control sampling and testing are used in the acceptance program, then there must be a dispute resolution system established.

Dispute Resolution System:

When quality control and quality assurance test results conflict and the conflict cannot be resolved, a neutral Dispute Resolution Laboratory will test the material in question. The test results of the Dispute Resolution Laboratory will be considered the final actual test results, replacing the disputed testing for project use.

HQ Central Laboratory will perform all dispute resolutions unless a potential for conflict of interest exists or the contractor requests an independent laboratory.

200.01 Specifications Compliance and Expenditure of Public Funds. The specifications and plans provide an equitable basis for bidding by contractors. They define the minimum requirements that must be met. The contractor commits to furnishing materials and completed work that will equal or exceed such requirements.

The engineer must be satisfied, through quality assurance measures, that the public is receiving what it is entitled to under the contract. Nothing less should be accepted. To do so is not only a disservice to the state, but would be giving undue advantage to the contractor. Other contractors who bid on the same work could contend that they would have offered a lower bid had they been able to anticipate that materials or work outside of specifications would be accepted.

When payment is made to the contractor for materials furnished and work performed, the duly designated state officials must authorize disbursement of public funds for this purpose. Through the quality assurance program, the Resident Engineer and the project staff will acquire substantiating data in the form of tests, inspection records and measurements to justify acceptance of the contractor's work. Thus, the engineer can be assured the contractor has fulfilled the contract obligation and is entitled to payment. The Resident

Engineer will withhold payment to the Contractor for any material where the required acceptance sampling, testing, and/or certification have not been accomplished.

In case of failure to meet the requirements, the quality assurance program data will constitute the basis for rejection of work deemed unfit for acceptance or it may be the basis for acceptance of the work upon appropriate contract price adjustment where this is permitted under the provisions of the specifications.

Complete records, including tests and inspection reports covering acceptance or rejection of any materials, are kept in the project files while required copies are distributed to other offices as needed for review and documentation. The Resident Engineer is responsible for compiling the records to provide a materials inspection summary for each project. Reference Section 400.00, Project Materials Certification, for instructions for compiling the materials inspection summary is used to complete the Materials Certification letter for each project.

200.01.01 Semi-annual Status Report. The District Materials Section shall monitor the Districts' progress on a semi-annual basis and provide the Chief Engineer with reports of deficiencies. Deficiencies are defined as:

- 1. Payment for out of specification material.
- 2. Payment for material that was not sampled, tested, or certified as required by the specifications.
- 3. Failure to perform, or a lack of, Independent Assurance testing.
- 4. Failure to submit the Materials Summary Report and the Materials Certification letter to the Chief Engineer within sixty (60) days from the District Engineer's final acceptance of the project.

200.02 How the ITD Acceptance Program Applies to Various Types of Projects. The ITD Acceptance Program applies to all projects; however, the requirements are met according to the type of projects as shown in table 200.1. There could be circumstances where more than one project type is included in a single contract. In these cases, the acceptance will be determined by the specifications that govern each contract item.

For example, an ITD contract awarded by ITD Roadway Design could contain several contract items for constructing a local roadway or building, such as an interpretive center, which are covered by local building codes in the contract. The local jurisdiction is responsible for the inspection and acceptance of the items. At the completion of the work, the local jurisdiction must provide a letter to ITD stating the contract item met the contract specifications.

Type of Project ITD Contract	Awarded By ITD Roadway	Type of specifications ITD Standard	Materials Inspection & Acceptance ITD Project	Materials Certification Resident	Final ITD Acceptance District Engineer
	Design	Specifications	Personnel per ITD QA Manual	Engineer per Section 401.00	per Section 401.00
ITD Contract	ITD Roadway Design	Public Works Specifications	Out-source to consultant inspection per contract specifications	Resident Engineer per Section 401.00	District Engineer per Section 401.00
Local Agency Enhancement	Local Agency	Public Works or Local Specifications	Local Agency per contract and specifications	Local Agency provides letter to ITD District Engineer	District Engineer provides Final Acceptance after Final Inspection.
Local Agency Off-System Highway	Local Agency	ITD Standard Specifications	Local Agency per ITD QA Manual.	Local Agency provides letter to ITD District Engineer	District Engineer provides Final Acceptance after Final Inspection.

Table 200.1

200.02.01 Rest Areas and Buildings. Rest Area and Building projects that have contract items with acceptance requirements that are not ITD specifications will require the following:

- 1. The Architect of Record will issue a letter of acceptance based on field inspections and approval of required contract submittals for items governed by the Architectural Special Provisions. A copy of the inspections and approvals must be included with the letter.
- 2. Documented inspections by the Department of Building Safety for the applicable components.
- 3. Concrete governed by non-ITD specifications will require additional acceptance by:
 - a. Visual observation by Department field inspection personnel of Contractor field quality control sampling and testing for proper testing methods and procedures. Actions taken pertaining to Contractor field quality control sampling and testing activities will be recorded in the Construction Diary.
 - b. The Department will perform field tests for air, slump, unit weight and temperature from the same truck as every companion test cylinder set is made.
 - c. The contractor shall provide companion test cylinder sets to ITD for acceptance testing at the concrete sampling frequency required by the contract
- Metal reinforcement bar governed by non-ITD specifications will require additional acceptance by Department field inspection personnel in accordance with the Quality Assurance Manual, Section 270.00 Minimum Testing Requirements for 503 Metal Reinforcement.
- 3) Acceptance and documentation for items with the requirements contained in the Idaho Standards of Public Works Construction (ISPWC) will be accepted by manufacturer's certification referencing the ISPWC specifications. Project inspection and acceptance of ISPWC items will be out-sourced by the owner (ITD or Local Agency).

Items that are not ITD specifications will be exempt from the ITD Quality Assurance Manual Independent Assurance requirements.

SECTION 210.00 – INSPECTION AND TESTING RESPONSIBILITY

Inspection personnel assigned to a project are responsible for the day to day inspection of all portions of the work or materials entering into the work. It is their responsibility to see that all material going into the work has been inspected, tested and approved. Certification of some material is allowed. Reference Section 230.00 for specific directions for accepting material by certification.

All testers and inspectors must be properly qualified in accordance with ITD specifications and policies. Sampling, testing and inspection personnel are expected to know which materials must be sampled, when and where samples must be taken, the size of samples required, the proper methods of obtaining samples and methods of field testing.

The ITD Standard Specifications for Highway Construction state the required sampling and testing methods or the required standard practice methods. Methods include, AASHTO, ASTM, Idaho Standard Methods, etc., The QA Manual contains WAQTC FOPs, Idaho FOPs, and Standard Procedures (section 275.00) that modify certain methods. The modifications in the QA Manual govern over the methods shown in the standard specification. The Standard Procedures (section 275.00) govern over the WAQTC FOPs.

Diligent inspection of the work in progress and of each successively completed portion is important. There must be assurance that when the work is finished, all parts will be acceptable. No amount of sampling and testing can give this assurance without documented observations at the same time.

210.01 Inspection and Testing at the Project Site. The project inspector must identify and check all materials received on the project before they are incorporated into the work and must ascertain that acceptable test and inspection reports are available for all items inspected by others, as well as project personnel.

Test reports must show the tester's printed name and qualification number and be initialed or signed by the tester.

All individuals that sign the Checked By box or certify the test results on any materials testing report must have been qualified in the appropriate Sampler / Tester area at one time or be a licensed Professional Engineer in the State of Idaho. This individual can have an expired qualification or license, but cannot have suspended Sampler / Tester qualifications or license.

Materials that have been inspected by other than project personnel must be reexamined for any damage or contamination that may have occurred subsequently, or for any defects that may not have been observed in the original inspection. Defects or contamination, unless satisfactorily remedied, may be cause for rejection in spite of prior approval.

All materials received on the project without prior inspection and approval are to be inspected by the project inspector and, if required, sampled and tested. The contractor shall be immediately notified if the material has not been inspected and is not approved. If the required tests cannot be made at the project, appropriate samples are to be sent to the District or HQ Central Laboratory for testing. Upon notification of the test results, the material will be approved for use or rejected and the contractor promptly notified. The project inspector must know the appropriate options for disposition of any rejected or failing material and fully document the action taken.

Fabricated items accepted by certification should be visually inspected. See Section 230.00 for additional discussion on products or items accepted by certification.

Along with examining and checking all materials brought onto the job, the inspectors should maintain a continuing visual inspection of the contractor's operations where the materials are handled and incorporated into the work. Any procedures that result in damage or change in any material to the extent that it will fall outside the specification limits should not be permitted to continue and the materials so affected should be rejected or the defects satisfactorily remedied.

210.02 Inspector Safety. Sampling and testing procedures may involve hazardous materials, operations, and equipment. The inspector should be aware of safety hazards and comply with established safety procedures. ITD safety policies reinforce the necessity of protective clothing and equipment when working around construction equipment and machinery. OSHA regulations must be followed for non-ITD personnel on the project site. The contractors are responsible for providing a safe working environment and a safe means of obtaining random samples. ITD has the responsibility of stopping any unsafe operations until corrective action is taken.

When there is a safety concern for the sampler, ITD will allow the contractor, due to familiarity with their equipment or operation, to obtain the sample, however a WAQTC qualified sampler must always observe the sampling.

The sampling and testing technicians must limit the weight of aggregate samples to no more than 40 lb. (18 kg) per sack or bucket.

SECTION 215.00 – MATERIALS OR WORK FAILING SPECIFICATIONS

In case a sample does not meet specification requirements, the options for the material are:

- Rejected or removed when incorporated,
- Accepted with a price adjustment when allowed to remain in place,
- Corrected or remedied by the contractor and re-tested.

Failing material that has not been finally incorporated into the work and can be remedied by further processing may be accepted after having been corrected.

If completed work is found to contain material that is not within specifications, a determination shall be made of the extent of the nonconformance with specifications, the limits of use of non-conforming material, and if it is feasible to be remedied.

The action taken shall be fully documented by the project inspector or tester for the project file by reports, records covering samples, tests, measurements, and corrective action taken if any. The Resident Engineer is ultimately responsible that disposition of the failing material is fully explained, including justification for acceptance, removal, or price reduction. Reference Standard Specifications Section 105.03.

215.01 Check Tests. Check tests are performed immediately following a failing acceptance test to verify the material does, or does not, meet specifications.

Where appropriate (compaction testing, for example), when a failing test result is verified with a check test, additional testing should be done to define the boundaries of the unacceptable material for corrective treatment.

In all cases, if the check test results indicate the failing test results were caused by a faulty sample or faulty test, record both test results, but add comments to the faulty test data, with appropriate reference to the check test.

Documentation will be made on the field report as to the type of failure, the corrective action taken to get the material back within specifications, and the disposition of the failing material. Include a full explanation of where the failing material was wasted. After corrective treatment, retesting is required to document acceptability.

215.02 Price Adjustments for Non-compliant Materials or Products. Non-compliant (failing or out of specification) material will be rejected / removed, or remedied by the contractor, before payment is made to the contractor. However, if it is not feasible to remove or remedy the non-compliant material incorporated into the project, a price adjustment must be made to the contractor. The contractor will not be paid full contract price for non-compliant material.

There are certain materials as listed below that are subject to price adjustments when laboratory tests indicate the materials have failed the required specifications. All other non-specification material is handled as allowed by the Standard Specifications, Minimum Testing Requirements (Section 270.00) or contract documents.

The magnitude of the price adjustment, expressed as a percentage, will be based on the extent of deviation from the specifications as indicated from test results. The price adjustments are shown in the ITD Laboratory Operations Manual.

The determined price adjustment percentage will be applied to the quantity of material that is represented by the non-compliant test results. The cost amount of the price adjustment will be calculated by the Resident Engineer's office using the actual invoice cost of the product, excluding freight, from the Contractor. The following materials or products are subject to price adjustments:

- Portland Cement
- Fly Ash
- Waterborne Traffic Line Paint
- Coating Systems (All formulas)
- Liquid Deicer
- Performance Graded Asphalt Binder
- Emulsified Asphalt
- Geotextiles

SECTION 220.00 – SAMPLING PROCEDURES

Samples will be taken in accordance with the procedures required by the specifications and will be taken concurrently with the project operations or from actual material delivered to the project. When required by the contract, a stratified random method will be used to obtain samples.

The individual taking the sample must have the appropriate ITD STQP qualification.

Standard methods of sampling are set forth in the specifications and in this Quality Assurance Manual for nearly all materials.. The District and HQ Central Laboratory are resources for guidance when a standard method of sampling is not available.

220.01 Sample Size. The required size of a sample for the various tests on a given material is usually stated in the standard method of sampling. These sample sizes should be considered as minimums to avoid any deviation due to sample size alone.

When samples of materials are taken for testing by the ITD District or HQ Central Laboratory, the samples are to be of the prescribed size and shipped in the specified type of container in accordance with Table 220.1. Consulting or independent laboratories may require slightly modified sample containers; however, the samples must be adequately protected and handled to maintain the sample's condition prior to testing.

220.01.01 Improper Sampling. Any sample received that has not been properly sampled will not be tested. The laboratory will immediately notify the Resident Engineer and the sampler. Another sample must be obtained as soon as possible to replace the rejected sample. Lack of required samples is a project deficiency.

The laboratory will document the improper sampling for the project files by creating a test report with a note to indicate the sample was improperly taken. The test report will be distributed as usual with one copy forwarded to the District IA Inspector. The District IA Inspector, will complete a buff colored IA evaluation form, obtain resolution and distribute according to the usual procedures, including a copy submitted to the ITD Sampler / Tester Qualification Committee (STQC) for action.

220.02 Frequency of Sampling. The frequencies at which samples are taken will conform in general to the Minimum Testing Requirements (MTRs Section 270.00). The frequencies include fractions of quantity and are minimums. When the minimums are not met, this will constitute a deficiency on the project that could impact payment to the contractor or funding to ITD. Every effort should be made by ITD project personnel and the contractor, when sampling is the responsibility of the contractor, to meet the daily minimum frequency and fraction thereof, thus ensuring adequate samples are taken for the total quantity of material used / paid.

Reliance should not be placed wholly on the results of sampling and testing in determining the acceptability of the materials and construction work. The sampling and testing should be supplemented by sufficient visual inspection of the materials as a whole to ascertain whether the samples and tests are reasonably representative of the entire mass of material. In addition, there should be sufficient observation of the actual construction operations and processes to ascertain whether they can be expected to consistently produce uniform satisfactory results.

220.00

220.03 Numbering Samples. Field tests will be numbered consecutively starting with test number 1 for each contract item. When more than one type of field tests are performed for the same contract item, multiple series of test numbers will be necessary. For example, gradation tests and compaction tests are required for aggregate base. Numbers 1 to 100 could be assigned to gradation tests and numbers 101 to 200 could be used for the compaction tests. Test numbering must be consecutive to verify tests were not skipped or not recorded.

220.03.01 Numbering Check Tests. Circle failing test numbers on the test result form, along with the failing test result. A check test will be performed and numbered as follows:

Aggregate Gradation: Perform the check test immediately. If the check test fails, material is considered failing and subject to rejection. Note the location where failing material is disposed. The sample numbering will continue sequentially with each test and check test. Add a remark on the check test report to indicate the test is a check test.

Compaction: Perform the check test after there has been additional compaction effort and/or remedial efforts, such as drying out or reprocessing the material. The check test will be taken within 10 ft. (3 m) of the original test and at the same elevation. The sample numbering will continue sequentially with each test and check test. Add a remark on the check test report to indicate the test is a check test. Continue retesting until material passes or reject the material and note the location where failing material is disposed.

220.04 Transporting Flammable and Hazardous Material Samples. The following is general information for reference to more fully comply with the shipping regulations. Local conditions and/or regulations may vary and should be complied with when shipping flammable and/or hazardous materials.

U.S. POSTAL SERVICE - Flammable materials [flashpoint below 101°F (38°C)] <u>cannot</u> be shipped by air mail but can be shipped by surface mail if properly labeled, packaged, and certified. Combustible materials [flashpoint between 101°F (38°C) and 200°F (93°C)] can be shipped by air mail when properly packaged, labeled, and certified.

BUS (GREYHOUND) - All flammable and hazardous materials are prohibited – specifically mentions paints. Includes all flammable, combustible, corrosive, and/or caustic materials.

AIR FREIGHT - Flammable materials can be shipped by most air freight companies but must be properly packaged, labeled, and certified. Need to know exact chemicals involved, flashpoints, etc.

UNITED PARCEL SERVICE - Shipping of flammable materials is allowed under certain conditions depending on the exact chemical and amount. Packages must be labeled with a flammable sticker and a Hazardous Materials label filled out. The information for the Hazardous Materials label can be obtained by:

• Calling UPS and exactly identifying the chemical to be shipped.

OR

• Referring to the UPS handbook, which gives hazard codes, packaging instructions, and certificates required for shipping.

In addition to the foregoing, nuclear densometers and nuclear asphalt content gauges have special shipping requirements. If help is needed in arranging for transportation of these devices, contact the Central Laboratory.

Quality Assurance	Sampling Procedures	220.00	
	Table 220.1 Materials, Sample Size ar	nd Container for Shipping	
MATERIAL	MINIMUM SAMPLE SIZE	SAMPLING METHOD	TYPE OF CONTAINER ¹
AGGREGATES:			
Preliminary Base and Surfacing	400 lb. (180 kg)	All aggregates will be	
F.A. for Concrete	30 lb. (15 kg)	sampled according to	
C.A. for Concrete	55 lb. (25 kg)	AASHTO T 2 / T 248.	
P.C.C. Pavement Design (Pit Run)	1,500 lb. (700 kg)		
P.C.C. Pavement Design (Crushed)	500 lb. (230 kg) Coarse	Minimum mass of field	Canvas Sacks
.e.e. Fuvenient Design (erusileu)	300 lb. (140 kg) Fine	samples will be based on the	or 5 gal.
Base Course ²	80 lb. (35 kg)	maximum nominal size of	Plastic Buckets
Surface Course	80 lb. (35 kg)	\rightarrow the aggregates.	Trustie Duckets
Cover Coat Material	60 lb. (30 kg)	ine aggregates.	
Mineral Filler	25 lb. (10 kg)	Samples for quality testing	
Special Backfill	60 lb. (30 kg)	should be at least 60 lb.	
Borrow & Granular Borrow	60 lb. (30 kg)	(27 kg).	
Blotter	30 lb. (15 kg)	(27, 16).	
		No single sack of aggregate	
SUPERPAVE HMA JOB MIX FORMULA	150 lb. (68 kg) coarse & fine aggregates	shall contain more than	
(Submitted by the Contractor for Confirmation)	according to percents of job mix formula	40 lb. (18 kg).	
commutation)	8 individual qt. (liters) of PG binder	AASHTO T 40	¹ Screw Top Can
PLANT MIX & ROAD MIX	40 lb. (18 kg)	AASHTO T 168	Cardboard Box 9" x 9" x 9"
ASPHALTS:			
PG Binder	Approximately 1 qt. (1 L)	AASHTO T 40	¹ Screw Top Can
Liquid Asphalts	Approximately 1 qt. (1 L)	AASHTO T 40	¹ Screw Top Can
Emulsified Asphalts	Approximately 1 qt. (1 L)	AASHTO T 40	¹ Plastic Jar
Anti-Strip Additive	4 oz. (120 ml)		Glass or Plastic Bottle
Building Blocks	6 Units		Bundle and Tie, Protected from Breakage
Building Bricks	10 Units		Bundle and Tie, Protected from Breakage
CONCRETE:			
Cement/Fly Ash/Silica Fume	1 gal. (4 L)	Idaho IT 143	¹ Cylinder Can
Cylinders	Set of 3	AASHTO T 23	¹ Cylinder Cans
Curing Compound	1 qt. (1 L)	Idaho IR 7	Metal Screw Top Can
Water	1 gal. (4 L)	AASHTO T 26	Plastic Bottle
Concrete for Chlorides	15 grams pulverized	Idaho IT 128	New 20-Gram Plastic Vial

¹Standard ITD Supply Inventory item; do not re-use a sample container; all sample containers must be new. ²If Idaho T 74 (vibrator compactor curve) is required; submit at least 100 lb. (50 kg) of material for minus 3/4" (19 mm) material and 150 lb. (70 kg) for minus 3" (75 mm) material.

Quality Assurance	Sampling Procedures	220.00	
	Table 220.1 Materials, Sample Size and Conta	ainer for Shipping (Continued)	
GLASS BEADS	1- 50 lb (22.7Kg) Sack		Sack
JOINT MATERIAL	24 in. (600 mm) x full width		
LIME	1 gal. (4 L)	AASHTO T 218	Metal or Plastic
 METALS: Reinforcing Steel (All Grades, All Sizes) Dowel Bars for Transverse Joints in Concrete Pavement Tie Bars for Longitudinal Joints in Concrete Pavement Prestressing Reinforcement Welded Wire Fabric 	Approximately 36 in. (900 mm) Two - At least 30 in. (750 mm) 60 in. (1.5 m) Length each heat number 24 in. (600 mm) Square	Field sample from shipments delivered to project. See Section 230.03.02	Ship Straight (do not kink or bend) Ship Flat
PAINT – waterborne	1 qt. (1 L)	Idaho IR 7	Plastic Screw Top Can or Lined Metal Friction Top Can
Solvent	1 qt. (1 L)	Idaho IR 7	Metal Friction Top Can
PIPE: Galvanized Coating (Steel Sheet)	2 in. (50 mm) Square	AASHTO M 36	Cardboard Box
SALT	10 lb. (4.5 kg)	ASTM D 632	¹ Plastic Wide Mouth or Cylinder Can

SEALANTS (SILICONE)

1 qt. (1 L)

Quality Assurance	Sampling Procedures	220.00	
SOIL & SOIL AGGREGATE MIX			
PH & Resistivity (T 288, T 289)	5lbs	AASHTO R 13	Sealed Non-Metallic Container
Soil Classification (M145)	5lbs	AASHTO R 13	Sealed Non-Metallic Container
PH & Resistivity & Soil Classification	5lbs	AASHTO R 13	Sealed Non-Metallic Container
(T 288, T 289, M 145*)			
'R' Value, Soil Classification, PH & Resistivity	26lbs	AASHTO R 13	Sack/ Canvas Bag
(IT 8, M 145*, T 90, T 176, T 288, T 289)	20105	AASH10 K 15	Sack/ Callvas Dag
Complete Soils Tests			
(IT 8, M 145*, T 99, T 180. T 100, T 176, T 288, T 289)	50lbs	AASHTO R 13	Sack/ Canvas Bag
Complete Soils Tests Plus Permeability			
(IT 8, M 145*, T 99/T180,T 100, T 176, T 288, T 289, T 215)	100lbs	AASHTO R 13	2 Sacks/ Canvas Bags
Complete Soils Tests Plus Resilent Modulus(IT 8, M 145*, T 99, T 180, T 100, T 176, T 288,T 289, T 307)	100lbs	AASHTO R 13	2 Sacks/ Canvas Bags
*Note M 145 requires T 88,T 89,T 90 for Classification			
GEOTEXTILE FABRICS	At least 6.5 LF (1800 mm) across the entire width of the roll		DO NOT FOLD Geotextile Roll to Ship
FENCING: Barb Wire	6 LF (2 m)	AASHTO M 280	
Woven Wire	6 LF (2 m)	ASTM A 116	

Quality Assurance	Sampling Procedures	220.00
Chain Link	3 LF (1 m)	AASHTO M 181
Tension Wire	3 LF (1 m)	AASHTO M 181

¹Standard ITD Supply Inventory item; do not re-use a sample container; all sample containers must be new.

SECTION 225.00 – TESTING QUALIFICATIONS

Testing and sampling should be done strictly in accordance with the specified procedures. Standard testing procedures have been developed by organizations such as AASHTO, ASTM, AWS (American Welding Society), WAQTC (Western Alliance for Quality Transportation Construction), and ITD.

Section 590.00 is the ITD Sampler / Tester Qualification Program (STQP) and contains all the instructions for the required qualifications.

For areas not covered by STQP, qualification to the appropriate recognized standard is required. An example would be nondestructive testing related to welding inspection, which would be covered by qualification programs of the American Welding Society (AWS) and American Society for Nondestructive Testing (ASNT). The ITD District Materials Engineer, with the assistance of the Quality Assurance Engineer if necessary, will verify and document the qualification of those not covered by STQP qualification. The Independent Assurance Inspector will evaluate and document the competency of personnel qualified through STQP according to the Independent Assurance Program. See Section 590.10.

SECTION 230.00 – ACCEPTANCE OF MATERIALS BY MANUFACTURER'S OR FABRICATOR'S CERTIFICATION

Standard Specification Subsection 106.04 allows the acceptance of certain materials based on certification provided by the manufacturer or fabricator. The certification must be complete and meet the criteria as outlined in this section and such additional criteria if specified in the project contract.

230.01 General Provisions. Standard ITD certification forms will be used. The standard forms are:

- ITD-914 Steel
- ITD-849 Geotextile and Geogrid
- ITD-851 Miscellaneous Items
- ITD-966 PG Asphalt Binder
- ITD-968 Cement / Fly Ash
- ITD-875 Non-Structural Concrete

The standard forms must be completed in their entirety and be signed by the manufacturer's representative who has quality control responsibility for the manufacture or fabrication of the material.

When required by the contract, QC test results must be attached to the specified ITD standard form.

Certification does not preclude inspection, sampling, testing or verification of certified test results of the material received on the project. Project inspectors will review all certification results for specification compliance prior to accepting the material. If the certified material is found to be outside acceptable specification limits the material is subject to rejection.

Each shipment of certified material should be visually inspected for obvious defects and handling and shipping damage. Damaged or defective material will be repaired to the satisfaction of the Engineer or rejected and replaced. Also, on items where it is feasible, simple measurements of specified properties should be spot checked at least once per project and recorded to verify certification. Examples would be length, mass per unit length, or thickness of steel items.

Acceptance of material by certification will be withdrawn when sample test or inspection results show the material consistently fails to meet specifications requirements. Reestablishment of the certification acceptance may be achieved through ITD pre-testing, pre-inspection and review of historical certification records and test results of the material prior to its incorporation into a project. Additionally, the manufacturer's quality control program may require revision and reevaluation by the Department.

230.02 Certification Program Procedures for Portland Cement and Fly Ash. Cement or fly ash manufacturers approved under the ITD Cement/Fly Ash Certification Program can supply cement and/or fly ash to ITD projects by certification. HQ Central Laboratory determines which manufacturing plants have met the requirements for the certification program.

To be approved under the program the Department will evaluate the following:

- A copy of manufacturer's current quality control program
- Historical certification records and copies of all test results
- Certified Mill Analysis test reports for material delivered to ITD projects
- Verification tests on ITD project submitted samples
- Other methods deemed necessary by the Department

Once approved under the ITD Certification Program the manufacturer must continue to provide certified test results for all material produced.

If a project sample indicates out-of-specification material based on ITD verification testing additional testing may be conducted to define the extent of the problem. Price reduction or item removal will be required when specified tolerances are exceeded. In the event of continual non-conformance the manufacturer will be removed from the certification program.

230.02.01 Portland Cement. ITD will accept Portland cement by certification only from those manufacturers approved by the ITD Cement / Fly Ash Certification Program. Cement from manufacturers not approved under the certification program requires pre-testing and pre-approval prior to use.

The concrete supplier furnishing Portland cement to any ITD project from a manufacturer approved under the ITD Certification Program must provide to the project inspector at the end of each week in which concrete is placed a completed form ITD-968, Concrete Supplier's Cement / Fly Ash Certificate with the cement bill of lading attached showing the mill analysis number.

Failure to submit the completed form with the appropriate signatures will result in material rejection.

The cement manufacturer must submit certified mill test reports to the HQ Central Laboratory for all cement produced. The cement manufacturer's certified mill test reports must include:

- Name of the cement manufacture company.
- Location of the cement mill.
- Cement Type
- Mill Analysis Number
- Manufacturer's bin or silo number from which cement was shipped
- Mill analysis test report date and production period.
- Mill analysis test results pertinent to Idaho specifications
- Certification statement indicating the cement meets all specification requirements pertinent to Idaho specifications.
- Signature, Title, and date by the cement company chemist or other authorized official.

The test result data will be monitored for compliance with the specifications and for the manufacturer to remain under the certification program.

Cement samples will be taken for the project in accordance with the Minimum Testing Requirements (Section 270.00) and Idaho IT-143 from the bulk tank during unload to the concrete plant silo. Samples will be immediately shipped to the Central Laboratory in Boise in moisture-proof containers. A 6" x 12" (150 mm x 300 mm) concrete cylinder container will be used for the sample, with the lid securely taped shut. The cylinder container must be completely filled and immediately sealed to eliminate excess air in the sample and to avoid moisture absorption and aeration of the sample. Sample cans received that are not completely filled (discounting normal settling) may be rejected.

The contractor or the supplier may take as many cement samples as they want for information only.

These samples will be tested for chemical and physical parameters to monitor production characteristics and to verify the certification.

The manufacturing companies approved by the ITD Cement / Fly Ash Certification Program to furnish Portland Cement by certification can be found on the ITD HQ Central Laboratory Intranet page or a list may be obtained from HQ Central Laboratory Section.

230.02.01.01 Cement Testing. The ITD HQ Central Laboratory will group cement samples according to the manufacturer's mill analysis numbers as the samples are received from projects. Samples with the same mill analysis number will be referenced as a mill analysis unit.

ITD's AASHTO accredited laboratory will perform a complete test on the first sample received in the mill analysis unit. The selected sample will be tested for all specification parameters. If the first tested cement sample complies with the specifications, ITD will randomly chose one cement sample from the mill analysis unit for every 4200t of cement produced in the mill analysis and perform an alkali test.

If a cement sample does not comply with the specifications, additional testing will be performed on samples from the mill analysis unit until the extent of the non-compliant material has been determined. The initial and additional test results for each specification item will be averaged and the average value for each specification item will be considered the final value. These final values will be used to determine compliance or noncompliance of the mill analysis unit.

When test results indicate the cement does not meet specifications, a price adjustment will be applied to the entire quantity of material representing that mill analysis unit. The penalty will be assessed according to Section 340.05.02 of the ITD Laboratory Operations Manual.

230.02.01.02 Cement Testing Appeal Process. The ITD HQ Central Laboratory will retain sufficient cement material from each mill analysis unit for dispute resolution.

If the contractor wishes to appeal ITD's test results and price reductions, a written appeal request must be submitted within 14 calendar days of the reported test results. The appeal must state the grounds or the circumstances of the appeal. If the test results are in question, the appeal must be accompanied by all of the quality control test results that represent the mill analysis unit in question. The appeal must also be accompanied by contractor-obtained test results for at least one complete cement test series conducted on the mill analysis in question. The state will not accept appeals when contractor test results are out of specifications.

When an appeal is accepted, the appeal testing must include all specification parameters for the material in question.

If the appeal is not accepted, ITD will submit a denial letter to the contractor, stating the grounds for the denial.

Appeal testing will be conducted by an independent, AASHTO accredited laboratory, mutually acceptable to the contractor and ITD. The AASHTO accredited laboratory will report the results to ITD. The results of such tests will be binding to both parties and any price reduction on the unit in question will be based on those test results. The contractor will agree to bear the costs of the appeal testing if the tests verify noncompliance.

Quality Assurance

230.02.02 Fly Ash. ITD will accept fly ash by certification only from those manufacturers approved by the ITD Cement / Fly Ash Certification Program. Fly ash from manufacturers not approved under the certification program requires pre-testing and pre-approval prior to use.

The concrete supplier furnishing fly ash to any ITD project from a manufacturer approved under the ITD Certification Program must provide to the project inspector at the end of each week in which concrete is placed a completed form ITD-968, Concrete Supplier's Cement / Fly Ash Certificate with the fly ash bill of lading attached showing the Sample Identification Number.

Failure to submit the completed form with the appropriate signatures will result in material rejection.

The fly ash manufacturer must submit certified test reports to the HQ Central Laboratory for all fly ash produced. The fly ash source's certified laboratory test reports must include:

- Name of the fly ash source company
- Plant Origin
- Sample Identification number
- Laboratory test report date and production period
- Laboratory test results pertinent to Idaho specifications
- Signature, title and date by the testing laboratory chemist or other authorized official

The test result data will be monitored for compliance with the specifications and for the fly ash source to remain under the certification program.

Fly ash samples will be taken for the project in accordance with the Minimum Testing Requirements (Section 270.00) and Idaho IT-143 from the bulk tank during unload to the concrete plant silo. Samples will be immediately shipped to the Central Laboratory in Boise in moisture-proof containers. A 6" x 12" (150 mm x 300 mm) concrete cylinder container will be used, with the lid securely taped shut. The cylinder container must be completely filled and immediately sealed to eliminate excess air in the sample and to avoid moisture absorption and aeration of the sample. Sample cans received that are not completely filled (discounting minor settling) may be rejected.

The contractor or the supplier may take as many fly ash samples as they want for information only.

These samples will be tested for chemical and physical parameters to monitor production characteristics and to verify the certification.

The fly ash sources approved to furnish fly ash under the certification procedure can be found on the ITD HQ Central Laboratory Intranet page or a list may be obtained from the HQ Central Laboratory.

Quality Assurance

230.02.02.01 Fly Ash Testing. The ITD HQ Central Laboratory will group fly ash samples according to the manufacturer's identification numbers as the samples are received from projects. Samples with the same identification number will be referenced as a mill analysis unit.

ITD's AASHTO accredited laboratory will perform a complete test on the first sample received in the mill analysis unit. The selected sample will be tested for all specification parameters

If a fly ash sample does not comply with the specifications, additional testing will be performed on samples from the mill analysis unit until the extent of the non-compliant material has been determined. The initial and additional test results for each specification item will be averaged and the average value for each specification item will be considered the final value. These final values will be used to determine compliance or noncompliance of the mill analysis unit.

When test results indicate the fly ash does not meet specifications, a price adjustment will be applied to the entire quantity of material representing that mill analysis unit. The penalty will be assessed according to Section 340.05.08 of the ITD Laboratory Operations Manual.

230.02.02 Fly Ash Testing Appeal Process. The ITD HQ Central Laboratory will retain sufficient fly ash material from each mill analysis unit for dispute resolution.

If the contractor wishes to appeal ITD's test results and price reductions, a written appeal request must be submitted within 14 calendar days of the reported test results. The appeal must state the grounds or the circumstances of the appeal. If the test results are in question, the appeal must be accompanied by all of the quality control test results that represent the mill analysis unit in question. The appeal must also be accompanied by contractor-obtained test results for at least one complete fly ash test series conducted on the mill analysis unit in question. The state will not accept appeals when contractor test results are out of specifications.

When an appeal is accepted, the appeal testing must include all specification parameters for the material in question.

If the appeal is not accepted, ITD will submit a denial letter to the contractor, stating the grounds for the denial.

Appeal testing will be conducted by an independent, AASHTO accredited laboratory, mutually acceptable to the contractor and ITD. The AASHTO accredited laboratory will report the results to ITD. The results of such tests will be binding to both parties and any price reduction on the unit in question will be based on those test results. The contractor will agree to bear the costs of the appeal testing if the tests verify noncompliance.

230.03 Steel. The steel fabricator must complete standard form ITD-914, Steel Certification, for each shipment of a steel product to a project. Certified mill test reports from the steel mill for all heats in the shipment must be attached to the ITD-914.

The certified mill test report shall include the following:

- Name and location of the rolling mill
- Consignee and/or destination of the shipment
- Specification
- Size
- Heat number
- Chemical analysis
- Physical tests
- Certificate number, order release number or shipment number, etc.
- Signature of authorized official
- Buy American certification

230.03.01 Steel Bridge Girders. HQ Central Laboratory and/or Resource center will provide inspection during the fabrication of steel bridge girders. The district must contact HQ Central Laboratory and/or Resource center as soon as the fabricator is known so the inspection can be scheduled. The inspection may be contracted to an independent company when the fabrication is out-of-state.

HQ Central Laboratory and/or Resource center will obtain the required certifications, including form ITD-914, Steel Certification, during the fabrication of the steel girders.

HQ Central Laboratory and/or Resource center will notify the Regional Engineer by departmental memorandum when the fabrication of the girders is satisfactorily complete and accepted for delivery to the project. Copies of the inspection and certification reports will be forwarded to the Regional Engineer for the project files.

Project personnel should contact HQ Central Laboratory and/or Resource center prior to final erection of the steel girders to schedule an in-place inspection including, paint, bolting, fabrication tolerances, and field welding.

230.03.02 Metal Reinforcement. The metal reinforcement (reinforcing steel or rebar) supplier must submit the ITD-914 and the certified mill test reports with each shipment of bars delivered to a project worksite (See Section 230.03).

Metal reinforcement (reinforcing steel or rebar) is sampled in the field by ITD personnel from shipments delivered to the project. A sample is defined as two (2) 36 inch pieces of steel cut from materials delivered to the project of the same size and heat number. ITD Inspectors must witness or perform the sampling at the jobsite.

See Standard Specification Section 503.

The two (2) bars which replace the field samples, if from the same heat number, will not require sampling. It is not necessary to resample any bars from a heat number that has previously been tested for the project.

In the event the same heat number is used for a long bar and a shorter bar, the shorter bar will be used for the sample to minimize the cost for the replacement bar.

Some fabricated bent bars may not have a 36 in. (900 mm) length for sampling, however, the sample bars should be submitted and the Central Laboratory will determine if a test specimen can be obtained.

Sampling of bar comprising spirals will be taken from the extra length of the spiral as required by the specifications. No cutting that would require splicing to obtain samples will be permitted.

In the event of a specialized non-standard length or size bar, the Central Laboratory should be consulted for the correct sampling technique.

Samples will be promptly shipped or delivered to the Central Laboratory within two (2) working days for testing. UPS or FedEx next day shipping is recommended when necessary. Tests will be performed to detect non-specification steel for replacement prior to incorporation into the structure. Samples must be properly tagged and accompanied by the ITD-914, ITD-1044, and the Mill Certifications

When epoxy-coated steel is specified, the coater must mark the portion of the ITD-914, Steel Certification, referring to the epoxy-coating or provide a certification statement that the coating complies with AASHTO M 284. Copies of holiday tests and coating thickness tests representing the shipment will be included. An occasional check of coating thickness will be made on the sample bars at the time of laboratory testing using a dry film paint thickness gauge.

Epoxy-coated steel is to be visually inspected for coating damage upon delivery to the project, using criteria of AASHTO M 284. It is especially important to check the outside of bends for cracking, debonding and rust.

Quality Assurance

230.04 Concrete Pipe Products. Concrete pipe or related products (catch basins, manhole section, elbows, etc.) delivered to an ITD project will be accompanied by form ITD-851, Miscellaneous Items, completed by the manufacturer certifying that all material furnished was manufactured in accordance with the specifications set forth in the contract. All quantities and sizes included under the certification for that project shall be listed on the form ITD-851.

The ITD-851 for reinforced concrete pipe (RCP) must certify the concrete strength (psi) and the wall thickness of the pipe delivered to the project meets the requirements of the contract.

Manufacturers furnishing concrete pipe and related products shall hold current certification under the NPCA Plant Certification Program, the PCAA Plant certification program, the ACPA Q-Cast Plant Certification Program or PCI Plant Certification.

230.05 Concrete Guardrail and Other Pre-cast Concrete Products. Concrete Guardrail and other precast concrete products are required by the specifications to meet Standard Specification Section 502. Standard Form ITD-851, Miscellaneous Items, will be completed by the manufacturer and all materials used will be listed.

Manufacturers furnishing pre-cast concrete products shall hold current certification under the NPCA Plant Certification Program, the PCAA Plant certification program, the ACPA Q-Cast Plant Certification Program or PCI Plant Certification.

230.05.01 Pre-cast Pre-stressed Concrete Girders. All manufacturers furnishing pre-cast pre-stressed concrete girders are required to hold current PCI plant certification.

ITD will provide on-site inspection of the manufacturing process of each girder, including acceptance field sampling and testing as required per Section 270.00 Minimum Testing Requirements. The ITD inspector will provide written acceptance of each girder to the ITD project office by interdepartmental memo. The ITD project office is required to perform on-site inspection for acceptance of the girder upon delivery to the project and throughout the installation of the girder. No member will be accepted that contains failing material.

The documentation of the samples and testing, as well as required manufacturer's certification will be collected by the ITD on-site inspector at the manufacturing plant and the originals provided to the ITD project office with the acceptance memo.

230.06 Concrete with Specified Strength 3000 psi (20.5 MPa) or Less (Including Seal Concrete). When 3000 psi (20.5 MPa) or less concrete is specified, the concrete may be accepted by certification if produced using a qualified aggregate source. Section 265.02 explains the requirements for qualification of aggregate sources. The concrete mix design must be submitted for review.

The concrete producer shall furnish a signed, completed form ITD-875 with the class and concrete mix design designation listed. ITD project personnel will provide project placement locations on the form.

The specifications require the producer or contractor to perform quality control field tests and compressive strength tests for concrete placed on the project. The test results must be attached to the ITD-875 certification.

Quality Assurance

230.07 Corrugated Metal Pipe and Corrugated Plate Pipe. The supplier will furnish a completed certification form ITD-914, Steel Certification, covering the quantity of steel CMP shipped to the project. The ITD form will be accompanied by mill test reports from the pipe manufacturer for all heats of steel involved. The certification form ITD-914 will certify the galvanized coating and be accompanied with Quality Control test results from the galvanizer indicating the coating complies with the applicable specification. The appropriate AASHTO or ASTM specifications must be referenced on the form.

For aluminum corrugated metal pipe, the supplier will furnish a completed certification form ITD-851, Miscellaneous Items, from the pipe manufacturer, citing appropriate AASHTO or ASTM specifications in accordance with the contract.

Visual inspection is required at the job site to check for obvious defects, including damage in handling and shipping. Coated or bare galvanized pipe must always be checked for damage or visible gaps in the protective layers.

Bituminous coating must be verified by field inspection.

230.08 Plastic Pipe. The supplier will furnish a completed certification form ITD-851, Miscellaneous Items, from the pipe manufacturer, citing appropriate AASHTO or ASTM specifications in accordance with the contract. Final acceptance is subject to visual inspection for damage in shipping or handling or other obvious defects.

230.09 Geotextiles and Geogrids. The contractor shall furnish to the Project Inspector the manufacturer's certified test results attached to the completed form ITD-849, Manufacturer's Certification of Geotextile & Geogrid, covering the quantity furnished to the project.

The certification form will be in accordance with Standard Specification Subsection 718.02 for geotextiles and in accordance with the contract special provisions for geogrid:

- Sampling by ITD will be in accordance with Standard Specification Subsection 718.03 for geotextiles and the contract special provisions for geogrid. (See also Section 270.60, MTR Section 640).
- The certification form ITD-849 must include the product name or style or product code number.

230.10 Performance Graded Asphalt Binder. The supplier will submit, on a yearly basis, a Process Control Plan (Quality Control Plan) to the HQ Central Laboratory for Performance Graded Asphalt Binder.

Reference Section 255.00 for complete information on performance graded asphalt binder.

Anti-strip additives must be approved prior to use, see Section 240.02.

230.11 Emulsified Asphalt. The supplier will submit, on a yearly basis, a Process Control Plan (Quality Control Plan) to the Central Laboratory for emulsified asphalt.

A supplier's bill of lading will be furnished to the inspector with each load of liquid asphalt or emulsion supplied to the project. The bill of lading must contain the following information in accordance with Standard Specification Section 702.05 and 702.08:

- Date of delivery, project number, key number, county, bill of lading number, and name of customer.
- Product identification, tonnage, truck/trailer number, specific gravity, Saybolt viscosity for emulsified asphalt, and signed certification statement.
- Supplier's name and address, phone number.

ITD project inspectors will sample only undiluted emulsified asphalt (As received from the Supplier.) for verification testing in accordance with the individual bid schedule items in Section 270.00 Minimum Testing Requirements.

ITD project inspectors will perform field viscosity testing on sealcoat emulsions as required by the Minimum Testing Requirements in Section 270.00 from the truck on the project site or at a location as close to the project as practical. The contractor must provide a safe means for obtaining the emulsion samples, including but not limited to fall protection, heat resistant clothing and gloves, etc.

230.12 Seeding. For Contractor Furnished Seed, the contractor must provide official certification tags with tests results for each seed species and verify it meets the contract specifications. The contractor shall verify the company or person(s) providing the seed must hold a valid Idaho Seed Dealer's License issued for the current year and must meet all provisions of the Idaho Pure Seed Law. A seed certification tag and test results issued from a member of Association of Official Seed Certifying Agencies (AOSCA) or state seed laboratory must be provided and validate seed has been tested within the current year prior to acceptance. The official AOSCA tag or report must accompany each species and be submitted to the engineer at least sixty (60) working days prior to seeding. The official tag or report must indicate seed classification, seed germination rate and purity, lot number, number of weed seeds, number of noxious weed seeds, and number of crop seed. All restricted, prohibited and noxious weed seed found during testing shall be displayed in an official AOSCA tag or report. All seed bags (ITD or contractor supplied) must have the analysis (certification) tag attached and secured to each bag or container.

No additional seed tests are required for ITD supplied seed, if the project meets all of the following parameters:

Project has two acres or less to be seeded, project is using seed from district stored seed inventory, seed to be used has original certification tags attached to the bag(s), seed tag indicates seed tests were conducted within one year from the date of seeding or seed was tested at ISDA for purity and germination rates within one year of the date the project will be seeded.

Seed samples are taken and tested to verify seed germination rate and purity, and contains no noxious weeds. Seed germination and purity can be drastically reduced between the time it is originally tested and when it is actually seeded. For this reason we request seed to be tested 6 weeks prior to seeding. If there is inconsistency with seed germination and/or purity information on the tags and the current test results we can adjust the seeding rates in the field to obtain optimal seed germination and increase the success rate.

Acceptance of Materials by Manufacturer's or Fabricator's Certification

One random sample from unblended and individually packaged seed containers from each species and each lot will be obtained and placed in a one-gallon size heavy duty zipped plastic bag (See note 1). The samples will be submitted to the Idaho State Seed Laboratory, for analysis and verification. The sample should not be taken from the top layer of the container. Send the completed ITD-1044 form to the test lab with a copy of the seed certification tags and the seed samples. Refer to the instructions for the ITD-1044 so all required information is included. Allow thirty days for testing and receiving official test results. The test results must show the seed meets the contract specifications prior to seeding. ISDA will email the test results to the Resident / Regional Engineer and copy the HQ Roadside Program Manager. After receiving the test results, contact the Roadside Program Manager for acceptable purity and germination limits and acceptable seeding rates prior to seeding. The test lab will return all useable seed if the Resident / Regional Engineer's address is shown on the ITD-1044.

Address: Idaho State Seed Lab 2240 Kellogg Lane Boise, ID 83712

Note 1: Fill the one-gallon bag approximately half full for medium seed species including wheatgrasses, squirreltail, and wildrye (150 g). Fill the one-gallon bag approximately full for large seed including grain, Lupines, Biscuitroot, Bitterbrush and similar size seed, as well as Brome species and Woods Rose (550 g). Fill the one-gallon bag approximately one-quarter full for small seed species including fescues, saltgrass, alfalfa, clover, and blue flax (70 g). Fill the one-gallon bag approximately one-eighth full for very small seed species including bluegrasses, penstemon species, sagebrush, rabbitbrush, globemallow, and yarrow, (40 g). All other large seed types require a full one-gallon bag. For species not covered here, refer to ISDA website for specific species sample weights:

http://www.agri.state.id.us/Categories/Laboratories/Seed/sampleWeights.php

The State Seed Lab will bill the Resident / Regional Engineer for the testing. Contact the District Business Manager or District Records Inspector for charging the costs to the project.

230.13 Miscellaneous Items Accepted by Certification. Certification of miscellaneous materials is acceptable as defined in this section.

230.13.01 General Provisions. In addition to the materials discussed individually in Section 230.00, the following miscellaneous items may also be accepted on the basis of the manufacturer's or fabricator's (not the supplier unless the supplier is also the manufacturer) certification, using form ITD-851 and signed by the manufacturer's representative who has quality control responsibility, that the material was manufactured in accordance with and meets specification requirements. Each certification must detail the quantity of material furnished to the project under that certification. Laboratory test reports will also be furnished where applicable (steel mill test reports, wood preservative treatment reports, for example).

230.13.02 List of Miscellaneous Materials Accepted on the Basis of the Manufacturer's or Fabricator's Certification. Table 230.1 lists miscellaneous items that may be accepted by certification. The manufacturer's or fabricator's certification will not preclude the sampling and testing of the material or its final acceptance or rejection on the basis of the test results. Project samples are to be taken, as indicated in the Minimum Testing Requirements (Section 270.00) for verification testing. Samples may also be taken and tested at the option of the Materials Engineer or Regional Engineer.

Visual inspection for obvious defects and handling and shipping damage should always be done. Also, on items where it is feasible, simple measurements of specified properties should be spot checked at least once per project and recorded to verify certification. Examples would be length, mass per unit length, or thickness of steel items.

Material	Standard Specification Subsection	
Bearing Pads and Plates	507	
Brick and Blocks, Masonry	Miscellaneous	
Bridge Rail, Metal	504	
Concrete, Rapid Set	Special Contract Provision	
Delineators and Mileposts	617	
Dowel Bars and Tie Bars for Concrete Pavement	409, 503, 510, 609, 611	
Dust Oil	Miscellaneous	
Electrical	Miscellaneous	
Epoxies	Miscellaneous	
Epoxy Patch	Miscellaneous	
Guard Rail and Posts	612	
H-Beam Piles	505	
Illumination Poles and Bases	619	
Joint Sealants and Sealers	409, 502, 625	
Paint (only small quantities less than 25 gallons (100L))	504, 505, 627	
Sewers (Storm and Sanitary)	605	
Signs and Posts	616	
Steel Shell Piling	505	
Structural Bolts	504	
Timber (Structural)	609, 612, 616	
Traffic Signal Poles and Mast Arms	656	

Table 230.1 Miscellaneous Materials Accepted by Certification

SECTION 240.00 – PRE-TESTED AND PRE-QUALIFIED MATERIALS

240.01 Pre-tested Materials. The following materials require pre-testing prior to acceptance on a project.

- Traffic Line Paint
- Glass Beads
- Curing Compound

The ITD project personnel must verify the material/product is approved prior to use on a project. Those materials/products deemed acceptable will appear on the pre-approved list found on the ITD HQ Central Laboratory Intranet page or a list may be obtained from HQ Central Laboratory.

240.01.01 Bulk Material/Products Sampled at the Manufacturing Plant. A major portion of the pretested products are sampled at the manufacturer's plant for bulk production. The HQ Central Laboratory is responsible for obtaining the samples at the plants and testing such material.

240.01.02 Materials/Products Sampled at the Project. ITD project personnel must obtain samples, or at least witness the sampling, at the project site when the lot/batch of traffic line paint, glass beads, or curing compound is not shown as pre-tested or pre-approved.

The samples will be obtained from the material delivered to the project and sent to the ITD HQ Central Laboratory for testing. Allow 30 days for the testing. The testing must be accomplished prior to use of the material/product on a project. The sample must be properly identified with date sampled, sampler's name, the product & manufacturer, and the lot or batch number.

240.02 Pre-qualified Materials. The Division of Highways has established a Qualified Products List (QPL) to formalize the process for the use of pre-qualified products on ITD highway projects. The list of pre-qualified products is disseminated via the Department's official web site to department staff, materials suppliers, manufactures, consultants, and contractors.

QPL products still need the appropriate tests and certifications as required by the contract in order to be accepted on the project.

The QPL is administered by the Product Review Committee (PRC). Activities of the PRC are coordinated by the QPL Program Administrator. Details of the QPL program are described in Section 900 of the Department's Materials Manual.

SECTION 250.00 – ACCEPTANCE OF MATERIAL ON THE BASIS OF THE RESIDENT ENGINEER'S LETTER OF INSPECTION (FORM ITD-854)

SECTION 255.00 – PERFORMANCE GRADED BINDER QUALITY ASSURANCE PLAN

255.01 Certification.

255.02 Sampling.

- 255.03 Binder Verification Unit.
- 255.04 Testing.
- 255.05 Appeal Process.

SECTION 256.00 - ASPHALT EMULSIONS QUALITY ASSURANCE PLAN (JANUARY 2015)

SECTION 260.00 - MIX DESIGNS

260.01 Plant Mix Pavement (Standard Specification Section 405).
260.01.01 Mix Design Requirements and Review Procedure.
260.01.02 Definitions.
260.01.03 Examples.
260.02 Concrete Pavement (Standard Specification Section 409).
260.02.01 Portland Cement Concrete Pavement.
260.02.01.01 Items Provided to Central Materials Laboratory.
260.02.01.02 Central Materials Laboratory Procedures.
260.02.01.03 Confirmation.
260.03 Structural Concrete (Standard Specification Section 502).
260.03.01 Approval Procedures.
260.04 Superpave Hot Mix Asphalt (HMA) (Special Provision Superpave HMA).
260.04.02 Definitions.
260.04.03 Tolerances.

SECTION 265.00 – QUALIFIED AGGREGATE MATERIAL SUPPLIERS

265.01 Qualified Asphalt Mix Aggregate and Base Aggregate Suppliers.

265.02 Qualified Concrete Aggregate Suppliers.

265.03 Other Specification Aggregate Items.

SECTION 250.00 – ACCEPTANCE OF MATERIAL ON THE BASIS OF THE RESIDENT ENGINEER'S LETTER OF INSPECTION (FORM ITD-854)

The purpose of form ITD-854, Resident's Letter of Inspection, is for the Resident Engineer to document the inspection of certain materials and to document the materials are acceptable according to the plans and specifications. In most cases, the inspection of the installation of these items is the most crucial element of the acceptance. The form should not be used as a catchall for items usually accepted by sampling and testing, and inclusion on the form does not excuse the inspector from sampling and testing or obtaining manufacture certifications required by the Minimum Testing Requirements.

The ITD-854 must provide accurate information of the total quantity of material accepted, the source of the material, and the date of the inspection/acceptance of the material. The project files should contain documentation to support the information on the form. The source should identify the manufacturer or fabricator, whenever possible, for future information regarding the material.

The Section 270.00, Minimum Testing Requirement (MTR) tables list materials accepted by the ITD-854. The specifications should be referred to for a complete description of the necessary inspection elements for acceptance of each item. The Resident Engineer signs the ITD-854 documenting that the items listed on the form have been inspected for acceptance

SECTION 255.00 – PERFORMANCE GRADED BINDER QUALITY ASSURANCE PLAN

The PG binder supplier will conform to quality control testing and certification requirements in accordance with Subsection 702.08 of the Standard Specifications. The Supplier will be accredited through the AASHTO Material Reference Laboratory (AMRL) program for Performance Graded Binder. The supplier will submit, on a yearly basis, a Process Control Plan (Quality Control Plan) to HQ Central Laboratory for Performance Graded Asphalt Binder.

255.01 Certification. Form ITD-966, PG Binder Supplier's Certification, accompanies the initial shipment of PG binder to the project. Thereafter, this form is furnished with each lot change of PG binder shipped to the project. Supplier will attach a completed ITD-966 to the bill of lading that represents the first shipment of each new lot.

255.02 Sampling. Each shift that plant mix is produced, a binder sample, comprised of three individual one-quart cans, will be taken at a random time from the mix plant's asphalt binder tank injection line. The sampling method is AASHTO T-40. All three quarts will be retained by ITD. One quart will be for ITD's verification testing, the second quart will be retained for dispute resolution and the third quart is the Contractor's. The Contractor's quart will be released to the Contractor when requested.

The contractor or the supplier may take as many samples as they want for information only. Only the three cans identified as the daily binder sample must be witnessed and signed for by the ITD Inspector.

Standard Specifications, Section 405.03 – Mixing Plants, provides that "provisions shall be made for measuring and sampling contents of the (PG binder) storage tanks." Be alert the injection line is usually under pressure. The contractor must provide a safe means to obtain the random samples.

When mix plant operations are just starting or after being suspended for more than 48 hours, the sampling sequence will not begin with a completely random sample; instead, this binder sample will be taken near the beginning or resumption of operations.

All samples will be obtained and/or witnessed by a representative of the contractor and ITD, one of which must be WAQTC Asphalt qualified. The sample identification form (ITD-859) will be signed by both parties witnessing the sampling.

Samples must be submitted to HQ for testing no later than 60 days after the sample date.

255.03 Binder Verification Unit. The quantity of binder used in one week's production of plant mix, except as modified in the remainder of this subsection, shall constitute a binder verification unit. A binder verification unit is comprised of daily binder samples.

A binder unit will include only one PG grade. Thus, if the PG grade is changed within a production day, one daily binder sample will be taken for each PG grade used and grouped with other daily binder samples representing the corresponding binder verification unit.

Complete ITD-859, Performance Graded Binder Sample Identification Form. The daily binder sample, comprised of three individual quart cans, will be labeled with the sample identification numbers, i.e., 2001-C for the first day, 2002-C for the second day, etc. List each daily binder sample identification number and the date sampled on the form. ITD and the contractor must sign the form for each daily binder sample. The ITD portions of the daily binder samples will be assembled into a binder verification unit and submitted to the Central Materials Laboratory. Indicate on the ITD-859 the date when a supplier's binder lot changes.

Perform Idaho IT-99, Presence of Anti-Strip, in accordance with the required frequency as shown in Section 270.30, Minimum Testing Requirements, and record the results on the ITD-859.

Inspection or certification of the contractor's storage tank for contamination is the sole responsibility of the contractor.

255.04 Testing. ITD's AASHTO accredited laboratory will randomly choose one daily binder sample from each unit to represent the entire unit and either completely or partially test the selected daily binder sample. If the tested PG grade complies with the specified PG grade properties, the binder unit will be accepted. If the PG grade does not comply with the specified PG grade, additional testing will be performed on the verification unit until the extent of the non-compliant material has been determined.

If multiple tests are conducted on the same binder sample, the initial and additional test results for each specification item will be averaged and the average value for each specification item will be considered the final value. These final values will be used to determine compliance or noncompliance. Non-compliant materials will be subject to the price reduction as specified in the ITD Laboratory Operations Manual.

255.05 Appeal Process. The ITD HQ Central Laboratory will retain one daily binder sample for dispute resolution.

If the contractor wishes to appeal ITD's test results and price reductions, a written appeal request must be submitted within 21 calendar days of the reported test results. The appeal must state the grounds or the circumstances of the appeal. If the test results are in question, the appeal must be accompanied by all of the quality control test results that represent each verification unit in question. The contractor must also supply complete PG binder test results on all daily binder samples in question. The state will not accept appeals when contractor test results are below the minimum specifications.

When an appeal is accepted, the appeal testing must include all specification parameters for the material in question. If the appeal is not accepted, ITD will submit a denial letter to the contractor, stating the grounds for the denial.

Appeal testing will be conducted by an independent, AASHTO accredited laboratory, mutually acceptable to the contractor and ITD. The AASHTO accredited laboratory will report the results to ITD. The results of such tests will be binding to both parties and any price reduction on the unit in question will be based on those test results. The contractor will agree to bear the costs of the appeal testing if the tests verify noncompliance.

SECTION 256.00 - ASPHALT EMULSIONS QUALITY ASSURANCE PLAN (JANUARY 2015)

The asphalt emulsion supplier will conform to quality control testing and certification requirements in accordance with Subsection 702.03 of the Standard Specifications. The Supplier will be accredited through the AASHTO Material Reference Laboratory (AMRL) program for Emulsion Testing by January 2015. The supplier will submit, on a yearly basis, a Process Control Plan (Quality Control Plan) to HQ Central Laboratory for emulsified asphalt.

SECTION 260.00 – MIX DESIGNS

Disclaimer: Section 260.01 Refers To HVEEM Design, Which Is Not Part Of The Specification Currently.

260.01 Plant Mix Pavement (Standard Specification Section 405). This section outlines the mix design review process for Section 405 Plant Mix Pavement found in Subsection 405.03 - A - Mix Design.

260.01.01 Mix Design Requirements and Review Procedure. The Contractor must submit a request for use of materials source(s) to the Resident Engineer, and if acceptable, its use will be approved in writing. The Contractor must also submit the proposed mix design and all test reports, data, and worksheets used for each trial design attempted to the Resident Engineer. The Resident Engineer will submit the data to the District Materials Engineer for review. The Resident Engineer or District Materials Engineer will send copies of these documents to the HQ Central Laboratory. Preferably, these documents will be scanned by the District and placed on Headquarters Server hqmlsv02, public folder, in the appropriate District folder.

A proposed mix design must be submitted by the Contractor to the Resident Engineer for review a minimum of five calendar days prior to beginning paving. The design must be prepared and tested by a qualified laboratory. Unless otherwise allowed, all mix designs must be prepared specifically for the project they are submitted for. Designs that do not meet ITD project requirements and specifications will not be accepted. Refer to Subsections 405.02 and 405.03 for the mix design specifications.

The District Materials Engineer will be responsible for reviewing the mix design and making a recommendation, or the mix design may be sent to the HQ Central Laboratory for review and recommendation.

The District Materials Engineer will review the mix design and will make a recommendation to the Resident Engineer whether the mix design should be used or not. The Resident Engineer will not recommend using the design without the positive recommendation of either the District Materials Engineer or the HQ Central Laboratory. The Resident Engineer will notify the Contractor of the decision and copies of the notification will go to: HQ Design Materials and Construction Engineer, Pavement Operations Engineer and the Quality Assurance Engineer. When the review is performed by HQ Central Laboratory, a written recommendation will be faxed and/or e-mailed to Resident Engineer with a copy sent to the District Materials Engineer. The original letter will be mailed with copies to the District Engineer, and Pavement Operations Engineer.

The Contractor's mix design will either be recommended for use or rejected. If a mix design is rejected, the Resident Engineer will inform the Contractor of the deficiencies found and a new or adjusted mix design will be required and the five-calendar day review time will start over.

If the Contractor chooses to submit a previously used mix design for review, at a minimum, the following tests must be performed and the results submitted along with the previously used mix design:

- 1. Current sieve analysis on the stockpiles to be used, including crusher control charts
- 2. Coarse and fine aggregate specific gravities and absorptions
- 3. Asphalt binder content correction factor per FOP for AASHTO T-308
- 4. Aggregate gradation correction factors per FOP for AASHTO T-308

All previously used mix designs submitted by the Contractor must be forwarded to HQ Central Laboratory for review and recommendation. To be considered acceptable as a previously used mix design, the asphalt content, type, grade, aggregate materials, gradation, and anti-strip rate, type and grade must be the same as previously approved. The previously approved mix design data along with the new testing must be submitted for consideration. The decision to accept or reject a previously used mix design rests solely with the HQ Central Laboratory.

The District Materials Engineer is authorized to recommend for use mix designs prepared specifically for the project they are submitted for.

The Contractor or a designated representative must perform a Hveem mix design in accordance with the current version of AASHTO R-12, "Bituminous Mixture Design Using the Marshall and Hveem Procedures." The Asphalt Institute publication "Mix Design for Asphalt Concrete and Other Hot Mix Types," (MS-2), is available from the Asphalt Institute, Executive Offices and Research Building, Research Park Drive, P.O. Box 14052, Lexington, KY 40512-4052. The Contractor's mix design must have a minimum 0.4 percent range of asphalt binder content that meets all specification requirements of Subsection 405.02. The job mix formula (JMF) must specify a single aggregate gradation, a single asphalt content and a maximum theoretical density based on the specified gradation and asphalt content.

The Contractor's mix design submittal to the Resident Engineer must include the following information:

- Percent of asphalt by Weight of mix, lb./ft³
- Percent of asphalt by Weight of Aggregates, lb./ft³
- Air Voids, % (AASHTO T-269)
- VMA, % (Voids in Mineral Aggregate) (see definitions)
- VFA, % (Voids Filled with Asphalt) (see definitions)
- HVEEM Stability Value (AASHTO T-246 & T-247)
- Bulk Specific Gravity, (AASHTO T-166, Method A)
- Theoretical Max Specific Gravity, (Rice Gravity) (AASHTO T-209, Bowl Method) (AASHTO TP 69) (ASTM D7227)
- Asphalt Film Thickness (AFT) (see definitions)
- Surface Area (see definitions)
- NCAT Ignition Oven Correction Factor (FOP for AASHTO T-308)
- Aggregate Gradation Correction Factors (FOP for AASHTO T-308)
- Bulk Specific Gravity, dry, (AASHTO T-84 & T-85)
- Fine Aggregate Angularity (Uncompacted Voids Content of Fine Aggregate), (AASHTO T-304, Method A)
- Percent fractured faces (AASHTO TP-61, Method A)
- Percent Flat and Elongated Particles (ASTM D4791)
- Identification of stockpile source(s). (Identify the materials source or sources from where the stockpiles originated. i.e. Coarse stockpile 1 and 2 Ad 111s, fine stockpile 3 Ad-53s. Identify and label the stockpiles on the sieve analysis sheet.)

255.00

- Proposed Target Gradation
- Type and percent of anti-strip additive
- Immersion Compression test results at 0.5% anti-strip additive or amount required to meet specification. Dry strength, Wet strength and percent retained strength (AASHTO T-165)
- Individual stockpile gradations and blend percentages
- Laboratory Mixing Temp, (from binder supplier)
- Laboratory Compaction Temp, (from binder supplier)
- Recommended Plant Mixing Temp, (from binder supplier)
- Field Compaction Temp Range, (from binder supplier)

The Contractor must provide the following design graphs for the proposed mix design that identifies the proposed JMF and the range of asphalt contents for which the design meets all the specification requirements (see examples). These graphs must be developed using the **percent of asphalt binder by weight of mix.**

- Unit Weight, % binder by weight of mix vs. pcf of mix. (Figures 260.01.03.1A & 260.01.03.2A)
- Maximum Theoretical Unit Weight, % binder (mix) vs. pcf of mix. (Figures 260.01.03.1A & 260.01.03.2A)
- % Air Voids, % binder (mix) vs. % total air voids. (Figures 260.01.03.1B & 260.01.03.2B)
- % VMA, % binder (mix) vs. % voids in mineral aggregate. (Figures 260.01.03.1B & 260.01.03.2B)
- Hveem Stabilometer value, % binder (mix) vs. Stability Value. (Figures 260.01.03.1C & 260.01.03.2C)
- % voids Filled, % binder (mix) vs. Voids filled With asphalt. (Figures 260.01.03.1C & 260.01.03.2C)

The Contractor must provide the JMF plotted on a 0.45 power curve (Figure 260.01.03.3) which includes the maximum density line and control points for the size of aggregate used. The Contractor must ensure the JMF gradation does not go beyond the upper and lower specification limits when the allowable tolerances of Subsection 405.03 F are applied, or outside of the control point upper and lower specification limits specified in Subsection 703.05.

The Contractor must submit all test reports, data, and worksheets used for <u>each trial attempted</u> along with their proposed mix design. The information required must include, but is not limited to, all specific gravity worksheets, Hveem worksheets, ignition oven worksheets with AASHTO T-30 gradations, and immersion compression test worksheets. Air voids, VMA, VFA, asphalt film thickness, and surface area calculation worksheets. Fine aggregate angularity, percent fractured faces, and percent flat and elongated particles worksheets.

The Contractor's mix design will be reviewed for accuracy, completeness, reasonableness, and specifications compliance in accordance with the contract and this section. Review of the mix design does not relieve the Contractor of responsibility for providing a mix design job mix formula and a plant mix pavement that complies with all contractual requirements.

260.01.02 Definitions. The following definitions are from sources common to the hot mix asphalt industry. These items have been selected for further definition because the form of the equation published in the reference text is different than the form used by ITD or additional explanation is warranted.

Bulk Specific Gravity of Aggregate, G_{sb} the ratio of the weight in air of a unit volume of a permeable material (including both permeable and impermeable voids normal to the material) at a stated temperature to the weight in air of equal density of an equal volume of gas-free distilled water at a stated temperature. (AASHTO T-85 and Asphalt Institute Manual Series No. 2 (MS-2). Use AASHTO T-84 and T-85 to determine the bulk specific gravity of fine and coarse aggregates respectively.

When the total aggregate consists of separate fractions of coarse aggregate, fine aggregate, and mineral filler, all having different specific gravities, the bulk specific gravity of the total aggregate is calculated using:

$$G_{sb} = \frac{P_1 + P_2 + \dots + P_n}{\left(\frac{P_1}{G_1}\right) + \left(\frac{P_2}{G_2}\right) + \dots + \left(\frac{P_n}{G_n}\right)}$$

where G_{sb} = average bulk specific gravity

 P_1 , P_2 , P_n = individual percentages by mass of aggregate, coarse and fine $P_1+P_2+\dots+P_n = 100$ G_1 , G_2 , G_n = individual bulk specific gravities of aggregate, coarse and fine. (Asphalt Institute Manual Series No. 2 (MS-2)

Because the amount of fine aggregate present in the coarse aggregate fraction and the amount of coarse aggregate present in the fine aggregate fraction is very small, this equation can be simplified and written as:

$$G_{sb} = \left\lfloor \frac{100}{\left(\frac{P_{(+\#4)}}{G_{(+\#4)}}\right) + \left(\frac{P_{(-\#4)}}{G_{(-\#4)}}\right)} \right\rfloor \quad \text{USE THIS EQUATION}$$

where, G_{sb} = average bulk specific gravity

 $P_{(+\#4)}$, $P_{(-\#4)}$, = individual percentages by mass of aggregate, coarse, (+#4) and fine, (-#4)

 $G_{(+\#4)}$, $G_{(-\#4)}$, = individual bulk specific gravities of aggregate, coarse, (+#4) and fine, (-#4)

When more than one materials source is used to provide the coarse aggregate fraction and/or more than one materials source is used to provide the fine aggregate fraction for a mix design or mineral fillers are used, the original form of the Asphalt Institute equation will be used.

Voids in the Mineral Aggregate, (VMA): the volume of intergranular void space between the aggregate particles of a compacted paving mixture that includes the air voids and the effective asphalt content, expressed as a percent of the total volume of the sample (Asphalt Institute Manual Series No. 2 (MS-2). VMA can be calculated either as percent by weight of total mix or as a percent by weight of aggregate as follows.

VMA will be calculated using the following formula when the mix composition is <u>determined as</u> <u>percent by weight of total mixture</u>:

 $VMA = 100 - \left(\frac{G_{mb}P_s}{G_{sb}}\right)$

where, VMA = voids in mineral aggregate, percent of bulk volume

G_{sb} = bulk specific gravity of total aggregate

 G_{mb} = bulk specific gravity of compacted mixture (AASHTO T-166)

 P_s = aggregate content, percent by total weight

VMA will be calculated using the following formula when the mix composition is <u>determined as</u> <u>percent by weight of aggregate</u>:

 $VMA = 100 - \left[\frac{G_{mb}}{G_{sb}} \times \frac{100}{100 + P_b}\right] 100$

where, VMA = voids in mineral aggregate, percent of bulk volume

G_{sb} = bulk specific gravity of total aggregate

 G_{mb} = bulk specific gravity of compacted mixture (AASHTO T-166)

 P_b or %AC = asphalt content, percent by weight of mix

Air Voids, V_a : the total volume of small pockets of air between the coated aggregate particles throughout a compacted paving mixture, expressed as a percent of the bulk volume of the compacted paving mixture. (Asphalt Institute Manual Series No. 2 (MS-2).

$$V_a = 100 \times \left(\frac{G_{mm} - G_{mb}}{G_{mm}}\right)$$

where, $V_a = air voids$ in compacted mixture, percent of total volume

 G_{mm} = maximum specific gravity of paving mixture (AASHTO T-209, Bowl Method)

 G_{mb} = bulk specific gravity of compacted mixture (AASHTO T-166, Method A)

Voids Filled with Asphalt, (VFA): the portion of the volume of intergranular void space between the aggregate particles (VMA) that is occupied by the effective asphalt. (Asphalt Institute Manual Series No. 2 (MS-2).

 $VFA = 100 \times \left(\frac{VMA - V_a}{VMA}\right)$

where, VFA = voids filled with asphalt, percent of VMA

VMA = voids in mineral aggregate, percent of bulk volume

 V_a = air voids in compacted mixture, percent of total volume.

Asphalt Film Thickness, (AFT): The calculated film thickness is an average film thickness which has been generally correlated with durability. If the asphalt cement film is too thin, air which enters the compacted HMA can more rapidly oxidize these thin films, causing the HMA to become brittle and to fail prematurely by cracking. Additionally, if the aggregates are susceptible to water damage, thin films are more easily and rapidly penetrated by water than thick ones producing the typical manifestations of water damage: rutting, shoving, raveling, and bleeding. The average asphalt film thickness is calculated using the following formula as published in the National Center for Asphalt Technology publication Hot Mix Asphalt Materials, Mixture Design and Construction, Second Edition 1996 (F. L. Roberts, P. S. Kandhal, E. R. Brown, D. Lee and T. W. Kennedy).

$$AFT = \left(\frac{V_{asp}}{SA \times W}\right) (304,800)$$

where, AFT = Asphalt film thickness,(microns)

 V_{asp} = effective volume of asphalt cement, (Cubic feet)

SA = surface area of the aggregate (square feet per pound of aggregate)

W = weight of aggregate (pounds)

or,

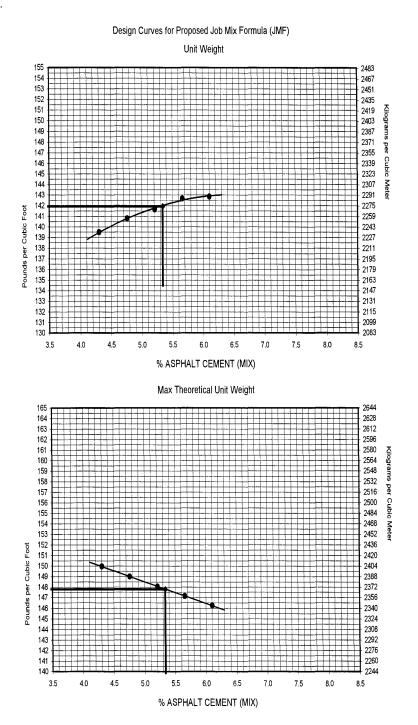
W = (bulk density of compacted mix)(100-%AC)

 $304,800 = \text{constant}, \quad \frac{1000 \text{ microns}}{\text{mm}} \times \frac{25.4 \text{ mm}}{\text{inch}} \times \frac{12 \text{ inches}}{\text{foot}} = \frac{304,800 \text{ microns}}{\text{foot}}$

To determine the value of the effective volume of asphalt cement, $V_{asp:}$

V_{asp} is equal to the total volume of asphalt binder minus the absorbed volume of binder,

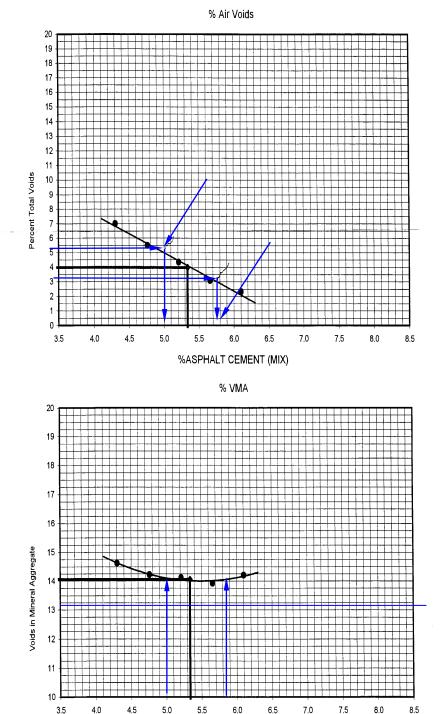
Surface Area, (SA): The aggregate surface area is important since it affects the amount of asphalt needed to coat the aggregate. Dense-graded asphalt mixtures are usually designed to contain a desires amount of air voids; hence, the aggregate surface area is not a design factor. It is possible to increase the surface area of an aggregate and at the same time reduce the optimum asphalt content. One way to do this is by increasing the dust content, (minus# 200) of a mixture. Asphalt mixtures that have a high surface area and low optimum asphalt content are undesirable because these mixes will have thin asphalt film on the aggregate and will probably not have adequate durability.


One of the primary reasons for estimating the surface area is to determine the asphalt film thickness. This is an estimate value, but it does allow comparisons to be made for various mixtures. (National Center for Asphalt Technology publication Hot Mix Asphalt Materials, Mixture Design and Construction, Second Edition 1996 (F. L. Roberts, P. S. Kandhal, E. R. Brown, D. Lee and T. W. Kennedy).

Sieve size	Surface Area Factor
Percent Passing Maximum Sieve Size	2
Percent Passing No. 4	2
Percent Passing No. 8	4
Percent Passing No. 16	8
Percent Passing No. 30	14
Percent Passing No. 50	30
Percent Passing No. 100	60
Percent Passing No. 200	160

 $SA = 2 \times (\% \text{ Passing Max Sieve Size}) + 2 \times (\% \text{ Passing No. 4}) + 4 \times (\% \text{ Passing No. 8}) + 8 \times (\% \text{ Passing No. 16}) + 14 \times (\% \text{ Passing No. 30}) + 30 \times (\% \text{ Passing No. 50}) + 60 \times (\% \text{ Passing No. 100}) + 160 \times (\% \text{ Passing No. 200})$

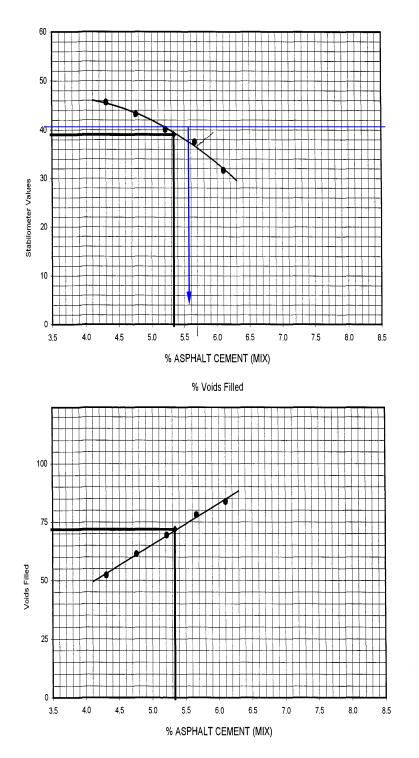
260.01.03 Examples. The following examples show typical plant mix pavement mix design curves that are generated during the mix design process. The graphs illustrate how the information should be analyzed to determine acceptability.


Figure 260.01.03.1A

This graph shows how the unit weight of the compacted specimen changes as the percent of asphalt binder changes. This chart can be used to get an approximate bulk density of the compacted mix at a given asphalt content.

This graph shows how the maximum theoretical unit weight (Rice) of the compacted specimen changes as the percent of asphalt binder changes. This chart can be used to get an approximate Rice density of the compacted mix at a given asphalt content. The weight goes down as the asphalt content goes up. Figure 260.01.03.1B

Design Curves for Proposed Job Mix Formula (JMF)

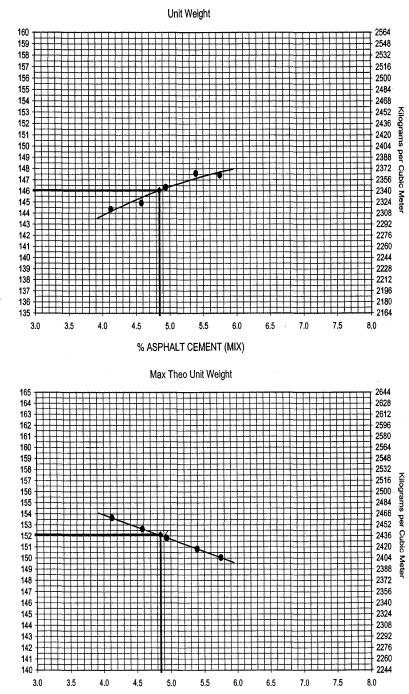


% ASPHALT CEMENT (MIX)

Step 1. Find the asphalt binder percent at 3% and 5% total Air Voids. Select 5% air Voids on the vertical axis and project a line to the left until it intercepts the curve. Then project the line down to the % asphalt binder on the horizontal axis. Do the same with 3% air voids. This mix has a range of asphalt contents of between 5.0 and 5.75% or a range of 0.75% which is greater than 0.4% and meets the specification, so far.

Step 2. Check the VMA at the % asphalt binder range determined in Step 1. For this mix design, the VMA is greater than the minimum of 13.0 over the entire range of asphalt contents determined in Step 1. This mix still has an acceptable AC range of 5.0 to 5.75%

Figure 260.01.03.1C



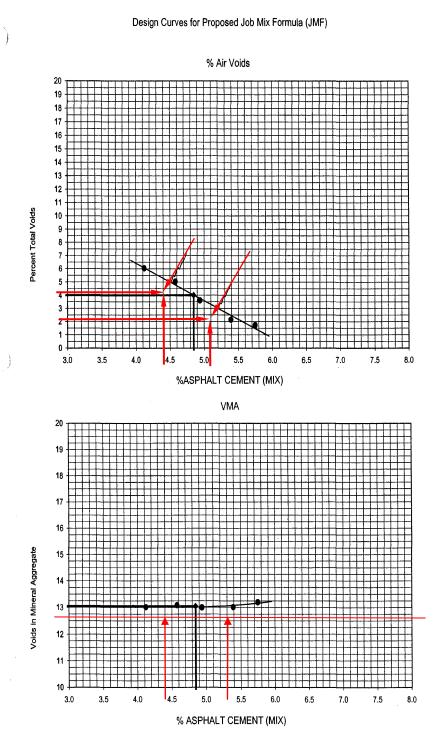
Step 3. Check the stability of the mix over the range of asphalt contents determined in the previous two steps. Draw a line horizontally at the minimum stability value, (37 for this mix), on the vertical axis that intercepts the stability curve. In this mix, the stability falls below the minimum allowed number of 37 at an asphalt content of 5.65%. Stability is within specification up to 5.65% asphalt and is out of specification at higher asphalt contents so the asphalt content range for this mix design that meets all the specification requirements of Subsections 405.02 and 405.03 is 5.0 to 5.65. This range 0.65% exceeds the 0.40% required in the specification.

VFA, Voids Filled With Asphalt is not currently a design criteria. VFA is inversely related to air voids and should be around 50 to 70%. When it exceeds approximately 80 to 85% rutting is likely to occur.

Figure 260.01.03.2A

Design Curves for Proposed Job Mix Formula (JMF)

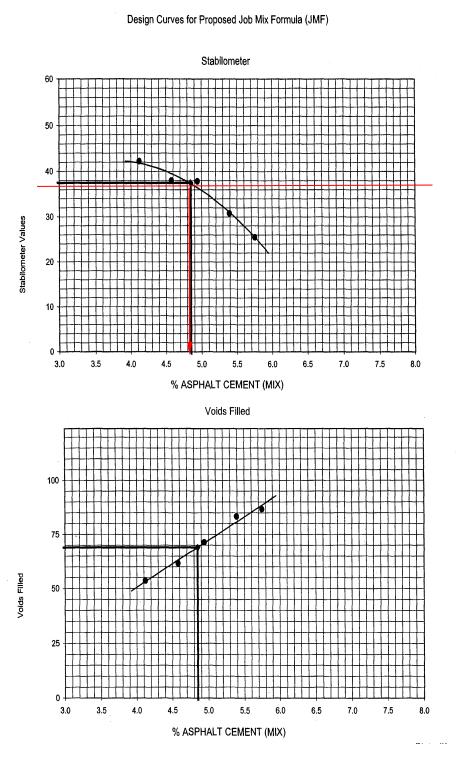
% ASPHALT CEMENT (MIX)


This graph shows how the unit weight of the compacted specimen changes as the percent of asphalt binder changes. This chart can be used to get an approximate bulk density of the compacted mix at a given asphalt content.

This graph shows how the maximum theoretical unit weight (Rice) of the compacted specimen changes as the percent of asphalt binder changes. This chart can be used to get an approximate Rice density of the compacted mix at a given asphalt content. The weight goes down as the asphalt content goes up.

Pounds per Cubic Foot

Pounds per Cubic Foot


Figure 260.01.03.2B

Step 1. Find the asphalt binder percent at 3% and 5% total Air Voids. Select 5% air Voids on the vertical axis and project a line to the left until it intercepts the curve. Then project the line down to the % asphalt binder on the horizontal axis. Do the same with 3% air voids. This mix has a range of asphalt contents of between 4.5 and 5.2% or a range of 0.7% which is greater than 0.4% and meets the specification so far.

Step 2. Check the VMA at the % asphalt binder range determined in Step 1. For this mix design, the VMA curve is right on the minimum of 13.0 over the entire range of asphalt contents determined in Step 1. This mix still has an acceptable AC range of 4.5 to 5.4 %. This mix could have VMA problems based on this curve.

Figure 260.01.03.2C

Step 3. Check the stability number over the range of asphalt contents determined in the previous two steps. Draw a line horizontally from the minimum stability value, (37 for this mix), on the vertical axis that intercepts the stability curve. In this mix, the stability falls below the minimum allowed number of 37 at an asphalt content of 4.9%. Stability is within specification up to 4.9% asphalt and is out of specification at higher asphalt contents so the asphalt content range for this mix design that meets all the specification requirements of Subsections 405.02 and 405.03 is 4.5 to 4.9%. This range 0.4% meets the 0.40% required in the specification. Stability of the mix could be a problem if the asphalt content goes higher than 4.9%.

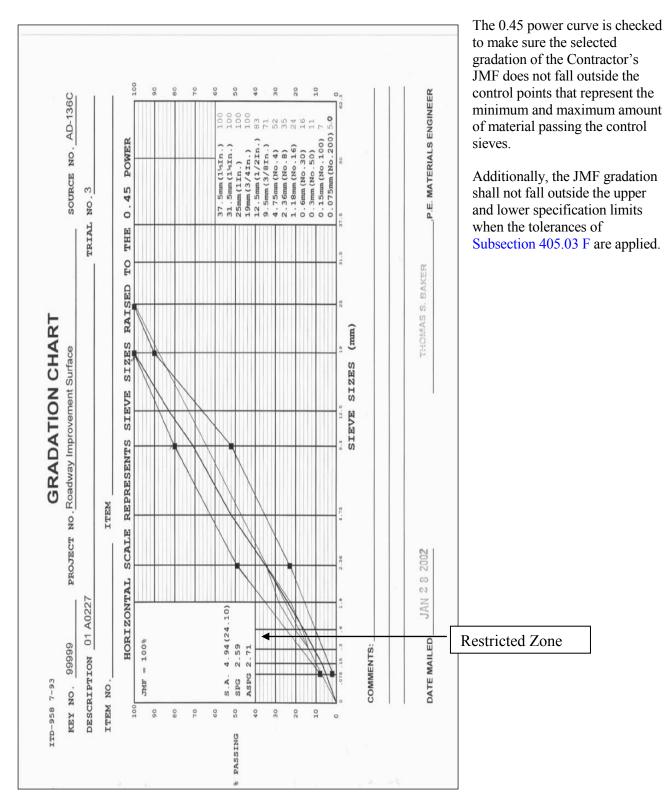


Figure 260.01.03.3. 0.45 Power Curve

260.02 Concrete Pavement (Standard Specification Section 409). Mix designs will be reviewed or confirmed according to the contract requirements.

260.02.01 Portland Cement Concrete Pavement. HQ Central Laboratory will confirm concrete mix designs for Portland Cement Concrete Pavement in accordance with the following procedures.

All sampling and testing performed shall be in accordance with the sampling and testing methods as specified in the ITD Standard Specifications.

260.02.01.01 Items Provided to HQ Central Laboratory. The HQ Central Laboratory must receive the following items before the concrete mix design confirmation process will be initiated. All samples submitted to HQCentral Laboratory must be accompanied by a completed ITD-1044. These items must be submitted 60 days in advance of proposed use:

- 1. A complete mix design including specific gravity (SSD) and absorption for both fine and coarse aggregates per AASHTO T-84 and T-85, respectively. The mix design must identify the aggregate source that will be used and the aggregate correction factor per AASHTO T-152.
- For concrete aggregate sources identified during source approval as reactive per AASHTO T303 baseline testing, ASTM C1293, or ASTM C295 the mix design must include AASHTO T303 (modified) test results for mitigation of ASR expansion.
- 3. Gradation test results representing the material that will be used.
- 4. Final Set time per AASHTO T197M / T197.
- 5. For projects over 2500 CY, samples of the proposed aggregate, cement and admixtures. A minimum of 350 pounds of coarse aggregate, 200 pounds of fine aggregate and 100 pounds of cement must be supplied to the Central Materials Laboratory. No one sample container may weigh more than 50 pounds. All materials provided must meet the contract specifications.
- 6. Mill analysis test reports from the manufacturer must be included for the cement, fly ash and/or silica fume submitted.
- 7. Copies of all data, test reports and worksheets associated with the mix design.
- 8. Each mix design must be assigned a unique mix identification number identical to that which will be recorded on all batch tickets for concrete batched according to the mix design.

260.02.01.02 Central Materials Laboratory Procedures. The Central Laboratory will complete the following prior to batching the proposed mix design:

- 1. Verify the Contractor's compressive strength test results are based on the average of three 28-day cylinders and indicate a minimum compressive strength of 5600 psi. If this requirement is not met the mix design will not be confirmed.
- 2. For aggregate sources identified as reactive for ASR, verify the Contractor's ASR mitigation expansion testing (modified AASHTO T303) meets the following requirements. If these requirements are not met, the mix design will not be confirmed.
 - a. Expansion of mortar bars shall not exceed 0.10 percent at 14 days with the addition of fly ash, lithium, or other ASR mitigation additives.
 - b. The aggregate blend percentages used in the testing are reported and are within 2% of the blend percentages proposed in the mix design and to be used on the project. Coarse and fine aggregates may also be tested separately.

- c. The materials used in the expansion testing are the same materials (aggregate sources, cement, fly ash, mitigation additive) and at the same proportions reported in the proposed mix design and to be used on the project.
- d. When lithium is used, ensure the lithium dosage is reported as a volume and as a percent of the standard or full dose.
- 3. Verify the aggregate is from an approved aggregate materials source. If the source has not been approved, no further testing will be conducted until source approval has been obtained.
- 4. Check the mix design for conformance with the contract specifications (ie. cement content, air, slump, etc.). The design volume will be checked to ensure it totals 27 cubic feet. Should the mix design not meet contract requirements the mix design confirmation process will not proceed and the mix design will not be confirmed.
- 5. Test the fine aggregate for gradation and sand equivalent. Verify the specific gravity and absorption of the coarse and fine aggregate. Should the gradation or sand equivalent testing indicate the aggregate does not meet the contract specifications, the mix design confirmation process will be halted until acceptable materials are submitted.
- 6. Additional testing of the individual materials (cement, aggregates, fly ash, silica fume, admixtures, mineral fillers) may be conducted to verify conformance with contract specifications.

HQ Central Laboratory will batch the concrete in accordance with ASTM C192/C 192M at the proportions indicated in the Contractor's mix design submittal. Admixture dosages may be adjusted in accordance with the manufacturer's recommendations to achieve desired mix parameters. Coarse aggregate will be separated into individual-sized fractions and recombined to produce the gradation indicated in the Contractor's submittal. The weight of coarse and fine aggregate to be used in the batch will be determined per sections 6.3.2.2 and 6.3.2.3 of ASTM C192/C 192M, respectively.

The following mixing sequence will be used by the HQ Central Laboratory unless otherwise agreed to in writing:

- 1. Add coarse aggregate, ³/₄ of the mix water and the air entraining agent (if required) dispensed in solution with the mix water and mix.
- 2. Add fine aggregate, cement and flyash (if required) and mix.
- 3. Add ¹/₄ of the mix water and the water reducing agent (if required) dispensed in solution with the mix water and mix.

If additional admixtures and/or silica fume are used in the mix they will be added in the above sequence per the manufacturer's written recommendations.

The above mixing sequence will not be altered unless the alternate sequence is pre-approved in writing by the admixture manufacturer(s) and the approved alternate mix sequence is provided with the mix design submittal. It is strongly recommended that all laboratories performing mix designs follow the mixing sequence as described above, so test results between labs will be as consistent as possible, and to enable the mix design confirmation process to be completed in as timely a manner as possible.

After mixing, the concrete will be tested for slump, air content, unit weight and yield. Cylinders will be prepared for compressive strength testing.

For mixes using aggregates that are identified as ASR reactive, the Central Laboratory may conduct AASHTO T303 (modified) testing using the proposed mitigation admixtures to confirm the Contractor's testing.

260.02.01.03 Confirmation. The Contractor's mix design will be confirmed for strength provided the HQ Central Laboratory's compressive strength test results, based on the average of three 28-day cylinders, indicate a **minimum** compressive strength of 5300 psi.

When applicable, the Contractor's mix design will be confirmed for ASR mitigation provided the HQ Central Laboratory's expansion test results indicate contract specifications are met (0.10% expansion or less at 14 days) or are within the established multi-laboratory precision of the Contractor's passing expansion test results.

The mix design confirmation results will be reported to the District Resident Engineer via memo from the HQ Central Laboratory.

260.03 Structural Concrete (Standard Specification Section 502). All sampling and testing methods performed shall be as specified in the ITD Standard Specifications. Concrete mix design requires concurrence by the HQ Central Laboratory.

260.03.01 Approval Procedures. Complete the following:

- 1. Verify the complete mix design submittal for conformance with the contract specifications. Designs that do not meet ITD project requirements and specifications will not be approved for use.
- 2. The mix design must identify an approved aggregate source(s) that will be used and the aggregate correction factor, (AASHTO T-152).
- 3. Final Set time per AASHTO T197M / T197
- 4. For aggregate sources that are reactive according to AASHTO T-303 baseline testing, ASTM C1293 or ASTM C295 review the modified AASHTO T-303, Accelerated Detection of Potentially Deleterious Expansion of Mortar Bars Due to Alkali-Silica Reaction (mitigation efforts for ASR expansion) test reports.
- 5. For aggregate sources identified as reactive for ASR, concrete mix design approval requires the following requirements be met for the modified AASHTO T303 mitigation testing:
 - a. Expansion of mortar bars shall not exceed 0.10 percent at 14 days with the addition of fly ash, lithium, mineral admixtures or other ASR mitigation additives.
 - b. The aggregate blend percentages used in the testing are reported and are within 2% of the blend percentages proposed in the mix design and to be used on the project. Aggregates may also be tested separately.
 - c. The materials used in the expansion testing are the same materials (aggregate sources, cement, fly ash, mitigation additive) and at the same proportions reported in the proposed mix design and to be used on the project.
 - d. When fly ash is used, ensure the calcium oxide content of the fly ash used on the project meets the 2% tolerance as established by the specifications.
 - e. When lithium is used, ensure the lithium dosage is reported as a volume and as a percent of the standard or full dose.
- 6. Mill analysis test reports from the manufacturer must be included for the cement, fly ash, and/or silica fume, meet contract specifications and be the same material to be used on the project. Check that any admixtures are approved. HQ Central Laboratory in Boise keeps an updated qualified products list for concrete admixtures.

- 7. Verify that Basic Mix Strength and Design Mix Strength have been determined per Subsection 502.03 of the Specifications. Basic mix strength must equal or exceed the design mix strength calculated for the specified class of concrete. Class 15 and 22 are exempt from this requirement.
- 8. Each mix design shall be assigned a unique mix identification number identical to that which will be recorded on all batch tickets for concrete batched according to the mix design.
- 9. Check the absolute volume of the mix design. Yield should be checked with air in the mid-range. Verify that the moisture content of the aggregate is included in the water content. In addition, efforts to mitigate ASR using lithium nitrate admixture will increase the water content in the mix and must be adjusted for.
- 10. Calculate the volume using the maximum air content to insure that the cement factor does not fall below specifications. (Do not base the mix design using maximum air for anything but checking cement content.)
- 11. Check the percentage of sand based on total weight of aggregate. Generally, this percentage is 30% to 42%. (When sand exceeds 42%, the slump will become more difficult to achieve and maintain because the surface area of the aggregate has increased and requires a larger volume of paste. If during mix design, additional water is used to get the slump and workability, then the w/c ratio goes up. The yield goes up, the cement content goes down, and strength goes down.)
- 12. The water-cement ratio should be designed at a realistic figure for the strength/class of concrete needed. At no time should the water cement ratio be based on the maximum allowable specification. If the upper end of the water-cement ratio is to be targeted, stay at least 0.02 under the maximum specification, allowing for fluctuation in batch weights.
- 13. If fly ash is used, up to 25% of total cementatious material (cement and fly ash) may be fly ash as per specifications. The specific gravity of the fly ash is required. The weight of fly ash is added to the weight of cement when calculating cement content and the water cement ratio.

Attached is an example of ITD-907 Concrete Mix Design Review for Structural or Pavement Design.

IID-307 4-90 CONCRETE MIX DESIGN REVIEW FOR STRUCTURAL OR PAVEMENT DESIGN	W FOR STRUCTURAL OR PAV	EMENT DESIGN SHEET_	of
		El MORE	
PROJECT NO. <u>TK - 84 - 6(035)75</u> 20 MC		SOURCE NO F.	-// 6
CONCRETE SUPPLIER		CONCRETE, CLASS	5 (5600/28 day)
N NO.		- DATE -7/14/97	
CLASS OF MINIMUM MINIMUM MAX. W/C % A.E.A. SLI CONCRETE CEMENT FLY ASH +FLY ASH A.F.A. A.F. A.E.A. SLI IN 100 CONTENT FLY ASH A.F.Y	SLUMP COARSE BULK SPECIFIC GRAVITY RANGE, AGGR. (HHP) OR (SSU) \star INCHES SIZE COARSE = 2.57 $\frac{1}{2} - 2$ $\overline{3}$ FINE. = 2.61 .	ABSORP. LABORATORY NUMBERS ABSORP. CRSE. L1 Z. CRSE.	NUMBERS % BLEND EACH SIZE
= Mc - M Mc - Mf = R	BLEND SAND=	FINE	
	BASIC BATCH WEIGHTS FOR A	BATCH WEIGHTS CORRECTED FOR	BATCH WEIGHT
$\frac{2}{28} = \frac{27}{28} \text{ CU. FT./CU. YD.} = \frac{271000}{28} \text{ C.F.} = 7$	467 LB.		467
3AL./CU.YU.÷//48 = J. IB/CY. 4127	$\begin{bmatrix} FLY ASH II E LE. \\ WATER 234 IR \\ \end{bmatrix}$	275 IB I III	LB. <u>11. 6.</u> LB. LB. <u>27.5 LB</u> .
4 196.56 196.56 197.116	* * *	(X)	1202
AIR = Y X % AIR designation at math 22 = 1, 82 C.F. = A	BLEND SAND		LBLB. (DHY) (SSD)
8.8	DETERMINATION OF THE YIELD TOTAL BATCH WEIGHT (DESIGN)		
$Y \cdot (W + C + FLYASH + A) \dots = LB_{JL} G C F = C A + F A$	WEIGHT PER CUBIC FOOT (DESIGN)	ONCRETE)	$= \frac{1}{28.8} \frac{1}{2}$
(C.A. + F.A.) X R = <u>6</u>	TOTAL BATCH WEIGHT WT. / CU. FT. FRESH CONC.		CU. FT. (VOLUME OF CONCRETE PRODUCED)
<i>1</i> ,	VOLUME OF CONCRETE PRODUCED NUMBER OF YARDS X 27	0,999 RELATIVE YIELD.	
= 1020	CORRECTION FOR MOISTURE CONTENT	1	
BLENU SAND X SP. GH. X 52.4	% MOISTURE IN C.A. X LB. COARSE AGGR.	⊐. SR.	= LB. WATER (X)
= 22.7	% MOISTURE IN F.A. X LB. FINE AGGR.		LB. WATER (Z)
% ABSOHP, X LB, F.A	DECREASE THE MIXING WATER BY THE SUM OF THESE TWO		= IB WATER
INCREASE THE MIXING WATER BY THE SUM OF THESE THREE	INCREASE THE WEIGHT OF THE C.A. BY (X)	(X).	
CROSS OUT EITHER DRY OR SSD AS APPRIOPRIATE. FINAL ACCEPTANCE IS CONTINGENT UPON ACCEPTANCE OF AIR CONTENT, SLUMP AND STRENGTH.	INCREASE THE WEIGHT OF THE F.A. BY (Z)	(2).	
	mar 1	////01	

Quality Assurance

4

1/13

260.00

260.04 Superpave Hot Mix Asphalt (HMA) (Standard Specification Section 405). This section outlines the job-mix formula confirmation process for Superpave Hot Mix Asphalt, (HMA) found in Subsection 405.03-A mix Design.

260.04.01 Mix Design Requirements and Review Procedure. The Contractor must submit a request for use of materials source(s) to the Resident Engineer, and if acceptable, its use will be approved in writing. The Superpave HMA mix design is the Contractor's responsibility. The Contractor must submit the proposed mix design and all test reports, data, and worksheets used for each trial design attempted, to the Resident Engineer. The Resident Engineer will submit the data to the HQ Central Laboratory for mix design approval. The job mix formula (JMF) must be approved prior to beginning paving.

The Contractor's mix design shall develop the JMF for the project, using a qualified, AASHTO Accredited laboratory that is qualified through the Department's Laboratory Qualification Program. Mix designs must be prepared specifically for the project they are submitted for and each class of mix and grade of binder will have a separate mix design created, unless otherwise allowed. Refer to Standard Specification Section 405 Superpave Hot Mix Asphalt for the mix design specifications and a complete list of submittal requirements.

The Contractor's mix design submittal must include all the information required in "A. *Mix Design*" of the Construction Requirements of the 405.03.

The Contractor shall submit the following materials and samples to the Engineer:

- 1. A 50-pound uncompacted asphalt mix sample conforming to the JMF.
- 2. Six Gyratory briquettes compacted to N_{design} and conforming to the JMF. Determine V_a of each specimen and clearly label the air void content. (For SP 5-6 only)
- 3. Six individually packaged specimens of aggregate fabricated in accordance with AASHTO T 165 except the binder is not mixed with the aggregate. Provide enough binder without anti-strip added and anti-strip additive in separate containers to make six test specimens at the required anti-strip percentages. Include enough aggregate, binder and anti-strip additive for a "buttering batch". The Engineer will prepare test specimens from the material and perform testing in accordance with AASHTO T 165
- 4. A 25-pound sample of the combined coarse and fine aggregate to be used in the mix for G_{sb} testing.
- 5. 25-pound sample of RAP, when used, along with the RAP stockpile records and test data.
- 6. 1000-gram sample of other mineral admixtures, such as lime or fly ash, when used.

These samples will be used for laboratory examination and evaluation of the properties of "Materials".

ITD will perform bulk (dry) specific gravity, Gs_b, tests of the coarse and fine aggregate combination on the aggregate provided:

ITD will perform the following testing on the uncompacted HMA sample: asphalt content, gradation, theoretical maximum specific gravity, G_{mm} , Bulk Specific Gravity, G_{mb} of the compacted mixture, index of retained strength, and APA. Air voids, VMA, VFA, and dust to binder ratio will be calculated using these results.

AASHTO T 340, Determining Rutting Susceptibility of Asphalt Pavement Mixture Using the Asphalt Pavement Analyzer (APA), will be performed on the specimens for JMF confirmation. The APA specimens shall have an air void content between 3.0% and 5.0%.

The HQ Central Laboratory will have five working days from the time of receipt of all of the items required above to evaluate the JMF and make a recommendation to the Resident Engineer. HQ Central Laboratory will prepare a written recommendation that will be faxed and/or e-mailed to Resident Engineer with a copy sent to the District Materials Engineer. The original letter will be mailed with copies to the District Engineer Manager, District Materials Engineer, and District Resident Engineer.

The JMF will either be recommended for use or rejected. If a JMF is rejected, the Resident Engineer will inform the Contractor of the deficiencies found and a new or adjusted JMF will be required and the five working day review time will start over.

The Contractor or a designated representative must perform a Superpave HMA mix design in accordance with the current version of AASHTO R-35, "Superpave Volumetric Design for Hot-Mix Asphalt." The Asphalt Institute publications "Superpave Mix Design, Superpave Series No. 2, (SP-2)" and "Mix Design for Asphalt Concrete and Other Hot Mix Types," (MS-2), are available from the Asphalt Institute, Executive Offices and Research Building, Research Park Drive, P.O. Box 14052, Lexington, KY 40512-4052. The proposed JMF shall specify a single aggregate gradation; optimum asphalt content, a theoretical maximum specific gravity, and a bulk specific gravity of a specimen compacted to N_{design}.

The Contractor's mix design submittal must include all the information required in "A. *Mix Design*" of the Construction Requirements of 405.03.

If the Contractor chooses to submit a previously used mix design for review, at a minimum, the following tests must be performed and the results submitted along with the previously used mix design:

- 1. Current sieve analysis on the stockpiles to be used, including crusher control charts
- 2. Coarse and fine aggregate specific gravities and absorptions, (Performed by ITD)
- 3. Asphalt binder content correction factor per FOP for AASHTO T-308
- 4. Aggregate gradation correction factors per FOP for AASHTO T-308

All previously used mix designs submitted by the Contractor must be forwarded to HQ Central Laboratory for review and recommendation. To be considered acceptable as a previously used mix design, the asphalt content, type, grade, aggregate materials, gradation, and anti-strip rate, type and grade must be the same as previously approved. The previously approved mix design data along with the new testing must be submitted for consideration. The decision to accept or reject a previously used mix design rests solely with the HQ Central Laboratory.

The Engineer's approval of the mix design does not relieve the Contractor of responsibility for providing a job mix formula and a Superpave Hot-Mix Asphalt pavement that complies with all contract requirements.

260.04.02 Definitions. The following definitions are from sources common to the hot mix asphalt industry. These items have been selected for further definition because the form of the equation published in the reference text may be different than the form used by ITD or additional explanation is warranted.

Bulk Specific Gravity of Aggregate, G_{sb} The ratio of the weight in air of a unit volume of a permeable material (including both permeable and impermeable voids normal to the material) at a stated temperature to the weight in air of equal density of an equal volume of gas-free distilled water at a stated temperature. (AASHTO T-85 and Asphalt Institute Manual Series No. 2 (MS-2)). Use Idaho IT-144 and T-85 to determine the bulk specific gravity of fine and coarse aggregates respectively.

When the total aggregate consists of separate fractions of coarse aggregate, fine aggregate, and mineral filler, all having different specific gravities, the bulk specific gravity of the total aggregate is calculated using:

$$G_{sb} = \frac{P_1 + P_2 + \dots + P_n}{\left(\frac{P_1}{G_1}\right) + \left(\frac{P_2}{G_2}\right) + \dots + \left(\frac{P_n}{G_n}\right)}$$

where,

 G_{sb} = average bulk specific gravity P_1, P_2, P_n = individual percentages by mass of aggregate, coarse and fine $P_1+P_2+\dots+P_n = 100$ G_1, G_2, G_n = individual bulk specific gravities of aggregate, coarse and fine. (Asphalt Institute Manual Series No. 2 (MS-2)).

Because the amount of fine aggregate present in the coarse aggregate fraction and the amount of coarse aggregate present in the fine aggregate fraction is very small, this equation can be simplified and written as:

 $G_{sb} = \left[\frac{100}{\left(\frac{P_{(+\#4)}}{G_{(+\#4)}}\right) + \left(\frac{P_{(-\#4)}}{G_{(-\#4)}}\right)}\right] \quad USE THIS EQUATION$

where,

 G_{sb} = average bulk specific gravity for the total aggregate $P_{(+#4)}, P_{(.#4)},$ = individual percentages by mass of aggregate, coarse, (+#4) and fine,(-#4) $G_{(+#4)}, G_{(-#4)},$ = individual bulk specific gravities of aggregate, coarse, (+#4) and fine,(-#4)

When more than one materials source is used to provide the coarse aggregate fraction and/or more than one materials source is used to provide the fine aggregate fraction for a mix design or mineral fillers are used, the original form of the Asphalt Institute equation will be used.

Bulk Specific Gravity of Recycled Asphalt Pavement, (RAP), RAP-G_{sb} The bulk Dry Aggregate Specific Gravity of RAP aggregate, (RAP-G_{sb}), is determined from Maximum Theoretical Specific Gravity, RAP G_{mm}, tests performed on the RAP material; the Effective Specific Gravity of Aggregate, G_{se}; and the asphalt absorption. These values are used to determine the Bulk Dry Specific Gravity, (G_{sb}), of the RAP.

RAP G_{se} =
$$\left(\frac{(100 - Adjusted P_b)}{\left(\frac{100}{RAP \ G_{mm}}\right) - \left(\frac{Adjusted P_b}{G_b}\right)}\right)$$

where,

RAP G_{se} = effective specific gravity of aggregate P_b = asphalt content (from AASHTO T308) G_b = specific gravity of asphalt (from mix design) RAP G_{mm} = maximum specific gravity of mix (no air voids)

Adjusted
$$P_b = \left(\frac{Mass \ of \ RAP \ AC + Mass \ of \ Virgin \ AC \ added}{New \ RAP \ Mass}\right)$$

RAP G_{sb} = dry bulk specific gravity of the RAP

RAP G_{sb}=RAP G_{se} – asphalt absorption

Voids in the Mineral Aggregate, (VMA): The volume of intergranular void space between the aggregate particles of a compacted paving mixture that includes the air voids and the effective asphalt content, expressed as a percent of the total volume of the sample (Asphalt Institute Manual Series No. 2 (MS-2). VMA can be calculated either as percent by weight of total mix or as a percent by weight of aggregate as follows.

VMA will be calculated using the following formula when the mix composition is <u>determined as</u> <u>percent by weight of total mixture</u>:

$$VMA = 100 - \left(\frac{G_{mb}P_s}{G_{sb}}\right)$$

where,

VMA = voids in mineral aggregate, percent of bulk volume calculate to 0.01; report to 0.1
G_{sb} = bulk specific gravity of total aggregate
G_{mb} = bulk specific gravity of compacted mixture (AASHTO T-166 Method A)
P_s = aggregate content, percent by total weight,
(this can be written as P_s = 100-%AC)

Air Voids, V_a : the total volume of small pockets of air between the coated aggregate particles throughout a compacted paving mixture, expressed as a percent of the bulk volume of the compacted paving mixture. (Asphalt Institute Manual Series No. 2 (MS-2).

$$V_a = 100 \times \left(\frac{G_{mm} - G_{mb}}{G_{mm}}\right)$$

where,

V_a = air voids in compacted mixture, percent of total volume calculate to 0.01; report to 0.1

- G_{mm} = maximum specific gravity of paving mixture (AASHTO T-209, Bowl Method)
- G_{mb} = bulk specific gravity of compacted mixture (AASHTO T-166, Method A)

Voids Filled with Asphalt, (VFA): the portion of the volume of intergranular void space between the aggregate particles (VMA) that is occupied by the effective asphalt. (Asphalt Institute Manual Series No. 2 (MS-2)).

$$VFA = 100 \times \left(\frac{VMA - V_a}{VMA}\right)$$

where,

VFA = voids filled with asphalt, percent of VMA calculate to 0.1; report to 1 VMA = voids in mineral aggregate, percent of bulk volume

 V_a = air voids in compacted mixture, percent of total volume.

Dust-to-Binder Ratio ($DP = P_{\#200}/P_{be}$) The ratio between the percent of aggregate passing the No. 200 (0.075-mm) sieve and the effective binder content (P_{be}). (Asphalt Institute Superpave Series No. 2 (SP-2)).

$$\mathrm{DP} = \left(\frac{P_{-\#200}}{P_{be}}\right)$$

where,

DP = Dust Proportion, (dust-to-binder ratio) calculate to 0.01; report to 0.1

- $P_{-#200}$ = aggregate passing the -#200 (0.075 mm) sieve, percent by mass of aggregate
- P_{be} = effective asphalt content, percent by total mass of mixture Calculate to 0.01; report to 0.1

The following equations are used to calculate Pbe:

Effective Asphalt Content, P_{be}

$$P_{be} = P_b - \frac{P_{ba}}{100} (100 - P_b)$$

Where,

 P_b = asphalt content (from AASHTO T308) P_{ba} = absorbed asphalt

Absorbed Asphalt, P_{ba}

$$\mathbf{P}_{ba} = \left(\frac{G_{se} - G_{sb}}{G_{sb}G_{se}}\right) G_b$$

Where,

re, G_{se} = effective specific gravity of aggregate G_{sb} = bulk specific gravity of aggregate G_b = specific gravity of asphalt (from mix design)

Effective Specific Gravity of Aggregate, G_{se}

$$G_{se} = \left(\frac{(100 - P_b)}{\left(\frac{100}{G_{mm}}\right) - \left(\frac{P_b}{G_b}\right)}\right)$$

Where,

 G_{mm} = maximum specific gravity of mix (no air voids) P_b = asphalt content (from AASHTO T308) G_b = specific gravity of asphalt (from mix design)

260.04.03 Tolerances. The following tolerances will be applied to the Engineer's test results when confirming the job mix formula.

<u>*Gradation*</u>: ITD's gradation when tested in accordance to AASHTO T-30 must be within the tolerances shown below on any individual sieve when compared with the JMF gradation.

Sieve Size	Tolerance, % (±)	Sieve Size	Tolerance, % (±)
1 in (25 mm)	6.0	No. 8 (2.36 mm)	5.0
3/4 in (19 mm)	6.0	No. 16 (1.18 mm)	5.0
1/2 in (12.5 mm)	6.0	No. 30 (0.60 mm)	5.0
3/8 in (9.5 mm)	6.0	No. 50 (0.30 mm)	4.0
No. 4 (4.75 mm)	6.0	No. 100 (0.15 mm)	4.0
		No. 200 (0.075 mm)	2.0

<u>Air Voids</u>, V_a : The Contractor must design a mix with 4.0% air voids at N_{des} and optimum binder content. If ITD's results are not less than 2.5% or greater than 5.5% air voids, the two design air voids are considered comparable and the Contractor's air voids are confirmed.

<u>Voids in the Mineral Aggregate, (VMA)</u>: If the Contractor's VMA meets the minimum specification and ITD's VMA falls below the minimum specification by no more than 1.0%, the Contractor's VMA is confirmed.

<u>Index of Retained Strength (IRS), (Immersion Compression)</u>: The Contractor must submit a job mix formula that provides a minimum result of 85% IRS. If ITD's results are below the minimum of 85%, confirmation will be based solely on the judgment of ITD. Source file data may be used to make this judgment.

Theoretical Maximum Specific Gravity, G_{mm} : The difference between any two labs cannot exceed 0.02. This difference is independent of and does not supersede the air void specification and confirmation tolerance.

Bulk specific gravity of compacted mixture, G_{mb} : The difference between any two labs cannot exceed 0.02. This difference is independent of and does not supersede the air void or VMA specification and confirmation tolerance.

Bulk specific gravity of aggregate, G_{sb} : The difference between any two labs cannot exceed 0.040 individual fraction, (+#4 AND -#4), and 0.02 combined. This difference is independent of and does not supersede the VMA specification and confirmation tolerance.

Voids Filled with Asphalt, VFA: If ITD's results for VMA and Air voids are within the tolerances provided the calculated VFA will not be used as an acceptance criteria.

Dust to Binder, DP: The Dust to Binder Ratio, or Dust Proportion, is considered acceptable if the value determined by ITD is ± 0.1 from the applicable published range in Table 405.02-1 of Standard Specification.

Asphalt Binder Content, P_b : Asphalt Binder content is considered acceptable if the value determined by ITD is within ±0.4 of the job mix formula value.

SECTION 265.00 – QUALIFIED AGGREGATE MATERIAL SUPPLIERS

The District Materials Engineer will maintain current lists of qualified aggregate material suppliers. The lists will be divided by the aggregate product category. To be included on a list means the aggregate supplier has provided the state with adequate documentation to verify conformance with state specifications, including but not limited to Standard Specification Sections 106.09, 107.02, 107.17, 107.18, 703.12, and 703.13. Sampling and testing will be by an approved independent laboratory. The purpose of having the current lists is to provide ITD personnel and contractors with readily available information regarding aggregate suppliers that have met the requirements for aggregate quality and source clearance. The availability and quantity of the material in the source is not to be implied.

The lists do not imply acceptance of material should the quality change or the material not meet the contract requirements. The material must meet the contract requirements for acceptance.

The Resident Engineer has the authority to grant written approval for a contractor to use an aggregate source from the qualified material suppliers list for a specific project, providing the District Materials Engineer concurs.

The aggregate supplier's source will be identified by pit number and location. Combining stockpiles or aggregates from other sources that are not qualified will invalidate the qualification. The source may be included on the list for a period of not more than two years before the source must be re-evaluated by the District Materials Engineer. The re-evaluation will be based on the suppliers' current operation and adequate documentation provided by the supplier, including new test results when necessary, to determine specification compliance. An aggregate source may be removed from a list at any time should evidence of noncompliance exist.

ITD may test source aggregates to evaluate the submitted test results. The Contractor shall provide full access to the source, including raw and crushed materials, for ITD sampling and testing.

Refer to Subsection 106.09-II, Contractor Furnished Source, in the Contract Administration Manual for administration of source approval.

265.01 Qualified Asphalt Mix Aggregate and Base Aggregate Suppliers. The District Materials Engineer will evaluate the source based on Standard Specifications Section 703 – Aggregates, and applicable asphalt mix specification requirements. In no case will inclusion on the list imply approval of a mix design, job-mix formula, or specification material.

Mix designs or job-mix formulas will be evaluated separately for each project based on Standard Specification Section 405.03(A).

265.02 Qualified Concrete Aggregate Suppliers. The District Materials Engineer will evaluate the source based on Standard Specifications Section 703 – Aggregates, and applicable concrete specification requirements and notify the supplier if the source is qualified to be included on the list. Inclusion on the list does not imply approval of a concrete mix design or specification material.

265.03 Other Specification Aggregate Items. Other aggregate items not included in the base, asphalt mix, or concrete categories that have quality requirements may be listed as qualified, providing the supplier submits adequate documentation to the district for evaluation to verify specification conformance.

SECTION 270.00 – MINIMUM TESTING REQUIREMENTS

270.01 Content of The MTR Tables.

270.02 Source Approval.

270.03 Obviously Defective Material.

270.04 Acceptance Of Small Quantities.

270.05 Non-standard Acceptance of Materials.

270.06 Special Provision Items.

270.07 Change Order Items.

270.10 MTR Tables 200 Earthwork.

205 - Excavation and Embankment.

209 - Small Ditches.

210 - Compacting Backfill.

212 - Erosion and Sediment Control.

- 270.20 MTR Tables 300 Bases.
 - 301 Granular Subbase.
 - **302 Emulsion Treated Base.**
 - 303 Aggregate Base.

304 - Reconditioning.

307- Open-graded Rock Base (Rock Cap).

308 - Cement Recycled Asphalt Base Stabilization (CRABS).

270.30 MTR Tables 400 Surface Courses and Bituminous Pavement.

401 - Tack Coat.

402 - Prime Coat.

- 403 Seal Coat.
- 404 Surface Treatment.
- 405 SuperPave Hot Mix Asphalt.
- 406 Road Mix.
- 407 Scrub Coat.
- 408 Fog Coat.
- 412 Plant Mix Seal.
- 415 Microsurfacing

270.40 MTR Tables 409 Portland Cement Concrete Pavement.

409 - Portland Cement Concrete Pavement.

411 - Urban Concrete Pavement.

270.50 MTR Tables 500 Structures.

502 - Concrete.

- 503 Metal Reinforcement.
- 504 Structural Metals.
- 505 Piling.

506 - Pre-Stressing Concrete.

507 - Bearing Pads and Plates.

508 - Corrugated Plate Pipe.

509 - Non-Structural Concrete

510 - Concrete Overlay.

511- Concrete Waterproofing Systems.

512 - Gabion Structure.

270.60 MTR Tables 600 Incidental Construction.

602 - Culverts.

603 - Pipe Siphons.

604 - Irrigation Pipe Lines.

605 - Sewers.

- 606 Pipe Underdrains.
- 607 Embankment Protectors.
- 608 Aprons for Pipe.

609 - Minor Structures.

610 - Fence.

611 - Cattle Guards.

- 612 Metal Guardrail.
- 612 Concrete Guardrail.
- 613 Sidewalks.
- 614 Urban Approaches.
- 615 Curb and Gutter.
- 616 Signs and Sign Supports.
- 617 Delineators and Mileposts.
- 618 Marker Posts, Witness Posts and Street Monuments.
- 619 Illumination.
- 620 Planting.
- 621 Seeding.
- 622 Pre-cast Concrete Headgates.
- 623 Concrete Slope Paving.
- 624 Riprap.
- 625 Joints.
- 626 Construction Traffic Control Devices.
- 627 Painting.
- 628 Snow Poles.
- 634 Mailbox.
- 635 Anti-skid Material.
- 640 Geotextiles.
- 656 Traffic Signal Installation.
- Miscellaneous Building Items.
- Miscellaneous Items.

SECTION 270.00 – MINIMUM TESTING REQUIREMENTS

The following tables outline the minimum testing and acceptance requirements for materials incorporated into ITD construction projects and are a part of the ITD Quality Assurance Program. The tables apply to the sampling and testing of material characteristics not specified as accepted by statistical procedures. For material characteristics accepted by statistical procedures, the acceptance requirements are included in Table 106.03-1 of the Quality Assurance (QA) Special Provision. On projects containing the QA Special Provision (QC/QA projects), the minimum testing requirements outlined herein apply for all material characteristics not included in Table 106.03-1 of the QA Special Provision.

The requirements outlined herein are the established minimum acceptance requirements for materials used in standard applications and paid for under standard bid items. For special provision items, material used in non-standard, non-roadway or temporary applications or small quantities of materials alternative materials acceptance requirements will be determined as discussed herein or as specified in the contract documents.

Minimum testing frequencies are included in the tables. These frequencies may be reduced by change order with the concurrence of the District Materials Engineer and HQ Quality Assurance Engineer for materials with a history of uniform test results and exhibiting good quality material. The Engineer may elect to increase testing frequency at any time. Testing frequency should be increased when accepting material from newly developed sources or those with a wide range of results.

270.01 Content of the MTR Tables. The MTR tables are organized by Standard Specification Section. For each material listed, the testing and acceptance requirements are included. The tables also include ITD specification references and test methods. The tables indicate who is responsible for sampling and testing for each material. The required report form numbers columns include forms related to materials acceptance that are the responsibility of the project personnel. Some reports generated as a result of HQ testing are included and indicated as a Lab Report.

The *minimum required frequency* columns list the maximum quantity, and fractions of a quantity of material that can be represented by a single test. For example, a frequency of "Each 500 m³" for gradation indicates that there must be one gradation test located within each 500 cubic meters of material accepted. Testing for each item and material must be distributed throughout the project to represent the total quantity of material accepted.

There are three types of testing listed in the *purpose of testing* columns: Acceptance, Verification and Independent Assurance. Acceptance of material is by one or a combination of the following as indicated in the MTR tables:

- acceptance testing performed by the State
- certification
- certification with quality control or other test results provided by the supplier or manufacturer
- pretesting by the State
- inspection by the State and
- laboratory testing by the State

For some materials, verification testing is indicated and is in addition to materials acceptance. Verification testing is typically performed by the HQ Central Laboratory and is used to verify manufacturer's certifications.

Independent assurance requirements are also included in the tables. The Independent Assurance Program is described in detail in Section 300.00.

The *remarks, notes or additional directions* columns of the tables specify the location of acceptance, references to sections of the manual, small quantity exceptions, and other notes and remarks as applicable.

270.02 Source Approval. Materials source approval requirements and associated quality testing, such as Idaho Degradation, LA Abrasion and Ethylene Glycol testing, are not included in the tables. All fill and aggregate materials imported from off the project must be obtained from approved materials sources. Section 265.00 provides an overview of the materials source approval process.

270.03 Obviously Defective Material. Based on inspection and without regard for testing frequency, the Engineer may isolate and reject obviously defective material.

270.04 Acceptance of Small Quantities. The Department may accept small quantities of certain materials without sampling and testing. The determination to accept materials using this provision rests solely with the Engineer. The Engineer may elect to sample and test small quantities at any time. The following materials are not eligible for small quantity acceptance:

- Materials that are accepted by manufacturer's certification. Manufacturer's certifications must be provided for all quantities of material accepted by certification.
- Concrete with a specified strength of greater than 3000 psi.
- Paving on the Interstate, with quantities above 100 ton including median crossovers.

Material can be accepted as a small quantity if the estimated plan quantity is less than the minimum testing frequency. The following minimum requirements must be met and documented when using small quantity acceptance:

- Aggregates must be obtained from approved materials sources.
- A mix design must be submitted, reviewed and approved by the Engineer prior to use for plant mix pavement and concrete items.
- Visual inspection of the materials during installation, placement or compaction.
- For small quantities of traveled way paving, intersection paving or paving at intersection radiuses, cores are required in accordance with Standard Specification 405.03L for in-place density acceptance. Small quantity pavement applications that do not require cores for in-place density acceptance include small patches, utility repairs, and pavement placed outside the traveled way.

The basis for acceptance of the material must be documented. Documentation will be by file memo and will be included in the daily diary or will be on field or test reports. A brief statement summarizing the basis for acceptance must be included in the Materials Summary Report submitted at the end of the project. Examples of basis for small quantity acceptance are as follows:

- Satisfactory test results on the same material from a recent or concurrent project.
- Visual inspection of the materials and installation.
- Material Certification (ITD-851) with supporting QC or manufacturer's test results where applicable.
- The use of sufficient compaction effort and equipment, as determined by the Engineer.

Sampling and laboratory verification testing may be waived for the following items when the quantity of material is equal to or less than that indicated below:

Asphalt (Emulsified)	2000 gallons; 7600 liters (8 tons)
Asphalt (PG Binder)	22 Tons (20 t)
Cement, Lime, Fly ash	40 cubic yards of concrete placed
Geotextiles	600 square yards (500 square meters)

270.05 Non-standard Acceptance of Materials. Acceptance requirements will be determined on a case by case basis for the following regardless of the quantity:

- material not permanently incorporated into the project (temporary detours, etc.),
- when sampling and testing per the standard requirements is not applicable due to the application or use of the material,
- when sampling and testing per the standard requirements is not applicable due to the sequence of placement

Some examples of non-standard applications are:

- driveways
- field approaches
- mailbox turnouts
- asphaltic ditches and slopes
- material behind guardrail and for guardrail terminals
- asphaltic sidewalk and curb

The Engineer, in consultation with the District Materials Engineer, will develop a written acceptance plan that identifies the non-standard acceptance criteria prior to incorporating the material.

For numerous fractions of an item, such as short pipe extensions, where the required minimum frequency of testing is not practical, a written acceptance plan can be developed to replace some of the testing with visual inspection. The plan must be approved prior to incorporating the material.

The minimum requirements listed for small quantities (Section 270.04) must be met (i.e. approved sources, mix designs approval, inspection and cores for mainline and intersection paving). The documentation requirements for materials acceptance will be the same as those outlined for small quantity acceptance.

270.06 Special Provision Items. A Special Provision pay item may include multiple different materials, all of which require acceptance. When the materials acceptance requirements for a special provision item are not included in the contract the acceptance requirements for each material incorporated will be determined based on the following criteria:

- When the material is included in the MTR tables and is being used in a standard application, the MTR table acceptance requirements will be used.
- When the material is not included in the MTR tables or is not being used in a standard application, acceptance requirements will be determined by the Engineer, in consultation with the District Materials Engineer.
- When the material is required by the contract to meet a given specification, such as an ASTM or AASHTO specification, at minimum, acceptance of material will require a manufacturer's certification in accordance with Section 230.00.

A brief statement summarizing the basis for acceptance must be included in the Materials Summary Report submitted at the end of the project.

270.07 Change Order Items. A Change Order can include material to be paid for under standard pay items or can establish nonstandard pay items. For standard pay items, the MTR tables will apply. Acceptance requirements for nonstandard items will be determined based on the following criteria:

- When the material is included in the MTR tables and is being used in a standard application, the MTR table acceptance requirements will be used. This would include a change order that is paid by lump sum and includes materials covered in the MTR tables.
- When the material is not included in the MTR tables or is not being used in a standard application, acceptance requirements will be determined by the Engineer, in consultation with the District Materials Engineer.
- When the material is required by the change order or by reference to meet a given specification, such as an ASTM or AASHTO specification, at minimum, acceptance of material will require a manufacturer's certification in accordance with Section 230.00.

A brief statement summarizing the basis for acceptance must be included in the Materials Summary Report submitted at the end of the project.

BID ITEM/ MATERIAL	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR	
TYPE OF CONSTRUCTION	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS	
STANDARD SPEC	IFICATION SECTIO	DN: 205 EX	CAVATION AND	EMBANKM	ENT		
Excavation, Class C Compaction Excavated to top of subgrade or	ACCEPTANCE In-Place Density (1)	205.03 (E)	AASHTO T 99 AASHTO T 180 AASHTO T 224 AASHTO T 272 Idaho IT-74 AASHTO T 310 Method B	ITD-850	Each 5000 SY.	Obtain check tests within 10 feet (3m) and at same depth as original test.	
below		ITD Project Personnel	ITD Project Personnel				
Natural ground under embankmentS	INDEPENDENT ASSURANCE In-Place Density	IA Inspector	IA Inspector	ITD-857	Observation one(1) per project		205-1
Excavation Subgrade Embankment Fill	ACCEPTANCE In-Place Density (1)	205.03 (E)	AASHTO T 99 AASHTO T 180 AASHTO T 224 AASHTO T 272 Idaho IT-74 AASHTO T 310 Method B	ITD-850	Each 2,500 CY or 4,000 tons (2000 m ³ or 3500 t), but not less than one (1) test per lift for each bottom 3 and each top 3 lifts and 1 test every 2500 CY or 4000 tons in between.	Obtain check tests within 10 feet (3m) and at same depth as original test. Document compaction effort (equipment, number of passes etc.) for lifts not tested.	20
		ITD Project Personnel	ITD Project Personnel				
	INDEPENDENT ASSURANCE In-Place Density	IA Inspector	IA Inspector	ITD-857	Observation one(1) per project		

(1) Gradation to verify material is too granular to test and the compaction effort must be documented on the ITD-850 including equipment and roller passes, at the same frequency as the required density acceptance.

	BID ITEM/ MATERIAL	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED		REMARKS, NOTES OR
	TYPE OF CONSTRUCTION	TESTING	SAMPLED BY	TESTED BY	REPORT FORM NO.	REQUIRED FREQUENCY	ADDITIONAL DIRECTIONS
	Borrow	ACCEPTANCE In-Place Density	205.03 (E)	AASHTO T 99 AASHTO T 180 AASHTO T 224 AASHTO T 272 Idaho IT-74 AASHTO T 310 Method B	ITD-850	Each 2,500 CY or 4,000 tons (2000 m ³ or 3500 t) but not less than one (1) test per lift for each bottom 3	Obtain check tests within 10 feet (3m) and at same depth as original test. Document compaction
	Subgrade Embankment Fill	(1)	ITD Project Personnel	ITD Project Personnel		and each top 3 lifts and 1 test every 2500 CY or 4000 tons in between.	effort (equipment, number of passes etc.) for lifts not tested.
		INDEPENDENT ASSURANCE In-Place Density	IA Inspector	IA Inspector	ITD-857	Observation one(1) per project	
2	Granular Borrow Subgrade Embankment Fill	ACCEPTANCE In-Place Density (1)	205.03 (E)	AASHTO T 99 AASHTO T 180 AASHTO T 224 AASHTO T 272 Idaho IT-74 AASHTO T 310 Method B	ITD-850	Each 5000 CY but not less than one test per lift for each bottom 3 and each top 3 lifts and 1 test	Obtain check tests within 10 feet (3m) and at same depth as original test. Document compaction effort (equipment, number of passes
			ITD Project Personnel	ITD Project Personnel		every 5000 CY in between.	etc.) for lifts not tested.
205-2		INDEPENDENT ASSURANCE In-Place Density	IA Inspector	IA Inspector	ITD-857	Observation one (1) per project	
			205.02	AASHTO T 176 Method 2			Sand equivalent requirements do not apply to
		ACCEPTANCE Sand Equivalent	ITD Project Personnel	ITD Project Personnel	ITD-901	Each 10,000 CY (7500 m³)	Recycled Asphalt Pavement (RAP) used as granular borrow.
		INDEPENDENT ASSURANCE Sand Equivalent	IA Inspector	IA Inspector	ITD-857	Each 200,000 CY (150,000 m ³)	
	Soft Spot Repair	oot Repair In-Place Density (1)		AASHTO T 99 AASHTO T 180 AASHTO T 224 AASHTO T 272 Idaho IT-74 AASHTO T 310 Method B	ITD-850 Each repair area or combination of areas but not less than each		
			ITD Project Personnel	ITD Project Personnel		150 SF	
				nd the compaction ef s the required density		cumented on the I	D-850 including

BID ITEM/ MATERIAL	PURPOSE OF TESTING	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR				
TYPE OF CONSTRUCTION	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS				
STANDARD SPECIFICATION SECTION: 209 – SMALL DITCHES										
Small Ditches When constructed upon dikes	ACCEPTANCE In-Place Density	205.03 209.03	AASHTO T 99 AASHTO T 180 AASHTO T 224 AASHTO T 272 Idaho IT-74 AASHTO T 310 Method B	ITD-850	One (1) per project	Testing required only when constructed upon dikes per Standard Specification Subsection	209			
		ITD Project Personnel	ITD Project Personnel			209.03.				
	INDEPENDENT ASSURANCE In-Place Density	IA Inspector	IA Inspector	ITD-857	Observation one (1) per project					

270	1	Λ
270.	I	υ

	BID ITEM/ MATERIAL	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED	MINIMUM	REMARKS, NOTES OR
	TYPE OF CONSTRUCTION	TESTING	SAMPLED BY	TESTED BY	REPORT FORM NO.	REQUIRED FREQUENCY	ADDITIONAL DIRECTIONS
	STANDARD SPEC	IFICATION SECTIO	ON: 210 – C	OMPACTING B	ACKFILL		
	Compacting Backfill	ACCEPTANCE In-Place Density (1)	210.03	AASHTO T 99 AASHTO T 180 AASHTO T 224 AASHTO T 272 Idaho IT-74 AASHTO T 310 Method B	ITD-850	Each 2,500 CY or 4,000 tons (2000 m ³ or 3500 t) for each structure component. Abutments for Bridge	Document compaction effort for each lift. Obtain check tests within 10 feet (3m) and at same depth as
	(Structure Backfill)		ITD Project Personnel	ITD Project Personnel		approach slabs not less than one test per 8in compacted lift.	original test. See QA Manual Section 275 for AASHTO T310.
		INDEPENDENT ASSURANCE In-Place Density	IA Inspector	IA Inspector	ITD-857	Observation one (1) per project	
210	Compacting Backfill	ACCEPTANCE In-Place Density (1)	210.03	AASHTO T 99 AASHTO T 180 AASHTO T 224 AASHTO T 272 Idaho IT-74 AASHTO T 310 Method B	ITD-850	Each 200 LF of pipe installed, but no less than one (1) test per pipe installed.	See QA Manual Section 275 for AASHTO T310. A pipe is considered the total continuous length as shown on the project
	(Pipe Backfill)		ITD Project Personnel	ITD Project Personnel		installed.	pipe summary sheet.
		INDEPENDENT ASSURANCE In-Place Density	IA Inspector	IA Inspector	ITD-857	Observation one (1) per project	
	Compacting Backfill	ACCEPTANCE In-Place Density(1)	210.03	AASHTO T 99 AASHTO T 180 AASHTO T 224 AASHTO T 272 Idaho IT-74 AASHTO T 310 Method B	ITD-850	Each 2,500 CY or 4,000 Tons (2000 m ³ or 3500 t)	Document compaction effort for each lift. Obtain check tests within 10 feet (3m) and at same depth as
	(Retaining Wall Backfill)		ITD Project Personnel	ITD Project Personnel		01 3300 t)	same deput as original test. See QA Manual Section 275 for AASHTO T310.
		INDEPENDENT ASSURANCE In-Place Density	IA Inspector	IA Inspector	ITD-857	Observation one (1) per project	
				nd the compaction e same frequency as			ITD-850 including

BID ITEM/ MATERIAL	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED		REMARKS, NOTES OR]
TYPE OF CONSTRUCTION	TESTING	SAMPLED BY	TESTED BY	REPORT FORM NO.	REQUIRED FREQUENCY	ADDITIONAL DIRECTIONS	
STANDARD SPEC	IFICATION SECTION	DN: 212 – E	ROSION AND S	EDIMENT CO	ONTROL	-	Ĩ
Slope Drain	ACCEPTANCE	212.03 (B) 706		ITD-914 (Steel) ITD-851	Total Quantity	See QA Manual	
	Certification	Manufacturer	Manufacturer	(All other material)	Paid	Section 230.00	
Fiber Wattles	ACCEPTANCE Certification	711.20		ITD-851	Total Quantity	Certified noxious weed-free grain	
		Manufacturer	Manufacturer		Paid	straw.	
	ACCEPTANCE	212.03 (B4)		ITD-849	TULO	See QA Manual Section 230.09	
Sediment Trap	(Erosion Control Geotextile) Certification	Manufacturer	Manufacturer		Total Quantity Paid		
	VERIFICATION (Erosion Control Geotextile) Laboratory Test	212.03 (B4)		ITD-1044 (Sample		No Samples	
		ITD Project Personnel	ITD Central Lab	Data) ITD-1047 (Lab Report)) 47	required for quantities less than 600 SY (500 m ²)	
Silt Fence	ACCEPTANCE Certification	212.03 (B3) 718.09 Manufacturer	Manufacturer	ITD-849	Total Quantity Paid	See QA Manual Section 230.09	
		212.03 (B3)	Manufacturer	ITD-1044		No samples	212-1
	VERIFICATION . Laboratory Test	718.09		(Sample Data) ITD-1047 (Lab Report)		required for quantities less than 500 linear feet (150 m)	21
		ITD Project Personnel	ITD Central Lab				
	ACCEPTANCE	212.03 (B5)			Total Quantity	RE Letter-See	
	Inspection	No sample required	No testing required	ITD-854	Paid	QA Manual Section 250.00	
		212.03 (B5)		ITD-849 (When			
Diversion Channels and Ditches	ACCEPTANCE Certification	Manufacturer	Manufacturer	Érosion Control Geotextile used)	Total Quantity Paid	See QA Manual Section 230.09	
		212.03 (B5)		ITD-1044 (Sample		No Samples required for	
	VERIFICATION Laboratory Test	ITD Project Personnel	ITD Central Lab	Data) ITD-1047 (Lab Report)		quantities less than 600 SY (500 m ²)	
	ACCEPTANCE	212.03 (B6)			Total Quantity	RE Letter-See	
Dikes and Berms	Inspection	No sample required	No testing required	ITD-854	Paid	QA Manual Section 250.00	

	BID ITEM/ MATERIAL	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED		REMARKS, NOTES OR	
	TYPE OF CONSTRUCTION	TESTING	SAMPLED BY	TESTED BY	REPORT FORM NO.	REQUIRED FREQUENCY	ADDITIONAL DIRECTIONS	
		ACCEPTANCE	212.03 (B7)			Total Quantity	RE Letter-See	
	Open-top Culvert	Inspection	No sample required	No testing required	ITD-854	Paid	QA Manual Section 250.00	
		ACCEPTANCE	212.03 (B8)			Total Quantity	RE Letter-See	
	Waterbar	Inspection	No sample Required	No testing Required	ITD-854	Paid	QA Manual Section 250.00	
	Ciltotica Dorm	ACCEPTANCE	212.03 (B8)			Total Quantity	RE Letter-See	
	Siltation Berm	Inspection	No sample Required	No testing Required	ITD-854	Paid	QA Manual Section 250.00	
		ACCEPTANCE	212.03 (B8)		ITD-854	Total Quantity	RE Letter-See	
		Inspection	No sample Required	No testing Required	TTD-854	Paid	QA Manual Section 250.00	
	Stabilized Construction Entrance	ACCEPTANCE	212.03 (B11)					
212-2		(Erosion Control Geotextile) Certification	Manufacturer	Manufacturer	ITD-849	Total Quantity Paid	See QA Manual Section 230.09	
		VERIFICATION (Erosion Control Geotextile) Laboratory Test	212.03 (B11) ITD Project Personnel	ITD Central Lab	ITD-1044 (Sample Data) ITD-1047 (Lab Report)	One (1) sample per lot	No Samples required for quantities less than 600 SY (500 m ²)	
		ACCEPTANCE	212.03 (B13)			Total Quantity	Certification of	
	Soil Binder	Certification	Manufacturer	Manufacturer	ITD-851	Paid	non-toxic properties	
		ACCEPTANCE Inspection	212.03 No sample required	No testing required	ITD-854	Total Quantity Paid	RE Letter-See QA Manual Section 250.00	
		ACCEPTANCE	715.01			Total Quantity	See QA Manual	
		(Wire Mesh) Certification	Manufacturer	Manufacturer	ITD-851	Paid	Section 230.01	
	Gabion	ACCEPTANCE (Joints)	715.05		ITD-851	Total Quantity	See QA Manual	
		Certification	Manufacturer	Manufacturer		Paid	Section 230.01	
		ACCEPTANCE	715.06		ITD-25			
		(Fill Materials) Inspection	No sample required	No testing Required	(Standard Diary)			
		ACCEPTANCE (Geotextile)		NDARD SPECIFIC	ATION SECTION	N 640		

0.70

BID ITEM/ MATERIAL	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED		REMARKS, NOTES OR	
TYPE OF CONSTRUCTION	TESTING	SAMPLED BY	TESTED BY	REPORT FORM NO.	REQUIRED FREQUENCY	ADDITIONAL DIRECTIONS	
	ACCEPTANCE (Backfill) In-place Density	210.03 212.03 (B)	AASHTO T 99 Method C or D AASHTO T 310 Method B		Each 2,500 CY or 4,000	Document compaction effort for each lift.	
Gabion (Continued)		ITD Project Personnel	ITD Project Personnel	ITD-850	Tons (2000 m ³ or 3500 t)	Obtain check tests within 10 feet (3m) and at same depth as original test.	
	INDEPENDENT ASSURANCE In-Place Density	IA Inspector	IA Inspector	ITD-857	One (1) observation per project		
	ACCEPTANCE	718					
	(Erosion Control Geotextile) Certification	Manufacturer	Manufacturer	ITD-849	Total Quantity Paid	See QA Manual Section 230.09	212-3
Revet Mattress	VERIFICATION (Erosion Control	212.03 (C2)		ITD-1044 (Sample	One (1)	No Samples required for	21
	Geotextile) Laboratory Test	ITD Project Personnel	ITD Central Lab	Data) ITD-1047 (Lab Report)	sample per lot	quantities less than 600 SY (500 m ²)	
Stone Filter	ACCEPTANCE	212.03 (C3) Permanent Measures		ITD-854	Total Quantity	RE Letter-See QA Manual	
Berms/Dams	Inspection	No sample required	No testing required		Paid	Section 250.00	
Sediment Basin	ACCEPTANCE	212.03 (C4) Permanent Measures		ITD-854	Total Quantity Paid	RE Letter-See QA Manual	
	Inspection	No sample required	No testing required		Γαιυ	Section 250.00	

BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED	MINIMUM	REMARKS, NOTES OR	
MATERIAL	TESTING	SAMPLED BY	TESTED BY	REPORT FORM NO.	REQUIRED FREQUENCY	ADDITIONAL DIRECTIONS	
STANDARD SPEC	CIFICATION SECTIO	N: 301- G	RANULAR SUBB	ASE			
	ACCEPTANCE Gradation(1)	301.02 703.11	AASHTO T 2 AASHTO T 248 AASHTO T 27 AASHTO T 255 AASHTO T 265 AASHTO T 176 Method 2, Mechanical	ITD-901	Each 5,500 Tons (5000 t)	Acceptance from windrow or roadway. Wash method not required.	
Aggregate	Sand Equivalent	ITD Project Personnel	ITD Project Personnel			Moisture percent required for payment only	
	INDEPENDENT ASSURANCE Gradation Sand Equivalent	IA Inspector	IA Inspector	ITD-857	Each 110,000 Tons (100,000 t)		
			ermined using the noisample mass, after re				-
Compacted Roadway	ACCEPTANCE	301.02	AASHTO T 310 Method B	ITD-850	Each 5,500 Tons (5000 t)	Contractor is responsible to provide Idaho IT 74 density	301
Roauway	In-Place Density	ITD Project Personnel	ITD Project Personnel			curve.	3
	INDEPENDENT ASSURANCE In-Place Density	IA Inspector	IA Inspector	ITD-857	One (1) observation per project		
	ACCEPTANCE	301.02	Visual Inspection	ITD-25	Each 5,500 Tons		
Reclaimed	Gradation	ITD Project Personnel	ITD Project Personnel	Standard Diary	(5000 t)		
Asphalt Pavement	ACCEPTANCE	301.03	WAQTC TM8 modified	ITD-25	Each 7200 SY		
	In-Place Density	ITD Project Personnel	ITD Project Personnel	Standard Diary	(6000 M2) each lift		

	BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED	MINIMUM	REMARKS, NOTES OR
	MATERIAL	TESTING	SAMPLED BY	TESTED BY	REPORT FORM NO.	REQUIRED FREQUENCY	ADDITIONAL DIRECTIONS
	STANDARD SPEC	IFICATION SECTIO	N: 302 – E	MULSION TREA	TED BASE		
		ACCEPTANCE Certification	702.03 702.05		Loading Certificate	Each shipment to the project	See QA Manual Section 230.11
		ACCEPTANCE	Manufacturer 702.03	Manufacturer Idaho IT 61		Test each load	Do not sample
	Emulsified Asphalt	Saybolt Viscosity Field Test	ITD Project Personnel	ITD Project Personnel	ITD-1045	for Saybolt viscosity. Reject failing loads.	emulsions from storage tank discharge lines.
		VERIFICATION	702.03	AASHTO T 59		One (1)	⁽¹⁾ No samples for laboratory testing required when
302		Laboratory Tests ⁽¹⁾	ITD Project Personnel	ITD Central Laboratory	ITD-1045	undiluted sample per project	total project quantity is less than 2000 Gal (8 tons).
	Aggregate (prior to mixing)	ACCEPTANCE Gradation Sand Equivalent Fracture Count	302.02 703.04	AASHTO T 2 AASHTO T 248 AASHTO T 27 AASHTO T 11 AASHTO T 255 AASHTO T 265 AASHTO T 176 Method 2, Mechanical AASHTO T 335 Method 1	ITD-901	Each 700 CY (500 m ³) or 1000 Tons (900 t)	Acceptance at point of delivery prior to mixing. Moisture percent required for payment only
			ITD Project Personnel	ITD Project Personnel			
		INDEPENDENT ASSURANCE Gradation Sand Equivalent Fracture Count	IA Inspector	IA Inspector	ITD-857	Each 14,000 CY (10,000 m ³) or 20,000 tons (18,000 t)	
		ACCEPTANCE	302.03	AASHTO T 310 Method B	ITD-850	Each 700 CY (500 m ³) or	
		In-Place Density	ITD Project Personnel	ITD Project Personnel	112-000	1000 Tons (900 t)	
	Compacted Roadway	INDEPENDENT ASSURANCE In-Place Density	IA Inspector	IA Inspector	ITD-857	One (1) observation per project	

BID ITEM/ MATERIAL	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR	
MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS	
STANDARD SPEC	IFICATION SECTION	DN: 303 – A	AGGREGATE BA	ASE			
Aggregate	ACCEPTANCE Gradation Sand Equivalent Fracture Count	303.02 703.04 ITD Project	AASHTO T 2 AASHTO T 248 AASHTO T 27 AASHTO T 11 AASHTO T 255 AASHTO T 265 AASHTO T 265 AASHTO T 176 Method 2, Mechanical AASHTO T 335 Method 1	ITD-901	Each 700 CY (500 m ³) or 1000 Tons (900 t)	Acceptance from windrow or roadway. Moisture percent required for payment only	
	INDEPENDENT ASSURANCE Gradation Sand Equivalent Fracture Count	Personnel IA Inspector	Personnel IA Inspector	ITD-857	Each 14,000 CY (10,000 m ³) or 20,000 tons (18,000 t)		303
	ACCEPTANCE	303.02	AASHTO T 310 Method B	ITD-850	Each 700 CY (500 m ³) or 1000 tons	Contractor is responsible for providing an	
Compacted	In Flace Denoty	ITD Project Personnel	ITD Project Personnel		(900 t)	Idaho T 74 density curve.	
Roadway	INDEPENDENT ASSURANCE In-Place Density	IA Inspector	IA Inspector	ITD-857	One (1) observation per project		

	BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR		
	MATERIAL	TESTING	SAMPLED BY TESTED BY		FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS		
	STANDARD SPEC	IFICATION SECTIO	N: 304 – R	ECONDITIONIN	G				
		ACCEPTANCE Gradation	304.03	AASHTO T 2 AASHTO T 248 AASHTO T 27	ITD-901 & ITD-25 Standard	One test after start of pulverizing, then	Wash method not required.		
	Pulverizing		ITD Project Personnel	ITD Project Personnel	Diary	visual inspection.			
304	Roadbed	ACCEPTANCE In-Place Density	304.03	WAQTC T M8 modified per Section 275.00 (CRABS)	ITD-855 or ITD-25	Establish roller pattern every lane mile.	Acceptance at roadway.		
			ITD Project Personnel	ITD Project Personnel	(Standard Diary)		See QA Manual Section 275.00		
	Soft Spot Repair	ACCEPTANCE	205.03 D 304.03	AASHTO T 310 Method B	ITD-850	Each repair area or combination of			
		In-Place Density	ITD Project Personnel	ITD Project Personnel	110-650	areas but not less than each 150 SF			
	STANDARD SPECIFICATION SECTION: 307 – OPEN-GRADED BASE								
			703.08	AASHTO T 2 AASHTO T 27			Acceptance at Crusher Conveyor Belt		
		ACCEPTANCE Gradation ⁽¹⁾	ITD Project Personnel	ITD Project Personnel	ITD-901	Each 1800 CY (1300 m ³) or 2500 Tons (2300t)	Reducing & wash method not required for Class 1 & 2 only		
307	Aggregate						Dry to constant mass is not required for Class 1 & 2 only		
		INDEPENDENT ASSURANCE Gradation	IA Inspector	IA Inspector	ITD-857	Each 14,000 CY (10,000 m ³) or 20,000 Tons (18,000 t)	Field Test samples will be used for IA evaluation. No split samples required.		
		ACCEPTANCE	307.03	Method Specification	ITD-25 Stondard	Each 3000 LF but not less			
		In-place Density	ITD Project Personnel	ITD Project Personnel	Standard Diary	than once per day			
	⁽¹⁾ The minimum te	st sample mass for A	AASHTO T27 Si	eve Analysis will be	65 lbs.				

BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED	MINIMUM	REMARKS, NOTES OR				
MATERIAL	TESTING	SAMPLED BY	TESTED BY	REPORT FORM NO.	REQUIRED FREQUENCY	ADDITIONAL DIRECTIONS				
STANDARD SPECI	STANDARD SPECIAL PROVISION: 308 – CEMENT RECYCLED ASPHALT BASE STABILIZATION (CRABS)									
		701.01	AASHTO M 85	ITD-968						
Cement	ACCEPTANCE Certification	Manufacturer	Manufacturer	chemical analysis attached	alysis	See QA Manual Sections 230.02 and 230.02.01				
Cement	VERIFICATION Laboratory Test	701.01		ITD-1044 (Sample Data)	One (1)	Price adjustment				
		ITD Project Personnel	ITD Central Lab	ITD-1825 (Lab Report)	sample per project	for failing cement.				
Pulverizing Roadbed	ACCEPTANCE	304.04	AASHTO T 2 AASHTO T 248 AASHTO T 27	ITD-901	Prior to compaction	Acceptance at roadway prior to compaction.	308			
Roaubeu	Gradation	ITD Project Personnel	ITD Project Personnel		each lane mile	Wash method not required.				
Compacted	ACCEPTANCE In-Place Density	304.04	WAQTC TM 8 modified per Section 275.00 (CRABS)	ITD-855 or	Verify the contractor met the density specification	Acceptance at roadway.				
Compacted Roadway		ed	ITD Project Personnel	ITD Project Personnel	ITD-25 (Standard Diary)	every lane mile or when mixture properties changes.	Section 275.00 See SSP 308			

BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED	MINIMUM	REMARKS, NOTES OR	
MATERIAL	TESTING	SAMPLED BY	TESTED BY	REPORT FORM NO.	REQUIRED FREQUENCY	ADDITIONAL DIRECTIONS	
STANDARD SPEC	IFICATION SECTION	DN: 401 TA	СК СОАТ				
Emulsified	ACCEPTANCE	702.03 702.05		Loading Certificate	Each individual truck, trailer, car or shipment	See QA Manual Section 230.11	
	Certification	Manufacturer	Manufacturer		to the project.		_
Asphalt	VERIFICATION	702.03	AASHTO T 59		One (1) undiluted sample	No samples required when total	401
	Laboratory Tests	ITD Project Personnel	ITD Central Laboratory	ITD-1045	(as received from the asphalt supplier) per project	project quantity is less than 2000 Gal (7600 L) 8 Tons.	
STANDARD SPEC	IFICATION SECTION	DN: 402 PR	IME COAT				
	ACCEPTANCE	702.03 702.05		Loading	Each individual truck, trailer,	See QA Manual	
	Certification	Manufacturer	Manufacturer	Certificate	car or shipment to the project.	Section 230.11	
Emulsified Asphalt	VERIFICATION	702.03	AASHTO T 59		One (1) undiluted sample	No samples	
	Laboratory Tests	ITD Project Personnel	ITD Central Laboratory	ITD-1045	(as received from the asphalt supplier) per project	required when total project quantity is less than 2000 Gal (7600 L) 8 Tons.	402
Blotter	ACCEPTANCE Gradation	703.07 402.02	AASHTO T 2 AASHTO T 248 AASHTO T 27 AASHTO T 11	ITD-901	One (1) field gradation per source.	Sample at point of loading to the project.	
		ITD Project Personnel	ITD Project Personnel			p. 0j cott.	
STANDARD SPEC	IFICATION SECTION	DN: 403 SE	AL COAT, 404 S		REATMENT		
Asphalt & Cover Coat Material	Design of Seal Coats	403 404 703	Idaho T 60 Or McLeod Method	ITD-1044 (Sample		he contractor furnishes the seal oat design.	
	Coals	ITD Project Personnel	ITD District Lab	Data)			
Distributors: S Engineer prior to be		ch season. The	contractor shall subr	nit distributor ce	rtification to the		
	ACCEPTANCE Saybolt Viscosity Field Test	702.03	Idaho IT 61	ITD-1045	Test each load for Saybolt viscosity. If the district Saybolt viscosity result is outside	Do not sample emulsions from storage tank discharge lines.	403/404-1
Emulsified Asphalt		ITD Project Personnel	ITD Project Personnel		specified limits, reject the load.		
	ACCEPTANCE Certification	702.03 702.05		Loading	Each individual truck, trailer,	See QA Manual	
		Manufacturer	Manufacturer	Certificate	car or shipment to the project.	Section 230.11	

270	20
270	.50

	BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED	MINIMUM	REMARKS, NOTES OR
	MATERIAL	TESTING	SAMPLED BY	TESTED BY	REPORT FORM NO.	REQUIRED FREQUENCY	ADDITIONAL DIRECTIONS
		VERIFICATION Laboratory	702.03	AASHTO T 59	ITD-1045	Each 25,000 Gal or 100 Tons	No samples required when total project quantity is less
	Emulsified Asphalt (cont.)	Tests	ITD Project Personnel	ITD Central Laboratory			than 2000 Gal (7600 L) 8 Tons.
		INDEPENDENT ASSURANCE Viscosity Field Test	IA Inspector	IA Inspector	ITD-857	One (1) observation of Saybolt viscosity per project.	See QA Manual Section 330.00
		ACCEPTANCE	702.01 702.05		ITD-966	Initial lot & each new lot to project	See QA Manual Sections
		Certification	Manufacturer	Manufacturer	Loading Certificate	Each shipment to project	230.10 & 255.00
403/404-2	PG. Binder		702.01	AASHTO M 320 AASHTO T 40		One (1) sample (3 quart cans) per shift combined into	No samples required when total project quantity is less
		VERIFICATION Laboratory Tests	ITD Project Personnel	ITD Central Laboratory	ITD-859	weekly binder verification unit. Sampled from the line between the storage tank (or the delivery truck) and the mix plant.	than 22 tons(20t)
	Anti-Strip Additive	ACCEPTANCE Presence of Anti-Stripping	702.04	Idaho T 99 (color method only)	ITD-1045	Test the initial truck & trailer prior to unloading into the contractor's storage tank. Thereafter, test at	If anti-strip cannot be detected, the supplier must add the anti-strip on-
		Additive	ITD Project Personnel	ITD Project Personnel		same frequency as sampling of asphalt.	site.
		ACCEPTANCE Gradation Cleanness Value Fracture Count	703.06 403.02	AASHTO T 2 AASHTO T 248 AASHTO T 27 AASHTO T 11 Idaho IT 72 AASHTO T 335 Method 1	ITD-901	Each 280 CY (200 m ³) or 400 Tons (360 t) 26,000 yd2 or 22,000 m2	Sample at point of loading to the roadway
	Cover Coat Material		ITD Project Personnel	ITD Project Personnel			
		INDEPENDENT ASSURANCE Gradation Cleanness Value Fracture Count	IA Inspector	IA Inspector	ITD-857	Each 5600 CY (4000 m ³) or 8000 Tons (7200 t).	

BID ITEM/	PURPOSE OF TESTING	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED FREQUENCY	REMARKS, NOTES OR	
MATERIAL		SAMPLED BY	TESTED BY	FORM NO.		ADDITIONAL DIRECTIONS	
Blotter	ACCEPTANCE Gradation	703.07 403.02 404.02	AASHTO T 2 AASHTO T 248 AASHTO T 27 AASHTO T 11	ITD-901	One (1) field gradation per source.	Sample at point of loading to the project.	
		ITD Project Personnel	ITD Project Personnel		source.		403/404-3
Choke Sand	ACCEPTANCE Gradation	703.07 403.02 404.02	AASHTO T 2 AASHTO T 248 AASHTO T 27 AASHTO T 11	ITD-901	One (1) per day	Sample at point of loading to the	403/
	Gradation	-	ITD Project Personnel			project.	

BID ITEM/	BID ITEM/ PURPOSE OF REF. REQUIRED MINIMUM MATERIAL TESTING SAMPLED REPORT REQUIRED A		REMARKS, NOTES OR				
MATERIAL	TESTING	SAMPLED BY TESTED BY FORM NO.		FREQUENCY	ADDITIONAL DIRECTIONS		
STANDARD SPEC	IFICATION SECTION	DN: 405 S	UPERPAVE HOT	MIX ASPH	ALT		
	ACCEPTANCE	702.01 702.05		ITD-966	Initial lot & each new lot to project	See QA Manual	
	Certification	Manufacturer	Manufacturer	Loading Certificate	Each shipment to project	Sections 255.00	
Performance		AASHTO T 40 AASHTO M 320	AASHTO T 40		One (1) sample (3 quart cans) per shift	No samples	
Performance Graded Binder	VERFICATION Laboratory Tests	ITD Project Personnel	HQ Central Lab	ITD-859 th th (4	combined into weekly binder verification unit. Sampled from the line between the storage tank (or the delivery truck) and the mix plant.	No samples required when total quantity is less than 22 Tons (20 t) See QA Manual Section 255.00	
		702.04	Idaho IT 99		Test the initial	If anti-strip cannot be detected, the supplier must add additional anti-strip. The binder will be sampled and tested until a positive result is determined. (blue color only)	
Anti-Strip Additive	ACCEPTANCE Presence of Anti-Stripping Additive	ITD Project Personnel	ITD Project Personnel	ITD-859	to unloading into the contractor's storage tank. Thereafter, test at same frequency as sampling of asphalt binder		405-1
	CONSTRUCTION of Test Strip by Contractor	405.03	Idaho IR 125	ITD-891 (Completed by Contractor)	Two (2) locations per Test Section	Contractor establishes roller pattern.	40
Superpave HMA for Acceptance Test Strip	ACCEPTANCE ⁽¹⁾ (Aggregate Cold Feed Samples) Sand Equivalent Fracture Flat and/or Elongated Particles Fine Aggregate Angularity	405.02 405.03H 405.03F 703.05	Idaho IR 125 AASHTO T 2 ASHTO T 248 AASHTO T 176 Method 2, Mechanical AASHTO T 335 Method 1 Idaho FOP ASTM D 4791 Idaho FOP for AASHTO T 304 ITD District Project Personnel	ITD-1046 ITD-772	**Three (3) cold feed increments per <u>test strip.</u>	Random Samples per Idaho IR 125 ⁽¹⁾ Combine cold feed increments into a composite sample to determine <u>test</u> <u>strip acceptance.</u>	
	INDEPENDENT ASSURANCE	IA Inspector	IA Inspector	ITD-857	Each 15,000 Tons (13,500 t)		
	st strips are require e used for subseque		s, the passing aggreg	ate properties o	letermined from th	ne original cold	

	BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR
	MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS
405-2	Superpave HMA for Acceptance Test Strip (Cont.)	ACCEPTANCE ⁽²⁾ (Loose Mix Samples) Air Voids Asphalt Content Gradation Voids in Mineral Aggregate (VMA) ⁽³⁾ Voids Filled With Asphalt (VFA) Dust to Binder Ratio (DP) Moisture Content	405.02 405.03H 405.03I	Idaho IR 125 AASHTO T 168 * AASHTO R 47 AASHTO T 166 Method A or AASHTO T 331 AASHTO T 209 ⁽⁴⁾ Bowl Method AASHTO T 209 AASHTO T 308 ⁽⁴⁾ AASHTO T 308 AASHTO T 312 HQ Central Lab/District Lab	ITD-773 ITD-772	Three (3) per <u>test section.</u> Each sample must be at least 80 lbs.	Random sample locations per ldaho IR125 *See Note ⁽²⁾ Test results for each loose mix sample are averaged for each test section to determine test section acceptance. ⁽³⁾ For calculating VMA use the combined aggregate bulk specific gravity, G _{sb} , determined by the Engineer ⁽⁴⁾ See QA Manual Section 275.
		Note: Test Strip mix verification testing will be performed by HQ Central Lab or District lab. D must be qualified by HQ Central Lab in order to perform Superpave Test Strip testing. Contact Quality Assurance Engineer for details: Phone: (208) 334-8021					
		INDEPENDENT ASSURANCE	IA Inspector	IA Inspector	ITD-857	Observation of loose mix testing performed by District Lab every 90 days.	

2	70	13	n
4	10	כ.י	υ

BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM	REMARKS, NOTES OR	
MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS	
STANDARD SPEC	IFICATION SECTION	DN: 406 RC	OAD MIX & 407 S	SCRUB COA	Т		
		405.03L	Idaho IR 125 WAQTC TM 8 (Backscatter mode) AASHTO T 343	ITD-820		Use same cores that were taken for density acceptance.	
Superpave HMA for Acceptance Test Strip	Density GAUGE CORRELATION ⁽⁵⁾	Contractor	Contractor and ITD District Project Personnel		Five (5) per <u>test section</u>	⁽⁵⁾ Each gauge to be used on the project for QC or acceptance testing must be correlated on the test strip. Gauge readings for each core must be obtained at each test site prior to coring using each gauge. Each gauge will have a unique correlation factor. Form ITD- 820 is completed for each gauge.	405-3
(Cont.)	ACCEPTANCE ⁽⁷⁾ Cores Density (Percent Compaction)	405.03L	Idaho IR 125 WAQTC TM11 AASHTO T 166 Method A AASHTO T 331 ASTM D7227	ITD-892	Five (5) per	Random sample locations per Idaho IR 125 Test section densities are calculated as the	
			ITD District Lab	ITD-772	<u>test section</u> .	average percent compaction of all cores from the test section using the average Gmm of the test section.	
	INDEPENDENT ASSURANCE	IA Inspector	IA Inspector	ITD-857	Observation of core testing performed by District Lab every 90 days		

	BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR	
	MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS	
		ACCEPTANCE Loose Mix from Roadway Asphalt Content	405.03	AASHTO T 168* AASHTO R 47 AASHTO T329 AASHTO T 308 AASHTO T 30	ITD-833	Each 750 Tons (675 t) Each sample must be at	Random sample locations * See Note	
		Gradation	ITD Project Personnel	ITD Project Personnel		least 40 lbs		
	INDEPENDENT ASSURANCE Sampling Asphalt Content Gradation	IA Inspector	IA Inspector	ITD-857	One (1) observation each project.			
	Production Paving SP2	ACCEPTANCE Moisture	405.03	AASHTO T329		One (1) test	Specification limit	
405-4			ITD Project Personnel	ITD Project Personnel	ITD-833	for moisture at least once per day.	applies.	
4		ACCEPTANCE Density	405.03	WAQTC TM 8 (Backscatter Mode) AASHTO T 343			Test at random locations The average Gmm	
		(Percent Compaction) (Density using correlated density gauge)	ITD Project Personnel	ITD Project Personnel	ITD-855	Each 750 Tons (675 t)	of the Test Strip test section corresponding to the Contractor's JMF shall be used to determine densities for all production paving.	
		INDEPENDENT ASSURANCE Density (Percent Compaction)	IA Inspector	IA Inspector	ITD-857	One (1) observation each project		

BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT		REMARKS, NOTES OR	
MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	REQUIRED FREQUENCY	ADDITIONAL DIRECTIONS	
Production Paving SP3, SP5, SP6	ACCEPTANCE Loose Mix from Roadway Air Voids VMA	405.03	AASHTO T 168* AASHTO R 47 AASHTO T 329 AASHTO T 308 AASHTO T 166 Method A AASHTO T 331 AASHTO T 209 ⁽⁵⁾ Bowl Method AASHTO T 269 AASHTO T 312	ITD-833 ITD-777	Each 750 Tons (675 t) Each sample must be at least 40 lbs	Random Sample Locations * See Note	
		ITD Project Personnel	ITD Project Personnel				
	INDEPENDENT ASSURANCE Sampling Air Voids VMA	IA Inspector	IA Inspector	ITD-857	One (1) observation each project.	Observation of the tests that are performed to calculate air voids and VMA	
	ACCEPTANCE Moisture	405.03 ITD Project	AASHTO T329 ITD Project	ITD-833	One (1) test for moisture at least once per	Specification limit applies.	
	ACCEPTANCE	Personnel 405.03	Personnel WAQTC TM 8 (Backscatter Mode) AASHTO T 343		day.	Test at random locations	405-5
	Density (Percent Compaction) (Density using correlated density gauge)	ITD Project Personnel	ITD Project Personnel	ITD-855	Each 750 Tons	The average Gmm of the Test Strip test section corresponding to the Contractor's JMF shall be used to determine densities for all production paving	
	INDEPENDENT ASSURANCE Density (Percent Compaction)	IA Inspector	IA Inspector	ITD-857	One (1) observation each project		
Production Paving Non-structural and Temporary, except on NHS.*	ACCEPTANCE Certification	405.03 Manufacturer	Manufacturer	ITD-851	Total Quantity Paid	ITD Project Inspector documents visual inspection.	

270	20
270	.50

	BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR	
	MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS	
	Production Paving When an acceptance test strip is not required, regardless of the class of SuperPave mix	ACCEPTANCE Loose Mix from Roadway Asphalt Content	405.03	AASHTO T 168 * AASHTO R 47 AASHTO T329 AASHTO T 308 AASHTO T 30	ITD-833	Each 750 Tons (675 t)	Random Sample Locations * See Note SP2 Specification	
		Gradation	See Note	See Note			Limits apply.	
		INDEPENDENT ASSURANCE Sampling Asphalt Content Gradation	IA Inspector	IA Inspector	ITD-857	One (1) observation each project.		
မှ	and the total quantity is three	ACCEPTANCE Moisture	405.03	AASHTO T329		One (1) test		
405-6	tests or more.		See Note	See Note	ITD-833	for moisture at least once per day.	Specification limit applies.	
	Note: Follow QASP procedures for sampling, testing and Quality Analysis. (include each core test result in the Quality Analysis)	ACCEPTANCE Density (Percent Compaction)	405.03 405.03L	WAQTC TM11 AASHTO T 168 * AASHTO T 166 Method A AASHTO T 331 AASHTO T 209 (Bowl Method) AASHTO T 331 ASTM D7227	ITD-832 ITD-892	Each 750 Tons (675 t) Obtain random cores in each lot for density pay factor. (Do not average the cores).	* See Note The average max. specific gravity, (G _{mm}) from the loose mix samples will be used to determine core density (percent compaction).	
			ITD Project Personnel	ITD Project Personnel				

BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT		REMARKS, NOTES OR			
MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	REQUIRED FREQUENCY	ADDITIONAL DIRECTIONS			
Production Paving When an acceptance test strip is not required, regardless of the class of SuperPave mix and the total	ACCEPTANCE Loose Mix from Roadway Asphalt Content	405.03	AASHTO T 168* AASHTO R 47 AASHTO T329 AASHTO T 308 AASHTO T 30	ITD-833	Each 750 Tons (675 t)	* See Note SP2 Specification Limits apply			
	Gradation	ITD Project Personnel	ITD Project Personnel						
	INDEPENDENT ASSURANCE Sampling Asphalt Content Gradation	IA Inspector	IA Inspector	ITD-857	One (1) observation each project.				
	ACCEPTANCE Moisture	405.03	AASHTO T329		One (1) test for moisture at	Specification limit			
quantity is less than three		ITD Project Personnel	ITD Project Personnel	ITD-833	least once per day.	applies.			
frequencies but equal to or greater than one frequency. ITD will sample and test for acceptance.	ACCEPTANCE Density (Percent Compaction)	405.03 405.03L	WAQTC TM11 AASHTO T 168 * AASHTO T 166 Method A AASHTO T 331 AASHTO T 209 (Bowl Method) ASTM D7227	ITD-773 ITD-892	Five (5) Stratified Random Cores	Density (percent compaction) acceptance will be determined from the average of the cores. The average max. specific gravity, (G _{mm}) from the loose mix samples will be used to determine core	405-7		
		ITD Project Personnel	ITD Project Personnel			density (percent compaction).			
* See Note									
When an acceptar SuperPave mix	Production nce test strip is not r x and the total quan	equired, regard	lless of the class of one frequency.	FOLLOW SECTION 270.04 ACCEPTANCE BY SMALL QUANTITIES Density acceptance will be determined from the average of cores.					

* The plate method is the primary method for obtaining samples from the roadway. For the lifts of 0.2' or less, the samples may be obtained from the plant using an attached sampling device or from haul units. When the point of sampling is not the roadway and the minimum frequency results in more than 3 tests, the State will obtain at least two additional samples from the roadway, behind the paver, using the plate method for information to identify possible handling or placement variability. These tests will not be used as verification tests. The roadway samples will be taken randomly in the first and second thirds of the project. The samples will be tested by the State for asphalt content per AASHTO 308 and gradation per AASHTO T30. The test results will be evaluated by comparing to the average of the production test results up to that point. The comparison must be within the significant difference as shown in the table under dispute resolution section. For SuperPave (SP3-SP6) items, the two roadway samples will be tested by the State for air void and VMA. The test results will be compared to the average of the production test results up to that point. When the difference in the test result is significant, the contractor shall determine the cause of the difference and shall make any necessary corrections.

	BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR	
	MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS	
		ACCEPTANCE	405.03P	AASHTO PP50		r furnishes IRI QC		
		Profiler	Contractor	Contractor	Engineer by next calendar day following placement.			
	Surface				Acceptance testing to be completed on final l within one (1) week of completion of paving			
	Smoothness		405.03P		ITD-25	Fully		
405-8		VERIFICATION Profiler	ITD Project Personnel	ITD Project Personnel	(Standard Diary)	witnessed with report and graph chart obtained immediately		
40		ACCEPTANCE	718.02					
		Certification	718.08		ITD-849 with QC test	Total Quantity	See QA Manual	
	Pavement		Manufacturer	Manufacturer	results attached	Paid	Section 230.09	
	Reinforcement Fabric	VERIFICATION	718.03		ITD-1044	One (1)		
		Laboratory Tests	718.08		(Sample Data) ITD-1047 (Lab Report)	sample from each manufacturer- identified lot for each type.		

ssurance		400 Surface Co	ourses and Bitumino	us Pavement			270.3
BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR	
MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS	
TANDARD SPE	CIFICATION SECTION	ON: 406 RC	DAD MIX & 407	SCRUB COA	T		
Aggregate	ACCEPTANCE Gradation Sand Equivalent Fracture Count	703 406.02 407.02	AASHTO T 2 AASHTO T 248 AASHTO T 27 AASHTO T 11 AASHTO T 176 Method 2, Mechanical AASHTO T 335 Method 1	ITD-901	Each 700 CY (500 m ³) or 1000 Tons (900 t)	Sample at point of loading to the roadway	
		ITD Project Personnel	ITD Project Personnel				
	INDEPENDENT ASSURANCE Gradation Sand Equivalent Fracture Count	IA Inspector	IA Inspector	ITD-857	Each 14000 CY (10000 m ³) or 20000 Tons (18000 t).		
	ACCEPTANCE	702.03 702.05		Loading	Each individual truck, trailer,	See QA Manual	
	Certification	Manufacturer	Manufacturer	Certificate	car or shipment	Section 230.11	
Emulsified Asphalt		702.03	AASHTO T 59				07-1
Asphalt	VERIFICATION Laboratory Tests	ITD Project Personnel	HQ Central Laboratory	ITD-1045	Each 100 tons	No samples required when total project quantity is less than 2000 Gal (7600 L) 8 Tons.	406/407-1
	ACCEPTANCE			ITD-966	Initial lot & each new lot to project	See QA Manual Sections 230.10	
	Certification	Manufacturer	Manufacturer	Loading Certificate	Each shipment to project	& 255.00	
		702.01	AASHTO M 320 AASHTO T 40		One (1) sample (3 quart cans) per shift		

	ACCEPTANCE Certification	702.05			to project	Sections 230.10
		Manufacturer	Manufacturer	Loading Certificate	Each shipment to project	& 255.00
PG. Binder	VERIFICATION	702.01	AASHTO M 320 AASHTO T 40	ITD-859	weekly binder required wh	
		ITD Project Personnel	ITD Project Personnel			No samples required when total
	Laboratory Tests	ITD Project Personnel	ITD Project Personnel		unit. Sampled from the line between the storage tank (or the delivery truck) and the mix plant.	project quantity is less than 22 tons(20t) See QA Manual Section 255.00

	BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR			
	MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS			
			702.04	ldaho IT 99		Test the initial truck & trailer prior to	If anti-strip cannot be detected, the			
406/407-2	C 404 904 904 904 904 904 904 904 904 904	ACCEPTANCE Presence of Anti-Striping Additive	ITD Project Personnel	ITD Project Personnel	ITD-859	unloading into the contractor's storage tank. Thereafter, test at same frequency as sampling of asphalt binder.	supplier must add additional anti-strip. The binder will be sampled and tested until a positive result is determined. (blue color only)			
	STANDARD SPECIFICATION SECTION: 408 FOG COAT									
		ACCEPTANCE	702.03 702.05		Loading	Each individual truck, trailer,	See QA Manual Section 230.11			
		Certification	Manufacturer	Manufacturer	Certificate	car or shipment				
	Emulsified Asphalt	VERIFICATION	702.02 702.03	AASHTO T 59		One (1) undiluted sample (as	No samples required when total project			
408		Laboratory Tests	ITD Project Personnel	HQ Central Laboratory	ITD-1045	received from the asphalt supplier) per project.	quantity is less than 2000 Gal (7600 L) 8 Tons.			
	Blotter	ACCEPTANCE Gradation	703.07 408.02	AASHTO T 2 AASHTO T 248 AASHTO T 27 AASHTO T 11	ITD-901	One (1) field gradation per source.	Sample at point of loading to the project.			
			ITD Project Personnel	ITD Project Personnel		Source.	project.			
	Standard Suppleme	ental Specification	415 MI	CROSURFACIN	G					
415-1	Aggregate	ACCEPTANCE Gradation Sand Equivalent	703 415	AASHTO T 2 AASHTO T 248 AASHTO T 27 AASHTO T 11 AASHTO T 176 Method 2, Mechanical	ITD-901	Each 750 Tons (675 t) or fraction thereof.	Acceptance at stockpile			
			ITD Project Personnel	ITD Project Personnel						

BID ITEM/	PURPOSE OF TESTING	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR		
MATERIAL		SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS		
	ACCEPTANCE Certification	702.03 702.05		Loading	Each individual	See QA Manual		
		Manufacturer	Manufacturer	Certificate	truck, trailer, car or shipment	Section 230.11		
Polymer- modified Emulsified	VERIFICATION Laboratory Tests		702.03	AASHTO T 59		One (1) random undiluted		415-2
Asphalt		ITD Project Personnel	HQ Central Laboratory	ITD-1045	sample (as received from the asphalt			
		ITD Project Personnel	ITD Project Personnel		supplier) twice per day			

2	70	40
	10	.40

BID ITEM/ MATERIAL	PURPOSE OF TESTING	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR ADDITIONAL	
		SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	DIRECTIONS	
STANDARD SPEC	CIFICATION SECTION	ON: 409 PC	ORTLAND CEME	NT CONCRE		IT	
Concrete Rea Inspe	ady-Mix Plant ection	ITD Project Personnel	ITD Project Personnel	ITD-893	One (1) per project	Inspection of plant is valid for one (1) year.	
	CONFIRMATION (Mix samples not required for	409.01 409.03(A)		Central Lab will notify the	required 60	See QA Manual	
	projects less than 2500 CY)	Contractor	ITD Central Lab	Engineer of the confirmation	days prior to use	Section 260.02	
	ACCEPTANCE	720.01	AASHTO T 26	Submit independent		Water from any municipal	
Mix Design	(Water from other than a municipal drinking supply)	Contractor	Independent Lab	test results with mix design in- formation	One (1) per project	drinking supply does not require testing.	
	ACCEPTANCE (Admixtures)	709.02 709.03 709.04 709.05	ASTM C 494 AASHTO M 154	Qualified Products List			
	Approved List	Manufacturer	Manufacturer				<u>-</u>
Fine Aggregate	ACCEPTANCE Gradation Sand Equivalent	409.02 703.02	AASHTO T 2 AASHTO T 248 AASHTO T 27 AASHTO T 11 AASHTO T 176 Method 2 Mechanical	ITD-901	Each 1000 CY of concrete placed	Frequency applies to multiple concrete items from same concrete plant per project.	409-1
i ine / iggregate		ITD Project Personnel	ITD Project Personnel			per project.	
	INDEPENDENT ASSURANCE Gradation Sand Equivalent	IA Inspector	IA Inspector	ITD-857	Each 20,000 CY of concrete placed		
		409.02	AASHTO T 2 AASHTO T 248 AASHTO T 27		Each 1000 CY	Frequency applies to multiple concrete	
Coarse Aggregate	ACCEPTANCE Gradation	ITD Project Personnel	ITD Project Personnel	ITD 901	of concrete placed	items from same concrete plant per project. Wash method not required.	
	INDEPENDENT ASSURANCE Gradation	IA Inspector	IA Inspector	ITD-857	Each 20,000 CY of concrete placed		

	BID ITEM/ MATERIAL	PURPOSE OF TESTING	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR ADDITIONAL DIRECTIONS			
			SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY				
409-2	Cement	ACCEPTANCE Certification	701.01 Manufacturer	AASHTO M 85 or AASHTO M 240 Total Alkali Manufacturer	ITD-968 with bills of lading attached	Each week concrete is placed representing the amount of cement used	See QA Manual Section 230.02			
		VERIFICATION Laboratory Tests ⁽¹⁾	701.01	Idaho T143	ITD-1044 ^(1A) (Sample Data) ITD-1825 (Lab Report)	Each 2500 CY (1900 m ³) of concrete placed and for each mill analysis number. ⁽²⁾	The frequency			
			ITD Project Personnel	ITD Central Lab			applies to multiple concrete items from the same concrete plant per project. Price adjustment for failing cement.			
	Fly ash	ACCEPTANCE Certification	714.01	AASHTO M 295	ITD-968 with bills of	Each week concrete is placed representing the amount of fly ash used	See QA Manual Section 230.02			
			Manufacturer	Manufacturer	lading attached					
		VERIFICATION Laboratory Tests ⁽¹⁾	714.01	Idaho T143	ITD-1044 ^(1A) (Sample Data)	Each 15,000 CY (10,000 m ³) of concrete placed and for each sample ident number.	The frequency applies to multiple concrete items from the same concrete plant per project.			
			ITD Project Personnel	ITD Central Lab	ITD-1826 (Lab Report)					
	⁽¹⁾ No samples for laboratory tests when total quantity of concrete for project is less than 40 cubic yards ^(1A) Include acceptance certification documents with ITD-1044 and sample (ITD-968 and bills of lading).									

⁽²⁾ When the project quantity is 40 CY or more but less than the minimum sample frequency, the cement or fly ash sample may represent multiple projects provided the material is from the same mill analysis or sample ident number, manufacturer, supplier and concrete plant. The sample test report and a file memo must be included in each project file and on each Materials Summary Report.

BID ITEM/	PURPOSE OF TESTING	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT FORM NO.	MINIMUM REQUIRED FREQUENCY	REMARKS, NOTES OR ADDITIONAL DIRECTIONS				
MATERIAL		SAMPLED BY	TESTED BY							
Dowel Bars	FOLLOW STANDARD SPECIFICATION 503									
Tie Bars	FOLLOW STANDARD SPECIFICATION 503									
	FIELD ACCEPTANCE Slump Air Content Temperature Unit Weight Cement Factor W/C Ratio	409.02	WAQTC TM 2 AASHTO T 119 AASHTO T 121 AASHTO T 309 AASHTO T 152	ITD-70	Each 300 CY (230 m ³)	See QA Manual Section 215.00 Materials or Work Failing Specifications				
		ITD Project Personnel	ITD Project Personnel			Computerized batch ticket accompanies each load to project.				
Concrete	INDEPENDENT ASSURANCE Field Tests	IA Inspector	IA Inspector	ITD-857	Each 6000 CY (4600 m ³)					
Production ^(1A)	ACCEPTANCE Compressive Strength	409.02	AASHTO T 22 AASHTO T 23	ITD-1044 (Sample Data) ITD-845 (Lab Report)	Three (3) sets for each day's production; one (1) set during each third of the day's placement.	Each set consists of three (3) 28-day and	409-3			
		ITD Project Personnel	ITD District or Central Lab			two (2) 7-day cylinders. Make the cylinders from loads that are tested for slump, air content, etc.	40			
	INDEPENDENT ASSURANCE	IA Inspector	IA Inspector	ITD-857	Observation one (1) per project					
	Making Cylinders									
^(1A) When concrete is delivered to the forms by means of a concrete pump, the sample will be obtained at the point of discharge in accordance with WAQTC TM 2.										

	BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR				
	MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS				
	Concrete Production ^(1A) (Multiple small placements of less then 200 CY per day, i.e. slab replacements, intersections)	FOLLOW STAND	ARD SPECIFIC	ATION 502							
	Curing Compound	ACCEPTANCE	709.01	AASHTO M 148	ITD-1044 (Sample Data)	Submit sample at least 30 days prior	Pre-approved by batch or lot				
409-4		Laboratory Test	Manufacturer	ITD Central Lab	ITD-1823 (Lab Report)	to use for each batch/lot	number.				
	Finished	ACCEPTANCE (Depth Measurements) ACCEPTANCE (Smoothness)	409.03	Idaho T 130	ITD-827	Randomly once every	Thickness price				
				ITD Project Personnel		0.1 mile (0.2 km)	adjustment.				
			409.03	Idaho T 140	ITD-25		Smoothness				
	Pavement			ITD Project Personnel	(Standard Diary)		price adjustment.				
		ACCEPTANCE	409.03(J)	AASHTO T 261	ITD-25	Initially, then					
		(Final Finish)			(Standard Diary)	each lane mile					
	STANDARD SPEC	IFICATION SECTIO	DN: 411 UR	BAN CONCRET	E PAVEMEN	т					
		FOLLOW STAND	ARD SPECIFIC	ATION 409 for testir	ng frequency only	/.					
411	For multiple small placements of less than 200 CY per day	FOLLOW STAND	FOLLOW STANDARD SPECIFICATIONS 502								
	^(1A) When concrete in accordance with	is delivered to the forward to the f	of a concrete pump,	the sample will b	be obtained at the	point of discharge					

2	70	50
-	10.	.50

BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR		
MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS		
STANDARD SPECIFICATION SECTION: 502 CONCRETE								
Concrete Ready-M	lix Plant Inspection	ITD Project Personnel	ITD Project Personnel	ITD-893 One (1) per project		Inspection of plant is valid for one (1) year		
	REVIEW BY HQ Central Lab	502.01 502.03(A)		See Section 2	60.03.			
		Contractor	Contractor		Γ	Γ		
Mix Design	ACCEPTANCE (Admixtures)	709.02 709.03 709.04 709.05	ASTM C494 AASHTO M154	Qualified Products				
(All Concrete)	Approved List	Manufacturer	Manufacturer	– List				
	ACCEPTANCE (Water from	720.01	AASHTO T26	Submit independent		Water from any municipal		
	other than a municipal drinking supply)	Contractor	Independent Lab	test results with mix design information	One (1) per project	drinking supply does not require testing.		
Fine	ACCEPTANCE Gradation Sand Equivalent	703.02	AASHTO T2 AASHTO T248 AASHTO T27 AASHTO T11 AASHTO T176 Method 2 Mechanical	ITD-901	Each 500 CY of concrete placed	Frequency applies to multiple concrete items from same concrete plant	502-1	
Aggregate		ITD Project Personnel	ITD Project Personnel			per project.		
	INDEPENDENT ASSURANCE Gradation Sand Equivalent	IA Inspector	ITD District Lab	ITD-857	Each 10,000 CY of concrete placed			
		703.03	AASHTO T2 AASHTO T248 AASHTO T27			Wash method not required.		
Coarse Aggregate	ACCEPTANCE Gradation	ITD Project Personnel	ITD Project Personnel	ITD-901 Each 500 CY of concrete placed		Frequency applies to multiple concrete items from same concrete plant per project.		
	INDEPENDENT ASSURANCE Gradation	IA Inspector	ITD District Lab	ITD-857	Each 10,000 CY of concrete placed			

270	50
270	.30

	BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR		
	MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS		
		ACCEPTANCE Certification	701.01	AASHTO M85 or AASHTO M240 Total Alkali	ITD-968 with bill of lading	Each week concrete is placed representing	See QA Manual Section 230.02		
		Continention	Manufacturer	Manufacturer	attached	the amount of cement used			
			701.01	Idaho IR143			The frequency		
	Cement	VERIFICATION Laboratory Test	ITD Project Personnel	ITD Central Lab	ITD-1044 ^(1B) (Sample Data) ITD-1825 (Lab Report)	Each 1000 CY (760 m ³) of concrete placed and for each mill analysis number ⁽²⁾	applies to multiple concrete items from the same concrete plant per project. Price adjustment for failing cement.		
		ACCEPTANCE	714.01	AASHTO M295	ITD-968 with bill of	Each week concrete is placed representing the amount of fly ash used	See QA Manual		
	Fly ash	Certification	Manufacturer	Manufacturer	lading attached		Section 230.02		
		VERIFICATION Laboratory Test	714.01	Idaho IR143	ITD-1044 ^(1B) (Sample Data)	ata) concrete placed and for 6 each sample	The frequency applies to		
502-2			ITD Project Personnel	ITD Central Lab	ITD-1826 (Lab Report)		multiple concrete items from the same concrete plant per project.		
	Metal Reinforcement								
	Pre-Stressing Strand	FOLLOW STAND	ARD SPECIFIC	ATION SECTION 50	06				
			709.01	AASHTO M148	ITD-1044	Submit sample	Dec. en en en el les		
	Curing Compound ^(1A)	ACCEPTANCE Laboratory Test	Manufacturer	ITD Central Lab	(Sample Data) ITD-1823 (Lab Report)	at least 30 days prior to use for each batch/lot	Pre-approved by batch or lot number.		
		ACCEPTANCE Certification	Manufacturer	Manufacturer	ITD-851	Total Quantity Paid	See QA Manual Section 230.01		
	Joint Fillers and Sealers								
	⁽¹⁾ No samples for la	aboratory tests whe	n total quantity of	of concrete for project	t is less than 40	cubic yards.			
	^(1A) Acceptance by manufacturer's certification when total project quantity is less than 55 gallons. ^(1B) Include acceptance certification documents with ITD-1044 and sample. (ITD-968 and bill of lading)								
	⁽²⁾ When the project represent multiple p	t quantity is 40 CY o projects provided the	or more but less e material is fror	than the minimum s n the same mill analy nust be included in	ample frequency ysis or sample id	r, the cement or fly lent number, manu	Ifacturer, and		

- 27	n	50
41	υ.	.50

MATERIAL TESTING SAMPLED BY TESTED BY PROVID: PRIVAC PREVIOUS PRIVAC PREVIOUS PREVIOUS PREVIOUS PREVIOUS PREVIOUS PREVIOUS	BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD		MINIMUM REQUIRED	REMARKS, NOTES OR	
Concrete Production (**) Specified Strength of 24.0 MPa (3500 psi) or greater FIELD ACCEPTANCE Sumplex Production (**) Production (**) Productio	MATERIAL	TESTING	-	TESTED BY	-		-	
Concrete Production (16) Cement Factor WC Ratio ITD Project Personnel ITD Project Personnel (15 m) but not per day. ⁽⁷⁾ Computerized bach ticket accompanies each load to project. Specified Strength 012.0.0 INDEPENDENT ASSURANCE IA Inspector ITD-857 Each 2.0000 CY (1500 m ²) A single sample of our (1) set of three (1) 28-day cylinders and one (1) set of three (1) 28-day cylinders and one (1) set of three (1) 28-day cylinders and no (1) set of set of sufficient size for the cylinders and ar, signup, unit weight tests. INDEPENDENT "I" When concrete is delivered to the forms by means of a concrete pump, then samples will be obtained at the point of discharge in accordance with WAQTC TM-2. Observation one(1) per day in control is exident discharge in accordance with WAQTC TM-2. Observation one(1) per day in control is evident, plant in the cylinders. Concrete Specified Strength of 20.5 MPa (3000 psi) or less ACCEPTANCE Certification Sol 2.01(B) ITD-875 inst load, in control is evident, plant in the casto compressive strength tests by the Stata a	Production ^(1B) Specified Strength of 24.0	ACCEPTANCE Slump Air Content Temperature	502.02	AASHTO T119 AASHTO T152 AASHTO T309	ITD-70	each 50 CY (38 m ³) until quantity exceeds 100 CY (75m ³). Thereafter, every 100 CY	failing test, obtain check tests immediately and continue checking each load until two (2) consecutive	
Specified Strength of 24.0 MPA (3500) ASSURANCE Field Tests IA Inspector IA Inspector ITD-857 2.000 CY (1500 m ³) MPA (3500) ACCEPTANCE Compressive Strength 502.02 AASHTO T22 AASHTO T23 ITD-1044 A single sample of three (3.28-day one (1) set of three other tage (1) per day. A single sample of contracter is the of sufficient size for the optic/test tage (1) per day. INDEPENDENT Making Cylinders accordance with WAQTC TM-2. IA Inspector ITD-857 Observation one(1) per project A single sample of contractor is a concrete pump, then samples will be obtained at the point of discharge in accordance with WAQTC TM-2. (¹⁰⁰ When concrete accordance with WAQTC TM-2. Soc.01(8) ITD-875 Unless tack of existing attached ³⁰ QC tests on period bases targer than 3 m ³ (4 CY) bridge footings, columns, pier caps or bridge parapet. Unless tack of existing attached ³⁰ QC tests on period. Unless tack of existing attached ³⁰ QC tests on period. Specified Strength of 20.5 MPa (3000 pis) or less ACCEPTANCE Contra		Cement Factor	-			less than one	batch ticket accompanies each	
or greater 502.02 AASHTO T22 AASHTO T23 ITD -1044 (Sample Data) Other (1) set of (s) 28-dar policiers and policiers and thore (1) set of two (2) 7-day A single sample of concrete must be of sufficient size for the cylinders ACCEPTANCE Compressive Strength ITD Project Personnel ITD District or Central Lab ITD -1044 (Sample Data) A single sample of concrete must be of sufficient size for the cylinders A single sample of concrete must be of sufficient size for the cylinders INDEPENDENT ASSURANCE Scoordree with WAQTC TM-2. IA Inspector ITD -857 Observation one(1) per project A single sample of concrete must be of sufficient size for the cylinders (¹⁰⁹ When concrete is delivered to the forms by means of a concrete pump, then samples will be obtained at the point of discharge in accordance with WAQTC TM-2. Observation one(1) per project Observation one(1) per project ⁽¹⁹⁹ When concrete is delivered to the forms by means of a concrete pump, then samples will be obtained at the point of discharge in accordance with WAQTC TM-2. Soc.01(B) Unless lack of quality control is evident, plant inspection, first load, then each (³⁰) OC tests on First load, then each (³⁰) OC tests on first l		ASSURANCE	IA Inspector	IA Inspector	ITD-857	2,000 CY		
Compressive Strength ITD Project Personnel ITD District or Central Lab ITD-845 (Lab Report) Wo (2) / r3ay (pinders each to 0 CY (75 m)) but not less than one (1) per day ²⁶ . Contrating the second and ari, sump, unit weight tests. INDEPENDENT ASSURANCE Making IA Inspector IA Inspector ITD-857 Observation one(1) per day ²⁶ . Observation one(1) per project Interfer fills: De or eff (1) per day ²⁶ . ''''' Making IA Inspector IA Inspector ITD-857 Observation one(1) per project Interfer fills: De or eff (1) per day ²⁶ . ''''' For some applications involving multiple small placements not on the same day, the minimum one test per day is not required. Examples where this applications involving multiple small placements not on the same day, the minimum one test per day is not required. Examples of sufficient cach of apply are sign or pole bases larger than 3 m ³ (4 CY) bridge footings, columns, pier caps or bridge parapet. Unless tack of quality control is eviden, plant inspection, aggregate testing, cernent & fly ash certs & sampling, field tests and compressive strength tests by the State are not required. ⁽²⁶⁾ Duantity Paid Total Out antity Paid Unless tack of quality control is eviden, plant inspection, aggregate testing, cernent & fly ash certs & sampling, field tests and compressive strength tests by certification ⁽²⁶⁾ Duantity 20.5 MPA (300 psi) or less ACCEPTANCE Certification ⁽²⁶⁾ Duality Contractor Contractor Total certifi			502.02			three (3) 28-day cylinders and		
ASSURANCE Making Cylinders IA Inspector IA Inspector ITD-857 Observation one(1) per project (¹⁶) When concrete is delivered to the forms by means of a concrete pump, then samples will be obtained at the point of discharge in accordance with WAQTC TM-2. (¹⁶) When concrete is delivered to the forms by means of a concrete pump, then samples will be obtained at the point of discharge in accordance with WAQTC TM-2. (¹⁶) Concrete (¹⁶) Concrete (¹⁷) Concrete (¹⁸) Contractor (¹⁷) Contractor (¹⁸) Contractor (¹⁸) Contractor (¹⁸) Contractor (¹⁸) Contractor (¹⁷) Contractor (¹⁸) Contractor (¹⁹		Compressive	-		ITD-845	two (2) 7-day cylinders each 100 CY (75 m ³) but not less than one (1) per	of sufficient size for the cylinders and air, slump, unit	
(a) For some applications involving multiple small placements not on the same day, the minimum one test per day is not required. Examples where this does not apply are sign or pole bases larger than 3 m ³ (4 CY) bridge footings, columns, pier caps or bridge parapet. Unless lack of quality control is evident, plant inspection, aggregate testing, ceremt & fly ash certs & sampling, field tests and compressive strength of 20.5 MPa (3000 psi) or less Unless lack of Contractor Unless lack of quality control is evident, plant inspection, aggregate testing, ceremt & fly ash certs & sampling, field tests and compressive strength of 20.5 MPa (3000 psi) or less Unless lack of Contractor Unless lack of quality control is evident, plant inspection, aggregate testing, ceremt & fly ash certs & sampling, field tests and compressive strength tests by the State are not required. 20.5 MPa (3000 psi) or less Contractor Contractor Contractor Contractor Total vertical tests and compressive strength tests by the State are not required. See QA Manual Section 230.06 Concrete supplier's certification Contractor Contractor (75 m ³). Thereafter, every 100 CY (75 m ³). Note locations on ITD-875		ASSURANCE Making	IA Inspector	IA Inspector	ITD-857	one(1) per		e e
Concrete Specified Strength of 20.5 MPa (3000 psi) or lessACCEPTANCE Certification (2B)ContractorContractorITD-875 with QC test attached(3) QC tests on First load, then each 50 CY (38 m3) until quantity exceeds 100 CY (75m3). Thereafter, every 100 CY (75 m3).Total Total QC tests on First load, the each 50 CY (38 m3) until quantity exceeds 100 CY (75 m3).Total Total QC tests on Strength tests by the State are not required. (2B)Concrete supplier's certificationContractorContractorContractorTotal Until quantity exceeds (75 m3). Thereafter, every 100 CY (75 m3).Total QC tests on Section 230.06See QA Manual Section 230.06	⁽²⁾ For some application where this applies are	ons involving multiple s e non-structural items s	such as median b ³ (4 CY) bridge fo	arriers, small bases for	signs or poles. Ex	amples of items whe	re this does not Unless lack of	
ConcreteSpecified Strength of 20.5 MPa (3000 psi) or lessACCEPTANCE Certification (2B)ContractorContractorattached(3) QC tests on First load, until quantity exceeds 100 CY (75m3).Total Quantity PaidCents & sampling, field tests and compressive strength tests by the State are not required.Specified Strength of 20.5 MPa (3000 psi) or lessACCEPTANCE Certification (2B)ContractorContractorTotal OCY (38 m3) until quantity exceeds 100 CY (75m3). Thereafter, every 100 CY (75 m3)Total PaidSee QA Manual Section 230.06Note locations on ITD-875			502.01(B)		with QC test		evident, plant inspection, aggregate testing,	
psi) of less See QA Manual 100 CY (75m ³). Thereafter, every 100 CY (75 m ³) Concrete supplier's certification Note locations on ITD-875	Specified Strength of 20.5 MPa (3000	ACCEPTANCE Certification ^(2B)	Contractor	Contractor	attached ⁽³⁾ QC tests on First load, then each 50 CY (38 m ³) until quantity	Quantity	certs & sampling, field tests and compressive strength tests by the State are not required. ^(2B)	
ITD-875					100 CY (75m ³). Thereafter, every 100 CY		Section 230.06 Concrete supplier's certification	
157/ Congrete for ourb and addwalk will be accorded by contribution regardless of atteacht requirements. Concrete for								

	BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR		
	MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS		
	Pre-cast Stringers, Prestressed Members	ACCEPTANCE Field Tests (Air, slump, unit	502.02	AASHTO T119 AASHTO T152 AASHTO T309 AASHTO T121	ITD-70	One (1) per member	The ITD On-site Inspector will provide a memo of		
		weight, temperature)	ITD On-site Inspector	ITD On-site Inspector			acceptance to the Engineer with all required test		
		ACCEPTANCE Compressive Strength	502.02	AASHTO T22 AASHTO T23	ITD-845	One (1) set of three (3) 28- day cylinders per member	reports and certifications attached.		
502-4			ITD On-site Inspector	ITD District or Central Lab	110-040				
40	Concrete Parapet	FOLLOW MTR FO	FOLLOW MTR FOR STRENGTH SPECIFIED						
	Approach Slab	FOLLOW MTR FO	FOLLOW MTR FOR STRENGTH SPECIFIED						
	Permanent Metal Concrete Forms		708.31	ASTM A653 M SS	ITD-914 with mill	Total Quantity	See QA Manual		
				Manufacturer	test reports attached	Paid	Section 230.03		

500 Structures

BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR	
MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS	
STANDARD SPEC	FICATION SECTION	DN: 503 ME	TAL REINFORC	EMENT		-	
	ACCEPTANCE	503.02 708.02	AASHTO M31M	ITD-914 with mill test	Total Quantity	See QA Manual	
	Certification	Manufacturer	Manufacturer	reports attached	Paid	Section 230.03	
Reinforcing Steel		503.02		ITD-1044 ^(3A)	Field sample	FedEx or overnight samples.	
	ACCEPTANCE Certification	ITD Project Personnel	ITD Central Lab	(Sample Data) ITD-1810 (812) (Lab Report)	every size and heat number from deliveries to project	Reject failing heat numbers. See QA Manual	
						Section 230.03.02	
		503.02 708.02	AASHTO M284M	ITD-914 with mill test	Total Quantity	See QA Manual	<u>-</u>
		Manufacturer	Manufacturer	reports attached	Paid	Section 230.03	503-1
Epoxy Coated Metal		503.02		ITD-1044 ^(3A)	F ield e surgle	FedEx or overnight samples.	
Reinforcement	VERIFICATION Laboratory Tests ⁽³⁾	ITD Project		(Sample Data) ITD-1810	Field sample every size and heat number	Reject failing heat numbers.	
	10313	Personnel	ITD Central Lab	(812)(Lab Report)	from deliveries to project	See QA Manual Section 230.03.02	
Dowel Bars		708.03	AASHTO M254	ITD-914 with mill	Total Quantity		
	ACCEPTANCE Certification	Manufacturer	Manufacturer	test reports attached	Paid	See QA Manual Section 230.03	
			ecified strength of 20 TD-1044 and sample			TD-914 is required.	

	BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR		
	MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS		
			708.04	AASHTO M31M	ITD-914 with mill	Total Quantity			
		ACCEPTANCE Certification	Manufacturer	Manufacturer	test reports attached	Total Quantity Paid	See QA Manual Section 230.03		
3-2	Laborato	VERIFICATION	503.02		ITD-1044 ^(3A) (Sample Data)	One (1) sample of two	Slab replacement or rehab project where less than		
503		Laboratory Tests ⁽⁴⁾	ITD Project Personnel	ITD Central Lab	ITD-1810 (812)(Lab Report)	(2) bars per day of concrete paving	1,000 bars, then one (1) sample of two (2) bars per project.		
		⁽³⁾ Samples not required when used with concrete of specified strength of 20.5 MPa (3000 psi) or less. Form ITD-914 is required.							
	_			TD-1044 and sample	e (ITD-914 and r	nill test reports).			
	⁽⁴⁾ Samples not req	uired when less that	n 200 bars are ι	used on a project.					

BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR				
MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS				
STANDARD SPECIFICATION SECTION: 504 STRUCTURAL METALS										
	ACCEPTANCE Certification	504.01 504.03 708.06	AASHTO M270M	ITD-914 with mill test	Total Quantity Paid	See QA Manual Section 230.03				
	Conmodion	Manufacturer	Manufacturer	reports attached						
Steel Bridge	ACCEPTANCE Fabrication Inspection ⁽⁵⁾	504.01 504.02 504.03		HQ will provide memo of inspection		District notifies HQ as soon as fabricator is known. HQ arranges fabrication inspection.				
	ACCEPTANCE Certification	504.01 504.03 708.06	AASHTO M270M	ITD-914 with mill test	Total Quantity Paid	See QA Manual Section 230.03				
	Continoution	Manufacturer	Manufacturer	reports attached	i ulu					
Structural Steel	ACCEPTANCE Fabrication Inspection ⁽⁵⁾	504.01 504.02 504.03		HQ will provide memo of inspection		District notifies HQ as soon as fabricator is known. HQ arranges fabrication inspection.				
		708.06	AASHTO M270M	ITD-914 with mill	Total Quantity					
	ACCEPTANCE Certification	Manufacturer	Manufacturer	test reports attached	Total Quantity Paid	See QA Manual Section 230.03				
Steel Forgings	ACCEPTANCE Fabrication Inspection ⁽⁵⁾	504.03		HQ will provide memo of inspection		District notifies HQ as soon as fabricator is known. HQ arranges fabrication inspection.				
Paint	FOLLOW STAND	ARD SPECIFIC	ATION SECTION 62	.7	·					

	BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM	REMARKS, NOTES OR	
	MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS	
		ACCEPTANCE	504.03(L) 708.06(2)	ASTM A307 AASHTO M164M AASHTO M253M	ITD-851 with test	Total Quantity	See QA Manual	
	Bolts, Nuts, Hardened Washers,	Certification	Manufacturer	Manufacturer	results attached	Paid	Section 230.03	
	Direct Tension Indicators	VERIFICATION	504.03(L) 708.06(2)		ITD-1044 (Sample Data)	Three (3) random samples of	Sample from material delivered	
		Laboratory Tests	ITD Project Personnel	ITD Central Lab	ITD-1811 (Lab Report)	each assembly from each lot and size	to the project.	
	Structural Steel	il Certification	504.02 708.06(1)	AASHTO M270M	ITD-914 with mill	Total Quantity	See QA Manual	
504-2	Handrail		Manufacturer	Manufacturer	test reports attached	Paid	Section 230.03	
5	Two Tube Curb-		504.02 708.06(1)	AASHTO M270M	ITD-914 with mill	Total Quantity	See QA Manual	
	Mount Railing	Certification	Manufacturer	Manufacturer	test reports attached	Paid	Section 230.03	
	Pedestrian	ACCEPTANCE	504.02 708.06(1)	AASHTO M270M	ITD-914 with mill	Total Quantity	See QA Manual	
	Bicycle Railing	Certification	Manufacturer	Manufacturer	test reports attached	Paid	Section 230.03	
	Combination Pedestrian,	ACCEPTANCE	504.02 708.06(1)	AASHTO M270M	ITD-914 with mill	Total Quantity	See QA Manual	
	Bicycle, and Traffic Railing	Certification	Manufacturer	Manufacturer	test reports attached	Paid	Section 230.03	

BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR			
MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS			
STANDARD SPECIFICATION SECTION: 505 PILING									
H-Beam	ACCEPTANCE	505.02 708.08	ASTM A 36M	ITD-914 with mill test	Total Quantity	See QA Manual			
Piles	Certification	Manufacturer	Manufacturer	reports attached	Paid	Section 230.03			
Steel Shell	ACCEPTANCE	505.02 708.30		ITD-914 with mill test	Total Quantity	See QA Manual			
Piles	Certification	Manufacturer	Manufacturer	reports attached	Paid	Section 230.03			
Timber Piles	ACCEPTANCE	505.02 710.05	ASTM D 25	ITD-851	Total Quantity	See QA Manual			
	Certification	Manufacturer	Manufacturer		Paid	Section 230.03			
Pile Point	ACCEPTANCE	505.03(C)		Qualified Product List					
	Approved List	Manufacturer	Manufacturer	ITD-851					
Concrete with specified strength of 3000 psi	ACCEPTANCE Certification	502.02(B)		ITD-875 with QC test	Total Quantity Paid	See QA Manual Section 230.06 Concrete Suppliers			
(20.5 MPa) or less		Concrete Supplier	Concrete Supplier	results attached	T alu	Certification Note locations on ITD-875			
STANDARD SPEC	IFICATION SECTION	DN: 506 PRE	E-STRESSING (CONCRETE					
Reinforcement	FOLLOW STANDA	RD SPECIFICAT	ION SECTION 503						
	ACCEPTANCE			ITD-914 with mill test	Total Quantity Paid	See QA Manual			
Welded Wire	Certification	Manufacturer	Manufacturer	reports attached		Section 230.03			
	ACCEPTANCE Certification	708.05	ASTM A 416 ASTM A 722	ITD-914 with mill test reports	Total Quantity Paid	See QA Manual Section 230.03			
		Manufacturer	Manufacturer	attached		0001011200.00			
Pre-Stressing Strand		506.03		ITD-1044 (Sample		See QA Manual			
	VERIFICATION Laboratory Tests	ITD Project Personnel	ITD Central Lab	Data) ITD-1813 (838) (Lab Report)	One (1) per reel	Section 230.05.01			
Grout Type A Type B Class I Type B Class II Type C	ACCEPTANCE	506.03	AASHTO TP 83 AASHTO T 106	ITD-1044 (Sample	Grout cubes	The average of three (3) 28-day cubes for Type A			
	Compressive Strength	ITD Project Personnel	ITD District or Central Lab	ITD-845 (Lab Report)	once per day for each type grout used	or Type B. The average of three (3) 24-hour cubes for Type C			
(used in post tensioning)	INDEPENDENT ASSURANCE	IA Inspector	IA Inspector	ITD-857	Observation one (1) per				

BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED		REMARKS, NOTES OR
MATERIAL	TESTING	SAMPLED BY	TESTED BY	REPORT FORM NO.	REQUIRED FREQUENCY	ADDITIONAL DIRECTIONS
Grout Type A		506.03	AASHTO TP 83 AASHTO T106			The average of three (3) 28-day
Type B Class I Type B Class II Type C (used in other than post tensioning)	ACCEPTANCE Compressive Strength	ITD Project Personnel	ITD District or Central Lab	ITD-1044 ITD-845 (Lab Report)	One (1) per project	cubes for Type A or Type B. The average of three (3) 24-hour cubes for Type C
Grout Type D	ACCEPTANCE Certification	506.03 701 703	AASHTO M85 AASHTO T11 AASHTO T27 AASHTO T176 Method 2, Mechanical	ITD-851	Total Quantity Paid	See QA Manual Section 230.01
		Manufacturer	Manufacturer			
STANDARD SPEC	IFICATION SECTION	DN: 507 BE	ARING PADS A	ND PLATES	_	
Self-Lubricating Bronze Bearing	ACCEPTANCE Certification	507.02 708.29		ITD-851	Total Quantity Paid	See QA Manual Section 230.01
Plates		Manufacturer	Manufacturer		Faiu	Section 230.01
Neoprene Bearing Pads	ACCEPTANCE Certification	507.02 720.02	AASHTO M251-90	ITD-851	Total Quantity Paid	See QA Manual
Deaning r aus		Manufacturer	Manufacturer			Section 230.01
TFE/PTFE Bridge Bearing	ACCEPTANCE Certification	507.02 720.03		ITD-851	Total Quantity Paid	See QA Manual Section 230.01
Pads	Certification	Manufacturer	Manufacturer		Faiu	Section 230.01
STANDARD SPEC	IFICATION SECTION	DN: 508 CC	RRUGATED PL	ATE PIPE		
Corrugated Plate	ACCEPTANCE	508.02 708.20	AASHTO M167 or M219	ITD-914 with mill test	Total Quantity	See QA Manual
Pipe Culvert	Certification	Manufacturer	Manufacturer	reports attached	Paid	Section 230.07
Corrugated Plate	ACCEPTANCE	508.02 708.20	AASHTO M167 or M219	ITD-914 with mill test	Total Quantity	See QA Manual
Pipe Arch	Certification	Manufacturer	Manufacturer	reports attached	Paid	Section 230.07
Corrugated Plate	ACCEPTANCE	508.02 708.20	AASHTO M167 or M219	ITD-914 with mill test	Total Quantity	See QA Manual
Arch	Certification	Manufacturer	Manufacturer	reports attached	Paid	Section 230.07

BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR			
MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS			
STANDARD SPEC	STANDARD SPECIFICATION SECTION: 509 Non-Structural Concrete								
		509.01							
Mix Design	REVIEW BY HQ Central Lab	Contractor	Contractor	See Section 260.03.					
		509.02		ITD-875 with QC test		Unless lack of quality control is evident, plant inspection,			
Concrete	ACCEPTANCE Certification	Contractor	Contractor	results attached (1) QC tests on First load, then each 50 CY (38 m ³) until quantity exceeds 100 CY (75m ³).	Total Quantity Paid	aggregate testing, cement & fly ash certs & sampling, field tests and compressive strength tests by the State are not required. ^(2B) See QA Manual Section 230.06 Concrete			
				Thereafter, every 100 CY (75 m ³)		supplier's certification Note locations on			
Concrete for lands	(1) When total is less than 50CY, QC tests can be from previous batches in the 30 days prior to the first placement. Concrete for landscaping using sack mixes will NOT require certification (ITD-875) or verification tests. Acceptance will be by inspection on the RE Letter (ITD-854).								

	BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED	MINIMUM	REMARKS, NOTES OR					
	MATERIAL	TESTING	SAMPLED BY	TESTED BY	REPORT FORM NO.	REQUIRED FREQUENCY	ADDITIONAL DIRECTIONS					
	STANDARD SPEC	IFICATION SECTIO	DN: 510 CO	NCRETE OVER	LAY							
	Mix Design											
	Aggregate		FOLLOW STANDARD SPECIFICATION SECTION 502									
	Portland Cement	FOLLOW STANDARD SPECIFICATION SECTION 502										
	Curing Compound											
		ACCEPTANCE (Latex Modifier)	510.02	Idaho T 121	ITD-851 with test	Total Quantity	See QA Manual					
		Certification	Manufacturer	Manufacturer	results attached	Paid	Section 230.01					
		ACCEPTANCE (Concrete)	510.02	AASHTO T119 AASHTO T152 AASHTO T309 AASHTO T121	First load, then each 50 CY (38m ³) until ITD-70 quantity reaches	each 50 CY (38m ³) until quantity reaches						
	Latex Modified Concrete	Field Tests	ITD Project Personnel	ITD Project Personnel	100 CY (75m ³), thereafter each 100 CY (75m ³).							
		INDEPENDENT ASSURANCE Field Tests	IA Inspector	IA Inspector	ITD-857	Each 2,000 CY (1500 m ³)						
510-1		ACCEPTANCE (Concrete) Compressive Strength	510.03	AASHTO T22 AASHTO T23	ITD-1044 (Sample Data)	three (2)						
5			ITD Project Personnel	ITD District or Central Lab	ITD-845 (Lab Report)	cylinders per day						
		INDEPENDENT ASSURANCE Making Cylinders	IA Inspector	IA Inspector	ITD-857	Observation one (1) per project						
		ACCEPTANCE (Silica Fume)	510.02	AASHTO M307	ITD-851 with test	Total Quantity	See QA Manual					
		Certification	Manufacturer	Manufacturer	results attached	Paid	Section 230.01					
		VERIFICATION	510.02	AASHTO M307	ITD-1044 (Sample Data)	One (1) per	One (1) Cylinder					
		Laboratory Test	ITD Project Personnel	ITD Central Lab	ITD-1827 (Lab Report)	project	Can					
	Silica Fume Concrete		510.02	AASHTO T119 AASHTO T152 AASHTO T309 AASHTO T121	ITD-70	First load, then each 50 CY (38m ³) until quantity reaches						
			ITD Project Personnel	ITD Project Personnel	100 CY (75m ³), thereafter each 100 CY (75m ³).							
		INDEPENDENT ASSURANCE Field Tests	IA Inspector	IA Inspector	ITD-857	Each 2,000 CY (1500 m ³)						

BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR
MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS
	ACCEPTANCE (Concrete)	510.03	AASHTO T22 AASHTO T23	ITD-1044 (Sample Data)	One (1) set of three (3)	
Silica Fume Concrete	Compressive Strength	ITD Project Personnel	ITD District or Central Lab	ITD-845 (Lab Report)	28-day cylinders per day	
(Continued)	INDEPENDENT ASSURANCE Making Cylinders	IA Inspector	IA Inspector	ITD-857	Observation one (1) per project	
Smoothness	ACCEPTANCE	409 510.03(F)		ITD-25 (Standard		Identify any delaminations
Smoothness	ACCEPTANCE		ITD Project Personnel	- (Standard Diary)		for removal.
STANDARD SPEC	IFICATION SECTIO	DN: 511 CO	NCRETE WATE	RPROOFING	SYSTEMS	
Liquid Asphalt	ACCEPTANCE	511.02	ASTM D 3406		Total Quantity	See QA Manual
Sealant Type A System	Certification	Manufacturer	Manufacturer	ITD-851	Paid	Section 230.01
Asphalt Roll Roofing	ACCEPTANCE Certification	511.02	ASTM D 224 TYPE II	ITD-851	Total Quantity Paid	See QA Manual Section 230.01
Type A System		Manufacturer	Manufacturer			0001011 200.01
Primer	ACCEPTANCE	702.03		ITD-851	Total Quantity	See QA Manual
Type A System	Certification	Manufacturer	Manufacturer	110 001	Paid	Section 230.01
Asphalt Cement	ACCEPTANCE	702.01		ITD-851	Total Quantity	See QA Manual
Type B System	Certification	Manufacturer	Manufacturer		Paid	Section 230.01
Fabric	ACCEPTANCE	718.02		ITD-851	Total Quantity	See QA Manual
Type B System	Certification	Manufacturer	Manufacturer		Paid	Section 230.01
Sand Membrane Protection	ACCEPTANCE Gradation Sand Equivalent	703.02	AASHTO T27 AASHTO T11 AASHTO T176 Method 2, Mechanical	ITD-901	One (1) per project	If test fails immediately, perform check test. If check test fails, reject
Blanket		ITD Project Personnel	ITD Project Personnel			material.
Membrane Sheet Type D System	ACCEPTANCE Certification	511.02 511.03		ITD-851	Total Quantity	See QA Manual
i ype D System	Certinication	Manufacturer	Manufacturer		Paid	Section 230.01
Water Repellant Type C System	ACCEPTANCE	511.02 511.03		ITD-851	Total Quantity Paid	See QA Manual Section 230.01
rype o bystem	Certification	Manufacturer	Manufacturer		Paid	200.01

	BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR
	MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS
	STANDARD SPEC	IFICATION SECTIO	N: 512 GA	BION STRUCTU	RE		
	Wire Mesh	ACCEPTANCE Certification	715.01	ASTM A 370 ASTM A 641 ASTM A 90 ASTM A 185	ITD-851	Total Quantity Paid	See QA Manual Section 230.01
			Manufacturer	Manufacturer			
	Joints	ACCEPTANCE Certification	715.05	ASTM A 641 ASTM A 370 ASTM A 641 ASTM A 90 ASTM A 764	ITD-851	Total Quantity Paid	See QA Manual Section 230.01
			Manufacturer	Manufacturer			
512	Fill	ACCEPTANCE	715.06		ITD-25		
С С	Material	Inspection	No sample required	No testing required	(Standard Diary)		
		ACCEPTANCE	512.03	AASHTO T 99 Method C or A AASHTO T 310 Method B	ITD-850	Each 2500 CY or 4000 tons	Document compaction effort for each lift. Obtain check
	Compacting Backfill	In-Place Density	ITD Project Personnel	ITD Project Personnel		(2000 m ³ or 3500 t)	tests within 10 feet (3m) and at same depth as original test.
		INDEPENDENT ASSURANCE IA Inspe In-Place Density	IA Inspector	IA Inspector	ITD-857	Observation one (1) per project	
	Geotextile	FOLLOW STAND	ARD SPECIFIC	ATION SECTION 64	0		

BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR				
MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS				
STANDARD SPEC	STANDARD SPECIFICATION SECTION: 602 CULVERTS, 603 PIPE SIPHONS, 604 IRRIGATION PIPE LINES, 605 SEWERS, 606 PIPE UNDERDRAINS, 607 EMBANKMENT PROTECTORS, 608 APRONS FOR PIPE									
Corrugated Metal Pipe and Pipe Arches		706.06	AASHTO M 36M or M 196M	ITD-914 with mill test						
	ACCEPTANCE Certification	Manufacturer	Manufacturer	reports attached for steel & ITD-851 for aluminum	Total Quantity Paid	See QA Manual Sections 230.01 and 230.07				
	ACCEPTANCE Certification	706.06	AASHTO M 36M Galvanized Coating	ITD-914 with QC results	Total Quantity	See QA Manual	608-1			
		Manufacturer	Manufacturer	attached	Paid .	Section 230.07	607,			
Structural Plate Pipe, Pipe	ACCEPTANCE Certification	708.20	AASHTO M 167 or M219	ITD-914 with mill test	Total Quantity	See QA Manual	606,			
Arches and Arches		Manufacturer	Manufacturer	reports attached	Paid	Section 230.01	4, 605,			
Concrete Pipe for Sewer, Irrigation or Drainage,	ACCEPTANCE Certification	706.01 706.02 706.03	AASHTO M 86M ASTM C 118	ITD-851	Total Quantity Paid	See QA Manual Sections 230.01 and 230.04	603, 604,			
of Drainage,		Manufacturer	Manufacturer			and 200.04	602,			
Reinforced Concrete Culvert, Storm Drain and	ACCEPTANCE Certification	706.01 706.04	AASHTO M 170M	ITD-851	Total Quantity Paid	See QA Manual Sections 230.01	9			
Sewer Pipe	Certification					and 230.04				
Pipe Underdrains (metallic coated corrugated steel, corrugated	ACCEPTANCE	706.07 706.08 706.10 706.14	AASHTO M 36M AASHTO M 196M AASHTO M 252M AASHTO M 278M	ITD-851 or ITD-914 for steel	Total Quantity	See QA Manual				
aluminum pipe, corrugated PE drainage tubing PVC pipe)	Certification	Manufacturer	Manufacturer	(with mill test reports attached)	Paid	Section 230.01				

	BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR	
	MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS	
	ABS or PVC or PE Pipe	ACCEPTANCE Certification	706.13 706.14 706.15 706.16 706.17	ASTM D 2680 AASHTO M 278 ASTM F 794 AASHTO M 294 ASTM F 894	ITD-851	Total Quantity Paid	See QA Manual Section 230.06	
			Manufacturer	Manufacturer				
	Metal Aprons	ACCEPTANCE Certification	708.21	AASHTO M 36M or M 196M	ITD-851	Total Quantity Paid	See QA Manual Section 230.01	
		Continoution	Manufacturer	Manufacturer	_			
			502.01(B)		ITD-875		See QA Manual Section 230.06	
	Concrete Aprons	ACCEPTANCE Certification	Concrete Supplier	Concrete Supplier	with QC test results attached	Total Quantity Paid Total Quantity	Concrete Supplier's certification Note locations on ITD-875	
8-2	Gaskets for	ACCEPTANCE	706.11	AASHTO M 198	ITD-851	Total Quantity	See QA Manual	
608	Concrete Pipe	Certification	Manufacturer	Manufacturer	110-001	Paid	Section 230.01	
607, 608-2	Rubber Gaskets for CMP	ACCEPTANCE Certification	706.12	ASTM D 1056	ITD-851	Total Quantity	See QA Manual	
6, 6			Manufacturer	Manufacturer	110 001	Paid	Section 230.01	
, 606,	Manhole Covers ACCE		708.22	AASHTO M 105	ITD-851	Total Quantity	See QA Manual	
605,	and Rings, Grates		Manufacturer	Manufacturer		Paid	Section 230.01	
604,	Catch Basins, Inlets & Manholes	ACCEPTANCE Certification	Standard Drawing E6		ITD-851	Total Quantity Paid	See QA Manual Section 230.05 Manufacturer's	
603,	(Pre-cast)		Manufacturer	Manufacturer		Palu	certification	
602, (Catch Basins,		Standard Drawing E6		ITD-875 with QC		See QA Manual Section 230.05	
	Inlets & Manholes (Cast in-Place)	ACCEPTANCE Certification	Manufacturer	Manufacturer	test results attached	Total Quantity Paid	Concrete Supplier's certification Note locations on ITD-875	
	Corrugated Metal Embankment	ACCEPTANCE	607.02 706.06	AASHTO M 36 AASHTO M 196	ITD-914 with mill	Total Quantity	See QA Manual	
	Protectors	Certification	Manufacturer	Manufacturer	test reports attached	Paid	Section 230.01	
	Compacting Backfill	FOLLOW STAND	ARD SPECIFIC	ATION SECTION 21	0			
	Drain Rock	ACCEPTANCE Certification	606.02	AASHTO T2 AASHTO T248 AASHTO T27	ITD-851 with QC gradation tests attached	Total Quantity Paid	See QA Manual Section 230.01	
			Contractor	Contractor				
	Geotextile	Follow Standard Specification Section 640						

BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR					
MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS					
STANDARD SPEC	STANDARD SPECIFICATION SECTION: 609 MINOR STRUCTURES										
Concrete Specified strength of 3000 psi (20.5 MPa) or less	ACCEPTANCE Certification	509 Concrete Supplier	Concrete Supplier	ITD-851 (Precast) ITD-875 (Cast in Place) with QC test results attached	Total Quantity Paid	See QA Manual Section 230.06 Concrete Supplier's certification Note locations on ITD-875.					
Concrete Specified strength of 3500 psi (24.0 MPa) or greater	FOLLOW STANDARD SPECIFICATION SECTION 502										
Metal Reinforcement [with concrete of specified strength of 3000 psi (20.5 MPa) or less]	ACCEPTANCE Certification	708.02 Manufacturer	Manufacturer	ITD-914 with mill test reports attached	Total Quantity Paid	See QA Manual Section 230.03 No samples required.	609				
Metal Reinforcement [with concrete of specified strength of 3500 psi (24.0 MPa) or greater]	FOLLOW STANDARD SPECIFICATION SECTION 503										
Timber	ACCEPTANCE Certification	710 Manufacturer	Manufacturer	ITD-851	Total Quantity Paid						
Compacting Backfill	FOLLOW STAND	ARD SPECIFIC	ATION SECTION 21	0							

60	270
00	270
00	210

	BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED	MINIMUM	REMARKS, NOTES OR
	MATERIAL	TESTING	SAMPLED BY	TESTED BY	REPORT FORM NO.	REQUIRED FREQUENCY	ADDITIONAL DIRECTIONS
	STANDARD SPEC	IFICATION SECTIO	N: 610 FE	NCE			
610-1		IFICATION SECTION ACCEPTANCE Field Tests Field Tests (127 mm) spate (127 mm) spate Cumulative ave Cumulative ave Individual peror corresponding compliant spate must conform Strand <u>Gage^A</u> 12½ 12½ 12½ 12½ 12½ 12½ 12½ 12½ 12½ 12½	BY N: 610 FE 708.09 ITD Project Personnel e this information of barbs: Count of barbs: Count of barbs: Count of barbs: Count of barbs: Count of barbs: Count of barbs spacing rerage: Divide to congs by the tot to the barb spacing redge of adjace cings by the tot to the barb space Table (No. Points 2 2 4 4 2 2 4	NCE AASHTO M 280 ITD Project Personnel on on the ITD-1044): t total barbs in a 25 ft th for 4 in. (102 mm) the total length by the ng: Measure individu ent barb) over the sar al number of spaces cing in the table belo Condensed (see AAS Barb Spacing 4 (102) 4 (102) or 5 (127) 5 (127) 4 (102) 4 (102) 4 (102) 5 (127) 4 (102) 5 (127) 5 (127) 5 (127) 4 (102) 5 (127) 5 (127)	FORM NO. ITD-1044 (Sample Data) t. (7.6 m) length spacing or 55 b e total number o hal barb spacing me 25 ft. (7.6 m) times 100. At le w ± 3/4 in. (19	Check barb count at least once for every 50 rolls or at least once (1) per project . Test lengths mu arbs in 25 ft. (7.6 f barbs. (edge of one barb section. Divide th east 93.5% of indiv mm).	If field tests meet specifications, record results on ITD-1044 and submit sample to Central Laboratory for tests. If any of the field test results do not meet specification, <u>reject</u> the material. st contain at least m) length for 5 in.
		^B Gage of flat and half-round barbs is gage of round wire before forming.					
				spacing, measure same ne of the additional sa			

BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED		REMARKS, NOTES OR	
MATERIAL	TESTING	SAMPLED BY	TESTED BY	REPORT FORM NO.	REQUIRED FREQUENCY	ADDITIONAL DIRECTIONS	
Barbed Wire	ACCEPTANCE Laboratory	708.09		ITD-1044 (Sample Data)	One (1) sample per each 50 spools delivered to project.	Sample Size: 6 linear feet (2 meters) Barb spacing will not be checked in	
	Tests	ITD Project Personnel	ITD Central Lab	ITD-1836 (Lab Report)	Minimum one sample per project per Supplier.	the lab as a 25ft (7.6 m) sample is required. Reject failing material.	
		708.10			One (1) sample per each 50		
Woven Wire	ACCEPTANCE			ITD-1044 (Sample Data)	spools delivered to project.	<u>Sample Size: 6</u> linear feet (2 meters)	
Woven Wire Laboratory Tests	•	ITD Project Personnel	ITD Central Lab	ITD-1837 (Lab Report)	Minimum one sample per project per Supplier.	Reject failing material.	
		708.13		ITD-1044	One (1) sample per each 50		
Chain Link	ACCEPTANCE Laboratory Tests	ITD Project Personnel	ITD Central Lab	(Sample Data) ITD-1838 (Lab Report)	rolls delivered to each project. Minimum one sample per project per Supplier.	Sample Size: 3 linear feet (1 meter) Reject failing material.	610-2
Metal Posts for all fence types	ACCEPTANCE Inspection	708.12	Field verification of ASTM A 702 or AASHTO M281 or AASHTO M181	ITD-854 ITD-25 (Standard Diary)	One (1) test for weight per 1000 posts	RE Letter-See QA Manual Section 250.00	
		ITD Project Personnel	ITD Project Personnel				
Wood Posts	ACCEPTANCE Inspection	710.08	No Testing Required	ITD-854	Total Quantity Paid	RE Letter- See QA Manual Section 250.00	
Gates ACCEPTANCE Inspection		610.03	No Testing Required	ITD-854	Total Quantity Paid	RE Letter- See QA Manual Section 250.00	
Braces	ACCEPTANCE Inspection	610.03	No Testing Required	ITD-854	Total Quantity Paid	RE Letter- See QA Manual Section 250.00	
Hardware for Barbed or Woven Wire Fence	ACCEPTANCE Inspection	708.11	No Testing Required	ITD-854	Total Quantity Paid	RE Letter- See QA Manual Section 250.00	

	BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR
	MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS
610-3	Concrete	ACCEPTANCE Certification		No Testing Required	ITD-875	Total Quantity Paid	See QA Manual Section 230.06 Concrete Supplier's certification

BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR		
MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS		
STANDARD SPEC	IFICATION SECTION	DN: 611 CA	TTLE GUARDS					
		509		ITD-875		See QA Manual		
Concrete	ACCEPTANCE Certification	Concrete Supplier	Concrete Supplier	with QC test results attached	Total Quantity Paid	Section 230.06 Concrete Supplier's certification		
		708.02		ITD-914				
Metal Reinforcement	ACCEPTANCE Certification	Manufacturer	Manufacturer	with mill test reports attached	Total Quantity Paid	See QA Manual Section 230.03	611	
		504.02	(1)	ITD-914				
Structural Metals	ACCEPTANCE Certification	Manufacturer	Manufacturer	with mill test reports attached	Total Quantity Paid			
Culverts	FOLLOW STAND	ARD SPECIFIC	ATION SECTION 60)2				
Fence	FOLLOW STAND	DLLOW STANDARD SPECIFICATION SECTION 610						
⁽¹⁾ Fabrication Insp	ection by ITD Centr	al Lab required	when quantities over	16 Tons (15 t).				

	BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR
	MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS
	STANDARD SPEC	IFICATION SECTION	ON: 612 ME	TAL GUARDRA	IL		
	Post and Blocks	ACCEPTANCE	710.03 710.09		ITD-851	Total Quantity Paid	See QA Manual Section 230.01
		Certification	Manufacturer	Manufacturer		Falu	Section 230.01
	Steel Rail	ACCEPTANCE	708.14		ITD-851	Total Quantity	See QA Manual
	and Fittings	Certification	Manufacturer	Manufacturer	110-001	Paid	Section 230.01
	Aluminum Rail	ACCEPTANCE	708.25		ITD-851	Total Quantity	See QA Manual
	and Fittings	L TESTING SPECIFICATION SECTION cks ACCEPTANCE Certification kail ACCEPTANCE Certification tail ACCEPTANCE Certification nal ACCEPTANCE Certification nal ACCEPTANCE Certification r ACCEPTANCE Certification or ACCEPTANCE Certification there is the securitication is a se	Manufacturer	Manufacturer	110 001	Paid	Section 230.01
612-1			Standard Drawings				Type 5 and Type 10 are certified as complete units, all other
	Metal Terminal Section		Manufacturer	Manufacturer	ITD-851	Total Quantity Paid	types need certifications for each component.
							See QA Manual Section 230.01
	MATERIALTESTINGSTANDARD SPECIFICATION SECPost and BlocksACCEPTANCE CertificationSteel Rail and FittingsACCEPTANCE CertificationAluminum Rail and FittingsACCEPTANCE CertificationAluminum Rail and FittingsACCEPTANCE CertificationMetal Terminal SectionACCEPTANCE Certification (2)Impact Attenuator (Temporary or Permanent)ACCEPTANCE Certification (2)	ACCEPTANCE	[Spec. Prov.]			Total Quantity	See QA Manual
	MATERIAL STANDARD SPECIF Post and Blocks Steel Rail and Fittings Aluminum Rail and Fittings Aluminum Rail and Fittings Metal Terminal Section Impact Attenuator (Temporary or Permanent) (²)Manufacturer's cert		Manufacturer	Manufacturer	ITD-851	Paid	Section 230.01
	⁽²⁾ Manufacturer's ce requirements.	ertification must indi	cate guardrail m	eets NCHRP 350 sta	andards, where a	applicable, in addit	tion to material

BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR		
MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS		
STANDARD SPEC	IFICATION SECTION	ON: 612 CC	NCRETE GUAR	DRAIL				
	ACCEPTANCE	502.01(B)			Total Quantity	See QA Manual Section 230.01		
Pre-Cast	Certification ⁽³⁾	Manufacturer	Manufacturer	ITD-851	Paid	and Section 230.05		
Cast-In-Place		502.01(B)		ITD-875		See QA Manual Section 230.06		
Specified strength of 3000	ACCEPTANCE Certification ⁽³⁾			with QC test	Total Quantity Paid	Concrete Supplier's		
psi (20.5 MPa) or less	Certification	Concrete Supplier	Concrete Supplier	results attached	Falu	certification Note locations		
1000						on ITD-875.		
Cast-In-Place Specified strength of 3500 psi (24.0 MPa) or greater	FOLLOW STAND	OLLOW STANDARD SPECIFICATION SECTION 502						
Metal Reinforcement	ACCEPTANCE	503.02 708.02		ITD-914 with mill test	Total Quantity	See QA Manual		
(Cast-In-Place only)	Certification ⁽³⁾	Manufacturer	Manufacturer	results attached	Paid	Section 230.03		
Concrete	ACCEPTANCE	Standard Drawings			Total Quantity	See QA Manual		
Terminal Section	Certification ⁽³⁾	Manufacturer	Manufacturer	ITD-851	Paid	Section 230.01		
Impact Attenuator	ACCEPTANCE	[Spec. Prov.]		ITD-851	Total Quantity	See QA Manual		
(Temporary or Permanent)	Certification ⁽³⁾	Manufacturer	Manufacturer	112-001	Paid	Section 230.01		
⁽³⁾ Manufacturer's correquirements.	ertification must ind	icate guardrail n	neets NCHRP 350 st	tandards, where	applicable, in add	ition to material		

	BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED	MINIMUM	REMARKS, NOTES OR
	MATERIAL	TESTING	SAMPLED BY	TESTED BY	REPORT FORM NO.	REQUIRED FREQUENCY	ADDITIONAL DIRECTIONS
	STANDARD SPEC	IFICATION SECTIO	N: 613 SI	DEWALKS			
			509				See QA Manual
	Concrete	ACCEPTANCE Certification	Concrete Supplier	Concrete Supplier	ITD-875 with QC test results attached*	Total Quantity Paid	Section 230.06 Concrete Supplier's certification Note locations on ITD-875.
613	Plant Mix	ACCEPTANCE Inspection	405	No Testing Required	ITD-854	Total Quantity Paid	RE Letter-See QA Manual Section 250.00
	Road Mix	ACCEPTANCE Inspection	406	No Testing Required	ITD-854	Total Quantity Paid	RE Letter- See QA Manual Section 250.00
			613.02	AASHTO T310	_		
	Soil or Aggregate Under Sidewalk	ACCEPTANCE In-Place Density	ITD Project Personnel	ITD Project Personnel	ITD-850	One (1) per project	
<u>ر</u>	STANDARD SPE	CIFICATION SECTI	ON: 614 U	RBAN APPROA	CHES		
			509				See QA Manual
	Concrete	ACCEPTANCE Certification	Concrete Supplier	Concrete Supplier	ITD-875 with QC test results attached*	Total Quantity Paid	Section 230.06 Concrete Supplier's certification Note locations on ITD-875.
614	Concrete Plant Mix	ACCEPTANCE Inspection	405	No Testing Required	ITD-854	Total Quantity Paid	RE Letter-See QA Manual Section 250.00
	Road Mix	ACCEPTANCE Inspection	406	No Testing Required	ITD-854	Total Quantity Paid	, RE Letter- See QA Manual Section 250.00
	Soil or Aggregate	ACCEPTANCE	614.02	AASHTO T310	ITD-850	One (1) per	
	Under Sidewalk	In-Place Density	ITD Project Personnel	ITD Project Personnel		project	
	STANDARD SPE	CIFICATION SECTION	ON: 615 C	URB AND GUT	TER		
	Type A, B, C		509		_		See QA Manual Section 230.06
615	(cast in place, precast, extruded)	ACCEPTANCE Certification	Concrete Supplier	Concrete Supplier	ITD-875 with QC test results attached*	Total Quantity Paid	Concrete
	Type D Plant Mix	ACCEPTANCE Inspection		No Testing Required	ITD-854	Total Quantity Paid	RE Letter-See QA Manual Section 250.00
	* When total is le	ss than 50CY, QC te	ests can be from	n previous batches i	n the 30 days pr	ior to the first place	ement.

BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR	
MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS	
STANDARD SPEC	FICATION SECTION	DN: 616 SIG	NS AND SIGN SU	PPORTS	-		
	ACCEPTANCE Certification	Extruded Aluminum 708.26		ITD-851	Total Quantity Paid	See QA Manual Section 230.01	
		Manufacturer	Manufacturer				
	ACCEPTANCE Certification	Sheet Aluminum 708.27		ITD-851	Total Quantity Paid	See QA Manual Section 230.01	
		Manufacturer	Manufacturer				
	ACCEPTANCE Certification	Steel and Aluminum sign supports 708.17(A)		ITD-851	Total Quantity Paid	See QA Manual Section 230.01	
		Manufacturer	Manufacturer				
Sign Material All materials for	ACCEPTANCE Certification	Hardware for signs 708.18		ITD-851	Total Quantity Paid	See QA Manual Section 230.01	
signs and sign supports require certification for acceptance. Acceptance of all components on		Manufacturer	Manufacturer				
	ACCEPTANCE Certification	Plywood for Type E signs 712.01		ITD-851	Total Quantity Paid	See QA Manual Section 230.01	616-1
one ITD-851 certification form		Manufacturer	Manufacturer				
is acceptable as long as the components are listed on the	ACCEPTANCE Certification	Reflective Sheeting 712.02		ITD-851	Total Quantity Paid	See QA Manual Section 230.01	
ITD-851.		Manufacturer	Manufacturer				
	ACCEPTANCE Certification	Reflective removable cutouts 712.02 E		ITD-851	Total Quantity Paid	See QA Manual Section 230.01	
		Manufacturer	Manufacturer				
ACCEPTANCE Certification ACCEPTANCE Certification	Porcelain Enamel 712.05		ITD-851	Total Quantity Paid	See QA Manual Section 230.01		
	Manufacturer	Manufacturer			200101		
	Polyester Powder Coating 712.06		ITD-851	Total Quantity Paid	See QA Manual Section 230.01		
		Manufacturer	Manufacturer				

	BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED		REMARKS, NOTES OR
	MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS
			708.17(B)		ITD-851 or		
	Overhead Sign Structures	ACCEPTANCE Certification	Manufacturer	Manufacturer	steel (with mill test reports attached)	Total Quantity Paid	ITD Central Lab Inspection required
		PURPOSE OF TESTING REF. TEST METHOD SAMPLED BY TEST METHOD TEST METHOD REQUIRED REPORM NO. MINIMUM REQUIRED REPORM NO. MINIMUM Required Reports ACCEPTANCE Certification 708.17(B) TESTED BY ITD-851 or ITD-914 for steel (with mill test reports attached) Total Quantity Paid ITD Centra Inspectiv required ACCEPTANCE Certification 710.02 710.09 Manufacturer ITD-851 Total Quantity Paid See QA Me Section 23 The manufact must provide certification ACCEPTANCE Certification 708.17(A) ITD-851 Total Quantity Paid See QA Me Section 23 ACCEPTANCE Certification 708.17(A) ITD-851 Total Quantity Paid See QA Me Section 23 ACCEPTANCE Certification 708.17(A) ITD-851 Total Quantity Paid See QA Me Section 23 ACCEPTANCE Certification 708.17(A) ITD-851 Total Quantity Paid See QA Me Section 23 ACCEPTANCE Certification 502.01(B) ITD-851 Total Quantity Paid See QA Me Section 23 ACCEPTANCE Certification 502.01(B) ITD-875 Total Quantity Paid See QA Me Section 23 FOLLOW STANDARD SPECIFICATION SECTION 502 Total Quantit	See QA Manual Section 230.01				
	MATERIAL Overhead Sign		Manufacturer	Manufacturer	ITD-851		The manufacturer must provide a copy of the wood treatment certification to ITD Central Laboratory.
			708.17(A)		ITD-851		See QA Manual
	and Brace angles	Certification	Manufacturer	Manufacturer	110-001	Paid	Section 230.01
			708.17(A)		ITD-851		See QA Manual
	and Brace angles Breakaway Steel Sign Posts Breakaway Steel Sign Post Installation Concrete Specified strength of 3000 psi (20.5 MPa) or	Certification	Manufacturer	Manufacturer		Paid	Section 230.01
-7			708.17(A)		ITD-854		See QA Manual Section 230.01
616-2	Specified	ACCEPTANCE	502.01(B)			Total Quantity	See QA Manual Section 230.06 Concrete
	psi (20.5 MPa) or	Certification					certification Note locations on ITD-875
	Specified strength of 3000 psi (20.5 MPa) or less Concrete Specified strength of 3500 psi (24.0 MPa) or	FOLLOW STAND	ARD SPECIFIC	ATION SECTION 50	2		
			708.02				
	Structures Breakaway Wood Posts Steel Brackets and Brace angles Breakaway Steel Sign Post Installation Concrete Specified strength of 3000 psi (20.5 MPa) or less Concrete Specified strength of 3500 psi (24.0 MPa) or greater Metal Reinforcement [with concrete of specified strength of 3000 psi (20.5 MPa) or less] Metal Reinforcement [with concrete of specified strength of 3000 psi (20.5 MPa) or less]		Manufacturer	Manufacturer	with mill test reports		See GA Manual Section 230.03 No samples required.
	MATERIALTESTINOverhead Sign StructuresACCEPTA CertificatBreakaway Wood PostsACCEPTA CertificatBreakaway Wood PostsACCEPTA CertificatSteel Brackets and Brace anglesACCEPTA CertificatBreakaway Steel Sign PostsACCEPTA CertificatBreakaway Steel Sign PostsACCEPTA CertificatBreakaway Steel Sign PostsACCEPTA CertificatBreakaway Steel Sign PostsACCEPTA CertificatBreakaway Steel Sign Post InstallationACCEPTA CertificatConcrete Specified strength of 3000 psi (24.0 MPa) or lessACCEPTA CertificatConcrete Specified strength of 3500 psi (24.0 MPa) or greaterFOLLOW S CertificatMetal Reinforcement [with concrete of specified strength of 3000 psi (20.5 MPa) or less]FOLLOW S FOLLOW S	FOLLOW STAND	ARD SPECIFIC	ATION SECTION 50	3		

BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR	
MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS	
STANDARD SPECIFICATION SECTION: 617 DELINEATORS AND MILEPOSTS							
Steel Posts	ACCEPTANCE	708.16		ITD-851	Total Quantity	See QA Manual	
Certification	Certification	Manufacturer	Manufacturer	110-001	Paid	Section 230.01	
Aluminum Posts	ACCEPTANCE	708.16		ITD-851	Total Quantity	See QA Manual	
Aluminum Posts	Certification	Manufacturer	Manufacturer	110-001	Paid	Section 230.01	
Delineator and	ACCEPTANCE	708.15		ITD-851	Total Quantity	See QA Manual	~
Milepost Plates	Certification	Manufacturer	Manufacturer	110-001	Paid	Section 230.01	617
Reflector Units	ACCEPTANCE	712.04		ITD-851	Total Quantity	See QA Manual	
Reflector Offics	Certification	Manufacturer	Manufacturer	110-001	Paid	Section 230.01	
Reflective	ACCEPTANCE	712.02		ITD-851	Total Quantity	See QA Manual	
Sheeting	Certification	Manufacturer	Manufacturer	110-001	Paid	Section 230.01	
Silk Screen Paste	ACCEPTANCE	712.08		ITD-851	Total Quantity	See QA Manual	
Sin Scieeli Paste	Certification	Manufacturer	Manufacturer	110-001	Paid	Section 230.01	

	BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED		REMARKS, NOTES OR
	MATERIAL	TESTING	SAMPLED BY	TESTED BY	REPORT FORM NO.	REQUIRED FREQUENCY	ADDITIONAL DIRECTIONS
	STANDARD SPEC	IFICATION SECTIO	N: 618 MAR MONUM	KER POSTS, W	ITNESS POS	STS AND STRE	ET
	Right-of-Way Markers	ACCEPTANCE Inspection	618.02	No Testing Required	ITD-854	Total Quantity Paid	RE Letter-See QA Manual Section 250.00
	Brass Caps	ACCEPTANCE Inspection	708.28	No Testing Required	ITD-854	Total Quantity Paid	RE Letter-See QA Manual Section 250.00
	MATERIAL STANDARD SPEC Right-of-Way Markers	ACCEPTANCE Inspection	618.02	No Testing Required	ITD-854	Total Quantity Paid	RE Letter-See QA Manual Section 250.00
618		ACCEPTANCE Inspection	618.02	No Testing Required	ITD-854	Total Quantity Paid	RE Letter-See QA Manual Section 250.00
		ACCEPTANCE Inspection	Steel 708.16	No Testing Required	ITD-854	Total Quantity Paid	RE Letter-See QA Manual Section 250.00
	Witness Posts	ACCEPTANCE Inspection	Wood 710.09	No Testing Required	ITD-854	Total Quantity Paid	RE Letter-See QA Manual Section 250.00
		ACCEPTANCE Inspection	Fiberglass 618.02	No Testing Required	ITD-854	Total Quantity Paid	RE Letter-See QA Manual Section 250.00
		ACCEPTANCE Inspection	618.02	No Testing Required	ITD-854	Total Quantity Paid	RE Letter-See QA Manual Section 250.00

BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED		REMARKS, NOTES OR]
MATERIAL	TESTING	SAMPLED BY	TESTED BY	REPORT FORM NO.	REQUIRED FREQUENCY	ADDITIONAL DIRECTIONS	
STANDARD SPEC	IFICATION SECTION	DN: 619 ILLU	MINATION		-		
Illumination Poles	ACCEPTANCE	708.19 710.06		ITD-851 or ITD-914 for steel (with	Total Quantity	See QA Manual	
and Bases	Certification	Manufacturer	Manufacturer	mill test reports attached)	Paid	Section 230.03	
Illumination Components	ACCEPTANCE Inspection	710.07 713.01 713.02 713.03 713.04 713.05 713.06	No Testing Required	ITD-854	Total Quantity Paid	RE Letter-See QA Manual Section 250.00	
Concrete		502.01(B) See QA Manual Section 230.06					
Specified strength of 3000 psi (20.5 MPa) or	ACCEPTANCE Certification	Concrete Supplier	Concrete Supplier	ITD-875 with QC test results	Total Quantity Paid	Concrete Supplier's certification	ი
less				attached		Note locations on ITD-875	61
Concrete Specified strength of 3500 psi (24.0 MPa) or greater	FOLLOW STAND	ARD SPECIFIC	ATION SECTION 50)2			
Metal Reinforcement [with concrete of							
specified strength of 3500 psi (24.0 MPa) or greater]	FOLLOW STAND	FOLLOW STANDARD SPECIFICATION SECTION 503					
Metal Reinforcement	ACCEPTANCE	503.02 708.02		ITD-914 with mill		See QA Manual Section 230.03	
[with concrete of specified strength of 3000 psi (20.5 MPa) or less]	Certification	Manufacturer	Manufacturer	test reports attached	Total Quantity Paid	No samples required.	

BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR	
MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS	
STANDARD SPEC	IFICATION SECTION	DN: 620 PLA	NTING				
Plants, Commercial Fertilizer, Soil Conditioner, Topsoil, Mulch	ACCEPTANCE Inspection	711.06 711.07 711.08 711.09 711.10 711.12	No Testing Required	ITD-854	Total Quantity Paid	RE Letter-See QA Manual Section 250.00	620
STANDARD SPEC	IFICATION SECTION	ON: 621 SEE	DING				
	ACCEPTANCE	711.05 711.07 711.10 711.11 711.12 711.16	AOSA	ITD-851* with Laboratory	Total Quantity	See QA Manual Section 230.12 Note: State furnished seed is accepted to use on projects but MUST	
Seed, Mulch, Commercial Fertilizer, Erosion Blanket	Certification	Licensed Supplier / Manufacturer	Licensed Supplier / Manufacturer	Analysis Report attached	Paid	be sampled and tested. Unless it meets all the parameters in QA Manual 230.12.	
	VERIFICATION	711.05	Purity, Germination & TZ		One (1) for each individually	Include completed ITD-1044 to test lab with seed sample. Send copy of ITD-1044 to HQ Highway Operations,	100
	Laboratory Test Seed Only	ITD Project Inspector	(Boise) ISDA Seed Laboratory	ISDA Test Results	packaged seed containers from each species	Attention: Roadside Program Administrator *ITD 851 for contractor supplied seed and not needed for State furnished seed.	
STANDARD SPEC	IFICATION SECTION	ON: 622 PRE	-CAST CONCRE	TE HEADGAT	ES		
Pre-Cast Concrete Head gates	ACCEPTANCE Certification	502.01(B) Manufacturer	Manufacturer	ITD-851	Total Quantity Paid	See QA Manual Section 230.05	677
STANDARD SPEC	IFICATION SECTION	DN: 623 CON		PAVING			
Concrete	ACCEPTANCE Certification	502.01(B) Concrete Supplier	Concrete Supplier	ITD-875 with QC test results attached	Total Quantity Paid	See QA Manual Section 230.06 Concrete Supplier's certification Note locations on ITD-875	673
Pre-formed- expansion Joint Fillers	ACCEPTANCE Certification	623.02 Manufacturer	AASHTO M 213 Manufacturer	ITD-851	Total Quantity Paid	See QA Manual Section 230.01	
Compaction	FOLLOW STAND		ATION SECTION 20	5 OR 303			1

	BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED	MINIMUM REQUIRED	REMARKS, NOTES OR ADDITIONAL DIRECTIONS			
	MATERIAL	TESTING	SAMPLED BY	TESTED BY	REPORT FORM NO.	FREQUENCY				
	STANDARD SPECIFICATION SECTION: 624 RIPRAP									
624	Loose and Hand Placed	ACCEPTANCE Inspection	711.04	Initial testing required for Apparent Specific Gravity, Absorption, and Coarse durability Index. Only visual inspection during placement.	ITD-854	Total Quantity Paid	RE Letter-See QA Manual Section 250.00			
	Sack and Concrete Stabilized	ACCEPTANCE Inspection	711.04	Initial testing required for Apparent Specific Gravity, Absorption, and Coarse durability Index. Only visual inspection during placement.	ITD-854	Total Quantity Paid	RE Letter-See QA Manual Section 250.00			
	STANDARD SPECIFICATION SECTION: 625 JOINTS									
	Pre-Formed Expansion Joint Filler	ACCEPTANCE Certification	704.01 Manufacturer	Manufacturer	ITD-851	Total Quantity Paid	See QA Manual Section 230.01			
	Hot Poured		704.02							
	Elastic Type Concrete Joint Sealer		Manufacturer	Manufacturer	ITD-851	Total Quantity Paid	See QA Manual Section 230.01			
625	Hot Poured Elastomeric Type	ACCEPTANCE Certification	704.03		ITD-851	Total Quantity	See QA Manual			
	Concrete Joint Sealer		Manufacturer	Manufacturer		Paid	Section 230.01			
	Neoprene	ACCEPTANCE Certification	704.04		ITD-851	Total Quantity	See QA Manual			
	Compression Seal		Manufacturer	Manufacturer		Paid	Section 230.01			
		ACCEPTANCE	704.05		ITD-851 with	Total Quantity	See QA Manual			
	Silicone Sealant	Certification	Independent Laboratory	Independent Laboratory	test results attached	Paid	Section 230.01			

BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR]	
MATERIAL	TESTING	SAMPLED BY			FREQUENCY	ADDITIONAL DIRECTIONS		
STANDARD SPECIFICATION SECTION: 626 CONSTRUCTION TRAFFIC CONTROL DEVICES								
Rent Construction Signs, Barricades, Drums, Portable Tubular Markers, Incidental Traffic Control Items	ACCEPTANCE Inspection	Reflectivity 712.02	No Testing Required	ITD-854	Total Quantity Paid	RE Letter-See QA Manual Section 250.00		
Rent Vertical Panels, Advance Warning Arrow Panel, Traffic Control Signal, Hazard Identifi- cation Beacon	ACCEPTANCE Inspection	Reflectivity 712.02	No Testing Required	ITD-854	Total Quantity Paid	RE Letter-See QA Manual Section 250.00	626	
Temporary Pavement Striping Tape	ACCEPTANCE Inspection	Reflectivity 712.02	No Testing Required	ITD-854	Total Quantity Paid	RE Letter-See QA Manual Section 250.00		
Temporary Flexible Raised Pavement Marker	ACCEPTANCE Inspection	Reflectivity 712.02	No Testing Required	ITD-854	Total Quantity Paid	RE Letter-See QA Manual Section 250.00		
Temporary Rigid Raised Pavement Marker	ACCEPTANCE Inspection	Reflectivity 712.02	No Testing Required	ITD-854	Total Quantity Paid	RE Letter-See QA Manual Section 250.00		

	BID ITEM/ PURPOSE OF		ITD SPEC. REF.	TEST METHOD	REQUIRED	MINIMUM REQUIRED	REMARKS, NOTES OR			
	MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS			
	STANDARD SPECIFICATION SECTION: 627 PAINTING									
	Painting Steel ⁽⁴⁾	ACCEPTANCE Pre-Tests ⁽⁴⁾	707.02		ITD-1832	All lots (1-quart can sample size)	Record lot numbers and lab numbers of			
			Coordinate with ITD Central Lab	ITD Central Lab			approved pre- tested paint from ITD Central Lab letter.			
		ACCEPTANCE Certification	707.03		ITD-851	Total Quantity	See QA Manual			
			Manufacturer	Manufacturer	110 001	Paid	Section 230.01			
	Painting Wood ⁽⁴⁾	ACCEPTANCE Pre-Tests ⁽⁴⁾	707.02			All lots (1-quart can sample size)	Record lot numbers and lab numbers of			
627			Coordinate with ITD Central Lab	IT ITD Central Lab	ITD-841		approved pre- tested paint from ITD Central Lab letter and/ or ITD-841.			
		ACCEPTANCE Certification	707.03		ITD-851	Total Quantity	See QA Manual			
			Manufacturer	Manufacturer	110-001	Paid	Section 230.01			
	Painting Concrete ⁽⁴⁾	ACCEPTANCE Pre-Tests ⁽⁴⁾ ACCEPTANCE Certification	707.02			All lots (1-quart can sample size)	Record lot numbers and lab numbers of			
			Coordinate with ITD Central Lab	ITD Central Lab	ITD-1832		approved pre- tested paint from ITD Central Lab letter.			
			707.03			Total Quantity	See QA Manual			
			Manufacturer	Manufacturer	ITD-851	Paid	Section 230.01			
	⁽⁴⁾ Acceptance by ma	anufacturer's certific	cation when tota	I project quantity is le	ess than 25 gall	ons.				

Sand Equivalent

BID ITEM/	PURPOSE OF	ITD SPEC. REF.			MINIMUM	REMARKS, NOTES OR				
MATERIAL	TESTING	SAMPLED BY TESTED BY		REPORT FORM NO.	REQUIRED FREQUENCY	ADDITIONAL DIRECTIONS				
STANDARD SPECIFICATION SECTION: 628 SNOW POLES										
Rigid Posts for Delineators, Snow Poles, and Mileposts or Kilometer Posts	ACCEPTANCE Inspection	708.16	No Testing Required	ITD-854	Total Quantity Paid	RE Letter-See QA Manual Section 250.00				
Reflector Units for Delineators	ACCEPTANCE Inspection	712.04	No Testing Required	ITD-854	Total Quantity Paid RE Letter-S QA Manua Section 250		628			
Flexible Snow	ACCEPTANCE	712.11		Qualified						
Poles	Approved List	Manufacturer	Manufacturer	Products List						
STANDARD SPECIFICATION SECTION: 634 MAILBOX										
Type I Support/ Foundation	ACCEPTANCE Certification	708.16 710.02		ITD-851	Total Quantity	-See QA Manual				
		Manufacturer	Manufacturer		Paid	Section 230.00	634			
Mailbox	ACCEPTANCE Inspection	634.02	No Testing Required	ITD-854	Total Quantity Paid	RE Letter-See QA Manual Section 250.00	9			
STANDARD SPEC	IFICATION SECTION	DN: 635 AN	TI-SKID MATER	IAL				1		
			7		AASHTO T 2 AASHTO T 248 AASHTO T 11 AASHTO T 27					
Aggregate (Production)	ACCEPTANCE Gradation	ITD Project Personnel	ITD Project Personnel	ITD-901	Each 1000 Tons (900 t)		635			
	INDEPENDENT ASSURANCE Gradation	IA Inspector	IA Inspector	ITD-857	Each 20,000 Tons (18,000 t)					

	BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR ADDITIONAL DIRECTIONS	
	MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY		
	STANDARD SPECIFICATION SECTION: 640 GEOTEXTILES							
	Drainage Geotextile	ACCEPTANCE Certification	718.05		ITD-849 with QC test	Total Quantity Paid	See QA Manual Section 230.09	
			Manufacturer	Manufacturer	results attached			
	Colorano	VERIFICATION	718.05		ITD-1044 ^(5A)		See QA Manual Section 230.09	
		Laboratory Tests ⁽⁵⁾	ITD Project Personnel	ITD Central Lab	(Sample Data) ITD-1047 (Lab Reports)	One (1) sample per lot		
		ACCEPTANCE	718.06		ITD-849 with QC test	Total Quantity Paid	See QA Manua Section 230.09	
	Riprap/Erosion Geotextile	Certification	Manufacturer	Manufacturer	results attached			
	Geolexille	VERIFICATION	718.06		ITD-1044 ^(5A) (Sample Data)	One (1) sample per lot	See QA Manua Section 230.09	
		Laboratory Tests ⁽⁵⁾	ITD Project Personnel	ITD Central Lab	(Sample Data) ITD-1047 (Lab reports)			
	Subgrade Separation Geotextile	ACCEPTANCE Certification	718.07		ITD-849 with QC test	Total Quantity Paid	See QA Manua	
			Manufacturer	Manufacturer	results attached		Section 230.09	
			718.07					
		VERIFICATION Laboratory Tests ⁽⁵⁾	ITD Project Personnel	ITD Central Lab	ITD-1044 ^(5A) (Sample Data) ITD-1047 (Lab reports)	One (1) sample per lot	See QA Manua Section 230.09	
	Pavement Overlay Geotextile	ACCEPTANCE Certification	718.08		ITD-849 with QC test	Total Quantity Paid	See QA Manua	
			Manufacturer	Manufacturer	results attached		Section 230.09	
		VERIFICATION Laboratory Tests ⁽⁵⁾	718.08		ITD-1044 ^(5A)	One (1) sample per lot	See QA Manual Section 230.09	
			ITD Project Personnel	ITD Central Lab	(Sample Data) ITD-1047 (Lab Reports)			
				uare yards (500 squ D-1044 and sample.				

BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM	REMARKS, NOTES OR		
MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS		
Geogrid	ACCEPTANCE	[Spec. Prov.]		ITD-849 with QC	Total Quantity	See QA Manual		
	Certification	Manufacturer	Manufacturer	test results attached	Paid	Section 230.09		
	VERIFICATION Laboratory Tests ⁽⁵⁾	[Spec. Prov.]		ITD-1044 ^(5A) (Sample Data)	One (1)	See QA Manual		
		ITD Project Personnel	ITD Central Lab	ITD-1048 (Lab Reports)	sample per lot	Section 230.09	640-2	
^(5A) Include accept	⁽⁵⁾ No Samples required for quantities less than 600 square yards (500 square meters). ^(5A) Include acceptance certification documents with ITD-1044 and sample.							
 The following geosynthetic materials cannot be tested by ITD and will be accepted by certifications with required form No. ITD-849 with QC test results attached: Prefabricated Vertical Drain (Wick Drain), Prefabricated Drainage Mat (Geocomposite Drainage System), Edge Drain, Geonet. 								
,	Cellular Confinement brane, Geosynthetic	•						

t

	BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT		REMARKS, NOTES OR		
	MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	REQUIRED FREQUENCY	ADDITIONAL DIRECTIONS		
	STANDARD SPEC	IFICATION SECTION	ON: 656 TR	AFFIC SIGNAL I	NSTALLATI	ON			
	Signal Poles and Mast Arms	ACCEPTANCE Certification	656.02 Manufacturer	Manufacturer	ITD-914 with mill test reports attached	Total Quantity Paid	See QA Manual Section 230.03		
	Signal Components	ACCEPTANCE Inspection		No Testing Required	ITD-854	Total Quantity Paid	RE Letter-See QA Manual Section 250.00		
	Signal Cabinet Electrical Components	ACCEPTANCE PRE-TEST		HQ or District Traffic	ITD-500 memo		Post acceptance memo on MSR		
	State-Furnished Material		No Testing Required	No Testing Required					
	Concrete Specified strength of 3000 psi (20.5 MPa) or less	ACCEPTANCE Certification	502.01(B)		ITD-875 with QC test	Total Quantity Paid	See QA Manual Section 230.06		
656			Concrete Supplier	Concrete Supplier	results attached	Falu	Note locations on ITD-875		
	Concrete Specified strength of 3500 psi (24.0 MPa) or greater	FOLLOW STANDARD SPECIFICATION SECTION 502							
	Metal Reinforcement [with concrete of specified strength of 3500 psi (24.0 MPa) or greater]	FOLLOW STANDARD SPECIFICATION SECTION 503							
	Metal Reinforcement [with concrete of	ACCEPTANCE	503.02 708.02		ITD-914 with mill test reports attached	Total Quantity	See QA Manual Section 230.03		
	specified strength of 3000 psi (20.5 MPa) or less]	oth Certification	Manufacturer	Manufacturer		Paid	No samples required		

BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM REQUIRED	REMARKS, NOTES OR]
MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS	
STANDARD SPEC	IFICATION SECTION	DN: MISCE	LLANEOUS BUI		S		
	ACCEPTANCE	205.03	AASHTO T 310		At least one		
Compaction	Density	ITD Project Personnel	ITD Project Personnel	ITD-850	(1) per project		
Structural Concrete (Footings, Foundations, Piers)	FOLLOW STAND	FOLLOW STANDARD SPECIFICATION SECTION 502					
		502.02				See QA Manual	
Non-Structural Concrete (Sidewalks, Driveways, Slabs)	ACCEPTANCE Certification	Concrete Supplier	Concrete Supplier	ITD-875 with QC test results attached	Total Quantity Paid	Section 230.06 Concrete Supplier's certification Note locations on ITD-875	MISCELLANEOUS BI
Metal Reinforcement (for structural concrete- footings, foundations, piers)	FOLLOW STANDARD SPECIFICATION SECTION 503						
Paint			ATION SECTION 62		n 25 gallons.)		

	BID ITEM/	PURPOSE OF	ITD SPEC. REF.	TEST METHOD	REQUIRED REPORT	MINIMUM	REMARKS, NOTES OR		
	MATERIAL	TESTING	SAMPLED BY	TESTED BY	FORM NO.	FREQUENCY	ADDITIONAL DIRECTIONS		
	STANDARD SPECIF	FICATION SECTION	: MISCELL	ANEOUS ITEMS					
		ACCEPTANCE	[Spec. Prov.]	Per Specs	ITD-1044 (Sample Data)	Each 100 tons or one (1)	Follow Special Provision requirements for		
	Magnesium Chloride for Dust	Laboratory Tests	ITD Project Personnel	ITD Central Lab	ITD-1822	per project	acceptance; either by test or by certification.		
	Control		[Spec. Prov.]				See QA Manual		
		ACCEPTANCE Certification	Manufacturer	Manufacturer	ITD-851	Total Quantity Paid	Section 230.01 for certification requirements.		
	Enovioo	ACCEPTANCE	720.04		ITD-851	Total Quantity	See QA Manual		
	Epoxies	Certification	Manufacturer	Manufacturer	110-651	Paid	Section 230.01		
							Record lot numbers and		
S ITEMS	Traffic Line Paint ⁽⁶⁾	ACCEPTANCE Laboratory Tests	ITD Project Personnel	ITD Central Lab	ITD-1830 (Waterborne) Or ITD-1831 (Others)	Each lot used on Project	lab numbers of approved pre-tested paint from ITD Central Lab letter. Do not collect Sample from striper paint guns.		
NEOUS							*Not project specific. Reject if totes do not match lot numbers.		
LAI							Manufacturer		
MISCELLANEOUS	Methyl Methacrylate (MMA) Pavement	ACCEPTANCE Laboratory Tests	Manufacturer	ITD Central Lab	ITD -1831	Each lot used on Project	provides samples to Central Laboratory. Allow 14 days for pre-test results.		
2	Markings (8)	ACCEPTANCE Certification ⁽⁶⁾	Manufactures	Manufactures	ITD-851	Total Quantity Paid	See QA Manual Section 230.01		
	The second set is		Manufacturer	Manufacturer					
	Thermoplastic Pavement Markings	ACCEPTANCE Certification	Manufacturer	Manufacturer	ITD-851	Total Quantity Paid	See QA Manual Section 230.01		
-	Glass Beads	ACCEPTANCE Laboratory Tests	ITD Project Personnel	ITD Central Lab	ITD-1828	Each lot used on Project (Sample must be left in manufacturer's bag.)	Record lot numbers and lab numbers of approved pre-tested paint from ITD Central Lab letter. *Not project specific.		
	(6) Acceptance by manufacturer's certification when total project quantity is less than 55 gallons. specific. (7) Acceptance by manufacturer's certification when total project quantity is less than 350 pounds. specific. (8) When warranty applies, no samples or certifications required. A copy of the warranty must be in the project files; post a remark on MSR.								

SECTION 275.00 – ITD QUALITY ASSURANCE STANDARD PROCEDURES

275.01 Aggregate.

AASHTO T 176 Plastic Fines in Graded Aggregates and Soils by the Use of the Sand Equivalent Test
 Idaho IT 144 Fine Aggregate Specific Gravity by CoreLok
 FOP for AASHTO T Uncompacted Void Content of Fine Aggregate
 304

275.02 Asphalt.

275.02.01 General Notes

AASHTO R 47	Reducing Samples of Hot Mix Asphalt (HMA) to Testing Size
AASHTO T 166	Bulk Specific Gravity of compacted Hot Mix Asphalt using Saturated Surface-Dry Specimens
AASHTO T168	Sampling of Bituminous Paving Mixtures
AASHTO T 209	Theoretical Maximum Specific Gravity and Density of Hot-Mix Asphalt Paving Mixtures
AASHTO T 246	Resistance to Deformation and Cohesion of Bituminous Mixtures by Means of Hveem Apparatus
AASHTO T 308	Determining the Asphalt Binder Content of Hot Mix Asphalt (HMA) by the Ignition Method
AASHTO T 312	Gyratory compaction of HMA Mixtures
AASHTO T329	Moisture Content of Hot Mix Asphalt (HMA) by Oven Method
WAQTC TM 8	In-place Density of Bituminous Mixes Using the Nuclear Moisture-Density Gauge
AASHTO T 343	Density of In-Place Hot Mix Asphalt (HMA) Pavement by Electronic Surface Contact Devices

275.03 Concrete.

AASHTO T22 Compressive Strength of Cylindrical Concrete Specimens

275.04 Embankment and Base In-place Density.

AASHTO T 310 In-place Density and Moisture Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)

275.05 Miscellaneous

ASTM E 29 - 08 Using Significant Digits in Test Data to Determine Conformance with Specifications

SECTION 275.00 – ITD QUALITY ASSURANCE STANDARD PROCEDURES

275.01 Aggregate.

AASHTO T 176

Plastic Fines in Graded Aggregates and Soils by the Use of the Sand Equivalent Test

- 1. Labeling of SE Solution
 - 1.1 SE solution containers will be labeled with the date the working solution was mixed. In accordance with AASHTO T 176, Section 2.8, working solutions older than 30 days will be discarded.
- 2. Sample Preparation
 - 2.1 Add to Step 1 the following:

The samples must be maintained at field moist condition until testing. Do not allow the sample to dry out. If testing will not be performed immediately, the sample must be kept in a sealed container.

- 3. Procedure
 - 3.1 Only mechanical method will be used for shaking the cylinder and contents.

FOP for AASHTO T 304

Uncompacted Void Content of Fine Aggregate

Procedure Modification:

1. If the bulk specific gravity of the fine aggregate from the source is unknown, determine it according to IT -144.

275.02 Asphalt.

275.02.01 General Notes.

After the loose mix sample is obtained, the sample must not be held in a hot oven greater than 200°F for more than 4 hours to avoid aging or oxidation. However, the sample may be held over night as long as the oven temperature does not exceed 200 °F.

AASHTO R-47

Reducing Samples of Hot Mix Asphalt to Testing Size

Procedure Modifications:

1. Do not use the method Mechanical Splitter Type A (Quartermaster). All other methods are approved.

AASHTO T166

Bulk Specific Gravity of compacted Hot Mix Asphalt using Saturated Surface-Dry Specimens

Procedure Modification:

- 1. The final test result will be determined from an average of two laboratory compacted specimens.
- 2. Outside Temperature needs to be 80 deg F and must be documented on test forms. The use of a fan will aid in the process.

AASHTO T168

Sampling of Bituminous Paving Mixtures

1. Procedure Modifications:

Method 3 Obtaining sample without cutter device:

When the sample container is large enough to accommodate the full dimensions of the sampling plate, the sampling plate may be lifted and the HMA sample carefully placed directly into the sample container.

FOP for AASHTO T209

Theoretical Maximum Specific Gravity and Density of Hot-Mix Asphalt Paving Mixtures

Procedure Modifications

1. All laboratory developed mix samples will be conditioned per AASHTO R30 (Mixture Conditioning of Hot Mix Asphalt) for two hours plus or minus 5 minutes at the asphalt binder manufactures recommended temperature for compaction.

The final test result will be determined from an average of two specimens.

AASHTO T246

Resistance to Deformation and Cohesion of Bituminous Mixtures by Means of Hveem Apparatus

Procedure Modification

1. The final test result will be determined from an average of two specimens.

AASHTO T 308

Determining the Asphalt Binder Content of Hot Mix Asphalt (HMA) by the Ignition Method

- 1. Procedure Modifications to FOP AASHTO T 308.
 - The testing laboratory owner must perform the Ignition Furnace Verification Procedure as outlined in the ITD Laboratory Qualification Program. The lift test will be performed and recorded weekly when the furnace is in use. The balance verification will be performed and recorded every 30 days when the furnace is in use and following furnace transport.
 - For samples where the asphalt binder content is determined by an internal balance, this value must be verified by an external balance.
 - Calculate the asphalt binder content with external masses as follows:

$$\mathbf{P}_{\mathrm{b}} = \left[\frac{\mathbf{M}_{\mathrm{i}} - \mathbf{M}_{\mathrm{f}}}{\mathbf{M}_{\mathrm{i}}}\right] \times 100 - \mathbf{C}_{\mathrm{f}} - \mathbf{M}$$

where:

- $P_b =$ the corrected asphalt binder content as a percent by mass of the HMA sample
- $M_{\rm f}$ = the final mass of aggregate remaining after ignition
- M_i = the initial mass of the HMA sample prior to ignition
- $C_f = -$ correction factor as a percent by mass of the HMA sample
- M= percent moisture content as determined by the FOP for AASHTO T 329.
- If the calculated asphalt binder content is within 0.15% use the corrected asphalt binder content (percent) from the printed ticket. If the difference is greater than 0.15% use the calculated asphalt binder content (percent) and determine and correct the source of the variation prior to reliance on the printed ticket.
- 1. Agency Approved Method for Combining Aggregates for Producing Calibration Factor Samples: All samples shall be the same gradation and shall be combined sieve by sieve down to and including the material passing the No. 200 sieve.
- 2. If the asphalt binder correction factor exceeds 1%, the test temperature must be lowered to 482 $\pm 5^{\circ}C$ (900 $\pm 8^{\circ}F$).

AASHTO T312

Gyratory compaction of HMA Mixtures

Procedure Modifications

1. The final test result will be determined from an average of two specimens

AASHTO T 329

Moisture Content of Hot Mix Asphalt (HMA) by Oven Method

Procedure Modifications to WAQTC FOP T 329 Delete procedure 1 and substitute the following:

The oven will be set to the minimum JMF compacting temperature as indicated on the approved mix design.

WAQTC TM 8

In-Place Density of Bituminous Mixes Using the Nuclear Moisture-Density Gauge

- 1. Cement Recycled Asphalt Base Stabilization (Crabs)
 - 1.1 Test method WAQTC TM8 backscatter mode is used to determine in-place density with the following modification:

A roller pattern curve must be established with single shot (no rotation required) oneminute counts with the uncorrected nuclear densometer. The required compaction is achieved and final process rolling is defined as when the final roller pass adds no more than 0.5 lb/ft3 (8 kg/m3) to the previous in-place density.

- 2. Plantmix Pavement
 - 2.1 Test method WAQTC TM8 backscatter mode is used to determine in-place density, expressed as a percentage, rounded to the nearest tenth of one percent.
 - 2.2 For plantmix pavement when no acceptance test strip is required See Section 270.00, Minimum Testing Requirements for 405 Plantmix.

FOP for AASHTO T 343

Density of In-Place Hot Mix Asphalt (HMA) Pavement by Electronic Surface Contact Devices

Procedure Modification:

1. Instead of entering the correction factor from the cores into the gauge, the correction factor may be mathematically compensated for using the form, (ITD 0855) to calculate corrected density and percent compaction manually.

275.03 Concrete

AASHTO T22

Compressive Strength of Cylindrical Concrete Specimens

Unbonded caps may be used for concrete with an expected compressive strength of less than 7000 psi. Maximum number of tests per set of unbonded caps: 100. For concrete with an expected compressive strength of 7000 psi or greater, sulfur capping per AASHTO T213 or grinding to meet the tolerances specified in AASHTO T22 is required.

275.04 Embankment and Base In-place Density.

AASHTO T 310

In-Place Density and Moisture Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)

- 1. Soil & Aggregate
 - 1.1 Test method FOP AASHTO T 310 is used to determine the in-place density. The results are expressed as a percentage, rounded to the nearest whole percent, of the maximum dry density from the density standard.

A compaction test result over 105% is not considered valid. The material and calculations must be evaluated to resolve the cause of this type of test result.

A gradation and a SE must be performed in order to confirm the correct density standard. A wet sieve on 3", 3/4", No. 4, and SE is performed and recorded on the ITD-850 at the same frequency as a density test.

For materials identified as too granular to test (per definitions in Standard Specification Subsection 205.03-F), materials are to be compacted according to the requirements of Subsection 205.03. Documentation is required of the compaction equipment and compaction effort.

- 1.2 Soils and Soil-Aggregate Mixtures
 - 1.2.1 Standard density is the maximum dry density from the Standard Specification 205.03-F. A laboratory moisture-density curve is used (produced) that represents the soil or soil-aggregate mixture. All moisture-density curves must have at least three (3) points at or below optimum moisture and two (2) points greater than optimum moisture.
 - 1.2.2 For AASHTO T 99 or AASHTO T 180, a one-point determination per AASHTO T 272 is performed for every compaction test to select the proper moisturedensity curve, including correction for coarse aggregate (AASHTO T 224) when necessary.
 - 1.2.3 Requirements for matching a one-point determination to an existing moisturedensity curve:

- 1. The density of the one-point determination must match the moisture-density curve within ± 2 pounds/cubic foot (32 kg/m³).
- 2. The moisture content of the one-point determination must match the moisturedensity curve between 80-100% of optimum moisture of that curve.

Otherwise, an additional moisture-density curve must be developed by the ITD field personnel using form ITD-898, or a family of curves (AASHTO T 272) may be used if the curves were developed with material from the same geologic source area with concurrence from the District Materials Engineer.

- 1.3 Granular Materials and Processed Aggregates Above Subgrade
 - 1.3.1 Idaho IT 74 will be used to determine standard density; the use of AASHTO T180 is allowed only when approved by the Engineer.
 - 1.3.2 For Idaho T 74 curve, the standard density is the maximum dry density corresponding to the percent passing the No. 4 (4.75 mm) sieve. A laboratory density curve is used (produced) that represents the granular material or processed aggregate.
 - Obtain a representative sample directly beneath the gauge. The sample size will be determined by the nominal maximum aggregate size from the table in AASHTO T255.
 - Determine moisture content in accordance with AASHTO T255.
 - Perform a field gradation test using the representative dry sample. Shake the sample over the No. 4 sieve. Hand shaking must continue until not more than 0.5 percent by mass of the total sample passes the sieve during one minute of continuous shaking. No wash is required.
 - When large aggregate is present, use a 1 inch buffer sieve.
 - o Do not overload the No. 4 sieve.
 - Use the IT 74 laboratory curve to find the maximum dry density at the percent passing No. 4 sieve. Divide the calculated dry density by the maximum dry density to determine the compaction percent.
 - 1.3.3 A new Idaho T 74 curve must be provided annually for existing stockpiles or for new stockpiles of processed material.
 - 1.3.4 A field gradation test is not required for each density test if the nuclear density gauge has been calibrated for moisture correction and the gauge reading is equal to or greater than 95% (94.6 rounded) at the peak point of the Idaho T 74 curve.
 - 1.3.5 For AASHTO T 180, follow the preceding procedures for moisture-density curves.

- 1.4 Compacting Backfill
 - 1.4.1 Use density standard defined in previous procedures by the type of backfill material.

2. Determining Moisture Correction for AASHTO T 310

2.1 For each soil or material type, the average moisture content of at least seven (7) consecutive tests is calculated to indicate the density gauge is reading the moisture content within a tolerance of 1% moisture content of the actual AASHTO T 255/265 test results. If the average moisture content exceeds the 1% tolerance, a moisture correction is applied. If less than seven density tests are required for a specific material type, then the percent moisture is determined by performing AASHTO T 255/265.

275.05 Miscellaneous

ASTM E 29 - 08

Using Significant Digits in Test Data to Determine Conformance with Specifications

The following table will be used.

Method Number	Title	Calculate To:	Report To:			
Idaho Standards – Idaho Standard Practice (IR), Idaho Standard Method of Test (IT)						
Idaho IT-61-04	Seal Coat Emulsion Acceptance Viscosity Testing	1.0	1			
Idaho IT-72-08	Evaluating Cleanness of Cover Coat Material	1	1			
Idaho IT-74	Vibratory Spring-Load Compaction for Coarse Granular Material	0.01	0.1			
Idaho IT-96-98	Determining the Percent of Coated Particles in Bituminous Mixtures	0.1	1			
Idaho IT-130-02	Testing Thickness of Plastic Concrete Pavement	0.01	0.1			
Idaho IT-74	Instruction on Use of AKDOT&PF ATM-212, ITD T-74, WSDOT TM 606, or WFLHD Humphreys Curves	0.01	0.1			
AASHTO FOP	-					
AASHTO T 11	Materials Finer Than 75 µm (No. 200) sieve in Mineral Aggregates by Washing	#200 sieve: 0.1 All other sieves: 1%	#200 sieve: 0.1 All other sieves: 1%			
AASHTO T 27	Sieve Analysis of Fine and Coarse Aggregates	#200 sieve: 0.1 All other sieves: 1%	#200 sieve: 0.1 All other sieves: 1%			

AASHTO T 30	Mechanical Analysis of Extracted Aggregate	#200 sieve: 0.1 All other	#200 sieve 0.1 All other
		sieves: 1%	sieves: 1%
AASHTO T 85	Specific Gravity and Absorption of Coarse Aggregate	Gsb: 0.001	Gsb: 0.001
	OT 85 Specific Gravity and Absorption of Coarse Aggregate		Abs: 0.1%
AASHTO T 89	Determining the Liquid Limit of Soils	0.1%	1%
AASHTO T 90	Determining the Plastic Limit and Plasticity Index of Soils	0.1%	1%
AASHTO T 99	Moisture-Density Relations of Soils Using a 2.5-kg (5.5-lb) Rammer and 305-mm (12-in.) Drop	0.01	0.1
AASHTO T 119	Slump of Hydraulic Cement Concrete	¹ / ₄ inch	¹ /4 inch
	Mass per Cubic Meter (Cubic Foot), Yield, and Air Content	Air: 0.01	0.1
(Gravimetric) of Concrete		Yield: 0.01	0.1
AASHTO T 152	Air Content of Freshly Mixed Concrete by the Pressure Method	0.01	0.1
AASHTO T 166	Bulk Specific Gravity of Compacted Bituminous Mixtures Using Saturated Surface-Dry Specimens	0.001	0.001
AASHTO T 176	Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test	0.1	1%
AASHTO T 180	Moisture-Density Relations of Soils Using a 4.54-kg (10-lb) Rammer and 457-mm (18-in.) Drop	0.01	0.1
AASHTO T 209	Theoretical Maximum Specific Gravity and Density of Bituminous Paving Mixtures	0.001	0.001
AASHTO T 224	Correction for Coarse Particles in the Soil Compaction Test	0.01	0.1
AASHTO T 255	Total Moisture Content of Aggregate by Drying	0.01	0.1
AASHTO T 265	Laboratory Determination of Moisture Content of Soils	0.01	0.1
AASHTO T 275	Bulk Specific Gravity of Compacted Bituminous Mixtures Using Paraffin-Coated Specimens	0.001	0.001
AASHTO T 308	Determining the Asphalt Binder Content of Hot Mix Asphalt (HMA) by the Ignition Method	0.01	0.1
AASHTO T 309	Temperature of Freshly Mixed Portland Cement Concrete	1	1
AASHTO T 310	In-Place Density and Moisture Content of Soil and Soil- Aggregate by the Nuclear Method	0.01	0.1
AASHTO T 329	Moisture Content Of Hot Mix Asphalt (HMA) By Oven Method	0.01	0.01
AASHTO T 335	Determining the Percentage of Fracture in Coarse Aggregate	1%	1%
AASHTO T 331	Bulk Specific Gravity and Density of Compacted Asphalt Mixtures Using Automatic Vacuum Sealing Method	0.001	0.001

AASHTO T 343	Density of In-Place Hot Mix Asphalt (HMA) Pavement by Electronic Surface Contact Devices	0.01	0.1		
AASHTO T 304 Uncompacted Void Content Of Fine Aggregate		0.01	0.1		
WAQTC FOP					
WAQTC TM 8	In-Place Density of Bituminous Mixes Using the Moisture- Density Gauge	0.01	0.1		
Idaho FOP					
ASTM D 4791	Flat and Elongated Particles in Coarse Aggregate	0.01	0.1		
AASHTO T 304	Uncompacted Void Content Of Fine Aggregate	0.01	0.1		

SECTION 300.00 – INDEPENDENT ASSURANCE PROGRAM 301.00 Administration of Independent Assurance Program.

SECTION 310.00 – INDEPENDENT ASSURANCE EVALUATIONS

SECTION 320.00 – DISTRICT INDEPENDENT ASSURANCE INSPECTOR

SECTION 330.00 – SELECTION AND FREQUENCY OF INDEPENDENT ASSURANCE EVALUATIONS

330.01 Independent Assurance Evaluation by Duplicate Samples.330.02 Independent Assurance Evaluation by Observation.330.03 Independent Assurance Evaluation of Verification Tests.

SECTION 340.00 – TESTING OF DUPLICATE INDEPENDENT ASSURANCE SAMPLES

SECTION 350.00 – NUMBERING INDEPENDENT ASSURANCE EVALUATIONS

SECTION 360.00 – REVIEW OF INDEPENDENT ASSURANCE RESULTS 360.01 Duplicate Sample Test Results. 360.02 Review of Observation Results. 360.03 Close-out Comments and Resolution Statement.

SECTION 370.00 – INDEPENDENT ASSURANCE TEST LOG (ITD-860)

SECTION 380.00 - Not Used

SECTION 390.00 – ACCEPTABLE VARIATIONS IN DUPLICATE TEST RESULTS 390.01 Aggregate. 390.02 Concrete.

SECTION 300.00 – INDEPENDENT ASSURANCE PROGRAM

The Independent Assurance Program provides an unbiased and independent evaluation of all sampling and testing procedures used in the acceptance program. The basis for the program is 23 CFR, Part 637.

301.00 Administration of Independent Assurance Program. The Design/Materials/Construction Engineer is responsible for:

- 1. Developing the policies and procedures to be used in the administration of the Independent Assurance (IA) Program, and
- 2. Monitoring the IA program

The District Engineer is responsible to ensure the following conditions are met:

1. Each District will provide at least one properly qualified and experienced employee for the permanent duties of District IA Inspector. The District may assign assistant or part-time IA Inspectors that are properly qualified and experienced.

2. The District IA Inspector(s), assistants, or part-time IA Inspectors may not be associated with any project construction office or crew per Federal Code 23 CFR 637. The District IA Inspector's activities must be unbiased and independent of all sampling and testing procedures used in the acceptance program.

3. No permanent or part time District IA Inspector may perform any project testing for the acceptance decision (for example: acceptance test strip, concrete strength tests and field acceptance tests).

4. Each District IA Inspector, assistants, or part-time IA Inspectors must be qualified in all WAQTC modules along with the Concrete Laboratory Testing Technician (CLTT).

District IA Inspector(s) shall be assigned to the District Materials Engineer or District Engineer.

SECTION 310.00 – INDEPENDENT ASSURANCE EVALUATIONS

Independent Assurance (IA) evaluates sampling and testing procedures and equipment for acceptance and verification testing. IA testing supplements the acceptance sampling and testing but is not used directly for acceptance of materials.

Independent Assurance is not required on the contractor's quality control tests unless the quality control test results are used for acceptance. IA may be performed, when requested, for the contractor's quality control as time and resources permit.

Acceptance and verification samples and tests are the basis of materials acceptance. IA evaluations are used to assure that sampling and testing procedures, including test equipment, are within allowable tolerances. A comparison of the project test results with IA test results, when in close conformity, gives assurance that project sampling and testing is valid. If the results are not within the allowable tolerances then corrective action must be taken by project personnel, such as checking equipment for damage, reviewing sampling and testing procedures, or other corrective action as necessary.

The Resident Engineer, as well as the project inspectors, will notify the IA Inspector as soon as possible prior to production startup and throughout the project so the required IA evaluations can be scheduled.

SECTION 320.00 – DISTRICT INDEPENDENT ASSURANCE INSPECTOR

The Independent Assurance Inspector is part of the ITD District Materials staff. This inspector should have considerable experience in all phases of testing and inspection.

The duties of the District IA Inspector typically include:

- 1. Independent Assurance evaluations according to the IA Program.
- 2. Spot check during normal IA evaluations that project testing laboratories have a current certificate of qualification issued per the ITD Laboratory Qualification Program.
- 3. Spot check during normal IA evaluations that samplers and testers are WAQTC qualified and the samplers and testers are including their qualification number on test forms.
- Spot check during normal IA evaluations and during intermediate and final record reviews that acceptance sampling and testing is being conducted randomly in accordance with contract specifications.
- 5. Evaluate ITD samplers and testers for miscellaneous field test methods and required qualifications not covered under WAQTC.
- 6. Conduct intermediate and final records reviews.
- 7. Perform District audit of Materials Summary Report (MSR). See Section 460.00.
- 8. Draft the project Final Materials Certification Letter for the District Materials Engineer's review and the District Engineer's signature. See Section 470.00.
- 9. Assist in training samplers and testers and WAQTC tester training as time permits.
- 10. Serve as District Radiation Safety Officer (DRSO) according to the ITD Radiation Program.

SECTION 330.00 – SELECTION AND FREQUENCY OF INDEPENDENT ASSURANCE EVALUATIONS

Independent Assurance evaluations should commence in accordance with the frequencies in the MTR tables (Section 270.00) and IA Tables 300.1 and 300.2 Independent Assurance evaluations are accomplished by either duplicate sample testing or by observation. ITD uses a modified project approach to measure whether IA requirements have been met which means each project must have evidence the required IA evaluations have been performed.

The IA evaluation should include all test methods performed, including sampling and splitting, during performance of the actual project tests whenever possible. Occasionally, it may be necessary for the project testing technician to obtain an additional sample or perform an additional test exclusively for the benefit of providing the IA evaluation duplicate sample or observation.

The IA evaluation must accurately follow the specified test methods and procedures as closely as possible. The WAQTC performance checklists may be used as guides for evaluation of each test method. Even small deviations should be pointed out to the testing technician to ensure accurate and consistent test results, as well as accurate field equipment evaluations.

The IA Inspector may be called upon to evaluate test methods and field test equipment when a dispute arises from the test results or during a QC/QA project when there is a verification evaluation t test failure. Additional duplicate samples and observations may be necessary for resolution.

330.01 Independent Assurance Evaluation by Duplicate Samples. The minimum frequency for IA evaluation for each project using duplicate samples is summarized in Table 300.1 and included in the MTR tables (Section 270.00) under each standard specification item. Test methods evaluated by duplicate samples are those where the IA Inspector has dedicated equipment to perform an independent test. The minimum frequencies are based on one (1) IA test for every twenty (20) acceptance tests.

Duplicate samples are collected and split under the District IA Inspector's observation for those samples taken to the District Materials Laboratory for testing. Alternatively, for tests evaluated on the project site such as concrete field tests, the IA Inspector collects and tests samples independently.

One IA duplicate, or split, sample may apply to multiple items and projects provided the items are being tested by the same tester and using the same test methods and equipment. It is intended, as long as the test method, tester and equipment are the same, IA test results within the frequency interval may apply to any number of projects and any number of items. An IA test report must be completed for each project and list each item to which the IA test or evaluation applies.

For example, Project A, Project B and Project C each have several concrete items. The IA Inspector performs a duplicate air, slump and unit weight test for the testing technician on Project A. The following week the same testing technician is performing the same air, slump and unit weight tests with the same equipment on Project B and at the end of the month is performing the same tests with the same equipment on Project C. The total quantity of all of the concrete items is 960 CY. The frequency limit from Table 300.1 is 2000 CY, therefore the IA test performed on Project A will apply to Project B and Project C. The IA Inspector completes a test report for Project B listing the concrete bid items and another report for Project C, also listing the concrete bid items. These reports reference the actual IA test performed on Project A.

Table 300.1 Minimum Frequency for IA Evaluations by Duplicate Samples (split samples)

Bid Schedule	Item Description	Tests (including sampling &	Frequency Of IA Duplicate Tests Recommended To Test Within The First Five (5) Days		
Item No.	-	splitting)	English	Metric	
205	Granular Borrow	Sand Equivalent (AASHTO T 2, T 248, T 176)	200 000 CY	150 000 m ³	
301	Granular Subbase	Gradation, SE (AASHTO T 2, T 248, T 27, T 176)	110 000 tons	100 000 t	
302	Emulsion Treated Base	Gradation, SE (AASHTO T 2, T 248, T 11, T 27, T 176)	14 000 CY /20 000 tons	10 000 m ³ /18 000 t	
303	Aggregate Base	Gradation, SE (AASHTO T 2, T 248, T 11, T 27, T 176)	14 000 CY/20 000 tons	10 000 m ³ /18 000 t	
307	Open-Graded Rock Base	Gradation (AASHTO T 2, T248, T 27)	14 000 CY/20 000 tons	10 000 m ³ /18 000 t	
403/404	Cover Coat Material	Gradation, CV, Fracture (AASHTO T 2, T 248, T 11, T 27, T 335, Idaho IT 72)	5 600 CY/8 000 tons	4000 m ³ /7200 t	
405	Plantmix Aggregate @ Cold Feed (Acceptance Test Strip)	SE, , Fine Aggregate Angularity, Flat and Elongated (AASHTO T 2, T 248, T 176, ASTM D 4791, T 304)	15 000 tons	13 500 t	
406/407	Road Mix /Scrub Coat Aggregate	Gradation, SE, Fracture (AASHTO T 2, T 248, T 11, T 27, T 176, T 335)	14 000 CY/20 000 tons	10 000 m ³ /18 000 t	
409	PCC Pavement Aggregate	Gradation, (course and fine plus SE on fine) (AASHTO T 2, T 248, T 11, T 27, T 176)	13 400 CY	10 000 m ³	

Table 300.1 Minimum Frequency for IA Evaluations by Duplicate Samples (split samples) (Continued)

Bid Schedule	Item Description	Tests (including sampling &	Frequency Of IA Duplicate Tests Recommended To Test Within The First Five (5) Days		
Item No.		splitting)	English	Metric	
409	PCC Production	Field tests** (WAQTC TM 2, AASHTO T 119, T 152, T 309, T 121)	6 000 CY	4600 m ³	
502, 506, 510	Concrete (Production) Aggregate	Gradation, (course and fine plus SE on fine) (AASHTO T 2, T 248, T 11, T 27, T 176)	6 000 CY	4600 m ³	
502, 506, 510	Concrete (Production)	Field Tests** (WAQTC TM 2, AASHTO T 119, T 152, T 309, T 121)	2 000 CY	1500 m ³	
635	Anti-skid	AASHTO T 2, T 248, T 11, T 27	20 000 Tons	18 000 t	

**Field tests: Air, slump, temperature, and unit weight.

Table 300.2 Minimum Frequency for IA Evaluations by Observation

Bid Schedule Item No.	Item Description	Tests Evaluated	Frequency Of IA Observation Evaluations - * Recommended To Observe Within The First Five (5) Days
205	Excavation, Borrow, Granular Borrow	Development of Density Standard & In-place Density (AASHTO T 99, T 180, T 224, T 272, T 310)	Every 90 days /One (1) per project
210	Compacting Backfill for structure, retaining wall, or pipe backfill	Development of Density Standard & In-place Density (AASHTO T 99, T 180, T 224, T 272, T 310)	Every 90 days /One (1) per project
301	Granular Subbase	Development of Density Standard & In-place Density (AASHTO T 180, T 224, T 272, T 310, Idaho IT 74)	Every 90 days /One (1) per project
302	Emulsified Treated Base	Development of Density Standard & In-place Density (AASHTO T 180, T 224, T 272, T 310, Idaho IT 74)	Every 90 days /One (1) per project
303	Aggregate for Base	Development of Density Standard & In-place Density (AASHTO T 180, T 224, T 272, T 310, Idaho IT 74)	Every 90 days /One (1) per project
403 / 404	Emulsified Asphalt	Saybolt Viscosity (Idaho IT 61)	Every 90 days/One (1) per project
405	SuperPave HMA Aggregate @ Cold Feed (Acceptance Test Strip)	Fracture (AASHTO T335), Aggregate Specific Gravity (AASHTO T85, Idaho IT 144)	Every 90 days/One (1) per project
405	SuperPave HMA Acceptance Test Strip	Loose Mix Sample Testing & Core Bulk Density (AASHTO T 168, T 312, T 166 Method A, T 275, T 209, T 269, T 308, T 30, T 328 C, T 329, WAQTC TM 5, AASHTO T 166 Method C/A, T 275)	Every 90 days / One (1) per project
405	SuperPave HMA Pavement	Sampling Loose Mix , Asphalt Content by Ignition Method, Gradation, Fracture (AASHTO T 30, T 168, T 308, T328 C, T 329, WAQTC TM 5,T 335)	Every 90 days /One (1) per project
405	SuperPave HMA Pavement	Density (percent compaction) (WAQTC TM 8)	Every 90 days /One (1) per project
405	Asphalt Binder	Presence of Anti-Strip Additive (Idaho IT-99)	Every 90 days /One (1) per project
409 & 502	Concrete Production	Making cylinders (AASHTO T 23)	Every 90 days /One (1) per project
506 & 510	Concrete Production	Making cylinders (AASHTO T 23)	Every 90 days /One (1) per project

* Refer to Section 330.02 for use of 90-day rule for IA evaluations by observation.

The following procedures are to be followed on IA duplicate samples of aggregate:

- 1. The testing technician will take a single sample large enough to provide not less than two minimum-size samples after splitting. Sampling is to be observed by the District IA Inspector in accordance with AASHTO T 2.
- The sample will be mixed and quartered or split into two approximately equal size "duplicate" samples. The District IA Inspector is to observe this procedure in accordance with AASHTO T 248.
- 3. One of the "duplicate" samples is to be tested by the testing technician for complete gradation, sand equivalent, cleanness value, or other specification field tests as applicable. The District IA Inspector is to carefully observe techniques employed by the testing technician during the testing of the field sample as often as scheduling permits. The District IA Inspector may need to review sampling and testing procedures with the testing technician and offer helpful suggestions at this time. The second portion of the sample is to be taken to the District Laboratory by the District IA Inspector and tested for the same series of tests.
- 4. The testing technician's results are submitted to the District Laboratory as soon as the tests are completed, giving complete identification of the sample, date sampled, testing technician's name, District IA Inspector's name, and identifying the test results as one of the "duplicate" samples taken in the presence of the District IA Inspector.
- 5. The District Laboratory will issue form ITD-857, Independent Assurance Test Report, showing both test results for comparison. In addition to the standard laboratory report distribution, an additional copy will be provided for the testing technician and the testing laboratory. The ITD Laboratory Qualification Program requires testing laboratories to keep a copy of each IA evaluation, therefore, every effort should be made by the project personnel to deliver a copy of the IA report to the testing laboratory.
- 6. See Section 360.00 Review of Independent Assurance Results for procedures for the test result comparisons.

330.02 Independent Assurance Evaluation by Observation. It is necessary to evaluate some test methods by observation since the IA Inspector does not have dedicated equipment to perform an independent test. IA observation evaluation frequencies for each project are summarized in Table 300.2 and included in the MTR tables (Section 270.00) under each standard specification item.

An IA observation may be valid for up to 90 days. A single IA observation may apply to multiple items and projects provided the items are being tested by the same tester and using the same test methods regardless of quantity of material for up to 90 days. An IA test report must be completed for each project and list each item to which the IA observation evaluation applies.

The IA Inspector must use judgment in applying the 90-day rule and thoroughly evaluate the testing technician performing each test method involved. The IA Inspector is encouraged to use the WAQTC performance checklists as a guide for the evaluation. The 90-day rule would apply to only those test methods evaluated.

After the initial thorough IA observation evaluation is complete, the level of oversight and observation required for use of the 90-day rule is at the discretion of the IA Inspector. There should be a remark on the IA evaluation form, ITD-857, to indicate the IA Inspector's decision when applying the 90-day rule. The remark may be based on the experience level of the testing technician, consistency of the material being tested or other information to support the IA Inspector's decision to apply the 90-day rule.

330.03 Independent Assurance Evaluation of Verification Tests. ITD testing technicians perform verification testing in accordance with the Quality Assurance specifications when the contractor performs acceptance testing. These verification tests require IA evaluations. The frequency for IA evaluations will be one (1) IA evaluation for every twenty (20) verification tests. One IA evaluation may apply to multiple items and projects within the frequency provided the items are being tested by the same tester and using the same test methods and equipment.

SECTION 340.00 – TESTING OF DUPLICATE INDEPENDENT ASSURANCE SAMPLES

The testing of IA samples is to be done at the District Materials Laboratory, except for tests such as concrete slump and air tests that are performed in the field immediately after the sample is taken. IA samples must be tested with equipment other than that used for project acceptance testing.

SECTION 350.00 – NUMBERING INDEPENDENT ASSURANCE EVALUATIONS

IA tests will be numbered according to the first 3 or 4 characters of the bid schedule item, such as 205F, 303 or 405, followed by the letters IA and ending with the sequential number, starting at 1 and corresponding to the number of IA tests for the contract item. The sequential numbering will begin over with each contract. Contract special provision items will use the SP number for the bid schedule item number and change order items will use the CO number for the bid schedule item number.

SECTION 360.00 – REVIEW OF INDEPENDENT ASSURANCE RESULTS

The IA results are evaluated to assure the dependability and accuracy of the project sampling and testing, and to evaluate the test equipment.

360.01 Duplicate Sample Test Results. The IA duplicate test results and the field test results from the other half of the split sample are reported on form ITD-857 and compared. The comparison is made to determine whether the results are within allowable variations per Section 390.00.

When the test result comparison indicates the results are within allowable tolerances, the ITD-857 is printed on white paper and normal distribution as shown on the form is made.

If the evaluation indicates the results are not within allowable variation, another duplicate sample is obtained as soon as possible for a retest. The retest must be performed by the same testing technician and the same testing equipment must be used. The retest results will be reported on the same ITD-857 as the original duplicate test and a comparison made. If the comparison indicates the retest results are within allowable tolerances then the ITD-857 will be printed on white paper with normal distribution made.

If the comparison indicates the retest results continue to not be within allowable tolerances then the ITD-857 will be printed on buff colored paper and immediately forwarded to the ITD project representative or Resident/Regional Engineer for close-out with the IA Inspector.

When it is not possible to obtain another duplicate sample for retest, such as, the project is completed, then the ITD-857 showing the first duplicate test will be printed on buff paper and immediately forwarded to the ITD project representative or Resident / Regional Engineer for close-out with the IA Inspector.

360.02 Review of Observation Results. IA observations are documented on form ITD-857, District Independent Assurance Inspector's Report Field Evaluation. The evaluation report is completed as an observation with a duplicate sample taken or as an observation alone. Any deviations in the sampling and testing procedures observed will be documented by the IA Inspector. The report will then immediately be forwarded to the project office for close-out with the IA Inspector.

Completed and signed copies of all IA reports will immediately be sent to the project engineer, personnel responsible for sampling and testing, and the laboratory performing the testing.

360.03 Close-out Comments and Resolution Statement. When a deviation or out-of-tolerance result is identified, a close-out will be held with personnel performing the sampling and testing and an ITD project person responsible for the testing technicians.

A resolution statement signed by project personnel as indicated below is required when an IA evaluation indicates any of the following deviations:

- duplicate test results are not within acceptable variation,
- deviations in sampling and testing procedures observed,
- nonqualified samplers and testers are identified performing tests on a project,
- nonqualified laboratories are identified in use on a project,
- acceptance sampling and testing is not being conducted randomly in accordance with contract specifications.

Quality Assurance

The IA Inspector identifies deviations and works with project personnel to identify the cause of the variation. The project personnel are responsible to institute corrective action to resolve the deviations. A resolution statement will be written, or concurred with by signature, by an ITD project person responsible for the sampling and testing procedures and personnel. Usually this will be a project on-site inspector, but may also be the Resident Engineer. The resolution statement will indicate the corrective action that will take place or the corrective action that has already been enacted to prevent the deviation on subsequent sampling and testing. The action may include replacing faulty equipment, additional supervision of testing technicians and/or suspension of testing until necessary qualifications are met.

The Independent Assurance Inspector should review any resolution statement that does not indicate satisfactory resolution of the deviation with the District Materials Engineer. The District Materials Engineer should work with the Regional/Resident Engineer or other District Management as necessary to obtain a satisfactory resolution.

When the resolution statement is provided separately and not written directly on the IA report form, there will be a reference to the statement on the IA report in case the attachment becomes separated from the report form.

SECTION 370.00 – INDEPENDENT ASSURANCE TEST LOG (ITD-860)

All IA evaluations are recorded on the ITD-860, Independent Assurance Test Log, for each project by the Resident Engineer's office. Those IA evaluations identified as out-of-tolerance must have the resolution recorded as well. Use a blank line immediately below the recorded IA evaluation to briefly state the resolution. The IA Test Log is submitted at the completion of the project as part of the Materials Summary Report.

SECTION 390.00 - ACCEPTABLE VARIATIONS IN DUPLICATE TEST RESULTS

Allowable variations described in 390.01 & 390.02 apply to the following:

• Properly sampled and split material to make duplicate portions for testing and tests conducted at the same time on the same material, such as concrete field tests.

These variations do not provide for material variations that occur when separate samples are taken some time apart. Variations occurring which exceed the listed duplicate test variations are to be brought to the attention of the Regional Engineer/Resident Engineer immediately.

THESE VARIATIONS ARE NOT TO BE CONSIDERED ALLOWABLE TOLERANCES TO ACCEPT MATERIALS OUTSIDE SPECIFICATION LIMITS.

390.01 Aggregate. The difference between the "duplicate" samples should not exceed the variations listed in Table 300.3.

390.02 Concrete. When duplicate tests on a single sample of concrete are taken, the results should not vary more than the following:

- Air Content-----0.5%
- Slump------3/4" (19 mm)
- Density for Yield------1.0 lb./ft.³(16 kg/m³)
- Temperature-----2°F (1°C)

Quality Assurance

Acceptable Variations in Duplicate Test Results

300.3 Aggregate Sample Variations

Material	1" (25 mm) or larger 3/4" (19 mm)	1/2" (12.5 mm) 3/8" (9.5 mm)	<u>No. 4</u> <u>(</u> 4.75 mm <u>)</u>	No. 8 (2.36 mm) <u>No. 16 (1.18 mm)</u>	<u>No. 30</u> <u>(</u> 600 μm <u>)</u>	No. 50 (300 μm) <u>No. 100 (150 μm)</u>	<u>No.200</u> <u>(</u> 75 μm <u>)</u>
Coarse Concrete Aggregate	8%	6%	5%	3%			
Fine Concrete Aggregate				3%		3%	2%
Treated, Untreated Base and Road Mix Surfacing	8%	6%	5%	3%	3%	3%	2%
Plant Mix Aggregate	8%	6%	5%	3%	3%	3%	2%
Granular Subbase & Rock Ca	р 8%		5%				2%
Cover Coat Material		6%	5%				
Anti-Skid Material		6%	5%	3%	3%	3%	
Sand Equivalent			8				
Cleanness Value			6				
Fracture Count			5%				
Flat & Elongated			2%				
Fine Aggregate Angularity			1%				

Table of Contents

SECTION 400.00 – PROJECT MATERIALS CERTIFICATION

- 401.00 Materials Certification Submittal Requirements by Project Type.
- SECTION 410.00 REPORTS AND DOCUMENTATION

410.01 Materials Acceptance Plan (MAP) or ITD-862 Sampling Schedule.410.02 Checking Test Reports and Documents.

SECTION 420.00 – MATERIALS SUMMARY REPORT

SECTION 425.00 – COMPLETING THE MSR

SECTION 430.00 – RESIDENT ENGINEER'S LETTER OF INSPECTION (ITD-854)

SECTION 440.00 – INDEPENDENT ASSURANCE TEST LOG (ITD-860)

SECTION 450.00 – MATERIALS CERTIFICATION CHECKLIST (ITD-852)

SECTION 460.00 – DISTRICT AUDIT OF MATERIALS SUMMARY REPORT 460.10 District Audit of GARVEE and Consultant CE&I projects.

SECTION 470.00 – MATERIALS CERTIFICATION LETTER 470.01 Exceptions.

SECTION 400.00 – PROJECT MATERIALS CERTIFICATION

ITD has implemented procedures in accordance with State and Federal regulations for ensuring the materials incorporated into highway projects meet the required contract specifications.

401.00 Materials Certification Submittal Requirements by Project Type. The

following documents are used for project materials certification to demonstrate that the materials incorporated into the project meet the required contract specifications:

- Materials Certification Letter (See Section 470.00)
- Materials Summary Report (See Section 420.00)
- ITD-852 Materials Certification Checklist (See Section 450.00)
- ITD-854 Resident Engineer's Letter of Inspection (See Section 430.00)
- ITD-860 Independent Assurance Test Log (See Section 440.00)

Instructions for the above documents are detailed in the indicated Sections.

Table 400.1 lists the documents that are required for project materials certification based on funding and project typeAs shown on the table, the District Engineer's Final Letter of Acceptance is used to document project materials certification for projects not requiring a Materials Summary Report and Materials Certification Letter.

For all projects, adequate records to document proper testing and inspection are required and must be maintained in the project files.

Table 400.1. Project Materials Certification Requirements for Projects Awarded through RoadwayDesign Using ITD Specifications

		SUBMITTAL TO HQ MATERIALS		
Type of Project	Are there materials incorporated in the project?	Materials Certification Checklist (ITD-852)	Materials Certification Letter and Materials Summary Report (including IA Log & RE Letter)	District Engineer Final Letter of Acceptance
Federal-Aid On	Yes	Yes	Yes	Yes
State Highway System	No	Yes	No	Yes
Federal-Local On- System No	Yes	Yes	Yes	Yes
State Funds	No	Yes	No	Yes
Federal-Local Off- System No State Funds Federal-Aid Limit \$500k or more	Yes	Yes	Yes	Yes
	No	Yes	No	Yes
Federal-Local Off-	Yes	Yes	No	Yes
System No State Funds Federal-Aid Limit less than \$500k	No	Yes	No	Yes
State-funded on NHS	Yes	Yes	Yes	Yes
	No	Yes	No	Yes
State-funded off NHS	Yes	Yes	Yes	Yes
	No	Yes	No	Yes
Supply Services Contract	N/A	No	No	No

SECTION 410.00 – REPORTS AND DOCUMENTATION All field test reports, laboratory test reports, certifications, and other miscellaneous reports involving inspection, testing, and acceptance of materials are a part of the documentation of project records. These reports are considered a permanent record and are to be preserved with other permanent records such as survey notes, quantity measurements, etc. These records form the basis for certifying compliance with specification requirements of the contract to State auditors and the Federal Highway Administration for the materials used in construction.

The project files must sufficiently document that the acceptance of material was performed in accordance with the minimum testing requirements and the contract specifications. Specific instructions for each test report form are to be followed with the understanding that complete documentation is required for each contract. Any reports or records that apply from another contract should be either duplicated or must be completely referenced. There must be no doubt of the validity of the record applying to the pertinent project.

410.01 Materials Acceptance Plan (MAP) or ITD-862 Sampling Schedule. Project personnel must plan ahead using the minimum testing requirements (MTRs) and the contract specifications to determine the requirements for acceptance of all bid items and change orders. Each district is encouraged to develop a project Materials Acceptance Plan (MAP) or ITD-862 Sampling Schedule for reference by the project personnel during construction.

The development of the MAP or Sampling Schedule should be a joint effort by District Materials and project personnel. The final MAP should summarize the acceptance requirements for all items including any small quantities (see Section 270.04), items using nonstandard acceptance (see Section 270.05) or special provision items (see Section 270.06). The final MAP should be reviewed and signed by the Resident Engineer and the District Materials Engineer. When requested by the District, HQ Design/Materials/Construction will review and provide comment on the MAP for non-standard special provision items.

410.02 Checking Test Reports and Documents.

Laboratory tests, field tests, and certification reports are forwarded to the Resident Engineer whose staff regularly checks the reports so that deviations from specifications and poor documentation are mitigated. It is required that the person checking test reports have ITD STQP qualification or an Idaho PE license (see Section 210.01). Any discrepancies, lack of information, or incompleteness of the reports must be corrected without delay. After the checks are made, the reports are recorded for the Materials Summary Report (see Section 425.00 for directions) and placed in the project files.

Any items receiving less than the minimum requirements of sampling and testing and/or varying from specifications must have the corrective action or remedy efforts explained by the /Resident Engineer. The explanation must include the justification for acceptance, rejection, or price adjustment of noncompliant material. The explanation is recorded and noted for the Materials Summary Report.

SECTION 420.00 – MATERIALS SUMMARY REPORT The Materials Summary Report (MSR)

shows the basis for acceptance of all bid items and change orders of the contract as required by the minimum test requirements (MTRs) and contract specifications including:

- Acceptance test results.
- Manufacturer's certifications.
- Laboratory acceptance and verification test results.
- Notes to explain the resolution for any failing test results or lack of minimum testing.
- Notes to explain the basis for accepting any material not tested or not certified according to the minimum testing requirements or contract specifications.

The MSR is compiled for each construction contract as indicated in Table 400.1 by posting all of the field and laboratory test reports and manufacturer's certifications into the electronic Materials Summary Program. The data should be posted daily or at least weekly to ensure current reporting. All test reports should be posted as soon as possible after they are received and checked. It is a good practice to maintain the MSR so that it is contemporaneous with the most current pay estimate.

See <u>Section 425.00</u> for the required postings for the MSR.

The MSR should be printed after each pay estimate and kept in a binder or file folder for easy access.

Adequate documentation of failures and/or deviations from specification requirements must be included in the Materials Summary Report to justify acceptance, rejection, or price adjustment of contract items. <u>Section 215.00</u> contains details about documentation for non-compliant material.

SECTION 425.00 – COMPLETING THE MSR The following guidelines are provided for use in typical project situations to accurately complete a project Materials Summary Report (MSR).

The acceptance documents are posted in the MSR under the contract item where the material was paid. When material is incidental to a contract item the posting will be shown under the associated contract item.

- The posting must be done using the electronic Materials Acceptance Program.
- Every contract item, including change orders, where there was material used on the project must be included in the MSR.
- Some contract items will have multiple posting in the MSR because there is more than one acceptance requirement as shown in the MTR tables.
- The postings of test result data for items that require statistical analysis (QASP items) must each be checked for accuracy by someone other than the person who posted the data. The postings in the MSR portion of MAP must be at least randomly checked.

Use Table 425.1 to determine the minimum information required in the MSR. Find the contract bid item in the Section 270.00 MTR tables of the Quality Assurance Manual, and from the MTR tables identify the

type of acceptance requirements. Then, find the type of acceptance in the left column of the table below and provide the required information in the MSR as is described in the corresponding right hand column.

Table 425.1	
-------------	--

Acceptance Type from MTR tables	Postings Required in the MSR		
Statistical	Copy of Bonus Summary Report showing the pay factor for each lot		
Analysis (QA	Remarks explaining actions taken when any lot falls below .85 or below .75		
Special	Copy of F&T report for each day of production testing		
Provisions)	Remarks to indicate evaluation procedures taken when there is a t test failure		
	Date sampled		
Field Tests (other	Test number		
Field Tests (other than	Indication of pass or fail test results		
statistical	A remark indicating the location of the in-place density test for pipe or structure backfill		
analysis) ¹	Remarks to indicate tests that are considered check tests for failing tests		
anarysisj	Remarks to indicate the corrective action taken for a failing test		
	Remarks to indicate acceptance when testing is not performed, such as, too granular to test		
Manufacturer's	Date certification statement signed		
or Fabricator's	Quantity of material certified		
Certification	Manufacturer or fabricator company signing certification		
	Date sampled		
	Sample number		
Laboratory	Laboratory number		
Verification Tests	Indication of pass or fail test results		
	Remarks to indicate corrective action or price adjustment for a failing test		
	Date sampled		
	Sample number		
Laboratory	Laboratory number		
Acceptance Tests	Indication of pass or fail test results		
	Remarks to indicate corrective action or price adjustment for a failing test		
Pre-Tested or Pre-Approved Tests (Approved Lists)	Remarks to indicate the material/product used on the project is included on the approved list maintained by HQ Materials Section		
Acceptance by Inspection	Item will be shown on the ITD-854, Resident Engineer's Letter of Inspection		
Small Quantity or Non-Standard Acceptance (see <u>Section 270.04</u> & <u>270.05</u>)	Remarks to summarize the basis of acceptance including the following where applicable: Remarks to indicate aggregates obtained from approved materials source Remarks to indicate mix design approval for plant mix or concrete Post core test results for plant mix paving on mainlines or intersections Remarks to indicate visual inspection during installation, placement or compaction		
¹ (field tests are: in-place density, gradation, sand equivalent, fracture count, cleanness value, field saybolt viscosity, presence of anti-strip additive, asphalt content of plant mix, plant mix test strip, air/slump/temperature/unit weight of concrete)			

Acceptance					
Type from MTR	Postings Required in the MSR				
tables					
	Post acceptance information as indicated in the special provision OR as indicated below if not specified in the special provision.				
Special	When material is included in MTR table and used in a standard application, find MTR				
Special	acceptance type above and post the same information				
Provisions (see Section 270.06)	When special provision indicates the material must meet a given specification, such as				
<u>Section 270.00</u>	AASHTO or ASTM: Post same information shown above for manufacturer's certification.				
	When material is not included in MTR tables or not used in standard application: Remarks to summarize basis of acceptance as determined by the Engineer and District Materials Engineer.				
	Post acceptance information as indicated in the change order OR as indicated below if not specified in the change order.				
Change Orders	For standard pay items or when material is included in MTR tables and used in a standard application, find MTR acceptance type above and post the same information				
(see <u>Section</u>	When change order indicates the material must meet a given specification, such as AASHTO or				
<u>270.07</u>)	ASTM: Post same information shown above for manufacturer certification.				
	When material is not included in MTR tables or not used in standard application: Remarks to summarize basis of acceptance as determined by the Engineer and District Materials Engineer				

SECTION 430.00 - RESIDENT ENGINEER'S LETTER OF INSPECTION (ITD-854) The

purpose of the Resident Engineer's Letter of Inspection (ITD-854) is for the Resident Engineer to document the inspection of certain materials and to document the materials are acceptable according to the plans and specifications. The form should not be used as a catch-all for items usually accepted by sampling and testing, and inclusion on the form does not excuse the inspector from sampling and testing manufacturer certifications, as required by the Minimum Testing Requirements. A copy of the completed RE Letter will be submitted with the MSR at the completion of the project. See Section 250.00 for complete information on the Resident Engineer's Letter of Inspection.

SECTION 440.00 – INDEPENDENT ASSURANCE TEST LOG (ITD-860) Independent Assurance tests are not posted in the Materials Summary Report, but are recorded on the IA Test Log (form ITD-860) by the ITD project personnel. A copy of the complete IA test log must be submitted with the MSR at the completion of the project. See Section 370.00 for information on completion of the IA Test Log.

SECTION 450.00 – MATERIALS CERTIFICATION CHECKLIST (ITD-852) Resident

Engineer's office prepares the ITD-852 Materials Certification Checklist by completing each checkbox shown on the form. Explanations must be included in the "Remarks" field for any items checked "No". Known exceptions to the materials acceptance requirements for the project will be identified on the form. Once complete the checklist is provided to the Resident Engineer and Engineering Manager for review and signature. For projects not requiring a Materials Summary Report per Table 400.1 check the

appropriate box to indicate no Materials Summary Report is required and complete the remainder of the form as applicable for the project.

SECTION 460.00 - DISTRICT AUDIT OF MATERIALS SUMMARY REPORT The District

will perform an independent assurance audit of the Materials Summary Report (MSR) for all projects, Independent assurance audits shall be performed by individuals who are:

- 1) Currently qualified in all WAQTC modules along with the Concrete Laboratory Testing Technician (CLTT).
- 2) Independent of both the project and the residency
- 3) Deemed by the District Engineer as knowledgeable in the preparation and review of Materials Summary Reports.

The audit should be done periodically as the project progresses. The most current pay estimate should be used as a guide to determine that material paid for was accepted in accordance with the contract requirements. Any deviations or exceptions found during the audit must be resolved to the satisfaction of the District Materials Engineer before issuance of the Materials Certification Letter.

District audit of MSR report shall be completed using Form ITD-858. The District Materials Engineer will review this MSR audit, and make final resolution and document such by signature on form ITD-858. A close-out should be held with ITD project personnel to discuss any deviations found and to obtain a resolution statement. See Section 360.03 of this manual. A copy of the completed ITD-858 shall be included in the project files.

460.10 District Audit of GARVEE and Consultant CE&I projects. The GARVEE and Consultant CE&I projects have an assigned ITD Resident Engineer. The individual assigned to audit the records will contact the assigned Resident Engineer to make arrangements for the on-site review of the project materials records.

SECTION 470.00 – MATERIALS CERTIFICATION LETTER When the MSR and associated documentation is considered acceptable, the District will prepare the Materials Certification Letter using the inter-department memo (ITD-500) addressed to the Design/Materials/Construction Engineer (see Example 470.02 at the end of this section) for the District's Engineer signature. The Materials Certification Letter is prepared and submitted to the District Engineer along with a copy of ITD-860, IA Test Report Log; ITD-852, Materials Certification Checklist; the Materials Summary Report; and ITD-854, Resident Engineer's Letter of Inspection of Contract Items, for review, signature and distribution.

The Materials Certification Letter must contain the following statement (per 23 CFR 637):

This is to certify that:

The results of the tests used in the acceptance program indicate that the materials incorporated in the construction work, and the construction operations controlled by sampling and testing, were in conformity with the approved plans and specifications. All independent assurance samples and tests are within tolerance limits of the samples and tests that are used in the acceptance program.

Explanations for exceptions to the plans and specifications are as follows:

The Materials Certification Letter will list, by contract item, any exceptions and how they were resolved, which includes an explanation for justification of acceptance of the contract item. See Example 470.02 at the end of this section.

For Federal-aid full oversight projects, the FHWA will review the below listed items in order to concur in the Materials Certification.

- 1. District Engineer Materials Certification Letter
- 2. ITD-0858 Materials Summary Report District IA Audit
- 3. Final Estimate
- 4. ITD-0852 Materials Certification Checklist
- 5. ITD- 0854 Resident Engineer's letter of Inspection of Contract Items
- 6. ITD-0860 Independent Assurance Log
- 7. Materials Acceptance Program (MAP) report for any contract pay items that has exceptions to the contract specifications or plans including the following notes:
 - a. Notes to explain the resolution for any failing test results or lack of minimum testing.
 - b. Notes to explain the basis for accepting any material not tested or not certified according to the minimum testing requirements or contract specifications.

Submit these documents (via cc) to the FHWA for review and approval. Upon review and approval; submit final non-participation determinations to the Department's Financial Services. See example 470.03 at the end of this section.

470.01 Exceptions. An exception is considered any instance where non-specification material is identified, the non-specification material is allowed to remain, and corrective action was required. A failing test with an immediate passing check test is not considered non-specification material. Corrective action is remedial methods, such as price adjustments or contractor repair work.

When there are indications of acceptance of non-specification material in the materials summary report, then the corrective action taken must be included in the summary remarks and in the certification letter. For QA Special Provision contract items, non-specification material is a lot where the pay factor for any quality characteristic is below 0.75 and the material was allowed to remain.

An exception is also when contract specifications and/or minimum testing requirements were not met. This may be lack of acceptance testing, lack of IA testing, or lack of manufacturer's certifications. It is usually not possible to remedy or justify these exceptions, especially if not discovered until the project is complete. A full explanation of the circumstances is necessary to ascertain the consequences of the deviation from the specifications, including the quantities accepted without the required testing or certifications. In some cases, material quantities may not be eligible for Federal-aid participation. The District will determine non-participation using the current memorandum of understanding between the Department and the Federal Highway Administration Idaho Division Office.

Exceptions should be listed by contract item number on the Materials Certification Letter as follows:

- Number of tests representing non-specification material out of the total number of tests performed with remarks for justification that allowed material to remain in place.
- Total number of tests performed and number of tests required by the minimum testing requirements when the number of tests performed is less than the required minimum, including lack of or failure to perform Independent Assurance testing.
- Lack of required manufacturer's certifications covering the quantity of material paid for.
- QA Special Provision item where the pay factor was less than 0.75 and a description of action taken.
- QA Special Provision item where t test failed and there is no indication an evaluation was made.
 Price adjustment, if applied, or justification for acceptance or rejection of material with failing laboratory test.

The items ineligible for Federal-aid participation including the dollar amount must be shown on the Materials Certification Letter.

470.02 Materials Certification Letter Example (Non-Full Oversight Project Example)

DATE: PROJECT NO.(S): TO: NAME DESIGN/MATERIALS/CONSTRUCTION ENGINEER FROM: NAME: DISTRICT ____ ENGINEER RE: MATERIALS CERTIFICATION LETTER (NON-FULL OVERSIGHT PROJECT)

This is to certify that:

The results of the tests used in the acceptance program indicate that the materials incorporated in the construction work, and the construction operations controlled by sampling and testing, were in conformity with the approved plans and specifications. All independent assurance samples and tests are within tolerance limits of the samples and tests that are used in the acceptance program.

Explanations for exceptions to the plans and specifications are as follows:

- 303-005A 19mm Aggregate Base: Lot #3 had a pay factor of .74 and was removed and replaced by the contractor.
- 405-025A PL MX PAV CL I: Acceptance Test Strip #1 failed and was paid at 50%.
- 602-035A 450mm Pipe Culvert: There are no required manufacturer's certifications for 150 meters of pipe.
- 640 Subgrade Geotextile: No required laboratory verification tests were performed. The item was accepted by manufacturer's certification.
 - S501-010 MSE Retaining Wall: The ITD laboratory test was failing for cement and a price adjustment of 25% was applied.

The original of the Materials Summary Report, correspondence, manufacturer's certifications, and test reports are on file in the project records. cc:

DE ____ District ____ Engineering Manager DMTL w/attach RE (original attach) DRI (w/attach) DMC Engineer (w/attach) Financial Services 470.03 Materials Certification Letter Example (Full Oversight Project)

IDAHO TRANSPORTATION DEPARTMENT

Department Memorandum DATE: PROJECT NO.(S):

TO: NAME DESIGN/MATERIALS/CONSTRUCTION ENGINEER FROM: NAME: DISTRICT ENGINEER **RE:** MATERIALS CERTIFICATION LETTER (FULL OVERSIGHT PROJECT)

This is to certify that:

The results of the tests used in the acceptance program indicate that the materials incorporated in the construction work, and the construction operations controlled by sampling and testing, were in conformity with the approved plans and specifications. All independent assurance samples and tests are within tolerance limits of the samples and tests that are used in the acceptance program.

Explanations for exceptions to the plans and specifications are as follows:

303-005A 19mm Aggregate Base: Lot #3 had a pay factor of .74 and was removed and replaced by the contractor.

405-025A PL MX PAV CL I: Acceptance Test Strip #1 failed and was paid at 50%. 602-035A 450mm Pipe Culvert: There are no required manufacturer's certifications for 150

meters of pipe.

640 Subgrade Geotextile: No required laboratory verification tests were performed. The item was accepted by manufacturer's certification.

S501-010 MSE Retaining Wall: The ITD laboratory test was failing for cement and a price adjustment of 25% was applied.

The original of the Materials Summary Report, correspondence, manufacturer's certifications, and test reports are on file in the project records. cc:

DE District Engineering Manager DMTL w/attach RE (original attach) DRI (w/attach) DMC Engineer (w/attach) FHWA (w/ attachment)

Please do not forget to check Section 275 for TEST Method Modifications

SECTION 570.00 - WAQTC / IDAHO FIELD OPERATING PROCEDURES

570.01 Aggregate (AgTT)	
1. AASHTO T 2 (11)	Sampling of Aggregates
2. AASHTO T 248 (11)	Reducing Samples of Aggregates to Testing Size
3. AASHTO T 255 (11)	Total Evaporable Moisture Content of Aggregate by Drying
4. AASHTO T 27 (12) &	Sieve Analysis of Fine and Coarse Aggregates &
AASHTO T 11 (12)	Materials Finer Than 75 μm (No. 200) sieve in Mineral Aggregates by Washing
5. AASHTO T 335 (11)	Determining the Percentage of Fracture in Coarse Aggregate
6. AASHTO T 176 (11)	Plastic Fines in Graded Aggregates and Soils by Use of the Sand Equivalent Test
570.02 Asphalt (AsTT, AsTT	II)
1. AASHTO T 168 (10)	Sampling Bituminous Paving Mixtures
2. AASHTO R 47 (11)	Reducing Samples of Hot Mix Asphalt (HMA) to Testing Size
3. AASHTO T 329 (11)	Moisture Content of Hot Mix Asphalt (HMA) by Oven Method
4. AASHTO T 308 (12)	Determining the Asphalt Binder Content of Hot Mix Asphalt (HMA) by the Ignition Method
5. AASHTO T 30 (12)	Mechanical Analysis of Extracted Aggregate
6. AASHTO T 209 (12)	Theoretical Maximum Specific Gravity and Density of Hot Mix Asphalt Paving Mixtures
7. AASHTO T 166 (12)	Bulk Specific Gravity of Compacted Hot Mix Asphalt using Saturated Surface-Dry Specimens
8. AASHTO T 40 (08) 9. AASHTO T 312 (12) 10. WAQTC TM 13 (12)	Sampling Bituminous Materials Hot Mix Asphalt. Specimens by Means of the Superpave Gyratory Compactor Volumetric Properties of Hot Mix Asphalt
11. WAQTC TM 11 (12)	Sampling Hot Mix Asphalt (HMA) After Compaction (Obtaining Cores)
570.03 Concrete (CTT)	
1. WAQTC TM 2 (12)	Sampling Freshly Mixed Concrete
2. AASHTO T 309 (10)	Temperature of Freshly Mixed Portland Cement Concrete
3. AASHTO T 119 (11)	Slump of Hydraulic Cement Concrete
4. AASHTO T 121 (12)	
	Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete
5. AASHTO T 152 (12)	Air Content of Freshly Mixed Concrete by the Pressure Method
6. AASHTO T 23 (11)	Method of Making and Curing Concrete Test Specimens in the Field
570.04 Embankment and Ba	se (EbTT)
1. AASHTO T 255 (11) &	Total Evaporable Moisture Content of Aggregate by Drying &
AASHTO T 265 (11)	Laboratory Determination of Moisture Content of Soils
2. AASHTO T 99 (11) &	Moisture-Density Relations of Soils Using a 2.5-kg (5.5-lb) Rammer and 305-mm (12-in.) Drop &
AASHTO T 180 (11)	Moisture-Density Relations of Soils Using a 4.54-kg (10-lb) Rammer and 457-mm (18-in.) Drop
3. AASHTO T 272 (12)	Family of Curves – One-Point Method
4. AASHTO T 85 (10)	Specific Gravity and Absorption of Coarse Aggregate
5. AASHTO T 224 (12)	Correction for Coarse Particles in the Soil Compaction Test
6. (08)	Use of AKDOT&PF ATM-212, ITD T-74, WSDOT TM 606, or WFLHD Humphreys Curves

570.05 In-Place Density (DTT)

1. WAQTC TM 8 (12)	In-Place Density of Hot Mix Asphalt using the Nuclear Moisture-Density Gauge.
2. AASHTO T 310 (12)	In-Place Density and Moisture Content of Soil and Soil-Aggregate by Nuclear Methods (Shallow Depth)
3. AASHTO T 255 (11) & AASHTO T 265 (11)	Total Evaporable Moisture Content of Aggregate by Drying & Laboratory Determination of Moisture Content of Soils
4. AASHTO T 272 (12)	Family of Curves – One-Point Method
5. AASHTO T 224 (12)	Correction for Coarse Particles in the Soil Compaction Test
6. (08)	Use of AKDOT&PF ATM-212, ITD T-74, WSDOT TM 606, or WFLHD Humphreys Curves

SAMPLING OF AGGREGATES FOP FOR AASHTO T 2

Scope

This procedure covers sampling of coarse, fine, or a combination of coarse and fine aggregates (CA and FA) in accordance with AASHTO T 2-91. Sampling from conveyor belts, transport units, roadways, and stockpiles is covered.

Apparatus

- Shovels or scoops, or both
- Sampling tubes of acceptable dimensions
- Mechanical sampling systems: normally a permanently attached device that allows a sample container to pass perpendicularly through the entire stream of material or diverts the entire stream of material into the container by manual, hydraulic, or pneumatic operation
- Belt template
- Sampling containers

Procedure – General

Sampling is as important as testing, and the technician shall use every precaution to obtain samples that will show the true nature and condition of the materials the sample represents. In all situations, determine the time or location for sampling in a random manner.

- 1. Wherever samples are taken, obtain multiple increments of approximately equal size.
- 2. Mix the increments thoroughly to form a field sample that meets or exceeds the minimum mass recommended in Table 1.

	Sample	e Sizes	
Nomina	l Maximum	Minimum	Mass
Size*	[*] mm (in.)	g (lb))
2.36	(No. 8)	10,000	(25)
4.75	(No. 4)	10,000	(25)
9.5	(3/8)	10,000	(25)
12.5	(1/2)	15,000	(35)
19.0	(3/4)	25,000	(55)
25.0	(1)	50,000	(110)
37.5	(1 1/2)	75,000	(165)
50	(2)	100,000	(220)
63	(2 1/2)	125,000	(275)
75	(3)	150,000	(330)
90	(3 1/2)	175,000	(385)

TABLE 1Sample Sizes

* One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size. Maximum size is one size larger than nominal maximum size.

Note 1: Based upon the tests required, the sample size may be four times that shown in Table 2 of the FOP for AASHTO T 27/T 11, if that mass is more appropriate. As a general rule the field sample size should be such that, when split twice will provide a testing sample of proper size.

Procedure – Specific Situations

Conveyor Belts

Avoid sampling at the beginning or end of the aggregate run due to the potential for segregation. Be careful when sampling in the rain. Make sure to capture fines that may stick to the belt or that the rain tends to wash away.

Method A (From the Belt):

- 1. Stop the belt.
- 2. Set the sampling template in place on the belt, avoiding intrusion by adjacent material.
- 3. Scoop off the sample, including all fines.
- 4. Obtain a minimum of 3 approximately equal increments.
- 5. Combine the increments to form a single sample.

Method B (From the Belt Discharge):

- 1. Pass a sampling device through the full stream of the material as it runs off the end of the conveyor belt. The sampling device may be manually, semi-automatic or automatically powered.
- 2. The sampling device shall pass through the stream at least twice, once in each direction, without overfilling while maintaining a constant speed during the sampling process.
- 3. When emptying the sampling device into the sample container, include all fines.
- 4. Combine the increments to form a single sample.

Transport Units

- 1. Visually divide the unit into four quadrants.
- 2. Identify one sampling location in each quadrant.
- 3. Dig down and remove approximately 0.3 m (1 ft) of material to avoid surface segregation. Obtain each increment from below this level.
- 4. Combine the increments to form a single sample.

Roadways

Method A (Berm or Windrow):

- 1. Sample prior to spreading.
- 2. Take the increments from a minimum of three random locations along the fullyformed windrow or berm. Do not take the increments from the beginning or the end of the windrow or berm.
- 3. Obtain full cross-section samples of approximately equal size at each location. Take care to exclude the underlying material.
- 4. Combine the increments to form a single sample.
- *Note 2:* Sampling from berms or windrows may yield extra-large samples and may not be the preferred sampling location.

Method B (In-Place):

1. Sample after spreading and prior to compacting.

- 2. Take the increments from three random locations.
- 3. Obtain full-depth samples of approximately equal size from each location. Take care to exclude the underlying material.
- 4. Combine the increments to form a single sample.

Stockpiles

Method A – Coarse, Fine, or a Combination of Coarse and Fine Aggregates:

- 1. Create, with a loader if one is available, horizontal surfaces with vertical faces in the top, middle, and bottom third of the stockpile. When no equipment is available a shovel may be used to create the horizontal surfaces with vertical faces.
- 2. Prevent continued sloughing by shoving a flat board in against the vertical face. Sloughed material will be discarded to create the horizontal surface.
- 3. Sample from the horizontal surface as close to the intersection as possible of the horizontal and vertical faces.
- 4. Obtain at least one increment of equal size from each of the top, middle, and bottom thirds of the pile.
- 5. Combine the increments to form a single sample.

Method B – Fine Aggregate (Alternate Tube Method):

- 1. Remove the outer layer that may have become segregated.
- 2. Using a sampling tube, obtain one increment of equal size from a minimum of five random locations on the pile.
- 3. Combine the increments to form a single sample.
- *Note 3:* Sampling at stockpiles should be avoided whenever possible due to problems involved in obtaining a representative gradation of material.

Report

- On forms approved by the agency
- Date
- Time
- Location
- Quantity represented

PERFORMANCE EXAM CHECKLIST

	MPLING OF AGGREGATES P FOR AASHTO T 2		
Par	ticipant Name	Exam Date	
Re	cord the symbols "P" for passing or "F" f	or failing on each step of the checklist.	
Pr	ocedure Element	Trial 1	Trial 2
Co	nveyor Belts – Method A (From the B	elt)	
1.	Belt stopped?		
2.	Sampling template set on belt, avoiding int material?	rusion of adjacent	
3.	Sample, including all fines, scooped off?		
4.	Samples taken in at least three approximate	ely equal increments?	
Co	nveyor Belts – Method B (From the B	elt Discharge)	
5.	Sampling device passed through full structure (once in each direction) as it runs off end o		
Tr	ansport Units		
6.	Unit divided into four quadrants?		
7.	Increment obtained from each quadrant, 0.	3 m (1ft.) below surface?	
8.	Increments combined to make up the samp	le?	
Ro	adways (berm or windrow)		
9.	Sample taken prior to spreading?		
10.	Full depth of material taken?		
11.	Underlying material excluded?		
12.	Samples taken in at least three approximate	ely equal increments?	
Ro	adways (in-place)		
13.	Sample taken after spreading?		
14.	Full depth of material taken?		
15.	Underlying material excluded?		
16.	Samples taken in at least three approximate	ely equal increments?	

OVER

Stockpiles

17. Created horizontal surfaces with vertical faces?
18. At least one increment taken from each of the top, middle, and bottom thirds of the stockpile.
19. When using a sampling tube, outer layer removed and increments taken from at least five locations with a sampling tube?
General
20. Increments mixed thoroughly to form sample?
Comments: First attempt: Pass Fail Second attempt: Pass Fail
Examiner SignatureWAQTC #:

REDUCING SAMPLES OF AGGREGATES TO TESTING SIZE FOP FOR AASHTO T 248

Scope

This procedure covers the reduction of samples to the appropriate size for testing in accordance with AASHTO T 248-11. Techniques are used that minimize variations in characteristics between test samples and field samples. Method A (Mechanical Splitter) and Method B (Quartering) are covered.

This FOP applies to fine aggregate (FA), coarse aggregate (CA), and mixes of the two, and may also be used on soils.

Apparatus

Method A – Mechanical Splitter

Splitter chutes:

- Even number of equal width chutes
- Discharge alternately to each side
- Minimum of 8 chutes total for CA, 12 chutes total for FA
- Width:
 - Minimum 50 percent larger than largest particle
 - Maximum chute width of 19 mm (3/4 in.) for fine aggregate passing the 9.5 mm (3/8 in.) sieve

Feed control:

- Hopper or straightedge pan with a width equal to or slightly less than the overall width of the assembly of chutes
- Capable of feeding the splitter at a controlled rate

Splitter receptacles / pans:

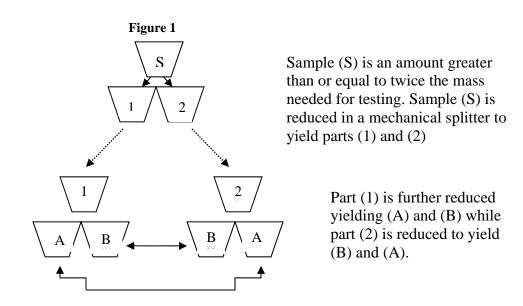
• Capable of holding two halves of the sample following splitting

The splitter and accessory equipment shall be so designed that the sample will flow smoothly without restriction or loss of material.

Method B – Quartering

- Straightedge scoop, shovel, or trowel
- Broom or brush
- Canvas or plastic sheet, approximately 2 by 3 m (6 by 9 ft)

Method Selection


Samples of FA which are drier than the saturated surface dry (SSD) condition shall be reduced by a mechanical splitter according to Method A. As a quick determination, if the fine aggregate will retain its shape when molded with the hand, it is wetter than SSD. Samples of FA that are at SSD or wetter than SSD shall be reduced by Method B, or the entire sample may be dried to the SSD condition – using temperatures that do not exceed those specified for any of the tests contemplated – and then reduced to test sample size using Method A.

Samples of CA or mixtures of FA and CA may be reduced by either method. Method A is not recommended for FA / CA mixtures that adhere to the apparatus.

Procedure

Method A – Mechanical Splitter

- 1. Place the sample in the hopper or pan and uniformly distribute it from edge to edge so that approximately equal amounts flow through each chute. The rate at which the sample is introduced shall be such as to allow free flowing through the chutes into the pans below.
- 2. Reduce the sample from one of the two pans as many times as necessary to reduce the sample to meet the minimum size specified for the intended test. The portion of the material collected in the other pan may be reserved for reduction in size for other tests.
- 3. As a check for effective reduction, determine the mass of each reduced portion. If the percent difference of the two masses is greater than 5 percent, corrective action must be taken. In lieu of the check for effective reduction, use the method illustrated in Figure 1.

Final testing sample is produced by combining alternate pans, i.e. A/A or B/B only.

Calculation

 $\frac{Smaller Mass}{Larger Mass} = Ratio \quad (1 - ratio) \times 100 = \% Difference$

Splitter check: 5127 g total sample mass

Splitter pan #1: 2583 g

Splitter pan #2: 2544 g

 $\frac{2544 \text{ g}}{2583 \text{ g}} = 0.985 \qquad (1 - 0.985) \times 100 = 1.5\%$

Procedure

Method B – Quartering

Use either of the following two procedures or a combination of both.

Procedure # 1: Quartering on a clean, hard, level surface:

1. Place the sample on a hard, clean, level surface where there will be neither loss of material nor the accidental addition of foreign material.

- 2. Mix the material thoroughly by turning the entire sample over a minimum of four times. With the last turning, shovel the entire sample into a conical pile by depositing each shovelful on top of the preceding one.
- 3. Flatten the conical pile to a uniform thickness and diameter by pressing down with a shovel. The diameter should be four to eight times the thickness.
- 4. Divide the flattened pile into four approximately equal quarters with a shovel or trowel.
- 5. Remove two diagonally opposite quarters, including all fine material, and brush the cleared spaces clean.
- 6. Successively mix and quarter the remaining material until the sample is reduced to the desired size.
- 7. The final test sample consists of two diagonally opposite quarters.

Procedure # 2: Quartering on a canvas or plastic sheet:

- 1. Place the sample on the sheet.
- 2. Mix the material thoroughly a minimum of four times by pulling each corner of the sheet horizontally over the sample toward the opposite corner. After the last turn, form a conical pile.
- 3. Flatten the conical pile to a uniform thickness and diameter by pressing down with a shovel. The diameter should be four to eight times the thickness.
- 4. Divide the flattened pile into four approximately equal quarters with a shovel or trowel, or, insert a stick or pipe beneath the sheet and under the center of the pile, then lift both ends of the stick, dividing the sample into two roughly equal parts. Remove the stick leaving a fold of the sheet between the divided portions. Insert the stick under the center of the pile at right angles to the first division and again lift both ends of the stick, dividing the sample into four roughly equal quarters.
- 5. Remove two diagonally opposite quarters, being careful to clean the fines from the sheet.
- 6. Successively mix and quarter the remaining material until the sample size is reduced to the desired size.
- 7. The final test sample consists of two diagonally opposite quarters.

PERFORMANCE EXAM CHECKLIST

REDUCING FIELD SAMPLES OF AGGREGATES TO TESTING SIZE FOP FOR AASHTO T 248

Pa	rticipant Name Exam Date
Re	cord the symbols "P" for passing or "F" for failing on each step of the checklist.
	Trial 1 Trial 2
M	ethod A - Splitting
1.	Material spread uniformly on feeder?
2.	Rate of feed slow enough so that sample flows freely through chutes?
3.	Material in one pan re-split until desired mass is obtained?
M	ethod B - Quartering
1.	Sample placed on clean, hard, and level surface?
2.	Mixed by turning over 4 times with shovel or by pulling sheet
3.	Conical pile formed?
4.	Diameter equal to about 4 to 8 times thickness?
5.	Pile flattened to uniform thickness and diameter?
6.	Divided into 4 equal portions with shovel or trowel?
7.	Two diagonally opposite quarters, including all fine material, removed?
8.	Cleared space between quarters brushed clean?
9.	Process continued until desired sample size is obtained when two opposite quarters combined?
	The sample may be placed upon a sheet and a stick or pipe may be placed under the sheet to divide the pile into quarters.
С	omments: First attempt: PassFail Second attempt: PassFail

Examiner Signature _____ WAQTC #:_____

TOTAL EVAPORABLE MOISTURE CONTENT OF AGGREGATE BY DRYING FOP FOR AASHTO T 255

Scope

This procedure covers the determination of moisture content of aggregate in accordance with AASHTO T 255-00. It may also be used for other construction materials.

Apparatus

- Balance or scale: Capacity sufficient for the principle sample mass, accurate to 0.1 percent of sample mass or readable to 0.1 g, meeting the requirements of AASHTO M 231.
- Containers, clean, dry and capable of being sealed
- Suitable drying containers
- Microwave safe containers
- Heat source, temperature controlled
 - Forced draft oven
 - Ventilated or convection oven
- Heat source, uncontrolled
 - Microwave oven (600 watts minimum)
 - Infrared heater, hot plate, fry pan, or any other device/method that will dry the sample without altering the material being dried
- Hot pads or gloves
- Utensils such as spoons

Sample Preparation

Select the proper sample mass, in its existing condition, based on Table 1 or other information that may be specified by the agency. Obtain the sample in accordance with the FOP for AASHTO T 2. Immediately seal or cover samples to prevent any change in moisture content.

Nominal Maximum	Minimum Sample Mass		
Size*	g (lb)		
mm (in.)			
4.75 (No. 4)	500 (1.1)		
9.5 (3/8)	1500 (3.3)		
12.5 (1/2)	2000 (4)		
19.0 (3/4)	3000 (7)		
25.0 (1)	4000 (9)		
37.5 (1 1/2)	6000 (13)		
50 (2)	8000 (18)		
63 (2 1/2)	10,000 (22)		
75 (3)	13,000 (29)		
90 (3 1/2)	16,000 (35)		
100 (4)	25,000 (55)		
150 (6)	50,000 (110)		

 TABLE 1

 Sample Sizes for Moisture Content of Aggregate

* One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

Procedure

- 1. Determine and record all masses to the nearest 0.1 percent of the sample mass or to the nearest 0.1 g.
- 2. Determine and record the mass of the container.
- 3. Place the wet sample in the container, and record the total mass of the container and wet sample.
- 4. Determine the wet mass of the sample by subtracting the mass in Step 1 from the mass in Step 2.
- 5. Dry the sample to a constant mass in accordance with the directions given under Directions for Drying below. Measures will be taken to protect the scale from excessive heat while determining constant mass.
- 6. Allow the sample to cool and record the total mass of the container and dry sample.
- 7. Determine the dry mass of the sample by subtracting the mass in Step 1 from the mass in Step 5.

Directions for Drying

- **Controlled:** Forced draft (preferred), ventilated, or convection oven
 - 1. Spread sample in the container.
 - 2. Dry to constant mass at $110 \pm 5^{\circ}$ C ($230 \pm 9^{\circ}$ F). Constant mass has been reached when there is less than a 0.10 percent change after a minimum of 30 minutes additional drying time.

• Uncontrolled

Where close control of temperature is not required (such as with aggregate not altered by higher temperatures, or with aggregate that will not be used in further tests, or where precise information is not required), higher temperatures or other suitable heat sources may be used. Other heat sources may include microwaves, hot plates, or heat lamps.

- Microwave oven
- 1. Heap sample in pile in the center of the container and cover. This cover must allow moisture to escape.
- 2. Dry to constant mass. Constant mass has been reached when there is less than a 0.1 percent change after an additional 10 minutes of drying.

Caution: Some minerals in the sample may cause the aggregate to overheat and explode, altering the aggregate gradation.

- Hot plates, heat lamps, etc.
- 1. Spread sample in container.
- 2. Stir the sample frequently to avoid localized overheating and aggregate fracturing.
- 3. Dry to a constant mass. Constant mass has been reached when there is less than a 0.10 percent change after an additional 20 minutes of drying.

Calculation

Constant Mass:

Calculate constant mass using the following formula:

$$\frac{M_p - M_n}{M_p} \times 100 = \%$$
 Change

Where:

 M_p = previous mass measurement

 $M_n = new$ mass measurement

Example:

Mass of container: 1232.1 g

Mass of container after first drying cycle: 2637.2 g

Mass, M_p , of possibly dry sample: 2637.2 g - 1232.1 g = 1405.1 g

Mass of container and dry sample after second drying cycle: 2634.1 g

Mass, M_n , of dry sample: 2634.1 g - 1232.1 g = 1402.0 g

 $\frac{1405.1 \text{ g} - 1402.0 \text{ g}}{1405.1 \text{ g}} \times 100 = 0.22\%$

0.22 percent is not less than 0.10 percent, so continue drying

Mass of container and dry sample after third drying cycle: 2633.0 g

Mass, M_n , of dry sample: 2633.0 g - 1232.1 g = 1400.9 g

$$\frac{1402.0 \text{ g} - 1400.9 \text{ g}}{1402.0 \text{ g}} \times 100 = 0.08\%$$

0.08 percent is less than 0.10 percent, so constant mass has been reached.

Moisture Content:

T255_short_11.docx

Calculate the moisture content, w, as a percent, using the following formula:

$$\frac{M_W - M_D}{M_D} \times 100 = \% \text{ Moisture Content}$$

where:

 $M_W = wet mass$

$$M_D = dry mass$$

Example:

Mass of container: 1232.1 g

Mass of container and wet sample: 2764.7 g

Mass, M_W , of wet sample: 2764.7 g - 1232.1 g = 1532.6 g

Mass of container and dry sample (COOLED): 2633.0 g

Mass, M_D , of dry sample: 2633.0 g - 1232.1 g = 1400.9 g

$$w = \frac{1532.6g - 1400.9g}{1400.9g} \times 100 = \frac{131.7g}{1400.9g} = 9.40\%$$
 rounded to 9.4%

Report

- Results on forms approved by the agency
- MW, wet mass
- M_D, dry mass
- w, moisture content to nearest 0.1 percent

PERFORMANCE EXAM CHECKLIST

TOTAL MOISTURE CONTENT OF AGGREGATE BY DRYING FOP FOR AASHTO T 255

Participant Name	Exam Date		
Record the symbols "P" for passing or "F" for failing on	each step of the checklist.		
Procedure Element		Trial 1	Trial 2
1. Representative sample of appropriate mass obtained	ed?		
2. Mass of container determined to 0.1 percent or 0.1	g?		
3. Sample placed in container and wet mass determin	ed to 0.1 percent or 0.1 g?		
4. Test sample mass conforms to the required mass?			
5. Wet mass of sample determined to 0.1 percent or 0).1 g?		
6. Loss of moisture avoided prior to mass determinat	ion?		
7. Sample dried by a suitable heat source?			
8. If aggregate heated by means other than a controlle sample stirred to avoid localized overheating?	ed oven, is		
 Is aggregate heated for the additional, specified tindraft – 30 minutes; ventilated – 30 minutes; microother – 20 minutes) and then mass determined and to previous mass – showing less than 0.10 percent 	wave – 10 minutes; compared		
10. Sample cooled prior to dry mass determination to	0.1 percent or 0.1 g?		
11. Calculations performed properly and results report nearest 0.1 percent?	ed to the		
Comments: First attempt: PassFail	Second attempt: P	ass]	Fail
Examiner Signature	WAQTC #:		

SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES FOP FOR AASHTO T 27

MATERIALS FINER THAN 75 μm (No. 200) SIEVE IN MINERAL AGGREGATE BY WASHING FOP FOR AASHTO T 11

Scope

Sieve analysis determines the gradation or distribution of aggregate particle sizes within a given sample.

Accurate determination of material smaller than 75 μ m (No. 200) cannot be made with AASHTO T 27 alone. If quantifying this material is required, it is recommended that AASHTO T 27 be used in conjunction with AASHTO T 11.

This FOP covers sieve analysis in accordance with AASHTO T 27-11 and materials finer than 75 μ m (No. 200) in accordance with AASHTO T 11-05 performed in conjunction with AASHTO T 27. The procedure includes three method choices: A, B, and C.

Apparatus

- Balance or scale: Capacity sufficient for the masses shown in Table 1, accurate to 0.1 percent of the sample mass or readable to 0.1 g, and meeting the requirements of AASHTO M 231
- Sieves: Meeting the requirements of AASHTO M 92
- Mechanical sieve shaker: Meeting the requirements of AASHTO T 27
- Suitable drying equipment (see FOP for AASHTO T 255)
- Containers and utensils: A pan or vessel of a size sufficient to contain the sample covered with water and to permit vigorous agitation without loss of any part of the sample or water
- Optional mechanical washing device

Sample Sieving

- In all procedures, it is required to shake the sample over nested sieves. Sieves are selected to furnish information required by specification.
- The sieves are nested in order of decreasing size from the top to the bottom and the sample, or a portion of the sample, is placed on the top sieve.

• Sieves are shaken in a mechanical shaker for approximately 10 minutes, or the minimum time determined to provide complete separation for the sieve shaker being used. As established by the Time Evaluation.

Time Evaluation

The sieving time for each mechanical sieve shaker shall be checked at least annually to determine the time required for complete separation of the sample by the following method:

- 1. Shake the sample over nested sieves for approximately 10 minutes.
- 2. Provide a snug-fitting pan and cover for each sieve, and hold in a slightly inclined position in one hand.
- 3. Hand-shake each sieve by striking the side of the sieve sharply and with an upward motion against the heel of the other hand at the rate of about 150 times per minute, turning the sieve about one sixth of a revolution at intervals of about 25 strokes.

If more than 0.5 percent by mass of the total sample prior to sieving passes any sieve after one minute of continuous hand sieving adjust shaker time and re-check.

In determining sieving time for sieve sizes larger than 4.75 mm (No. 4), limit the material on the sieve to a single layer of particles.

Overload Determination

- For sieves with openings smaller than 4.75 mm (No. 4), the mass retained on any sieve shall not exceed 7 kg/m² (4 g/in²) of sieving surface.
- For sieves with openings 4.75 mm (No. 4) and larger, the mass, in grams shall not exceed the product of 2.5 × (sieve opening in mm) × (effective sieving area). See Table 1.

Additional sieves may be necessary to keep from overloading sieves or to provide other information, such as fineness modulus. The sample may also be sieved in increments to prevent overload.

	Exact size is smaller (see AASHTO T 27)						
Siev	Sieve Size 203 dia 305 dia 305 by 305 350 by 350 372 by 580						
mn	1 (in.)	(8)	(12)	(12 × 12)	(14 × 14)	(16 × 24)	
				Sieving Area	m^2		
		0.0285	0.0670	0.0929	0.1225	0.2158	
90	(3 1/2)	*	15,100	20,900	27,600	48,500	
75	(3)	*	12,600	17,400	23,000	40,500	
63	(2 1/2)	*	10,600	14,600	19,300	34,000	
50	(2)	3600	8400	11,600	15,300	27,000	
37.5	(1 1/2)	2700	6300	8700	11,500	20.200	
25.0	(1)	1800	4200	5800	7700	13,500	
19.0	(3/4)	1400	3200	4400	5800	10,200	
16.0	(5/8)	1100	2700	3700	4900	8600	
12.5	(1/2)	890	2100	2900	3800	6700	
9.5	(3/8)	670	1600	2200	2900	5100	
6.3	(1/4)	440	1100	1500	1900	3400	
4.75	(No. 4)	330	800	1100	1500	2600	
-4.75	(-No. 4)	200	470	650	860	1510	

TABLE 1
Maximum Allowable Mass of Material Retained on a Sieve, g
Nominal Sieve Size, mm (in.)
Evact size is smaller (see AASHTO T 27)

Sample Preparation

Obtain samples in accordance with the FOP for AASHTO T 2 and reduce to the size shown in Table 2 in accordance with the FOP for AASHTO T 248. These sample sizes are standard for aggregate testing but, due to equipment restraints, samples may need to be partitioned into several "subsamples." For example, a gradation that requires 100 kg (220 lbs) of material would not fit into a large tray shaker in one batch.

Some agencies permit reduced sample sizes if it is proven that doing so is not detrimental to the test results. Some agencies require larger sample sizes. Check agency guidelines for required or permitted test sample sizes.

Nominal Maximum		Minimum	Minimum Dry Mass			
Size* mm (in.)		g	(lb)			
4.75	(No. 4)	500	(1)			
6.3	(1/4)	1000	(2)			
9.5	(3/8)	1000	(2)			
12.5	(1/2)	2000	(4)			
19.0	(3/4)	5000	(11)			
25.0	(1)	10,000	(22)			
37.5	(1 1/2)	15,000	(33)			
50	(2)	20,000	(44)			
63	(2 1/2)	35,000	(77)			
75	(3)	60,000	(130)			
90	(3 1/2)	100,000	(220)			
100	(4)	150,000	(330)			
125	(5)	300,000	(660)			

TABLE 2
Sample Sizes for Aggregate Gradation Test

*Nominal maximum size: One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps between specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

Selection of Procedure

Agencies may specify what method will be performed. If a method is not specified method A will be performed.

Overview

Method A

- Determine dry mass of original sample
- Wash through a 75µm (No. 200) sieve
- Determine dry mass of washed sample
- Sieve material

Method B

- Determine dry mass of original sample
- Wash through a 75µm (No. 200) sieve
- Determine dry mass of washed sample
- Sieve coarse material
- Determine dry mass of fine material
- Reduce fine portion
- Determine mass of reduced portion
- Sieve fine portion

Method C

- Determine dry mass of original sample
- Sieve coarse material
- Determine mass of fine material
- Reduce fine portion
- Determine mass of reduced portion
- Wash through a 75µm (No. 200) sieve
- Determine dry mass of washed sample
- Sieve reduced fine portion

Procedure Method A

- 1. Dry the sample to a constant mass in accordance with the FOP for AASHTO T 255, and record to the nearest 0.1 percent of the total sample mass or 0.1 g.
- 2. When the specification requires that the amount of material finer than 75 μ m (No. 200) be determined, perform Step 3 through Step 9; otherwise, skip to Step 10.
- 3. Nest a sieve, such as a 2.0 mm (No. 10), above the 75 μ m (No. 200) sieve.
- 4. Place the test sample in a container and add sufficient water to cover it.

Note 1: A detergent, dispersing agent, or other wetting solution may be added to the water to assure a thorough separation of the material finer than the 75 μ m (No. 200) sieve from the coarser particles. There should be enough wetting agent to produce a small amount of suds when the sample is agitated. Excessive suds may overflow the sieves and carry material away with them.

- 5. Agitate vigorously to ensure complete separation of the material finer than 75 μ m (No. 200) from coarser particles and bring the fine material into suspension above the coarser material. When using a mechanical washing device, exercise caution to avoid degradation of the sample.
- 6. Immediately pour the wash water containing the suspended and dissolved solids over the nested sieves, being careful not to pour out the coarser particles.
- 7. Add a second change of water to the sample remaining in the container, agitate, and repeat Step 6. Repeat the operation until the wash water is reasonably clear. If a detergent or dispersing agent is used, continue washing until the agent is removed.
- 8. Remove the upper sieve, return material retained to the washed sample.
- 9. Rinse the material retained on the 75 μ m (No.200) sieve until water passing through the sieve is reasonably clear.
- 10. Return all material retained on the 75 μ m (No.200) sieve to the container by flushing into the washed sample.

Note 2: Excess water may be carefully removed with a bulb syringe as long as the removed water is discharged back over the No. 200 sieve to preclude loss of fines.

- 11. Dry the washed aggregate to constant mass in accordance with the FOP for AASHTO T 255, and then cool prior to sieving. Record the "dry mass after washing".
- 12. Select sieves to furnish the information required by the specifications. Nest the sieves in order of decreasing size from top to bottom and place the sample, or a portion of the sample, on the top sieve.
- 13. Place sieves in mechanical shaker and shake for the minimum time determined to provide complete separation for the sieve shaker being used (approximately 10 minutes).

Note 3: Excessive shaking (more than 10 minutes) may result in degradation of the sample.

14. Determine the individual or cumulative mass retained on each sieve and the pan to the nearest 0.1 percent or 0.1 g. Ensure that all material trapped in full openings of the sieve are cleaned out and included in the mass retained.

Note 4: For sieves No. 4 and larger, material trapped in less than a full opening shall be checked by sieving over a full opening. Use coarse wire brushes to clean the 600 μ m (No. 30) and larger sieves, and soft bristle brushes for smaller sieves.

15. In the case of coarse / fine aggregate mixtures, the minus 4.75 mm (No. 4) may be distributed among two or more sets of sieves to prevent overloading of individual sieves.

Calculations

The total mass of the material after sieving, for both coarse and fine portions should check closely with the original mass of sample placed on the sieves. If performing T 11 with T 27, this would be the dry mass after wash. If performing just T 27 this would be the original dry mass. When the masses before and after sieving differ by more than 0.3 percent, do not use the results for acceptance purposes.

Check Sum

Total mass of material after sieving must agree with mass before sieving to within 0.3 percent.

 $\frac{dry\ mass\ after\ washing\ -\ total\ mass\ after\ sieving}{dry\ mass\ after\ washing} \times 100$

Calculate the total percentages passing, individual or cumulative percentages retained, or percentages in various size fractions to the nearest 0.1 percent by dividing the masses for

Method A, or adjusted masses for methods B and C, on the individual sieve masses or cumulative sieve masses by the total mass of the initial dry sample. If the same test sample was first tested by T 11, use the total dry sample mass prior to washing in T 11 as the basis for calculating all percentages. Report percent passing as indicated in the "Report" section at the end of this FOP.

Percent Retained:

Where:

- IPR= Individual Percent Retained
- CPR= Cumulative Percent Retained
- M= Total Dry Sample mass before washing
- IMR= Individual Mass Retained OR Adjusted Individual mass from Methods B or C
 - CMR= Cumulative Mass Retained OR Adjusted Cumulative Mass from Methods B or C

$$IPR\frac{IMR}{M} \times 100$$
 or $CPR = \frac{CMR}{M} \times 100$

Percent Passing (Calculated):

Where:

PP= Percent Passing PPP= Previous Percent Passing

PP = PPP - IPR or PP = 100 - CPR

Method A Sample Calculation

Calculate percent retained on and passing each sieve on the basis of the total mass of the initial dry sample. This will include any material finer than 75 μ m (No. 200) that was washed out.

Example:

Dry mass of total sample, before washing: 5168.7 g Dry mass of sample, after washing out the 75 μ m (No. 200) minus: 4911.3 g Amount of 75 μ m (No. 200) minus washed out: 5168.7 g – 4911.3 g = 257.4 g

Gradation on An Sieves								
Sieve Size mm (in.)	Individual Mass Retained, g (IMR)	Individual Percent Retained (IPR)	Cumulative Mass Retained, g (CMR)	Cumulative Percent Retained (CPR)	Calc'd Percent Passing (CPP)	Reported Percent Passing* (RPP)		
19.0 (3/4)	0	0	0	0.0	100.0	100		
12.5 (1/2)	724.7	14.0	724.7	14.0	86.0	86		
9.5 (3/8)	619.2	12.0	1343.9	26.0	74.0	74		
4.75 (No. 4)	1189.8	23.0	2533.7	49.0	51.0	51		
2.36 (No. 8)	877.6	17.0	3411.3	66.0	34.0	34		
1.18 (No. 16)	574.8	11.1	3986.1	77.1	22.9	23		
0.600 (No. 30)	329.8	6.4	4315.9	83.5	16.5	16		
0.300 (No. 50)	228.5	4.4	4544.4	87.9	12.1	12		
0.150 (No. 100)	205.7	4.0	4750.1	91.9	8.1	8		
0.075(No. 200)	135.4	2.6	4885.5	94.5	5.5	5.5		
Pan	20.4		4905.9					

Gradation on All Sieves

*Report 75 µm (No. 200) sieve to 0.1 percent. Report all others to 1 percent.

Check sum:

$$\frac{4911.3 g - 4905.9 g}{4911.3 g} \times 100 = 0.1\%$$

This is less than 0.3 percent therefore the results can be used for acceptance purposes.

Percent Retained:

9.5 mm (3/8) sieve:

$$\frac{619.2 g}{5168.7 g} \times 100 = 12.0\% \quad or \quad \frac{1343.9 g}{5168.7 g} \times 100 = 26.0\%$$

Percent Passing (Calculated):

9.5 mm (3/8) sieve:

$$86.0\% - 12.0\% = 74.0\%$$
 or $100\% - 26.0\% = 74.0\%$

T27_T11_short_12.docx

Procedure Method B

- 1. Perform steps 1 through 11 from the "Procedure Method A", then continue as follows:
- 2. Select sieves to furnish information required by the specifications. Nest the sieves in order of decreasing size from top to bottom through the 4.75 mm (No. 4) with a pan at the bottom to retain the minus 4.75 mm (No. 4).
- 3. Place the sample, or a portion of the sample, on the top sieve. Sieves may already be in the mechanical shaker, or place the sieves in the mechanical shaker and shake for the minimum time determined to provide complete separation for the sieve shaker being used (approximately 10 minutes).

Note 3: Excessive shaking (more than 10 minutes) may result in degradation of the sample.

4. Determine the individual or cumulative mass retained on each sieve to the nearest 0.1 percent or 0.1 g. Ensure that all particles trapped in full openings of the sieve are cleaned out and included in the mass retained.

Note 4: For sieves No. 4 and larger, material trapped in less than a full opening shall be checked by sieving over a full opening .Use coarse wire brushes to clean the 600 μ m (No. 30) and larger sieves, and soft hair bristle for smaller sieves.

- 5. Determine the mass of the material in the pan [minus 4.75 mm (No. 4)] (M₁).
- 6. Reduce the minus 4.75 mm (No. 4) using a mechanical splitter in accordance with the FOP for AASHTO T 248 to produce a sample with a mass of 500 g minimum. Determine and record the mass of the minus 4.75 mm (No. 4) split (M₂).
- 7. Select fine sieves to furnish information required by the specifications. Nest the sieves in order of decreasing size from top to bottom through the 75 μ m (No. 200) with a pan at the bottom to retain the minus 75 μ m (No. 200).
- 8. Repeat steps 3 and 4, Method B, with the minus 4.75 mm (No. 4) including determining the mass of the material in the pan.
- 9a. Compute the "Adjusted Individual Mass Retained" of the size increment of the original sample as follows when determining "Individual Mass Retained".

$$IMR = \frac{M_1}{M_2} \times B$$

where:

- IMR = adjusted individual mass retained of the size increment on a total sample basis
- $M_1 = mass of minus 4.75mm$ (No. 4) sieve in total sample
- $M_2 = mass of minus 4.75mm$ (No. 4) sieve actually sieved
- \mathbf{B} = individual mass of the size increment in the reduced portion sieved

9b. Compute the "Adjusted Cumulative Mass Retained" of the size increment of the original sample as follows when determining "Cumulative Mass Retained":

$$CMR = \left(\frac{M_1}{M_2} \times B\right) + D$$

where:

CMR = Total cumulative mass retained of the size increment based on a total sample

 $M_1 = mass of minus 4.75mm$ (No. 4) sieve in total sample

 $M_2 = mass of minus 4.75mm$ (No. 4) sieve actually sieved

B = cumulative mass of the size increment in the reduced portion sieved

D = cumulative mass of plus 4.75mm (No. 4) portion of sample

Method B Sample Calculation

Sample calculation for percent retained and percent passing each sieve in accordance with Method B when the previously washed 4.75mm (No. 4) minus material is split:

Example:

Dry mass of total sample, before washing: 3214.0 gDry mass of sample, after washing out the 75 µm (No. 200) minus: 3085.1 gAmount of 75 µm (No. 200) minus washed out: 3214.0 g - 3085.1 g = 128.9 g

		Of auation of	Coarse bleves		
Sieve	Individual	Individual	Cumulative	Cumulative	Calculated
Size	Mass	Percent	Mass	Percent	Percent
mm (in.)	Retained, g	Retained	Retained, g	Retained	Passing
	(IMR)	(IPR)	(CMR)	(CPR)	(CPP)
16.0 (5/8)	0	0	0	0	100
12.5 (1/2)	161.1	5.0	161.1	5.0	95.0
9.50 (3/8)	481.4	15.0	642.5	20.0	80.0
4.75 (No. 4)	475.8	14.8	1118.3	34.8	65.2
Pan	1966.7 (M ₁)		3085.0		

Gradation on Coarse Sieves

Coarse check sum:

$$\frac{3085.1 \, g - 3085.0 \, g}{3085.1 \, g} \times 100 = 0.0\%$$

This is less than 0.3 percent therefore the results can be used for acceptance purposes.

Note 5: The pan mass determined in the laboratory (M_1) and the calculated mass (3085.1 - 1118.3 = 1966.7) should be the same if no material was lost.

The pan (1966.7 g) was reduced in accordance with the FOP for AASHTO T 248, so that at least 500 g are available. In this case, the mass determined was **512.8 g**. This is M_2 .

In order to account for the fact that only a portion of the minus 4.75mm (No. 4) material was sieved, the mass of material retained on the smaller sieves is adjusted by a factor equal to M_1/M_2 . The factor determined from M_1/M_2 must be carried to three decimal places. Both the individual mass retained and cumulative mass retained formulas are shown.

Individual Mass Retained:

 M_1 = total mass of the minus 4.75mm (No. 4) before reducing. M_2 = mass before sieving from the reduced portion of the minus 4.75 mm (No. 4).

$$\frac{M_1}{M_2} = \frac{1,966.7 \ g}{512.8 \ g} = 3.835$$

Each "individual mass retained" on the fine sieves must be multiplied by this adjustment factor.

For example, the overall mass retained on the 2.00mm (No. 10) sieve is:

 3.835×207.1 g = 794.2 g, as shown in the following table:

	Calcula	ation by Individua	al Mass		
	Individual	Adjusted	Individual	Calc'd	Reported
	Mass Retained,	Individual	Percent	Percent	Percent
Sieve Size	g	Mass Retained	Retained	Passing	Passing*
mm (in.)	(IMR)	(AIMR)	(IPR)	(CPP)	(RPP)
16.0 (5/8)	0	0	0.0	100.0	100
12.5 (1/2)	161.1	161.1	5.0	95.0	95
9.5 (3/8)	481.4	481.4	15.0	80.0	80
4.75 (No. 4)	475.8	475.8	14.8	65.2	65
2.0 (No. 10)	207.1 × 3.835	794.2	24.7	40.5	40
0.425 (No. 40)	187.9 × 3.835	720.6	22.4	18.1	18
0.210 (No. 80)	59.9 × 3.835	229.7	7.1	11.0	11
0.075 (No. 200)	49.1 × 3.835	188.3	5.9	5.1	5.1
Pan	7.8 × 3.835	29.9			
Dry mass of total sample, before washing: 3214.0 g					

Final Gradation on All Sieves

*Report 75 µm (No. 200) sieve to 0.1 percent. Report all others to 1 percent.

Fine check sum:

$$\frac{512.8 \ g - 511.8 \ g}{512.8 \ g} \times 100 = 0.2\%$$

This is less than 0.3 percent therefore the results can be used for acceptance purposes.

For Percent Passing (Calculated) see "Calculation" under Method A.

Cumulative Mass Retained:

 M_1 = mass of the minus 4.75 mm (No. 4) before split M_2 = mass before sieving of the split of the minus 4.75 mm (No. 4)

$$\frac{M_1}{M_2} = \frac{1,966.7 \ g}{512.8 \ g} = 3.835$$

Each "cumulative mass retained" on the fine sieves must be multiplied by this adjustment factor then the cumulative mass of plus 4.75 mm (No. 4) portion of sample is added to equal the adjusted cumulative mass retained .

For example, the adjusted cumulative mass retained on the 0.425 mm (No. 40) sieve is:

$$3.835 \times 395.0 g = 1514.8 g$$

1514.8 + 1118.3 g = 2633.1: "Total Cumulative Mass Retained" as shown in the following table:

		Calculation by C	umulative M	lass		
Sieve Size mm (in.)	Cumulative Mass Retained, g (CMR)	Adjusted Cumulative Mass Retained, g (ACMR)	Total Cumulati ve Mass Retnd., g (TCMR)	Cumulati ve Percent Retnd. (CPR)	Calc'd Percent Passing (CPP)	Reported Percent Passing* (RPP)
16.0 (5/8)	0		0	0.0	100.0	100
12.5 (1/2)	161.1		161.1	5.0	95.0	95
9.5 (3/8)	642.5		642.5	20.0	80.0	80
4.75 (No. 4)	1118.3		1118.3	34.8	65.2	65
2.0 (No. 10)	207.1 × 3.835	794.2 + 1118.3	1912.5	59.5	40.5	40
0.425 (No. 40)	395.0 × 3.835	1514.8 + 1118.3	2633.1	81.9	18.1	18
0.210 (No. 80)	454.9 × 3.835	1744.5 + 1118.3	2862.8	89.1	10.9	11
0.075(No. 200)	504.0 × 3.835	1932.8 + 1118.3	3051.1	94.9	5.1	5.1
Pan	511.8 × 3.835	1962.8 + 1118.3	3081.1			

Final Gradation on All Sieves Calculation by Cumulative Mass

*Report 75 µm (No. 200) sieve to 0.1 percent. Report all others to 1 percent.

Fine check sum:

$$\frac{512.8 \ g - 511.8 g}{512.8 \ g} \times 100 = 0.2\%$$

This is less than 0.3 percent therefore the results can be used for acceptance purposes. For Percent Passing (Calculated) see "Calculation" under Method A.

Procedure Method C

1. Dry sample in accordance with the FOP for AASHTO T 255. Determine and record the total dry mass of the sample to the nearest 0.1 percent.

Note 6: AASHTO T 27 allows for coarse aggregate to be run in a moist condition unless the nominal maximum size of the aggregate is smaller than 12.5 mm (1/2 in.), the coarse aggregate (CA) contains appreciable material finer than 4.75 mm (No. 4), or the coarse aggregate is highly absorptive.

- 2. Break up any aggregations or lumps of clay, silt or adhering fines to pass the 4.75 mm (No. 4) sieve. If substantial coatings remain on the coarse particles in amounts that would affect the percent passing any of the specification sieves, the sample should be tested with either Method A or Method B.
- 3. Select sieves to furnish information required by the specifications. Nest the sieves in order of decreasing size from top to bottom through the 4.75 mm (No.4) with a pan at the bottom to retain the minus 4.75 mm (No. 4).
- 4. Place the sample, or a portion of the sample, on the top sieve. Sieves may already be in the mechanical shaker or place the sieves in the mechanical shaker and shake for the minimum time determined to provide complete separation for the sieve shaker being used (approximately 10 minutes).

Note 3: Excessive shaking (more than 10 minutes) may result in degradation of the sample.

5. Determine the cumulative mass retained on each sieve to the nearest 0.1 percent or 0.1 g. Ensure that all material trapped in full openings of the sieve are cleaned out and included in the mass retained.

Note 4: For sieves No. 4 and larger, material trapped in less than a full opening shall be checked by sieving over a full opening. Use coarse wire brushes to clean the 600 μ m (No. 30) and larger sieves, and soft bristle brush for smaller sieves.

- 6. Determine the mass of material in the pan [minus 4.75 mm (No. 4)] (M₁).
- 7. Reduce the minus 4.75mm (No. 4), using a mechanical splitter in accordance with the FOP for AASHTO T 248, to produce a sample with a mass of 500 g minimum.
- 8. Determine and record the mass of the minus 4.75 mm (No. 4) split (M_{-#4}).
- 9. Perform steps 3 through 11 of Method A (Wash) on the minus 4.75mm (No. 4) split.

- 10. Select fine sieves to furnish information required by the specifications. Nest the sieves in order of decreasing size from top to bottom through the 75µm (No. 200) with a pan at the bottom to retain the minus 75 µm (No. 200).
- 11. Repeat steps 4 and 5, Method C, with the minus 4.75mm (No. 4) including determining the mass of the material in the pan.
- 12. Compute the "Cumulative Percent Retained" and "Cumulative Percent Passing" for the 4.75 mm (No. 4) and larger as follows:

$$CPR = \frac{CPR}{M} \times 100$$
 $CPP = 100 - CPR$

where:

CMR = Cumulative Mass Retained CPR= Cumulative Percent Retained Total Dry Sample mass before washing M= CPP= Cumulative Percent Passing

13. Compute the "Cumulative Percent Retained" and/or "Cumulative Percent Passing" for the minus 4.75 mm (No. 4) as follows:

$$CPR_{-\#4} = \frac{CMR_{-\#4}}{M_{-\#4}} \times 100 \qquad CPP_{-\#4} = 100 - CPR_{-\#4} \qquad CPP = \frac{(CPP_{-\#4} \times CPP_{\#4})}{100}$$

where:

$CMR_{.#4}$ = Cumulative mass retained for the sieve size based on a minus#4 split
sample
$CPR_{\#4}$ = Calculated cumulative percent retained based on the minus #4 split
$CPP_{-\#4}$ = Calculated percent passing based on the minus #4 split
$M_{-#4}$ = Total mass of the minus #4 split before washing
$CPP_{#4}$ = Calculated percent passing the #4 sieve

Method C Sample Calculation

Sample calculation for percent retained and percent passing each sieve in accordance with Method C when the minus 4.75mm (No. 4) material is reduced and then washed:

Dry Mass of total sample: 3304.5 g

Dry Mass of minus 4.75mm (No. 4) reduced portion before wash, M.#4: 527.6

	Gra	dation on Coarse	Sieves	
Sieve Size mm (in.)	Cumulative Mass Retained, g (CMR)	Calc'd Percent Retained (CPR)	Calc'd Percent Passing (CPP)	Reported Percent Passing* (RPP)
16.0 (5/8)	0	0.0	100.0	100
12.5 (1/2)	125.9	3.8	96.2	96
9.50 (3/8)	604.1	18.3	81.7	82
4.75 (No. 4)	1295.6	39.2	60.8	61
Pan	2008.9			
Total Dry Sample				

Dry Mass of minus 4.75mm (No. 4) reduced portion after wash: 495.3

Coarse check sum:

$$\frac{3304.5 \ g - 3304.5 \ g}{3304.5 \ g} \times 100 = 0.0\%$$

This is less than 0.3 percent therefore the results can be used for acceptance purposes.

The pan (2008.9 g) was reduced in accordance with the FOP for AASHTO T 248, so that at least 500 g are available. In this case, the mass determined was $M_{.#4} = 527.6$ g.

Sieve Size mm (in.)	Cumulative Mass Retained, g (CMR _{.#4})	Cumulative Percent Retained.#4 (CPR.#4)	Calc'd Percent Passing _{.#4} (CPP _{-#4})	Calc'd Percent Passing (CPP)	Reported Percent Passing* (RPP)
16.0 (5/8) 12.5 (1/2)	0 125.9	0.0 3.8		100.0 96.2	100 96
9.5 (3/8)	604.1	18.3		81.7	82
4.75 (No. 4)	1295.6	39.2		60.8	61
2.0 (No. 10)	194.3	36.8	63.2	38.4	38
0.425 (No. 40)	365.6	69.3	30.7	18.7	19
0.210 (No. 80)	430.8	81.7	18.3	11.1	11
0.075 (No. 200)	484.4	91.8	8.2	5.0	5.0
Pan	495.1				
	ninus 4.75 mm (No. mass of minus 4.75				

Final Gradation on All Sieves Calculation by Cumulative Mass

*Report 75 µm (No. 200) sieve to 0.1 percent. Report all others to 1 percent

Fine check sum:

$$\frac{495.3 \ g - 495.1 \ g}{495.3 \ g} \times 100 = 0.04\%$$

This is less than 0.3 percent therefore the results can be used for acceptance purposes.

Also note that for minus No. 4 material using this method that:

$$CPP = \frac{CPP_{\#4} \times (M_{-\#4} - CMR_{\#4})}{M}$$

Fineness Modulus

Fineness Modulus (FM) is used in determining the degree of uniformity of the aggregate gradation in PCC mix designs. It is an empirical number relating to the fineness of the aggregate. The higher the FM, the coarser the aggregate. Values of 2.40 to 3.00 are common for FA in PCC.

The sum of the cumulative percentages retained on specified sieves in the following table divided by 100 gives the FM.

	Example A				Example B			
		Perce	nt			Percer	nt	
		R	etained			R	etained	
Sieve Size			On Spec'd				On Spec'd	
mm (in)	Passing		Sieves*		Passing		Sieves*	
75*(3)	100	0	0		100	0	0	
37.5*(11/2)	100	0	0		100	0	0	
19*(3/4)	15	85	85		100	0	0	
9.5*(3/8)	0	100	100		100	0	0	
4.75*(No.4)	0	100	100		100	0	0	
2.36*(No.8)	0	100	100		87	13	13	
1.18*(No.16)	0	100	100		69	31	31	
0.60*(No.30	0	100	100		44	56	56	
0.30*(No.50)	0	100	100		18	82	82	
0.15*(100)	0	100	100		4	96	96	
			$\Sigma = 785$				$\Sigma = 278$	
			FM = 7.85				FM = 2.78	

Sample Calculation

In decreasing size order, each * sieve is one-half the size of the preceding * sieve.

Report

- Results on forms approved by the agency
- Individual mass retained on each sieve
- Individual percent retained on each sieve
- Cumulative mass retained on each sieve
- Cumulative percent retained on each sieve
- FM to the nearest 0.01

Report percentages to the nearest 1 percent except for the percent passing the 75 μ m (No. 200) sieve, which shall be reported to the nearest 0.1 percent.

PERFORMANCE EXAM CHECKLIST

METHOD A SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES FOP FOR AASHTO T 27 MATERIALS FINER THAN 75 μm (No. 200) SIEVE IN MINERAL AGGREGATE BY WASHING FOP FOR AASHTO T 11

Par	ticipant Name Exam	n Date	
Rec	cord the symbols "P" for passing or "F" for failing on each step of the	checklist.	
Pro	ocedure Element	Trial 1	Trial 2
1.	Minimum sample mass meets requirement of Table 2?		
2.	Test sample dried to a constant mass by FOP for AASHTO 7	۲ 255?	
3.	Test sample cooled and mass determined to nearest 0.1 perce 0.1 g?	ent or	
4.	Sample placed in container and covered with water? (If spec requires that the amount of material finer than the 75 μ m (No sieve is to be determined.)		
5.	Contents of the container vigorously agitated?		
6.	Complete separation of coarse and fine particles achieved?		
7.	Wash water poured through nested sieves such as 2 mm (No. and 75 μm (No. 200)?	. 10)	
8.	Operation continued until wash water is clear?		
9.	Material retained on sieves returned to washed sample?		
10.	Washed aggregate dried to a constant mass by FOP for AASHTO T 255?		
11.	Washed aggregate cooled and mass determined to nearest 0.1 or 0.1 g?	l percent	
12.	Sample placed in nest of sieves specified? (Additional sieves be used to prevent overloading as allowed in FOP.)	s may	
13.	Material sieved in verified mechanical shaker for proper time	e?	
14.	Mass of residue on each sieve and pan determined to 0.1 g?		
15.	Total mass of material after sieving agrees with mass before sieving to within 0.3 percent?		

OVER

Procedure Element	Trial 1	Trial 2
16. Percentages calculated to the nearest 0.1 percent and reported to the nearest whole number, except 75 μ m (No.200) - reported to the nearest 0.1 percent?		
17. Percentage calculations based on original dry sample mass?		
18. Calculations performed properly?		
Comments: First attempt: PassFail Second attempt: Pa	ıssF	Fail
Examiner Signature WAQTC #:		

PERFORMANCE EXAM CHECKLIST

METHOD B SIEVE ANALYSIS OF FINE AND COARSE AGGREGATES FOP FOR AASHTO T 27 MATERIALS FINER THAN 75 μm (No. 200) SIEVE IN MINERAL AGGREGATE BY WASHING FOP FOR AASHTO T 11

Par	ticipant Name Exam Date		
Rec	cord the symbols "P" for passing or "F" for failing on each step of the checklist.		
Pro	ocedure Element	Trial 1	Trial 2
1.	Minimum sample mass meets requirement of Table 2?		
2.	Test sample dried to a constant mass by FOP for AASHTO T 255?		
3.	Test sample cooled and mass determined to nearest 0.1 percent or 0.1 g?		
4.	Sample placed in container and covered with water? (If specification requires that the amount of material finer than the 75 μ m (No. 200) sieve is to be determined.)		
5.	Contents of the container vigorously agitated?		
6.	Complete separation of coarse and fine particles achieved?		
7.	Wash water poured through nested sieves such as 2 mm (No. 10) and 75 μ m (No. 200)?		
8.	Operation continued until wash water is clear?		
9.	Material retained on sieves returned to washed sample?		
10.	Washed aggregate dried to a constant mass by FOP for AASHTO T 255	?	
11.	Washed aggregate cooled and mass determined to nearest 0.1 percent or 0.1 g?		
12.	Sample placed in nest of sieves specified? (Additional sieves may be used to prevent overloading as allowed in FOP.)		
13.	Material sieved in verified mechanical shaker for proper time?		
14.	Mass of residue on each sieve and pan determined to the nearest 0.1 percent or 0.1 g?		
15	Total mass of material after sieving agrees with mass before sieving to within 0.3 percent?		

OVER

Procedure Element	Trial 1	Trial 2
16. Material in pan reduced in accordance with FOP for AASHTO T 248 to a minimum sample size of 500 g and weighed to the nearest 0.1 g?		
17. Sample placed in nest of sieves specified? (Additional sieves may be used to prevent overloading as allowed in FOP.)		
18. Material sieved in verified mechanical shaker for proper time?		
19. Mass of residue on each sieve and pan determined to the nearest percent or 0.1 g?		
20. Total mass of material after sieving agrees with mass before sieving to within 0.3 percent?		
21. Percentages calculated to the nearest 0.1 percent and reported to the nearest whole number, except 75 μ m (No.200) - reported to the nearest 0.1 percent?		
22. Percentage calculations based on original dry sample mass?		
23. Calculations performed properly?		
Comments: First attempt: PassFail Second attempt: F	assl	Fail
Examiner Signature WAQTC #:		

DETERMINING THE PERCENTAGE OF FRACTURE IN COARSE AGGREGATE FOP FOR AASHTO T 335

Scope

This procedure covers the determination of the percentage, by mass, of a coarse aggregate (CA) sample that consists of fractured particles meeting specified requirements in accordance with AASHTO T 335-09.

In this FOP, a sample of aggregate is screened on the sieve separating CA and fine aggregate (FA). This sieve will be identified in the agency's specifications, but might be the 4.75 mm (No. 4) sieve. CA particles are visually evaluated to determine conformance to the specified fracture. The percentage of conforming particles, by mass, is calculated for comparison to the specifications.

Apparatus

- Balance or scale: Capacity sufficient for the principle sample mass, accurate to 0.1 percent of the sample mass or readable to 0.1 g, and meeting the requirements of AASHTO M 231.
- Sieves: Meeting requirements of AASHTO M 92.
- Splitter: Meeting the requirements of FOP for AASHTO T 248.

Terminology

- 1. Fractured Face: An angular, rough, or broken surface of an aggregate particle created by crushing or by other means. A face is considered a "fractured face" whenever one-half or more of the projected area, when viewed normal to that face, is fractured with sharp and well defined edges. This excludes small nicks.
- 2. Fractured particle: A particle of aggregate having at least the minimum number of fractured faces specified. (This is usually one or two.)

Sampling and Sample Preparation

- 1. Sample and reduce the aggregate in accordance with the FOPs for AASHTO T 2 and T 248.
- 2. When the specifications list only a total fracture percentage, the sample shall be prepared in accordance with Method 1. When the specifications require that the fracture be counted and reported on each sieve, the sample shall be prepared in accordance with Method 2.

- 3. Method 1 Combined Fracture Determination
 - a. Dry the sample sufficiently to obtain a clean separation of FA and CA material in the sieving operation.
 - b. Sieve the sample in accordance with the FOP for AASHTO T 27/ T 11 over the 4.75 mm (No. 4) sieve, or the appropriate sieve listed in the agency's specifications for this material.

Note 1: Where necessary, wash the sample over the sieve designated for the determination of fractured particles to remove any remaining fine material, and dry to a constant mass in accordance with the FOP for AASHTO T 255.

c. Reduce the sample using Method A – Mechanical Splitter, in accordance with the FOP for AASHTO T 248, to the appropriate test size. This test size should be slightly larger than shown in Table 1, to account for loss of fines through washing if necessary.

Sample Size
Method 1 (Combined Sieve Fracture)

TARLE 1

Nominal Maximum Size* mm (in.)		Samı Retained (No.	a Cumulative ple Mass on 4.75 mm 4) Sieve ((lb)
37.5	(1 1/2)	2500	(6)
25.0	(1)	1500	(3.5
19.0	(3/4)	1000	(2.5)
12.5	(1/2)	700	(1.5)
9.5	(3/8)	400	(0.9)
4.75	(No. 4)	200	(0.4)

* One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

- 4. Method 2 Individual Sieve Fracture Determination
 - a. Dry the sample sufficiently to obtain a clean separation of FA and CA material in the sieving operation. A washed sample from the gradation determination (the FOP for T 27/T 11) may be used.
 - b. If not, sieve the sample in accordance with the FOP for AASHTO T 27 over the sieves listed in the specifications for this material.

Note 2: If overload (buffer) sieves are used the material from that sieve must be added to the next specification sieve.

c. The size of test sample for each sieve shall meet the minimum size shown in Table 2. Utilize the total retained sieve mass or select a representative portion from each sieve mass by splitting or quartering in accordance with the FOP for AASHTO T 248.

Note 3: Where necessary, wash the sample over the sieves designated for the determination of fractured particles to remove any remaining fine material, and dry to a constant mass in accordance with the FOP for AASHTO T 255.

	Minimum Sample	
Sieve Size	Mass	
mm (in.)	g (lb)	
31.5 (1 1/4)	1500 (3.5)	
25.0 (1)	1000 (2.2)	
19.0 (3/4)	700 (1.5)	
16.0 (5/8)	500 (1.0)	
12.5 (1/2)	300 (0.7)	
9.5 (3/8)	200 (0.5)	
6.3 (1/4)	100 (0.2)	
4.75 (No. 4)	100 (0.2)	
2.36 (No. 8)	25 (0.1)	
2.00 (No. 10)	25 (0.1)	

TABLE 2Sample SizeMethod 2 (Individual Sieve Fracture)

Note 3: If fracture is determined on a sample obtained for gradation, use the mass retained on the individual sieves, even if it is less than the minimum listed in Table 2. If less than 5 percent of the total mass is retained on a single specification sieve, include that material on the next smaller specification sieve. If a smaller specification sieve does not exist, this material shall not be included in the fracture determination.

Procedure

- 1. After cooling, spread the dried sample on a clean, flat surface large enough to permit careful inspection of each particle. To verify that a particle meets the fracture criteria, hold the aggregate particle so that the face is viewed directly.
- 2. To aid in making the fracture determination, separate the sample into three categories:
 - fractured particles meeting the criteria
 - particles not meeting the criteria
 - questionable or borderline particles
- 3. Determine the dry mass of particles in each category to the nearest 0.1 g.

4. If, on any determination, more than 15 percent of the total mass of the sample is placed in the questionable category, repeat the sorting procedure until no more than 15 percent is present in that category.

Calculation

Calculate the mass percentage of questionable fractured particles to the nearest 1 percent using the following formula:

$$\%Q = \frac{Q}{F + Q + N} \times 100$$

where:

re: %Q = Percent of questionable fractured particles F = Mass of fractured particles Q = Mass of questionable or borderline particles N = Mass of unfractured particles

Example:

F = 632.6 g, Q = 97.6 g, N = 352.6 g
% Q =
$$\frac{97.6 g}{632.6 g + 97.6 g + 352.6 g} \times 100 = 9.0\% \qquad \% Q = 9\%$$

Calculate the mass percentage of fractured faces to the nearest 1 percent using the following formula:

$$P = \frac{\frac{Q}{2} + F}{F + Q + N} \times 100$$

where:

P = Percent of fracture
F = Mass of fractured particles
Q = Mass of questionable or borderline particles
N = Mass of unfractured particles

Example:

 $F = 632.6 \text{ g}, \quad Q = 97.6 \text{ g}, \quad N = 352.6 \text{ g}$

$$P = \frac{\frac{97.6 \ g}{2} + 632.6 \ g}{632.6 \ g + 97.6 \ g + 352.6 \ g} \times 100 \qquad \mathbf{P} = \mathbf{63\%}$$

Report

- Results on forms approved by the agency
- Fracture to the nearest 1 percent.

PERFORMANCE EXAM CHECKLIST

DETERMINING THE PERCENTAGE OF FRACTURE IN COARSE AGGREGATE FOP FOR AASHTO T 335

Participant Name		Exam Date			
Re	cord the symbols "P" for passing or "F" for failing on each st	tep of the checklist.			
Pr	ocedure Element		Trial 1	Trial 2	
1.	Sample properly sieved through specified sieve(s)?				
2.	Sample reduced to correct size?				
3.	Sample dried and cooled, if necessary?				
4.	Particles separated into fractured, unfractured, and questionable categories?				
5.	Dry mass of each category determined to nearest 0.1 g?				
6.	Procedure repeated if more than 15 percent of total mass falls into the questionable category?				
7.	Fracture calculation performed correctly?				
Со	omments: First attempt: PassFail	Second attempt:	PassI	Fail	
Ex	aminer Signature	WAQTC #:			

PLASTIC FINES IN GRADED AGGREGATES AND SOILS BY THE USE OF THE SAND EQUIVALENT TEST FOP FOR AASHTO T 176

Scope

This procedure covers the determination of plastic fines in accordance with AASHTO T 176-08. It serves as a rapid test to show the relative proportion of fine dust or clay-like materials in fine aggregates (FA) and soils.

Apparatus

See AASHTO T 176 for a detailed listing of sand equivalent apparatus. Note that the siphon tube and blow tube may be glass or stainless steel as well as copper.

- Graduated plastic cylinder.
- Rubber stopper.
- Irrigator tube.
- Weighted foot assembly: Having a mass of 1000 ±5g. There are two models of the weighted foot assembly. The older model has a guide cap that fits over the upper end of the graduated cylinder and centers the rod in the cylinder. It is read using a slot in the centering screws. The newer model has a sand-reading indicator 254 mm (10 in.) above this point and is preferred for testing clay-like materials.
- Siphon assembly: The siphon assembly will be fitted to a 4 L (1 gal) bottle of working calcium chloride solution placed on a shelf 915 ±25 mm (36 ±1 in.) above the work surface.
- Measuring can: With a capacity of $85 \pm 5 \text{ mL} (3 \text{ oz.})$.
- Funnel: With a wide-mouth for transferring sample into the graduated cylinder.
- Quartering cloth: 600 mm (2 ft) square nonabsorbent cloth, such as plastic or oilcloth.
- Mechanical splitter: See the FOP for AASHTO T 248.
- Strike-off bar: A straightedge or spatula.
- Clock or watch reading in minutes and seconds.
- Manually-operated sand equivalent shaker: Capable of producing an oscillating motion at a rate of 100 complete cycles in 45 ±5 seconds, with a hand assisted half stroke length of

 $127 \pm 5 \text{ mm} (5 \pm 0.2 \text{ in.})$. It may be held stable by hand during the shaking operation. It is recommended that this shaker be fastened securely to a firm and level mount, by bolts or clamps, if a large number of determinations are to be made.

- Mechanical shaker: See AASHTO T 176 for equipment and procedure.
- Oven: Capable of maintaining a temperature of $110 \pm 5^{\circ}C (230 \pm 9^{\circ}F)$.
- Thermometer: Calibrated liquid-in-glass or electronic digital type designed for total immersion and accurate to 0.1°C (0.2°F).

Materials

- Stock calcium chloride solution: Obtain commercially prepared calcium chloride stock solution meeting AASHTO requirements.
- Working calcium chloride solution: Dilute one 3 oz measuring can (85 ±5 mL) of stock calcium chloride solution to 3.8 L (1 gal) with distilled or demineralized water. (The graduated cylinder filled to 111.8 mm [4.4 in.] contains 88 mL.)

Note 1: Mix the working solution thoroughly. Add 85 mL (3 oz.) of stock solution to a clean, empty 3.8 L (1 qt) jug, add approximately 1 L (1 qt), and agitate vigorously for 2 or 3 minutes. Add the remainder of the water in approximately 1 L (1 qt) increments, repeating the agitation process.

Note 2: Tap water may be used if it is proven to be non-detrimental to the test and if it is allowed by the agency.

Note 3: The shelf life of the working solution is approximately 30 days. Working solutions more than 30 days old shall be discarded.

Control

The temperature of the working solution should be maintained at $22 \pm 3^{\circ}$ C ($72 \pm 5^{\circ}$ F) during the performance of the test. If field conditions preclude the maintenance of the temperature range, reference samples should be submitted to the Central/Regional Laboratory, as required by the agency, where proper temperature control is possible. Samples that meet the minimum sand equivalent requirement at a working solution temperature outside of the temperature range need not be subject to reference testing.

Sample Preparation

- 1. Obtain the sample in accordance with the FOP for AASHTO T 2 and reduce in accordance with the FOP for AASHTO T 248.
- Prepare sand equivalent test samples from the material passing the 4.75 mm (No. 4) sieve. If the material is in clods, break it up and re-screen it over a 4.75 mm (No. 4) sieve. All fines shall be cleaned from particles retained on the 4.75 mm (No. 4) sieve and included with the material passing that sieve.

3. Split or quarter 1000 to 1500 g of material from the portion passing the 4.75 mm (No. 4) sieve. Use extreme care to obtain a truly representative portion of the original sample.

Note 4: Experiments show that, as the amount of material being reduced by splitting or quartering is decreased, the accuracy of providing representative portions is reduced. It is imperative that the sample be split or quartered carefully. When it appears necessary, dampen the material before splitting or quartering to avoid segregation or loss of fines.

Note 5: All tests, including reference tests, will be performed utilizing Alternative Method No. 2 as described in AASHTO T 176, unless otherwise specified.

4. The sample must have the proper moisture content to achieve reliable results. This condition is determined by tightly squeezing a small portion of the thoroughly mixed sample in the palm of the hand. If the cast that is formed permits careful handling without breaking, the correct moisture content has been obtained.

Note 6: Clean sands having little 75 μ m (No. 200), such as sand for Portland Cement Concrete (PCC), may not form a cast.

If the material is too dry, the cast will crumble and it will be necessary to add water and remix and retest until the material forms a cast. When the moisture content is altered to provide the required cast, the altered sample should be placed in a pan, covered with a lid or with a damp cloth that does not touch the material, and allowed to stand for a minimum of 15 minutes. Samples that have been sieved without being air-dried and still retain enough natural moisture are exempted from this requirement.

If the material shows any free water, it is too wet to test and must be drained and air dried. Mix frequently to ensure uniformity. This drying process should continue until squeezing provides the required cast.

- 5. Place the sample on the quartering cloth and mix by alternately lifting each corner of the cloth and pulling it over the sample toward the diagonally opposite corner, being careful to keep the top of the cloth parallel to the bottom, thus causing the material to be rolled. When the material appears homogeneous, finish the mixing with the sample in a pile near the center of the cloth.
- 6. Fill the measuring can by pushing it through the base of the pile while exerting pressure with the hand against the pile on the side opposite the measuring can. As the can is moved through the pile, hold enough pressure with the hand to cause the material to fill the tin to overflowing. Press firmly with the palm of the hand, compacting the material and placing the maximum amount in the can. Strike off the can level full with the straightedge or spatula.
- 7. When required, repeat steps 5 and 6 to obtain additional samples.

Procedure

1. Start the siphon by forcing air into the top of the solution bottle through the tube while the pinch clamp is open.

- 2. Siphon $101.6 \pm 2.5 \text{ mm} (4 \pm 0.1 \text{ in.})$ of working calcium chloride solution into the plastic cylinder. Pour the prepared test sample from the measuring can into the plastic cylinder, using the funnel to avoid spilling. Tap the bottom of the cylinder sharply on the heel of the hand several times to release air bubbles and to promote thorough wetting of the sample.
- 3. Allow the wetted sample to stand undisturbed for 10 ± 1 minutes. At the end of the 10minute period, stopper the cylinder and loosen the material from the bottom by simultaneously partially inverting and shaking the cylinder.
- 4. After loosening the material from the bottom of the cylinder, shake the cylinder and contents by any one of the following methods:
 - a. Mechanical Method Place the stoppered cylinder in the mechanical shaker, set the timer, and allow the machine to shake the cylinder and contents for 45 ± 1 seconds.

Caution: Agencies may require additional operator qualifications for the next two methods.

b. Manually-operated Shaker Method – Secure the stoppered cylinder in the three spring clamps on the carriage of the manually-operated sand equivalent shaker and set the stroke counter to zero. Stand directly in front of the shaker and force the pointer to the stroke limit marker painted on the backboard by applying an abrupt horizontal thrust to the upper portion of the right hand spring strap.

Remove the hand from the strap and allow the spring action of the straps to move the carriage and cylinder in the opposite direction without assistance or hindrance. Apply enough force to the right-hand spring steel strap during the thrust portion of each stroke to move the pointer to the stroke limit marker by pushing against the strap with the ends of the fingers to maintain a smooth oscillating motion. The center of the stroke limit marker is positioned to provide the proper stroke length and its width provides the maximum allowable limits of variation.

Proper shaking action is accomplished when the tip of the pointer reverses direction within the marker limits. Proper shaking action can best be maintained by using only the forearm and wrist action to propel the shaker. Continue shaking for 100 strokes.

- c. Hand Method Hold the cylinder in a horizontal position and shake it vigorously in a horizontal linear motion from end to end. Shake the cylinder 90 cycles in approximately 30 seconds using a throw of 229 mm ± 25 mm (9 ± 1 in.). A cycle is defined as a complete back and forth motion. To properly shake the cylinder at this speed, it will be necessary for the operator to shake with the forearms only, relaxing the body and shoulders.
- 5. Set the cylinder upright on the work table and remove the stopper.
- 6. Insert the irrigator tube in the cylinder and rinse material from the cylinder walls as the irrigator is lowered. Force the irrigator through the material to the bottom of the

cylinder by applying a gentle stabbing and twisting action while the working solution flows from the irrigator tip. Work the irrigator tube to the bottom of the cylinder as quickly as possible, since it becomes more difficult to do this as the washing proceeds. This flushes the fine material into suspension above the coarser sand particles.

Continue to apply a stabbing and twisting action while flushing the fines upward until the cylinder is filled to the 381 mm (15 in.) mark. Then raise the irrigator slowly without shutting off the flow so that the liquid level is maintained at about 381 mm (15 in.) while the irrigator is being withdrawn. Regulate the flow just before the irrigator is entirely withdrawn and adjust the final level to 381 mm (15 in.).

Note 7: Occasionally the holes in the tip of the irrigator tube may become clogged by a particle of sand. If the obstruction cannot be freed by any other method, use a pin or other sharp object to force it out, using extreme care not to enlarge the size of the opening. Also, keep the tip sharp as an aid to penetrating the sample.

7. Allow the cylinder and contents to stand undisturbed for 20 minutes ± 15 seconds. Start timing immediately after withdrawing the irrigator tube.

Note 8: Any vibration or movement of the cylinder during this time will interfere with the normal settling rate of the suspended clay and will cause an erroneous result.

- 8. Clay and sand readings:
 - a. At the end of the 20-minute sedimentation period, read and record the level of the top of the clay suspension. This is referred to as the clay reading.

Note 9: If no clear line of demarcation has formed at the end of the 20-minute sedimentation period, allow the sample to stand undisturbed until a clay reading can be obtained, then immediately read and record the level of the top of the clay suspension and the total sedimentation time. If the total sedimentation time exceeds 30 minutes, rerun the test using three individual samples of the same material. Read and record the clay column height of the sample requiring the shortest sedimentation period only. Once a sedimentation time has been established, subsequent tests will be run using that time. The time will be recorded along with the test results on all reports.

- b. After the clay reading has been taken, place the weighted foot assembly over the cylinder and gently lower the assembly until it comes to rest on the sand. Do not allow the indicator to hit the mouth of the cylinder as the assembly is being lowered. Subtract 254 mm (10 in.) from the level indicated by the extreme top edge of the indicator and record this value as the sand reading.
- c. If clay or sand readings fall between 2.5 mm (0.1 in.) graduations, record the level of the higher graduation as the reading. For example, a clay reading that appears to be 7.95 would be recorded as 8.0; a sand reading that appears to be 3.22 would be recorded as 3.3.
- d. If two Sand Equivalent (SE) samples are run on the same material and the second varies by more than ±4, based on the first cylinder result, additional tests shall be run.

e. If three or more Sand Equivalent (SE) samples are run on the same material, average the results. If an individual result varies by more than ± 4 , based on the average result, additional tests shall be run.

Calculations

1. Calculate the SE to the nearest 0.1 using the following formula:

$$SE = \frac{Sand Reading}{Clay Reading} \times 100$$

For example: Sand Reading = 3.3 and Clay Reading = 8.0

$$SE = \frac{3.3}{8.0} \times 100 = 41.25 \text{ or } 41.3$$

Note 10: This example reflects the use of equipment made with English units. At this time, equipment made with metric units is not available.

- 2. Report the SE as the next higher whole number. In the example above, the 41.3 would be reported as 42. An SE of 41.0 would be reported as 41.
- 3. In determining the average of the two or more samples, raise each calculated SE value to the next higher whole number before averaging. For example, calculated values of 41.3 and 42.8 would be reported as 42 and 43, respectively.

Then average the two values:

$$\frac{42+43}{2} = 42.5$$

If the average value is not a whole number, raise it to the next higher whole number - in this case: 43.

Report

- Results on forms approved by the agency
- Results to the whole number.
- Sedimentation time if over 20 minutes.

PERFORMANCE EXAM CHECKLIST

PLASTIC FINES IN GRADED AGGREGATES AND SOILS BY THE USE OF THE SAND EQUIVALENT TEST FOP FOR AASHTO T 176

Par	rticipant Name E	xam Date		
Ree	cord the symbols "P" for passing or "F" for failing on each step of	the checklist.		
Procedure Element			Trial 1	Trial 2
Sa	mple Preparation			
1.	Sample passed through 4.75 mm (No. 4) sieve?			
2.	Material in clods broken up and re-screened?			
3.	Split or quarter 1,000 to 1,500g of material passing the 4.75 mm (No. 4) sieve? NOTE: If necessary, the material may be damped before splitting to avoid segregation or loss of fines.			
4.	No fines lost?			
5.	Working solution dated?			
6.	Temperature of working solution $22 \pm 3^{\circ}C (72 \pm 5^{\circ}F)$?			
7.	Working calcium chloride solution 915 mm ± 25 mm (36 ± 1 in) above the work surface?			
8.	$101.6 \pm 2.5 \text{ mm} (4 \pm 0.1 \text{in})$ working calcium chloride solution siphoned into cylinder?			
9.	Material checked for moisture condition by tightly squeezing s portion in palm of hand and forming a cast?	mall		
10.	Sample at proper water content?a. If too dry (cast crumbles easily) water added, re-mixed, cover and allowed to stand for at least 15 minutes?b. If too wet (shows free water) sample drained, air dried and mixed frequently?	ered,		
11.	Sample placed on splitting cloth and mixed by alternately liftin corner of the cloth and pulling it over the sample toward diagon opposite corner, causing material to be rolled?	•		
12.	Is material thoroughly mixed?			
13.	When material appears to be homogeneous, mixing finished we sample in a pile near center of cloth?	ith		
14.	Fill the 85 mL (3 oz) tin by pushing through base of pile with o hand on opposite side of pile?	ther		
15.	Material fills tin to overflowing?			

OVER

rial 1	Trial 2
F	Fail
	F

SAMPLING OF BITUMINOUS PAVING MIXTURES FOP FOR AASHTO T 168

Scope

This procedure covers the sampling of bituminous paving mixtures from HMA plants, haul units, and roadways in accordance with AASHTO T 168-03. Sampling is as important as testing, and every precaution must be taken to obtain a truly representative sample.

Apparatus

- Shovel
- Sample containers: such as cardboard boxes, metal cans, stainless steel bowls, or other agency-approved containers
- Scoops, trowels, or other equipment to obtain mix
- Sampling plate: heavy gauge metal plate 380 mm x 380 mm (15 in x 15 in) minimum 8 gauge thick, with a wire attached to one corner long enough to reach from the center of the paver to the outside of the farthest auger extension. Holes ¹/₄" in diameter should be provided in each corner.
- Cookie cutter sampling device: A 330 mm (13 in.) square sampling template, constructed from 75 mm x 50 mm x 3 mm (3 in. x 2 in. x 1/8 in.) formed steel angle with two 100mm x 150 mm x 9 mm (4 in. x 6 in. x 3/8 in.) handles. (See diagram) Sampling Plate and cookie cutter may be sized appropriately to accommodate sample size requirements.
- Mechanical sampling device

Sample Size

Sample size depends on the test methods specified by the agency for acceptance. Check agency requirement for the size required.

Sampling

General

1. The material shall be tested to determine variations. The supplier/contractor shall provide equipment for safe and appropriate sampling, including sampling devices on plants when required.

 Place dense graded mixture samples in cardboard boxes, stainless steel bowls or other agency-approved containers. Place open graded mixture samples in stainless steel bowls. Do not put open graded mixture samples in boxes until they have cooled to the point that bituminous material will not migrate from the aggregate.

Attached Sampling Devices

Some agencies require mechanical sampling devices for hot mix asphalt (HMA) and cold feed aggregate on some projects. These are normally permanently attached devices that allow a sample container to pass perpendicularly through the entire stream of material or divert the entire stream of material into the container. Operation may be hydraulic, pneumatic, or manual and allows the sample container to pass through the stream twice, once in each direction, without overfilling. Special caution is necessary with manually operated systems since a consistent speed is difficult to maintain and non-representative samples may result. Check agency requirements for the specifics of required sampling systems.

- 1. Lightly coat the container attached to the sampling device with an agency-approved release agent or preheat it, or both, to approximately the same discharge temperature of the mix.
- 2. Pass the container twice through the material perpendicularly without overfilling the container.
- 3. Repeat until proper sample size has been obtained.
- 4. Transfer the HMA to an agency-approved container without loss of material.

Sampling from Haul Units

- 1. Visually divide the haul unit into approximately four equal quadrants.
- 2. Identify one sampling location in each quadrant.
- 3. Dig down and remove approximately 0.3 m (1 ft) of material to avoid surface segregation. Obtain each increment from below this level.
- 4. Combine the increments to form a sample of the required size.

Sampling from Roadway Prior to Compaction (Plate Method)

Plate method using the "cookie cutter" sampling device.

There are two conditions that will be encountered when sampling hot mix asphalt (HMA) from the roadway prior to compaction. The two conditions are:

1. Laying HMA on grade or untreated base material requires Method 1.

2. Laying HMA on existing asphalt or laying a second lift of HMA requires Method 2.

SAFETY:

Sampling is performed behind the paving machine and in front of the breakdown roller. For safety, the roller must remain at least 3 m (10 ft) behind the sampling operation until the sample has been taken and the hole filled with loose HMA.

Method 1 requires a plate to be placed in the roadway in front of the paving operation and therefore there is always concern with moving, operating equipment. It is safest to stop the paving train while a plate is installed in front of the paver. When this is not possible the following safety rules must be followed.

- 1. The plate placing operation must be at least 3 m (10 ft) in front of the paver or pickup device. The technician placing the plate must have eye contact and communication with the paving machine operator. If eye contact cannot be maintained at all time, a third person must be present to provide communication between the operator and the technician.
- 2. No technician is to be between the asphalt supply trucks and the paving machine. The exception to this rule is if the supply truck is moving forward creating a windrow, in which case the technician must be at least 3m (10 ft) behind the truck.

If at any time the Engineer feels that the sampling technique is creating an unsafe condition, the operation is to be halted until it is made safe or the paving operation will be stopped while the plate is being placed.

Method 1 - Obtaining a Sample on Untreated Base:

- 1. Following the safety rules detailed above, the technician is to:
 - a. Smooth out a location in front of the paver at least 0.5 m (2 ft) inside the edge of the mat.
 - b. Lay the plate down diagonally with the direction of travel, keeping it flat and tight to the base with the lead corner facing the paving machine.
- 2. Secure the plate in place by driving a nail through the hole in the lead corner of the plate.
- 3. Pull the wire, attached to the outside corner of the plate, taut past the edge of the HMA mat and secure with a nail.

- 4. Let the paving operation proceed over the plate and wire. Immediately proceed with the sampling.
- 5. Using the exposed end of the wire, pull the wire up through the fresh HMA to locate the corner of the plate. Place the "cookie cutter" sample device, just inside the end of the wire; align the cutter over the plate. Press "cookie cutter" device down through the HMA to the plate.
- 6. Using a small square tipped shovel or scoop, or both, carefully remove all the HMA from inside of the cutter and place in a sample container. Care shall be taken to prevent contamination of bituminous mixes by dust or other foreign matter, and to avoid segregation of aggregate and bituminous materials.
- 7. Remove the sample cutter and the plate from the roadway. The hole made from the sampling must be filled by the contractor with loose HMA.

Method 2 - Obtaining a Sample on Asphalt Surface:

- 1. After the paving machine has passed the sampling point, immediately place the "cookie cutter" sampling device on the location to be sampled. Push the cutter down through the HMA until it is flat against the underlying asphalt mat.
- 2. Using a small square tipped shovel or scoop, or both, carefully remove all the HMA from inside of the cutter and place in a sample container. The hole made from the sampling must be filled by the contractor with loose HMA.

Identification and Shipping

- 1. Identify sample containers as required by the agency.
- 2. Ship samples in containers that will prevent loss, contamination, or damage.

Report

- On forms approved by the agency
- Date
- Time
- Location
- Quantity represented

PERFORMANCE EXAM CHECKLIST

SAMPLING BITUMINOUS PAVING MIXTURES FOP FOR AASHTO T 168

Participant Name Exam Date				
Re	cord	the symbols "P" for passing or "F" for failing on each step of the checklist.		
Pr	oce	dure Element	Trial 1	Trial 2
1.	Wa	as sample taken with an attached sampling device correctly?		
	a.	Container coated or preheated or both?		
	b.	Sampling device passed through stream twice perpendicular to material?		
	c.	Sampling device not over filled?		
2.		mples from truck transports taken from four quadrants at quired depth of 300 mm (12 in)?		
3.	Sa	mples from roadway taken correctly with plate(s).		
	a.	When on untreated base plate placed well in front of paver?		
	b.	Wire pulled to locate plate corner?		
	c.	Cookie cutter placed on asphalt and pushed through to plate?		
	d.	All material removed from inside the cutter?		
4.	Sa	mple placed in appropriate container.		
5.	Sa	mple size meets agency requirements?		
6.	Sa	mple identified as required?		
Со	mm	ents: First attempt: PassFail Second attempt: PassFail		
Ex	ami	ner Signature WAQTC #:		

REDUCING SAMPLES OF HOT MIX ASPHALT (HMA) TO TESTING SIZE FOP FOR AASHTO R 47

Scope

This procedure covers sample reduction of Hot Mix Asphalt (HMA) to testing size in accordance with AASHTO R 47-08. The reduced portion is to be representative of the original sample.

Apparatus

- Thermostatically controlled oven capable of maintaining a temperature of at least 110°C (230°F) or high enough to heat the material to a pliable condition for splitting.
- Non-contact temperature measuring device.
- Metal spatulas, trowels, metal straightedges, or drywall taping knives, or a combination thereof; for removing HMA samples from the quartering device, cleaning surfaces used for splitting, etc.
- Square-tipped, flat-bottom scoop, shovel or trowel for mixing HMA prior to quartering.
- Miscellaneous equipment including hot plate, non-asbestos heat-resistant gloves or mittens, pans, buckets, and cans.
- Sheeting: Non-stick heavy paper, heat-resistant plastic, or other material as approved by the agency.
- Agency-approved release agent, free of solvent or petroleum-based material that could affect asphalt binder.
- Mechanical Splitter Type A (Quartermaster): having four equal-width chutes discharging into four appropriately sized sample receptacles. Splitter is to be equipped with a receiving hopper that will hold the sample until the release lever is activated with four sample receptacles of sufficient capacity to accommodate the reduced portion of the HMA sample from the mechanical splitter. Refer to AASHTO R 47, Figures 1 through 3, for configuration and required dimensions of the mechanical splitter.
- Mechanical Splitter Type B (Riffle): having a minimum of eight equal-width chutes discharging alternately to each side with a minimum chute width of at least 50% larger than the largest particle size. A hopper or straight-edged pan with a width equal to or slightly smaller than the assembly of chutes in the riffle splitter to permit uniform discharge of the HMA through the chutes without segregation or loss of material. Sample receptacles of sufficient width and capacity to receive the reduced portions of HMA from the riffle splitter without loss of material.

- Quartering Template: formed in the shape of a cross with equal length sides at right angles to each other. Template shall be manufactured of metal that will withstand heat and use without deforming. The sides of the quartering template should be sized so that the length exceeds the diameter of the flattened cone of HMA by an amount allowing complete separation of the quartered sample. Height of the sides must exceed the thickness of the flattened cone of HMA.
- Non-stick mixing surface that is hard, heat-resistant, clean, level, and large enough to permit HMA samples to be mixed without contamination or loss of material.

Sampling

Obtain samples according to the FOP for AASHTO T 168.

Sample Preparation

The sample must be warm enough to separate. If not, warm in an oven until it is sufficiently soft to mix and separate easily. Do not exceed either the temperature or time limits specified in the test method(s) to be performed.

Selection of Procedure (Method)

Refer to agency requirements when determining the appropriate method(s) of sample reduction. In general, the selection of a particular method to reduce a sample depends on the initial size of the sample vs. the size of the sample needed for the specific test to be performed. It is recommended that, for large amounts of material, the initial reduction be performed using a mechanical splitter. This decreases the time needed for reduction and minimizes temperature loss. Further reduction of the remaining HMA may be performed by a combination of the following methods, as approved by the agency. The methods for reduction are:

- Mechanical Splitter Method
 - Type A (Quartermaster)
 - Type B (Riffle Splitter)
- Quartering Method
 - Full Quartering
 - By Apex
- Incremental (Loaf) Method

Procedure

Mechanical Splitter Type A (Quartermaster)

- 1. Clean the splitter and apply a light coating of approved release agent to the surfaces that will contact HMA.
- 2. Close and secure hopper gates.
- 3. Place the four sample receptacles in the splitter so that there is no loss of material.
- 4. Remove the sample from the agency-approved container(s) and place in the mechanical splitter hopper. Avoid segregation, loss of HMA or the accidental addition of foreign material.
- 5. Release the handle, allowing the HMA to drop through the divider chutes and discharge into the four receptacles.
- 6. Any HMA that is retained on the surface of the splitter shall be removed and placed into the appropriate receptacle.
- 7. Close and secure the hopper gates.
- 8. Reduce the remaining HMA as needed by this method or a combination of the following methods as approved by the agency.
- 9. Combine the material contained in the receptacles from opposite corners and repeat the splitting process until an appropriate sample size is obtained.
- 10. Retain and properly identify the remaining unused portion of the HMA sample for further testing if required by the agency.

Mechanical Splitter Type B (Riffle)

- 1. When heating of the testing equipment is desired, it shall be heated to a temperature not to exceed 110 °C (230°F).
- 2. Clean the splitter and apply a light coating of approved release agent to the surfaces that will come in contact with HMA (hopper or straight-edged pan, chutes, receptacles).
- 3. Place two empty receptacles under the splitter.
- 4. Carefully empty the HMA from the agency-approved container(s) into the hopper or straight-edged pan without loss of material. Uniformly distribute from side to side of the hopper or pan.

- 5. Discharge the HMA at a uniform rate, allowing it to flow freely through the chutes.
- 6. Any HMA that is retained on the surface of the splitter shall be removed and placed into the appropriate receptacle.
- 7. Reduce the remaining HMA as needed by this method or a combination of the following methods as approved by the agency.
- 8. Using one of the two receptacles containing HMA, repeat the reduction process until the HMA contained in one of the two receptacles is the appropriate size for the required test.
- 9. After each split, remember to clean the splitter hopper and chute surfaces if needed.
- 10. Retain and properly identify the remaining unused HMA sample for further testing if required by the agency.

Quartering Method

- 1. When heating of the testing equipment is desired, it shall be heated to a temperature not to exceed the mix temperature.
- 2. If needed, apply a light coating of release agent to quartering template.
- 3. Dump the sample from the agency approved container(s) into a conical pile on a hard, "non-stick", clean, level surface where there will be neither a loss of material nor the accidental addition of foreign material. The surface can be made non-stick by the application of an approved asphalt release agent, or sheeting.
- 4. Mix the material thoroughly by turning the entire sample over a minimum of four times with a flat-bottom scoop; or by alternately lifting each corner of the sheeting and pulling it over the sample diagonally toward the opposite corner, causing the material to be rolled. Create a conical pile by either depositing each scoop or shovelful of the last turning on top of the preceding one, or lifting both opposite corners.
- 5. Flatten the conical pile to a uniform diameter and thickness where the diameter is four to eight times the thickness. Make a visual observation to ensure that the material is homogeneous.
- 6. Divide the flattened cone into four equal quarters using the quartering template. Press the template down until it is in complete contact with the surface on which the sample has been placed, assuring complete separation.

Note 1: Straightedges may be used in lieu of the quartering device to completely separate the material in approximately equal quarters.

7. Reduce the sample by quartering the sample completely or by removing the sample from the apex.

8. Full Quartering

- 8a. Remove two diagonally opposite quarters, including all of the fine material.
- 8b. Remove the quartering template and combine the remaining quarters, again forming a conical pile.
- 8c. Repeat steps 4, 5, 6, 8a, and 8b until a sample of the required size has been obtained. The final sample must consist of the two remaining diagonally opposite quarters.
- 8d. Retain and properly identify the remaining unused portion of the HMA sample for further testing if required by the agency.
- 9. By Apex
 - 9a. Using a straightedge, slice through a quarter of the HMA from the center point to the outer edge of the quarter.
 - 9b. Pull or drag the material from the quarter with two straight edges or hold one edge of the straightedge in contact with quartering device.
 - 9c. Remove an equal portion from the opposite quarter and combine these increments to create the required sample size.
 - 9d. Continue using the apex method with the unused portion of the HMA until samples have been obtained for all required tests.
 - 9e. Retain and properly identify the remaining unused portion of the HMA sample for further testing if required by the agency.

Incremental Method (Loaf)

- 1. Cover a hard, clean, level surface with sheeting. This surface shall be large enough that there will be neither a loss of material nor the accidental addition of foreign material.
- 2. Place the sample from the agency approved container(s) into a conical pile on that surface.
- 3. Mix the material thoroughly by turning the entire sample over a minimum of four times with a flat-bottom scoop; or by alternately lifting each corner of the sheeting and pulling it over the sample diagonally toward the opposite corner, causing the material to be rolled. Create a conical pile by either depositing each scoop or shovelful of the last turning on top of the preceding one, or lifting both opposite corners.
- 4. Grasp the sheeting and roll the conical pile into a cylinder (loaf), then flatten the top. Make a visual observation to determine that the material is homogenous.

- 5. Pull the sheeting so at least ¼ of the length of the loaf is off the edge of the counter. Allow this material to drop into a container to be saved. As an alternate, using a straightedge, slice off approximately ¼ of the length of the loaf and place in a container to be saved.
- 6. Pull material (loaf) off the edge of the counter and drop into an appropriate size sample pan or container for the test to be performed. Continue removing material from the loaf until the proper size sample has been acquired. As an alternate, using a straightedge, slice off an appropriate size sample from the length of the loaf and place in a sample pan or container.
- 7. Repeat step 6 until all the samples for testing have been obtained.

Note 3: When reducing the sample to test size it is advisable to take several small increments, determining the mass each time until the proper minimum size is achieved. Unless the sample size is grossly in excess of the minimum or exceeds the maximum test size, use the sample as reduced for the test.

8. Retain and properly identify the remaining unused portion of the HMA sample for further testing if required by the agency.

Sample Identification

- 1. Identify the sample as required by the agency.
- 2. Samples shall be submitted in agency approved containers and secured to prevent contamination and spillage.

Report

- On forms approved by the agency
- Date
- Time
- Location
- Quantity represented

PERFORMANCE EXAM CHECKLIST

REDUCING SAMPLES OF HOT MIX ASPHALT (HMA) TO TESTING SIZE FOP FOR AASHTO R 47

Par	rticipant Name Exam Date		
Rec	cord the symbols "P" for passing or "F" for failing on each step of the checklist.		
Pro	ocedure Element	Trial 1	Trial 2
1.	Sample made soft enough to separate easily without exceeding temperature limits?		
Me	echanical Splitter Method Type A (Quartermaster)		
2.	Splitter cleaned and surfaces coated with release agent?		
3.	Hopper closed and receptacles in place?		
4.	Sample placed into hopper without segregation or loss of material?		
5.	Hopper handle released allowing the HMA to uniformly flow into receptacles	?	
6.	Splitter surfaces cleaned of all retained HMA, allowing it to fall into appropriate receptacles?		
7.	Further reduction with the quartermaster:		
	a. Material in receptacles from opposite corners combined?		
	b. Splitting process repeated until appropriate sample size is obtained?		
8.	Remaining HMA stored in suitable container and properly labeled?		
Me	echanical Splitter Method Type B (Riffle)		
9.	Splitting apparatus and tools, if preheated, not exceeding 110°C (230°F)?		
10.	Splitter cleaned and surfaces coated with release agent?		
11.	Two empty receptacles placed under splitter?		
12.	Sample placed in hopper or straight edged pan without loss of material and uniformly distributed from side to side?		
12.	Material discharged across chute assembly at controlled rate allowing free flow of HMA through chutes?		
13.	Splitter surfaces cleaned of all retained HMA allowing it to fall into appropriate receptacles?		

OVER

Pro	ocedu	Trial 1	Trial 2	
14.	Furthe	er reduction with the riffle splitter:		
	a.	Material from one receptacle discharged across chute assembly at controlled rate, allowing free flow of HMA through chutes?		
	b.	Splitting process continued until appropriate sample size obtained, with splitter surfaces cleaned of all retained HMA after every split?		
15.	Rema	ining unused HMA stored in suitable container, properly labeled?		
Qu	arterii	ng Method		
16.	Testin	g equipment preheated to a temperature not to exceed mix temperature?		
17.	•	e placed in a conical pile on a hard, non-stick, heat-resistant ng surface such as metal or sheeting?		
18.	Samp	e mixed by turning the entire sample over a minimum of 4 times?		
19.		al pile formed and then flattened uniformly to diameter equal to 4 to 8 times thickness?		
20.	-	e divided into 4 equal portions either with a metal quartering ate or straightedges such as drywall taping knives?		
21.	Redu	ction by Full Quartering:		
	a.	Two diagonally opposite quarters removed and returned to sample container?		
	b.	Two other diagonally opposite quarters combined and process continued until appropriate sample size has been achieved?		
22.	Reduc	tion by Apex:		
	a.	Using two straightedges or a splitting device and one straightedge, was one of the quarters split from apex to outer edge of material?		
	b.	Similar amount of material taken from opposite quarter?		
	c.	Increments combined to produce appropriate sample size?		
23.	Rema	ining unused HMA stored in suitable container, properly labeled?		
Inc	remen	tal (Loaf) Method		
24.	-	e placed on hard, non-stick, heat-resistant splitting surface covered heeting?		
25.	Samp	e mixed by turning the entire sample over a minimum of 4 times?		
26.	Conic	al pile formed?		
27.	HMA	rolled into loaf and then flattened?		

OVER

Procedure Element	Trial 1	Trial 2
28. The first quarter of the loaf removed by slicing off or dropping off edge of counter and set aside?		
29. Proper sample size sliced off or dropped off edge of counter into sample container?		
30. Process continued until all samples are obtained?		
31. All remaining unused HMA stored in suitable container, properly labeled?		

Comments:	First attempt:	Pass	Fail	Second attempt: Pass	Fail
Examiner Signa	ture			WAQTC #:	

MOISTURE CONTENT OF HOT MIX ASPHALT (HMA) BY OVEN METHOD FOP FOR AASHTO T 329

Scope

This procedure covers the determination of moisture content of HMA in accordance with AASHTO T 329-08.

Summary

A test specimen of HMA is dried in a forced-air ventilated or convection oven to constant mass.

Apparatus

- Balance or scale: 2 kg capacity, readable to 0.1 g and conforming to AASHTO M 231.
- Forced draft, ventilated, or convection oven: Capable of maintaining the temperature surrounding the sample at 163 ±14°C (325 ±25°F).
- Sample Container: Clean, dry, not affected by heat and of sufficient size to contain a test sample without danger of spilling.
- Thermometer or other suitable device with a temperature range of 10-260°C (50-500°F).

Sample

The test sample shall be obtained in accordance with the FOP for AASHTO T 168, and reduced in accordance with the FOP for AASHTO R 47. The size of the test sample shall be a minimum of 1000 g.

Procedure

1. Preheat the oven to a minimum of 105° C (221°F), but do not exceed the Job Mix Formula (JMF) mixing temperature. If the mixing temperature is not supplied, a temperature of $163 \pm 14^{\circ}$ C (325 $\pm 25^{\circ}$ F) is to be used.

Note 1: For repeatability between laboratories, the preferred practice is to dry the sample at no less than 9° C (15° F) below the JMF mixing temperature.

- 2. Determine and record the mass of the sample container, including release media, to the nearest 0.1 g.
- 3. Place the test sample in the sample container.
- 4. Determine and record the temperature of the test sample.

- 5. Determine and record the total mass of the sample container and test sample to the nearest 0.1 g.
- 6. Calculate the initial, moist mass (M_i) of the test sample by subtracting the mass of the sample container as determined in Step 2 from the total mass of the sample container and the test sample as determined in Step 5.
- 7. The test sample shall be initially dried for 90 ± 5 minutes, and its mass determined. Then it shall be dried at 30 ± 5 min intervals until constant mass is achieved.

Note 2: Constant mass shall be defined as the mass at which further drying does not alter the mass by more than 0.05 percent.

- 8. Cool the sample container and test sample to $\pm 9^{\circ}C$ ($\pm 15^{\circ}F$) of the temperature determined in Step 4.
- 9. Determine and record the total mass of the sample container and test sample to the nearest 0.1 g.

Note 3: Do not attempt to remove the test sample from the sample container for the purposes of determining mass.

10. Calculate the final, dry mass (M_f) of the test sample by subtracting the mass of the sample container as determined in Step 2 from the total mass of the sample container and the test sample as determined in Step 9.

Note 4: Moisture content and the number of samples in the oven will affect the rate of drying at any given time. Placing wet samples in the oven with nearly dry samples could affect the drying process.

Calculations

Constant Mass:

Calculate constant mass using the following formula:

$$\%$$
Change = $\frac{M_p - M_n}{M_p} \times 100$

Where: $M_p = previous mass measurement$ $M_n = new mass measurement$

Example:

Mass of container: 232.6 g

Mass of container and sample after first drying cycle: 1361.8 g

Mass, M_p , of possibly dry sample: 1361.8 g - 232.6 g = 1129.2 g

Mass of container and possibly dry sample after second drying cycle: 1360.4 g

Mass, M_n , of possibly dry sample: 1360.4 g – 232.6 g = 1127.8 g

$$\frac{1129.2 \ g - 1127.8 \ g}{1129.2 \ g} \times 100 = 0.12\%$$

0.12 percent is not less than 0.05 percent, so continue drying the sample.

Mass of container and possibly dry sample after third drying cycle: 1359.9 g Mass, M_n , of dry sample: 1359.9g – 232.6g = 1127.3g

$$\frac{1127.8 \ g - 1127.3 \ g}{1127.8 \ g} \times 100 = 0.04\%$$

0.04 percent is less than 0.05 percent, so constant mass has been reached.

Moisture Content:

Calculate the moisture content, as a percent, using the following formula.

Moisture Content =
$$\frac{M_i - M_f}{M_f} \times 100$$

Where: $M_i = initial$, moist mass

 $M_f = final, dry mass$

Example:

 $\begin{array}{l} M_i = 1134.9 \ g \\ M_f = 1127.3 \ g \end{array}$

Moisture Content = $\frac{1134.9 \ g - 1127.3 \ g}{1127.3 \ g} \times 100 = 0.674$, say 0.67%

Report

- Results on forms approved by the agency
- Moisture content to 0.01 percent

PERFORMANCE EXAM CHECKLIST

MOISTURE CONTENT OF HOT MIX ASPHALT BY OVEN METHOD FOP FOR AASHTO T 329

Par	ticipant Name Ex	am Date	
Ree	cord the symbols "P" for passing or "F" for failing on each step	of the checklist.	
Pr	ocedure Element	Trial 1	Trial 2
1.	Mass of clean dry container including release media determin	ned to 0.1 g?	
2.	Representative sample obtained; 1000 g minimum?		
3.	Initial temperature taken and recorded?		
4.	Mass of sample determined to 0.1 g?		
5.	Sample placed in drying oven for 90 ± 5 minutes?		
6.	Sample dried at a temperature not to exceed the JMF mixing	temp?	
7.	Constant mass checked at 30 ± 5 minute intervals and reache	ed?	
8.	Sample and container cooled to $\pm 9^{\circ}$ C (15°F) of the initial temperature before final mass determined to 0.1 g?		
9.	Calculation of moisture content performed correctly to 0.01 g	percent?	

DETERMINING THE ASPHALT BINDER CONTENT OF HOT MIX ASPHALT (HMA) BY THE IGNITION METHOD FOP FOR AASHTO T 308

Scope

This procedure covers the determination of asphalt binder content of hot mix asphalt (HMA) by ignition of the binder in accordance with AASHTO T 308-10. **Overview**

The sample is heated in a furnace at 538°C (1000°F) or less; samples may be heated by convection or direct infrared irradiation (IR). The aggregate remaining after burning can be used for sieve analysis using the FOP for AASHTO T 30.

Some agencies allow the use of recycled HMA. When using recycled HMA, check with the agency for specific correction procedures.

Binder in the HMA is ignited in a furnace. Asphalt binder content is calculated as the difference between the initial mass of the HMA and the mass of the residual aggregate, correction factor, and moisture content. The asphalt binder content is expressed as percent of moisture-free mix mass.

Two methods, A and B, are presented.

Apparatus

Note 1: The apparatus must be calibrated for the specific mix design. See "Correction Factors" at the end of this FOP.

There are two methods - A and B. The apparatus for the two methods are the same except that the furnace for Method A has an internal balance.

• Ignition Furnace: A forced-air ignition furnace that heats the specimens by either the convection or direct IR irradiation method. The convection-type furnace must be capable of maintaining the temperature at 578°C (1072°F).

For Method A, the furnace will be equipped with an internal scale thermally isolated from the furnace chamber and accurate to 0.1 g. The scale shall be capable of determining the mass of a 3500 g sample in addition to the sample baskets. A data collection system will be included so that mass can be automatically determined and displayed during the test. The furnace shall have a built-in computer program to calculate the change in mass of the sample baskets and provide for the input of a correction factor for aggregate loss. The furnace shall provide a printed ticket with the initial specimen mass, specimen mass loss, temperature compensation, correction factor, corrected binder content, test time, and test temperature. The furnace shall provide an audible alarm and indicator light when the sample mass loss does not exceed 0.01 percent of the total sample mass for three consecutive minutes.

ASPHALT

Note 2: The furnace shall be designed to permit the operator to change the ending mass loss percentage from 0.01 percent to 0.02 percent.

For both Method A and Method B, the furnace chamber dimensions shall be adequate to accommodate a 3500 g sample. The furnace door shall be equipped so that it cannot be opened during the ignition test. A method for reducing furnace emissions shall be provided and the furnace shall be vented so that no emissions escape into the laboratory. The furnace shall have a fan to pull air through the furnace to expedite the test and to eliminate the escape of smoke into the laboratory.

- Sample Basket Assembly: consisting of sample basket(s), catch pan, and basket guards. Sample basket(s) will be of appropriate size allowing samples to be thinly spread and allowing air to flow through and around the sample particles. Sets of two or more baskets shall be nested. A catch pan: of sufficient size to hold the sample basket(s) so that aggregate particles and melting binder falling through the screen mesh are caught. Basket guards will completely enclose the basket and be made of screen mesh, perforated stainless steel plate, or other suitable material.
- Thermometer, or other temperature measuring device, with a temperature range of 10 260°C (50-500°F).
- Oven capable of maintaining $110 \pm 5^{\circ}C (230 \pm 9^{\circ}F)$.
- Balance or scale: Capacity sufficient for the sample mass and conforming to the requirements of M 231, Class G2.
- **Safety equipment**: Safety glasses or face shield, high temperature gloves, long sleeved jacket, a heat resistant surface capable of withstanding 650°C (1202°F), a protective cage capable of surrounding the sample baskets during the cooling period, and a particle mask for use during removal of the sample from the basket assembly.
- Miscellaneous equipment: A pan larger than the sample basket(s) for transferring sample after ignition, spatulas, bowls, and wire brushes.

Sampling

- 1. Obtain samples of HMA in accordance with the FOP for AASHTO T 168.
- 2. Reduce HMA samples in accordance with the FOP for AASHTO R 47.
- 3. If the mixture is not sufficiently soft to separate with a spatula or trowel, place it in a large flat pan in an oven at $110 \pm 5^{\circ}$ C (230 $\pm 9^{\circ}$ F) until soft enough.
- 4. Test sample size shall conform to the mass requirement shown in Table 1.

Note 3: When the mass of the test specimen exceeds the capacity of the equipment used or for large samples of fine mixes, the test specimen may be divided into suitable increments, tested, and the results appropriately combined through a weighted average for calculation of the binder content.

Table 1					
Nominal Maximum Aggregate Size*	Minimum Mass Specimen	Maximum Mass Specimen			
mm (in.)	g	g			
37.5 (1 1/2)	4000	4500			
25.0 (1)	3000	3500			
19.0 (3/4)	2000	2500			
12.5 (1/2)	1500	2000			
9.5 (3/8)	1200	1700			
4.75 (No. 4)	1200	1700			

* One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

Procedure – Method A (Internal Balance)

- For the convection-type furnace, preheat the ignition furnace to 538°C (1000°F) or to the temperature determined in the "Correction Factor" section, Step 9 of this method. Manually record the furnace temperature (set point) prior to the initiation of the test if the furnace does not record automatically. For the direct IR irradiation-type furnace, use the same burn profile as used during the correction factor determination.
- 2. Dry the sample to constant mass, according to the FOP for AASHTO T 329; or determine the moisture content of a companion sample in accordance with the FOP for AASHTO T 329.
- 3. Determine and record the mass to the nearest 0.1 g of the sample basket assembly.
- 4. Evenly distribute the sample in the sample basket assembly, taking care to keep the material away from the edges of the basket. Use a spatula or trowel to level the sample.
- 5. Determine and record the total mass of the sample and sample basket assembly to the nearest 0.1 g. Calculate and record the initial mass of the sample (total mass minus the mass of the sample basket assembly) to the nearest 0.1 g. Designate this mass as (M_i).
- 6. Record the correction factor or input into the furnace controller for the specific HMA.
- 7. Input the initial mass of the sample (M_i) into the ignition furnace controller. Verify that the correct mass has been entered.

CAUTION: Operator should wear safety equipment – high temperature gloves, face shield, fire-retardant shop coat – when opening the door to load or unload the sample.

8. Open the chamber door and gently set the sample basket assembly in the furnace. Carefully position the sample basket assembly so it is not in contact with the furnace wall. Close the chamber door and verify that the sample mass displayed on the furnace scale equals the total mass of the sample and sample basket assembly recorded in Step 5 within ± 5 g.

Note 4: Furnace temperature will drop below the set point when the door is opened, but will recover when the door is closed and ignition begins. Sample ignition typically increases the temperature well above the set point – relative to sample size and binder content.

9. Initiate the test by pressing the start button. This will lock the sample chamber and start the combustion blower.

Safety note: Do not attempt to open the furnace door until the asphalt binder has been completely burned off.

10. Allow the test to continue until the stable light and audible stable indicator indicate that the change in mass does not exceed 0.01 percent for three consecutive minutes. Press the stop button. This will unlock the sample chamber and cause the printer to print out the test results.

Note 5: An ending mass loss percentage of 0.02 may be used, if allowed by the agency, when aggregate that exhibits an excessive amount of loss during ignition testing is used.

- 11. Open the chamber door, remove the sample basket assembly, and place on the cooling plate or block. Place the protective cage over the sample basket assembly and allow it to cool to room temperature (approximately 30 minutes).
- 12. Determine and record the total after ignition mass to the nearest 0.1 g. Calculate and record the mass of the sample, after ignition (total after ignition mass minus the mass of the sample basket assembly) to the nearest 0.1 g. Designate this mass as Mf.
- 13. Use the asphalt binder content percentage from the printed ticket. Subtract the moisture content from the printed ticket asphalt binder content and report the difference as the corrected asphalt binder content.

 $P_b = BC - MC - C_f$ (if not input in the furnace controller)

where:

 P_b = the corrected asphalt binder content as a percent by mass of the HMA

BC = asphalt binder content shown on printed ticket

MC = moisture content of the companion HMA sample, percent, as determined by the FOP for AASHTO T 329 (if the specimen was oven-dried prior to initiating the procedure, MC=0)

 $C_{\rm f}$ = correction factor as a percent by mass of the HMA sample

14. Asphalt binder content percentage can also be calculated using the formula from "Method B" Step 16.

Procedure – Method B (External Balance)

- 1. Preheat the ignition furnace to 538°C (1000°F) or to the temperature determined in the "Correction Factor" section, Step 9 of this method. Manually record the furnace temperature (set point) prior to the initiation of the test if the furnace does not record automatically.
- 2. Dry the sample to constant mass, according to the FOP for AASHTO T 329; or determine the moisture content of a companion sample in accordance with the FOP for AASHTO T 329.
- 3. Determine and record the mass of the sample basket assembly to the nearest 0.1 g.
- 4. Place the sample basket(s) in the catch pan. Evenly distribute the sample in the sample basket(s), taking care to keep the material away from the edges of the basket. Use a spatula or trowel to level the sample.
- 5. Determine and record the total mass of the sample and sample basket assembly to the nearest 0.1 g. Calculate and record the initial mass of the sample (total mass minus the mass of the sample basket assembly) to the nearest 0.1 g. Designate this mass as (M_i) .
- 6. Record the correction factor for the specific HMA.
- 7. Open the chamber door and gently set the sample basket assembly in the furnace. Carefully position the sample basket assembly so it is not in contact with the furnace wall. Burn the HMA sample in the furnace for 45 minutes or the length of time determined in the "Correction Factors" section.
- 8. Open the chamber door, remove the sample basket assembly, and place on the cooling plate or block. Place the protective cage over the sample and allow it to cool to room temperature (approximately 30 min).
- 9. Determine and record the total after ignition mass to the nearest 0.1 g. Calculate and record the mass of the sample, after ignition (total after ignition mass minus the mass of the sample basket assembly) to the nearest 0.1 g.
- 10. Place the sample basket assembly back into the furnace.
- 11. Burn the sample for at least 15 minutes after the furnace reaches the set temperature.
- 12. Open the chamber door, remove the sample basket assembly, and place on the cooling plate or block. Place the protective cage over the sample basket assembly and allow it to cool to room temperature (approximately 30 min.).

- 13. Determine and record the total after ignition mass to the nearest 0.1 g. Calculate and record the mass of the sample, after ignition (total after ignition mass minus the mass of the sample basket assembly) to the nearest 0.1 g.
- 14. Repeat Steps 10 through 13 until the change in measured mass of the sample after ignition does not exceed 0.01 percent of the previous sample mass after ignition.

Note56: An ending mass loss percentage of 0.02 may be used, if allowed by the agency, when aggregate that exhibits an excessive amount of loss during ignition testing is used.

- 15. Determine and record the total after ignition mass to the nearest 0.1 g. Calculate and record the mass of the sample, after ignition (total after ignition mass minus the mass of the sample basket assembly) to the nearest 0.1 g. Designate this mass as Mf.
- 16. Calculate the asphalt binder content of the sample as follows:

$$P_b = \frac{M_i - M_f}{M_i} \times 100 - C_f - MC$$

where:

- $P_b =$ the corrected asphalt binder content as a percent by mass of the HMA sample
- $M_{\rm f}$ = the final mass of aggregate remaining after ignition
- M_i = the initial mass of the HMA sample prior to ignition
- C_f = correction factor as a percent by mass of the HMA sample
- MC= moisture content of the companion HMA sample, percent, as determined by the FOP for AASHTO T 329 (if the specimen was oven-dried prior to initiating the procedure, MC=0).

Example

Correction Factor	= 0.42
Moisture Content	= 0.04
Initial Mass of Sample and Basket	= 5292.7
Mass of Basket Assembly	= 2931.5
M_i	= 2361.2
Total Mass after First ignition + basket	= 5154.4
Sample Mass after First ignition	= 2222.9

Sample Mass after additional 15 min ignition = 2222.7

$$\frac{2222.9 - 2222.7}{2222.9} \times 100 = 0.009$$

Not greater than 0.01 percent, so $M_f = 2222.7$

$$P_b = \frac{2361.2 - 2222.7}{2361.2} \times 100 - 0.42 - 0.04 = 5.41\%$$

 $P_{b} = 5.41\%$

Gradation

1. Empty contents of the basket(s) into a flat pan, being careful to capture all material. Use a small wire brush to ensure all residual fines are removed from the baskets.

Note 6: Particle masks are a recommended safety precaution.

2. Perform the gradation analysis in accordance with the FOP for AASHTO T 30.

Report

- Results on forms approved by the agency
- Method of test (A or B)
- Corrected asphalt binder content, P_b, per agency standard
- Correction factor, C_f, to 0.01 percent
- Temperature compensation factor (if applicable)
- Total percent loss
- Sample mass
- Moisture content to 0.01%
- Test temperature

Attach the original printed ticket with all intermediate values (continuous tape) to the report for furnaces with internal balances.

Correction Factors

Asphalt Binder and Aggregate

Asphalt binder content results may be affected by the type of aggregate in the mixture and by the ignition furnace. Asphalt binder and aggregate correction factors must, therefore, be established by testing a set of correction specimens for each Job Mix Formula (JMF) mix design. Each ignition furnace will have its own unique correction factor determined in the location where testing will be performed.

This procedure must be performed before any acceptance testing is completed, and repeated each time there is a change in the mix ingredients or design. Any changes greater than 5 percent in stockpiled aggregate proportions should require a new correction factor. Historical data or scientific studies may be used to determine the correction factor(s) in lieu of using this testing procedure if the testing agency provides reference to the studies/data. All correction samples will be prepared by a central / regional laboratory unless otherwise directed.

Asphalt binder correction factor: A correction factor must be established by testing a set of correction specimens for each Job Mix Formula (JMF). Certain aggregate types may result in unusually high correction factors (> 1.00 percent). Such mixes should be corrected and tested at a lower temperature as described below.

Aggregate correction factor: Due to potential aggregate breakdown during the ignition process, a correction factor will need to be determined for the following conditions:

- a. Aggregates that have a proven history of excessive breakdown
- b. Aggregate from an unknown source.

This correction factor will be used to adjust the acceptance gradation test results obtained according to the FOP for AASHTO T 30.

Procedure

- 1. Obtain samples of aggregate in accordance with the FOP for AASHTO T 2.
- 2. Obtain samples of asphalt binder in accordance with the FOP for AASHTO T 40.

Note 7: Include other additives that may be required by the JMF.

- 3. Prepare an initial, or "butter," mix at the design asphalt binder content. Mix and discard the butter mix prior to mixing any of the correction specimens to ensure accurate asphalt content.
- 4. Prepare two correction specimens at the JMF design asphalt binder content. Aggregate used for correction specimens shall be sampled from material designated for use on the project. An agency approved method will be used to combine aggregate. An additional "blank" specimen shall be batched and tested for aggregate gradation in accordance with

the FOP for AASHTO T 30. The gradation from the "blank" shall fall within the agency specified mix design tolerances.

- 5. Place the freshly mixed specimens directly into the sample basket assembly. If mixed specimens are allowed to cool prior to placement in the sample basket assembly, the specimens must be dried to constant mass according to the FOP for AASHTO T 329. Do not preheat the sample basket assembly.
- 6. Test the specimens in accordance with Method A or Method B of the procedure.
- 7. Once both of the correction specimens have been burned, determine the asphalt binder content for each specimen by calculation or from the printed oven tickets, if available.
- 8. If the difference between the asphalt binder contents of the two specimens exceeds 0.15 percent, repeat with two more specimens and, from the four results, discard the high and low result. Determine the correction factor from the two original or remaining results, as appropriate. Calculate the difference between the actual and measured asphalt binder contents for each specimen to 0.01 percent. The asphalt binder correction factor, C_f, is the average of the differences expressed as a percent by mass of HMA.
- 9. If the asphalt binder correction factor exceeds 1.00 percent, the test temperature must be lowered to 482 ±5°C (900 ±8°F) and new samples must be burned. The temperature for determining the asphalt binder content of HMA samples by this procedure shall be the same temperature determined for the correction samples.
- 10. For the direct IR irradiation-type burn furnaces, the **default** burn profile should be used for most materials. The operator may select burn-profile Option 1 or Option 2 to optimize the burn cycle. The burn profile for testing HMA samples shall be the same burn profile selected for correction samples.

Option 1 is designed for aggregate that requires a large asphalt binder correction factor (greater than 1.00 percent) – typically very soft aggregate (such as dolomite).

Option 2 is designed for samples that may not burn completely using the **default** burn profile.

- 11. Perform a gradation analysis on the residual aggregate in accordance with the FOP for AASHTO T 30, if required. The results will be utilized in developing an "Aggregate Correction Factor" and should be calculated and reported to 0.1 percent.
- 12. From the gradation results subtract the percent passing for each sieve, for each sample, from the percent passing each sieve of the "Blank" specimen gradation results from Step 4.
- 13. Determine the average difference of the two values. If the difference for any single sieve exceeds the allowable difference of that sieve as listed in Table 2, then aggregate

gradation correction factors (equal to the resultant average differences) for all sieves shall be applied to all acceptance gradation test results determined by the FOP for AASHTO T 30. If the 75 μ m (No. 200) is the only sieve outside the limits in Table 2, apply the aggregate correction factor to only the 75 µm (No. 200) sieve.

Permitted Sieving Difference				
Sieve	Allowable Difference			
Sizes larger than or equal to 2.36 mm (No.8)	$\pm 5.0\%$			
Sizes larger than to 75 µm (No.200) and smaller than 2.36	$\pm 3.0\%$			
mm (No.8)				
Sizes 75 µm (No.200) and smaller	$\pm 0.5\%$			

Table 2

Examples:

Sieve Size mm (in.)	Correction Factor Blank Sample % Passing	Correction Factor Sample #1 % Passing	Correction Factor Sample #2 % Passing	Difference 1 / 2	Avg. Diff.	Sieves to adjust
19.0 (3/4)	100	100	100	0/0	0.0	
12.5 (1/2)	86.3	87.4	86.4	-1.1/-0.1	-0.6	
9.5 (3/8)	77.4	76.5	78.8	+0.9/-1.4	-0.2	
4.75 (No. 4)	51.5	53.6	55.9	-2.1/-4.4	-3.2	
2.36 (No. 8)	34.7	36.1	37.2	-1.4/-2.5	-2.0	
01.18 (No. 16)	23.3	25.0	23.9	-1.7/-0.6	-1.2	
0.600 (No. 30)	16.4	19.2	18.1	-2.8/-1.7	-2.2	
0.300 (No. 50)	12.0	11.1	12.7	+0.9/-0.7	+0.1	
0.150 (No. 100)	8.1	9.9	6.3	-1.8/+1.8	0.0	
75 µm (No. 200)	5.5	5.9	6.2	-0.4/-0.7	-0.6	- 0.6

In this example all acceptance gradation test results (FOP for AASHTO T 30) performed on the residual aggregate would have an "Aggregate Correction Factor". This factor would be - 0.6% on the 75 μ m (No. 200) sieve and would be applied to the percent passing 75 μ m (No.200) sieve.

Sieve Size mm (in.)	Correction Factor Blank Sample % Passing	Correction Factor Sample #1 % Passing	Correction Factor Sample #2 % Passing	Difference 1 / 2	Avg. Diff.	Sieves to adjust
19.0 (3/4)	100	100	100	0/0	0.0	0.0
12.5 (1/2)	86.3	87.4	86.4	-1.1/-0.1	-0.6	-0.6
9.5 (3/8)	77.4	76.5	78.8	+0.9/-1.4	-0.2	-0.2
4.75 (No. 4)	51.5	55.6	57.9	-4.1/-6.4	-5.2	-5.2
2.36 (No. 8)	34.7	36.1	37.2	-1.4/-2.5	-2.0	-2.0
01.18 (No. 16)	23.3	25.0	23.9	-1.7/-0.6	-1.2	-1.2
0.600 (No. 30)	16.4	19.2	18.1	-2.8/-1.7	-2.2	-2.2
0.300 (No. 50)	12.0	11.1	12.7	+0.9/-0.7	+0.1	+0.1
0.150 (No. 100)	8.1	9.9	6.3	-1.8/+1.8	0.0	0.0
75 µm (No. 200)	5.5	5.9	6.2	-0.4/-0.7	-0.6	-0.6

In this example all acceptance gradation test results (FOP for AASHTO T 30) performed on the residual aggregate would have an "Aggregate Correction Factor". The correction factor for each sieve must be applied because the average difference on the 4.75mm (No. 4) is outside the tolerance from Table 2.

PERFORMANCE EXAM CHECKLIST

DETERMINING THE ASPHALT BINDER CONTENT OF HOT MIX ASPHALT (HMA) BY THE IGNITION METHOD FOP FOR AASHTO T 308

Pa	rtici	pant Name Exam Date		
Ree	cord	the symbols "P" for passing or "F" for failing on each step of the checklist.		
Pr	oce	dure Element	Trial 1	Trial 2
1.	Ov	en at correct temperature 538°C (1000°F) or correction factor temperature	?	
	Or	: for IR ovens, correct burn profile applied?		
2.	Sai	mple reduced to correct size?		
3.		AA sample or companion moisture sample taken and dried per P for AASHTO T 329?		
4.	Ma	ass of sample basket assembly recorded to 0.1 g?		
5.	Wi	th pan below basket(s) sample evenly distributed in basket(s)?		
6.	Sai	mple conforms to the required mass and mass recorded to 0.1 g?		
7.	Me a. b. c. d. e.	ethod A Initial mass entered into furnace controller? Sample correctly placed into furnace? Test continued until stable indicator signals? Uncorrected binder content obtained on printed ticket? Sample mass determined to nearest 0.1 g.?	 	
8.	Me a. b. c. d. e.	ethod B Sample correctly placed into furnace? Sample burned for 45 min or time determined by correction process? Sample cooled to room temperature? Sample burned to constant mass? Sample mass determined to nearest 0.1 g.?		
	f.	Uncorrected binder content calculated correctly and recorded?		

OVER

ASPHALT

Procedure Ele	ment				Trial 1	Trial 2
 Binder conte 11. Corrected bit 	ent corrected for Co ent corrected for m nder content record the basket(s) carefu	oisture per ded?	T 329 if needed			
Comments:	First attempt:		-	Second attempt: F	ass]	Fail
Examiner Signa	ature			WAQTC #:		

MECHANICAL ANALYSIS OF EXTRACTED AGGREGATE FOP FOR AASHTO T 30

Scope

This procedure covers mechanical analysis of aggregate recovered from bituminous mix samples in accordance with AASHTO T 30-10. This FOP utilizes the aggregate recovered from the ignition oven used in AASHTO T 308. AASHTO T 30 was developed for analysis of extracted aggregate and thus includes references to extracted bitumen and filter element, which do not apply in this FOP.

Sieve analyses determine the gradation or distribution of aggregate particles within a given sample in order to determine compliance with design and production standards.

Apparatus

- Balance or scale: Capacity sufficient for the sample mass, accurate to 0.1 percent of the sample mass or readable to 0.1 g
- Sieves
- Mechanical sieve shaker
- Suitable drying equipment (see FOP for AASHTO T 255)
- Containers and utensils: A pan or vessel of a size sufficient to contain the sample covered with water and to permit vigorous agitation without loss of any part of the sample or water

Sample Sieving

- In this procedure it is required to shake the sample over nested sieves. Sieves are selected to furnish information required by specification.
- Sieves are nested in order of decreasing size from the top to the bottom and the sample, or a portion of the sample, is placed on the top sieve.
- Sieves are shaken in a mechanical shaker for approximately 10 minutes, or the minimum time determined to provide complete separation for the sieve shaker being used. As established by the Time Evaluation.

Time Evaluation

The minimum time requirement should be evaluated for each shaker at least annually by the following method:

- 1. Shake the sample over nested sieves for approximately 10 minutes.
- 2. Provide a snug-fitting pan and cover for each sieve, and hold in a slightly inclined position in one hand.
- 3. Hand-shake each sieve by striking the side of the sieve sharply and with an upward motion against the heel of the other hand at the rate of about 150 times per minute, turning the sieve about one sixth of a revolution at intervals of about 25 strokes.

If more than 0.5 percent by mass of the total sample prior to sieving passes any sieve after one minute of continuous hand sieving adjust shaker time and re-check.

In determining sieving time for sieve sizes larger than 4.75 mm (No. 4), limit the material on the sieve to a single layer of particles.

Overload Determination

- For sieves with openings smaller than 4.75 mm (No. 4), the mass retained on any sieve shall not exceed 6 kg/m² (4 g/in²) of sieving surface.
- For sieves with openings 4.75 mm (No. 4) and larger, the mass (in kg) shall not exceed the product of 2.5 x (sieve opening in mm) x (effective sieving area). See Table 1.

Additional sieves may be necessary to keep from overloading the specified sieves. The sample may also be sieved in increments.

Sieve Size mm (in.)		203 dia	305 dia	305 by 305	350 by 350 (14 × 14)	372 by 580
		(8)	. ,			(16×24)
		0.0285	0.0670	Sieving Area 0.0929	m2 0.1225	0.2158
90	(3 1/2)	*	15,100	20,900	27,600	48,500
75	(3)	*	12,600	17,400	23,000	40,500
63	(2 1/2)	*	10,600	14,600	19,300	34,000
50	(2)	3600	8400	11,600	15,300	27,000
37.5	$(1 \ 1/2)$	2700	6300	8700	11,500	20,200
25.0	(1)	1800	4200	5800	7700	13,500
19.0	(3/4)	1400	3200	4400	5800	10,200
16.0	(5/8)	1100	2700	3700	4900	8600
12.5	(1/2)	890	2100	2900	3800	6700
9.5	(3/8)	670	1600	2200	2900	5100
6.3	(1/4)	440	1100	1500	1900	3400
4.75	(No. 4)	330	800	1100	1500	2600
-4.75	(-No. 4)	170	400	560	740	1300

TABLE 1					
Maximum Allowable Mass of Material Retained on a Sieve, g					
Nominal Sieve Size, mm (in.)					
Exact size is smaller (see AASHTO T 27)					

Mass Verification

1. Using the aggregate sample obtained from the FOP for AASHTO T 308, determine and record the mass of the sample to 0.1 g (M). This mass shall agree with the mass of the aggregate remaining after ignition (M_f from T 308) within 0.10 percent. If the variation exceeds 0.10 percent the results cannot be used for acceptance.

$$\frac{M_{f\,(T308)}\text{-}M_{(T30)}}{M_{f\,(T308)}}\times 100$$

Where:

 $\begin{array}{ll} M_{(T30)} = & 2422.3 \mbox{ g} \\ M_{f(T308)} = & 2422.5 \mbox{ g} \end{array}$

$$\frac{2422.5 \text{ g} - 2422.3 \text{ g}}{2422.5 \text{ g}} \times 100 = 0.01\%$$

Procedure

- 1. Nest a sieve, such as a 2.0 mm (No. 10), above the $75\mu m$ (No. 200) sieve.
- 2. Place the test sample in a container and add sufficient water to cover it. Add a detergent, dispersing agent, or other wetting solution to the water to assure a thorough separation of the material finer than the 75µm (No. 200) sieve from the coarser particles. There should be enough wetting agent to produce a small amount of suds when the sample is agitated. Excessive suds may overflow the sieves and carry material away with them.
- Agitate vigorously to ensure complete separation of the material finer than 75μm (No. 200) from coarser particles and bring the fine material into suspension above the coarser material. When using a mechanical washing device, exercise caution to avoid degradation of the sample.

Note 1: When mechanical washing equipment is used, the introduction of water, agitating, and decanting may be a continuous operation. Use care not to overflow or overload the $75\mu m$ (No. 200) sieve.

- 4. Immediately pour the wash water containing the suspended and dissolved solids over the nested sieves, being careful not to pour out the coarser particles.
- 5. Add a second change of water to the sample remaining in the container, agitate, and repeat Step 5. Repeat the operation until the wash water is reasonably clear. Continue washing until the agent is removed.
- 6. Rinse the material on the nested sieves until water passing through the sieve is reasonably clear.
- 7. Remove the upper sieve, return material retained to the washed sample.
- 8. Rinse the material retained on the 75 μ m (No. 200) sieve until water passing through the sieve is reasonably clear.
- 9. Return all material retained on the 75 μ m (No. 200) sieve to the washed sample by flushing into the washed sample.
- 10. Dry the washed aggregate to constant mass in accordance with the FOP for AASHTO T 255, and then cool prior to sieving. Record the "dry mass after washing".
- 11. Select sieves to furnish information required by the specifications. Nest the sieves in order of decreasing size from top to bottom and place the sample, or a portion of the sample, on the top sieve.
- 12. Place sieves in mechanical shaker and shake for the minimum time determined to provide complete separation for the sieve shaker being used (approximately 10 minutes).

Note 2: Excessive shaking (more than 10 minutes) may result in degradation of the sample.

13. Determine the mass retained on each sieve (individual/cumulative) to the nearest 0.1 g. Ensure that all material trapped in full openings of the sieves are cleaned out and included in the mass retained.

Note 3: For sieves #4 and larger, material trapped in less than a full opening shall be checked by sieving over a full opening. Use coarse wire brushes to clean the 600 μ m (No. 30) and larger sieves, and soft bristle brushes for smaller sieves.

Calculation

- 1. The total mass of the material after sieving should check closely with the original mass of sample placed on the sieves (dry mass after washing). When the masses before and after sieving differ by more than 0.2 percent, do not use the results for acceptance purposes.
- 2. Divide the masses for each sieve (individual/cumulative) by the total dry mass before washing and multiply by 100 to determine the percent retained on and passing each sieve.
- 3. Calculate the percent retained and passing each sieve to the nearest 0.1 percent.
- 4. Apply the Aggregate Correction Factor to the calculated percent passing, as required in the FOP for AASHTO T 308 "Correction Factor" Steps 10 through 12, to obtain the reported percent passing. Report percentages to the nearest 1 percent except for the percent passing the 75 μ m (No. 200) sieve, which shall be reported to the nearest 0.1 percent.

CHECK SUM

Total mass of material after sieving must agree with mass before sieving to within 0.2 percent.

 $\frac{dry\ mass\ after\ washing\ -\ total\ mass\ after\ sieving}{dry\ mass\ after\ washing} \times 100$

PERCENT RETAINED:

Where:

IPR=	Individual Percent Retained
CPR=	Cumulative Percent Retained
M=	Total Dry Sample mass before washing
IMR=	Individual Mass Retained
CMR=	Cumulative Mass Retained

$$IPR = \frac{IMR}{M} \times 100$$
 OR $CPR = \frac{CMR}{M} \times 100$

PERCENT PASSING and REPORTED PERCENT PASSING:

Where:

PP= Calculated Percent Passing

PCP= Previous Calculated Percent Passing

RPP= Reported Percent Passing

$$PP = PCP - IPR$$
 OR $PP = 100 - CPR$

RPP = PP + Aggregate Correction Factor

Example:

Dry mass of total sample, before washing (M): 2422.3 g

Dry mass of sample, after washing out the 75 μ m (No. 200) minus: 2296.2 g

Amount of 75 µm (No. 200) minus washed out: 2422.3 g – 2296.2g = 126.1 g

ASPHALT

WAQTC / IDAHO

Percent Retained $75 \,\mu m$ / No. 200:

 $\frac{63.5 \text{ g}}{2422.3 \text{ g}} \times 100 = 2.6\% \quad or \quad \frac{2289.6 \text{ g}}{2422.3 \text{ g}} \times 100 = 94.5\%$

Percent Passing: 8.1% - 2.6% = 5.5% or 100% - 94.5% = 5.5%

Reported Percent Passing:

5.5% + (-0.6%) = 4.9%Gradation on All Screens

Sieve Size mm (in.)	Mass Retained (g) (MR)	Percent Retained (PR)	Cumulative Mass Retained (g) (CMR)	Cumulative Percent Retained (CPR)	Calc'd Percent Passing (PP)	Agg. Corr. Factor from T 308 (ACF)	Reported Percent Passing (RPP)
19.0 (3/4)	0.0		0.0	0	100.0		100
12.5 (1/2)	346.9	14.3	346.9	14.3	85.7		86
9.5 (3/8)	207.8	8.6	554.7	22.9	77.1		77
4.75 (No. 4)	625.4	25.8	1180.1	48.7	51.3		51
2.36 (No. 8)	416.2	17.2	1596.3	65.9	34.1		34
01.18 (No. 16)	274.2	11.3	1870.5	77.2	22.8		23
0.600 (No. 30)	152.1	6.3	2022.6	83.5	16.5		16
0.300 (No. 50)	107.1	4.4	2129.7	87.9	12.1		12
0.150 (No. 100)	96.4	4.0	2226.1	91.9	8.1		8
75 µm (No. 200)	63.5	2.6	2289.6	94.5	5.5	-0.6	4.9
Pan	5.7		2295.3				

Check sum:

$$\frac{2296.2 \ g - 2295.3 \ g}{2296.2 \ g} \times 100 = 0.04\%$$

This is less than 0.2 percent therefore the results can be used for acceptance purposes.

Report

- Results on forms approved by the agency
- Depending on the agency, this may include:
 - Individual mass retained on each sieve
 - Individual percent retained on each sieve
 - Cumulative mass retained on each sieve
 - Cumulative percent retained on each sieve
 - Aggregate Correction Factor for each sieve from AASHTO T 308
 - Calculated percent passing each sieve to 0.1 percent

Reported percent passing to the nearest 1 percent, except 75 μm (No. 200) sieve to the nearest 0.1 percent.

PERFORMANCE EXAM CHECKLIST

MECHANICAL ANALYSIS OF EXTRACTED AGGREGATE FOP FOR AASHTO T 30

Participant Name	Exam Date
Record the symbols "P" for passing or "F" for failing	g on each step of the checklist.
Procedure Element	Trial 1 Trial
1. Total dry mass determined to 0.1 g	
2. Dry mass agrees with sample mass after ignition AASHTO T 308 within 0.1%?	on (M _f) from
3. Sample placed in container and covered with w	vater?
4. Wetting agent added?	
5. Contents of container agitated vigorously?	
6. Wash water poured through proper nest of two	sieves?
7. Washing continued until wash water is clear an	nd no wetting agent remaining?
8. Retained material returned to washed sample?	
9. Washed material coarser than 75 μ m (No. 200) at 110 \pm 5°C (230 \pm 9°F)?	dried to constant mass
10. Sample cooled to room temperature?	
11. Dry mass after washing determined to 0.1 g?	
12. Material sieved on specified sieves?	
13. Mass of each fraction of aggregate, including r determined and recorded to 0.1 g?	ninus 75 µm (No. 200),
14. Percent passing on each sieve determined corre	ectly to the nearest 0.1%?
15. Aggregate correction factor applied?	
16. Percent passing on each sieve reported correct and nearest 0.1% on the 75 μm (No. 200)?	ly to the nearest 1%
17. Does summation of sieve masses check total w within 0.2 percent?	vashed dry mass to
Comments: First attempt: PassFail	Second attempt: PassFail
Examiner Signature	WAQTC #:

THEORETICAL MAXIMUM SPECIFIC GRAVITY (G_{mm}) AND DENSITY OF HOT MIX ASPHALT (HMA) PAVING MIXTURES FOP FOR AASHTO T 209

Scope

This procedure covers the determination of the maximum specific gravity (G_{mm}) of uncompacted hot mix asphalt (HMA) paving mixtures in accordance with AASHTO T 209-12. Two methods using two different containers – bowl and flask – are covered.

Specimens prepared in the laboratory shall be cured according to agency standards.

Apparatus

- Balance or scale: 10,000 g capacity, readable to 0.1 g
- Container: A glass, metal, or plastic bowl or volumetric flask between 2000 and 10,000 mL as required by the minimum sample size requirements in Table 1 sample and capable of withstanding a partial vacuum
- Container cover: A glass plate or a metal or plastic cover with a vented opening
- Vacuum lid: A transparent lid with a suitable vacuum connection, with a vacuum opening to be covered with a fine wire mesh
- Vacuum pump or water aspirator: Capable of evacuating air from the container to a residual pressure of 4.0 kPa (30 mm Hg)
- Residual pressure manometer or vacuum gauge: Traceable to NIST and capable of measuring residual pressure down to 4.0 kPa (30 mm Hg) or less
- Manometer or vacuum gauge: Capable of measuring the vacuum being applied at the source of the vacuum
- Water bath: A constant-temperature water bath (optional)
- Thermometers: Standardized liquid-in-glass, or electronic digital total immersion type, accurate to 0.5°C (0.9°F)
- Bleeder valve to adjust vacuum
- Timer

Standardization of Flask

Use a volumetric flask that is standardized to accurately determine the mass of water, at $25 \pm 0.5^{\circ}$ C (77 $\pm 0.9^{\circ}$ F), in the flask. The volumetric flask shall be standardized periodically in conformance with procedures established by the agency.

Test Sample Preparation

- 1. Obtain samples in accordance with the FOP for AASHTO T 168 and reduce according to the FOP for AASHTO R 47.
- 2. Test sample size shall conform to the requirements of Table 1. Samples larger than the capacity of the container may be tested in two or more increments. Results will be combined and averaged. If the increments have a specific gravity difference greater than 0.014 the test must be re-run.

Test Sample Size for G _{mm}					
Nominal Maximum*					
Aggregate Size	Minimum Mass				
mm (in.)	g				
37.5 or greater $(1 \frac{1}{2})$	4000				
19 to 25 (3/4 to 1)	2500				
12.5 or smaller $(1/2)$	1500				

Table 1

*Nominal maximum size: One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained.

Procedure – General

Two procedures – bowl and flask – are covered. The first 11 steps are the same for both.

- 1. Separate the particles of the sample, taking care not to fracture the mineral particles, so that the particles of the fine aggregate portion are not larger than 6.3 mm (1/4 in.). If the mixture is not sufficiently soft to be separated manually, place it in a large flat pan and warm in an oven only until it is pliable enough for separation.
- 2. Cool the sample to room temperature.
- 3. Determine and record the mass of the dry bowl or flask, including the cover, to the nearest 0.1 g.
- 4. Place the sample in the bowl or flask.
- 5. Determine and record the mass of the dry bowl or flask, cover, and sample to the nearest 0.1 g.
- 6. Determine and record the mass of the sample by subtracting the mass determined in Step 3 from the mass determined in Step 5. Designate this mass as "A".

7. Add sufficient water at approximately 25° C (77° F) to cover the sample by about 25 mm (1 in.).

Note 1: The release of entrapped air may be facilitated by the addition of a wetting agent. Check with the agency to see if this is permitted and, if it is, for a recommended agent.

- 8. Place the lid on the bowl or flask and attach the vacuum line. To ensure a proper seal between the flask and the lid, wet the O-ring or use a petroleum gel.
- 9. Remove entrapped air by subjecting the contents to a partial vacuum of 3.7 ±0.3 kPa (27.5 ±2.5 mm Hg) residual pressure for 15 ±2 minutes.
- 10. Agitate the container and contents, either continuously by mechanical device or manually by vigorous shaking, at 2 minute intervals. This agitation facilitates the removal of air.
- 11. Turn off the vacuum pump, slowly open the release valve, and remove the lid. When performing the flask method, complete steps 12B through 16B within 10±1 minutes.

Procedure – Bowl

- 12A. Suspend and immerse the bowl and contents in water at $25 \pm 1^{\circ}$ C (77 $\pm 2^{\circ}$ F) for 10 ± 1 minutes. The holder shall be immersed sufficiently to cover both it and the bowl.
- 13A. Determine and record the submerged weight of the bowl and contents to the nearest 0.1 g.
- 14A. Empty and re-submerge the bowl following Step 12A to determine the submerged weight of the bowl to the nearest 0.1 g.
- 15A. Determine and record the submerged weight of the sample the nearest 0.1 g by subtracting the submerged weight of the bowl from the submerged weight determined in Step 13A. Designate this submerged weight as "C".

Procedure – Flask

- 12B. Immediately fill the flask with water without reintroducing air.
- 13B. Stabilize the temperature of the flask and contents in a water bath so that the final temperature is within $25 \pm 1^{\circ}C$ (77 $\pm 2^{\circ}F$).

Note 2: In lieu of placing the flask in the water bath, determine the temperature of the water in the flask and make the appropriate density correction using Table 2 when the temperature is outside $25 \pm 1^{\circ}$ C (77 $\pm 2^{\circ}$ F).

14B. Finish filling the flask, place the cover or a glass plate on the flask, and eliminate all air from the flask.

Note 3: When using the metal flask and cover, place the cover on the flask and push down slowly, forcing excess water out of the hole in the center of the cover. Use care when filling flask to avoid reintroducing air into the water.

- 15B. Towel dry the outside of the flask and cover.
- 16B. Determine and record the mass of the flask, cover, de-aired water, and sample to the nearest 0.1 g. within 10 ± 1 minutes of completion of Step 11. Designate this mass as "E".

Procedure – Mixtures Containing Uncoated Porous Aggregate

If the pores of the aggregates are not thoroughly sealed by a bituminous film, they may become saturated with water during the vacuuming procedure, resulting in an error in maximum density. To determine if this has occurred, complete the general procedure and then:

- 1. Carefully drain water from sample through a towel held over the top of the container to prevent loss of material.
- 2. Spread sample in a flat shallow pan and place before an electric fan to remove surface moisture.
- 3. Determine the mass of the sample when the surface moisture appears to be gone.
- 4. Continue drying and determine the mass of the sample at 15-minute intervals until less than a 0.5 g loss is found between determinations.
- 5. Record the mass as the saturated surface dry mass to the nearest 0.1 g. Designate this mass as "ASSD".
- 6. Calculate, as indicated below, G_{mm}, using "A" and "ASSD", and compare the two values.

Calculation

Calculate the G_{mm} to three decimal places as follows:

Bowl Procedure

$$G_{mm} = \frac{A}{A - C}$$
 or $G_{mm} = \frac{A}{A_{SSD} - C}$

(for mixes containing uncoated aggregate materials)

where:

A = mass of dry sample in air, g

 A_{SSD} = Mass of saturated surface dry sample in air, g

C = submerged weight of sample in water, g

Example:

$$\begin{array}{ll} A & = 1432.7 \ g \\ A_{SSD} & = 1434.2 \ g \\ C & = 848.6 \ g \end{array}$$

$$G_{mm} = \frac{1432.7g}{1432.7g - 848.6g} = 2.453$$
 or $G_{mm} = \frac{1432.7g}{1434.2g - 848.6g} = 2.447$

Flask Procedure

$$G_{mm} = \frac{A}{A+D-E} \times R$$
 or $G_{mm} = \frac{A}{A_{SSD} + D - E} \times R$

(for mixtures containing uncoated materials)

where:

A = Mass of dry sample in air, g

 $A_{SSD} = Mass$ of saturated surface-dry sample in air, g

- D = Mass of flask filled with water at 25°C (77°F), g, determined during the Standardization of Flask procedure
- E = Mass of flask filled with water and the test sample at test temperature, g
- $R = Factor from Table 2 to correct the density of water use when a test temperature is outside 25 \pm 1^{\circ}C (77 \pm 2^{\circ}F)$

Example (in which two increments of a large sample are averaged):

Increment 1	Increment 2
A = 2200.3 g	A = 1960.2 g
D = 7502.5 g	D = 7525.5 g
E = 8812.3 g	E = 8690.8 g
Temperature = $26.2^{\circ}C$	Temperature = 25.0° C

$$G_{mm_1} = \frac{2200.3 \text{ g}}{2200.3 \text{ g} + 7502.5 \text{ g} - 8812.3 \text{ g}} \times 0.99968 = 2.470$$

$$G_{mm_2} = \frac{1960.2 \text{ g}}{1960.2 \text{ g} + 7525.5 \text{ g} - 8690.8 \text{ g}} \times 1.00000 = 2.466$$

Allowable variation is: 0.014

2.470 - 2.466 = 0.004, which is < 0.014, so they can be averaged.

Average

2.470 - 2.466 = 0.004 $0.004 \div 2 = 0.002$ 0.002 + 2.466 = 2.468

Or 2.470 + 2.466 = 4.936 $4.936 \div 2 = 2.468$

°C	° F	" R "	°C	° F	" R "
20.0	68.0	1.00117	23.3	73.9	1.00042
20.1	68.2	1.00114	23.4	74.1	1.00040
20.2	68.4	1.00112	23.5	74.3	1.00037
20.3	68.5	1.00110	23.6	74.5	1.00035
20.4	68.7	1.00108	23.7	74.7	1.00033
20.5	68.9	1.00106	23.8	74.8	1.00030
20.6	69.1	1.00104	23.9	75.0	1.00028
20.7	69.3	1.00102	24.0	75.2	1.00025
20.8	69.4	1.00100	24.1	75.4	1.00023
20.9	69.6	1.00097	24.2	75.6	1.00020
21.0	69.8	1.00095	24.3	75.7	1.00018
21.1	70.0	1.00093	24.4	75.9	1.00015
21.2	70.2	1.00091	24.5	76.1	1.00013
21.3	70.3	1.00089	24.6	76.3	1.00010
21.4	70.5	1.00086	24.7	76.5	1.00007
21.5	70.7	1.00084	24.8	76.6	1.00005
21.6	70.9	1.00082	24.9	76.8	1.00002
21.7	71.1	1.00080	25.0	77.0	1.00000
21.8	71.2	1.00077	25.1	77.2	0.99997
21.9	71.4	1.00075	25.2	77.4	0.99995
22.0	71.6	1.00073	25.3	77.5	0.99992
22.1	71.8	1.00030	25.4	77.7	0.99989
22.2	72.0	1.00068	25.5	77.9	0.99987
22.3	72.1	1.00066	25.6	78.1	0.99984
22.4	72.3	1.00064	25.7	78.3	0.99981
22.5	72.5	1.00061	25.8	78.4	0.99979
22.6	72.7	1.00059	25.9	78.6	0.99976
22.7	72.9	1.00057	26.0	78.8	0.99973
22.8	73.0	1.00054	26.1	79.0	0.99971
22.9	73.2	1.00052	26.2	79.2	0.99968
23.0	73.4	1.00050	26.3	79.3	0.99965
23.1	73.6	1.00047	26.4	79.5	0.99963
23.2	73.8	1.00045	26.5	79.7	0.99960

Table 2Temperature Correction Factor

Theoretical Maximum Density

To calculate the theoretical maximum density at 25° C (77°F) use one of the following formulas. The density of water at 25° C (77°F) is 997.1 in Metric units or 62.245 in English units.

Theoretical maximum density $kg/m^3 = G_{mm} \times 997.1 \ kg/m^3$

 $2.468 \times 997.1 \text{ kg/m}^3 = 2461 \text{ kg/m}^3$

or

Theoretical maximum density $lb/ft^3 = G_{mm} \times 62.245 \ lb/ft^3$

 $2.468 \times 62.245 \text{ lb/ft}^3 = 153.6 \text{ lb/ft}^3$

Report

- Results on forms approved by the agency
- G_{mm} to three decimal places
- Theoretical maximum density to1 kg/m³ (0.1 lb/ft³)

PERFORMANCE EXAM CHECKLIST

THEORETICAL MAXIMUM SPECIFIC GRAVITY AND DENSITY OF HOT MIX **ASPHALT (HMA) PAVING MIXTURES** FOP FOR ÀASHTO T 209

Participant Name Exam Dat		Exam Date			
Re	cord th	e symbols "P" for passing or "F" for failing on each step	of the checklist.		
Pr	ocedu	re Element		Trial 1	Trial 2
1.	Samp	e reduced to correct size?			
2.	Partic	les carefully separated insuring that aggregate is not fr	actured?		
3.	After	separation, fine aggregate particles not larger than 6.3	mm (1/4in)?		
4.	Samp	e at room temperature?			
5.	Mass	of bowl or flask & cover determined to 0.1 g?			
6.	Mass	of sample and bowl or flask & cover determined to 0.1	l g?		
7.	Mass	of sample calculated and conforms to required size?			
8.	Water	at approximately $25^{\circ}C$ (77°F) added to cover sample	?		
9.	Entraj	pped air removed using partial vacuum for $15 \pm 2 \min$?			
10.		iner and contents agitated continuously by mechanical nually by vigorous shaking at intervals of about 2 min			
11.	Bowl	determination:			
	a.	Bowl and contents suspended in water at $25 \pm 1^{\circ}$ C (7' 10 ±1 minutes?	$7 \pm 2^{\circ}$ F) for		
	b.	Submerged weight of bowl and contents determined	to 0.1 g?		
	c.	Submerged weight of empty bowl determined to 0.1	g?		
	d.	Net submerged weight of contents calculated?			
12	Flask	determination:			
	a.	Flask filled with water without reintroducing air into	the sample?		
	b.	Flask then placed in constant temperature water bath	(optional)?		
	c.	Contents at $25 \pm 1^{\circ}$ C (77 $\pm 2^{\circ}$ F) or temperature taken Table 2 in FOP used?	and		
	d.	Mass of filled flask determined to 0.1 g, 10 ± 1 minut removal of entrapped air completed?	es after		

OVER

Procedure Eler	ment				Trial 1	1 Trial 2
	of flask and water edure?	obtained	from the Stand	lardization of Flask		
13. G _{mm} calculate	ed correctly and to	0.001?				
14. Density calcu	ilated correctly an	d to 1 kg	$/m^{3}(0.1 \text{ lb/ft}^{3})?$			
Comments:	First attempt:	Pass	Fail	Second attempt:	Pass	_Fail
Examiner Signa	iture			WAQTC #:		

BULK SPECIFIC GRAVITY (G_{mb}) OF COMPACTED HOT MIX ASPHALT (HMA) USING SATURATED SURFACE-DRY SPECIMENS FOP FOR AASHTO T 166

Scope

This procedure covers the determination of bulk specific gravity (G_{mb}) of compacted hot mix asphalt (HMA) using three methods – A, B, and C – in accordance with AASHTO T 166-12. This FOP is for use on specimens not having open or interconnecting voids or absorbing more than 2.0 percent water by volume, or both. When specimens have open or interconnecting voids or absorbing more than 2.0 percent water by volume, or both. AASHTO T 275 or AASHTO T 331 should be performed.

Overview

- Method A: Suspension
- Method B: Volumeter
- Method C: Rapid test for A or B

Test Specimens

Test specimens may be either laboratory-molded or from HMA pavement. For specimens it is recommended that the diameter be equal to four times the maximum size of the aggregate and the thickness be at least one and one half times the maximum size.

Test specimens from HMA pavement will be sampled according to WAQTC TM 11.

Terminology

Constant Mass: The mass at which further drying at $52 \pm 3^{\circ}$ C ($125 \pm 5^{\circ}$ F) does not alter the mass by more than 0.05 percent. Samples shall initially be dried overnight and that mass determinations shall be made at 2-hour drying intervals. Recently molded laboratory samples that have not been exposed to moisture do not need drying.

Apparatus - Method A (Suspension)

Balance or scale: 5 kg capacity, readable to 0.1 g, and fitted with a suitable suspension apparatus and holder to permit weighing the specimen while suspended in water, conforming to AASHTO M 231.

- Suspension apparatus: Wire of the smallest practical size and constructed to permit the container to be fully immersed.
- Water bath: For immersing the specimen in water while suspended under the balance or scale, and equipped with an overflow outlet for maintaining a constant water level.
- Towel: Damp cloth towel used for surface drying specimens.
- Oven: Capable of maintaining a temperature of $110 \pm 5^{\circ}$ C (230 $\pm 9^{\circ}$ F) for drying the specimens to a constant mass.
- Pan: Pan or other suitable container of known mass, large enough to hold a sample for drying in oven.
- Thermometer: Having a range of 19 to 27°C (66 to 80°F), graduated in 0.1°C (0.2°F) subdivisions.

Procedure - Method A (Suspension)

1. Dry the specimen to constant mass, if required.

Note 1: To expedite the procedure, steps 1 and 2 may be performed last. To further expedite the process, see Method C.

- 2. Cool the specimen in air to $25 \pm 5^{\circ}$ C (77 $\pm 9^{\circ}$ F), and determine and record the dry mass to the nearest 0.1 g. Designate this mass as "A".
- 3. Fill the water bath to overflow level with water at $25 \pm 1^{\circ}$ C (77 $\pm 1.8^{\circ}$ F) and allow the water to stabilize.
- 4. Zero or tare the balance with the immersion apparatus attached, ensuring that the device is not touching the sides or the bottom of the water bath.
- 5. Immerse the specimen shaking to remove the air bubbles. Place the specimen on its side in the suspension apparatus. Leave it immersed for 4 ± 1 minutes.
- 6. Determine and record the submerged weight to the nearest 0.1 g. Designate this submerged weight as "C".
- 7. Remove the sample from the water and quickly surface dry with a damp cloth towel within 5 seconds.
- 8. Zero or tare the balance.
- 9. Immediately determine and record the mass of the SSD specimen to nearest 0.1 g. Designate this mass as "B". Any water that seeps from the specimen during the mass determination is considered part of the saturated specimen.

Calculations - Method A (Suspension)

$$G_{mb} = \frac{A}{B - C}$$

where:

A = Mass of dry specimen in air, g

B = Mass of SSD specimen in air, g

C = Weight of specimen in water at 25 \pm 1°C (77 \pm 1.8°F), g

Percent Water Absorbed (by volume) =
$$\frac{B-A}{B-C} \times 100$$

Example:

$$G_{mb} = \frac{4833.6 \ g}{4842.4 \ g - 2881.3 \ g} = 2.465$$

% Water Absorbed (by volume) =
$$\frac{4842.4 g - 4833.6 g}{4842.4 g - 2881.3 g} \times 100 = 0.4\%$$

Apparatus - Method B (Volumeter)

- Balance or scale: 5 kg capacity, readable to 0.1 g and conforming to AASHTO M 231.
- Water bath: Thermostatically controlled to 25 ± 0.5 °C (77 ± 0.9 °F).
- Thermometer: Range of 19 to 27°C (66 to 80°F), and graduated in 0.1°C (0.2°F) subdivisions.
- Volumeter: Calibrated to 1200 mL or appropriate capacity for test sample and having a tapered lid with a capillary bore.
- Oven: Capable of maintaining a temperature of $110 \pm 5^{\circ}$ C (230 $\pm 9^{\circ}$ F) for drying the specimens to a constant mass.
- Pan: Pan or other suitable container of known mass, large enough to hold a sample for drying in oven.
- Towel: Damp cloth towel used for surface drying specimens.

Procedure - Method B (Volumeter)

1. Dry the specimen to constant mass, if required.

Note 1: To expedite the procedure, steps 1 and 2 may be performed last. To further expedite the process, see Method C.

- 2. Cool the specimen in air to $25 \pm 5^{\circ}$ C (77 $\pm 9^{\circ}$ F), and determine and record the dry mass to the nearest 0.1 g. Designate this mass as "A".
- 3. Immerse the specimen in the temperature-controlled water bath for at least 10 minutes.
- 4. Fill the volumeter with distilled water at $25 \pm 1^{\circ}$ C (77 $\pm 1.8^{\circ}$ F) making sure some water escapes through the capillary bore of the tapered lid. Wipe the volumeter dry. Determine the mass of the volumeter to the nearest 0.1 g. Designate this mass as "D".
- 5. At the end of the ten minute period, remove the specimen from the water bath and quickly surface dry with a damp cloth towel within 5 seconds.
- 6. Immediately determine and record the mass of the SSD specimen to the nearest 0.1 g.
- 7. Designate this mass as "B". Any water that seeps from the specimen during the mass determination is considered part of the saturated specimen.
- 8. Place the specimen in the volumeter and let stand 60 seconds.
- 9. Bring the temperature of the water to $25 \pm 1^{\circ}$ C (77 $\pm 1.8^{\circ}$ F) and cover the volumeter, making sure some water escapes through the capillary bore of the tapered lid.
- 10. Wipe the volumeter dry.
- 11. Determine and record the mass of the volumeter and specimen to the nearest 0.1 g. Designate this mass as "E".

Note 2: Method B is not acceptable for use with specimens that have more than 6% air voids.

Calculations - Method B (Volumeter)

$$G_{mb} = \frac{A}{B+D-E}$$

where:

A = Mass of dry specimen in air, g

B = Mass of SSD specimen in air, g

D = Mass of volumeter filled with water at 25 \pm 1°C (77 \pm 1.8°F), g

E = Mass of volumeter filled with specimen and water, g

Percent Water Absorbed (by volume) =
$$\frac{B-A}{B+D-E} \times 100$$

Example:

$$G_{mb} = \frac{4833.6 \ g}{4842.4 \ g + 2924.4 \ g - 5806.0 \ g} = 2.465$$

% Water Absorbed (by volume) =
$$\frac{4842.4 \text{ g} - 4833.6 \text{ g}}{4842.4 \text{ g} + 2944.4 \text{ g} - 5806.0 \text{ g}} \times 100 = 0.4\%$$

Apparatus - Method C (Rapid Test for Method A or B)

See Methods A or B.

Note 3: This procedure can be used for specimens that are not required to be saved and contain substantial amounts of moisture. Cores can be tested the same day as obtained by this method.

Procedure - Method C (Rapid Test for Method A or B)

- 1. Determine which method to perform, A or B. Proceed with Method A or B, except that the dry mass, A, is determined last. In method A and B, start on Step 3 and complete that procedure, then continue as follows to determine mass "A".
- 2. Place the specimen on a large, flat-bottom pan of known mass.
- 3. Heat at a minimum of 105°C (221°F), until the specimen can be easily separated to the point where the fine aggregate particles are not larger than 6.3 mm (¼ in.). In no case should the Job Mix Formula mixing temperature be exceeded.
- 4. Dry to constant mass. Constant mass is defined as the mass at which further drying at the temperature in Step 3 does not change by more than 0.05% after an additional 2 hour drying time.
- 5. Cool in air to $25 \pm 5^{\circ}$ C (77 $\pm 9^{\circ}$ F).
- 6. Determine and record the mass of the pan and specimen to the nearest 0.1 g.
- 7. Determine and record the mass of the dry specimen to the nearest 0.1 g by subtracting the mass of the pan from the mass determined in Step 6. Designate this mass as "A".

Calculations - Method C (Rapid Test for Method A or B)

Complete the calculations as outlined in Methods A or B, as appropriate.

Report

- Results on forms approved by the agency
- G_{mb} to 3 decimal places
- Absorption to 2 decimal places
- Method performed.

PERFORMANCE EXAM CHECKLIST

BULK SPECIFIC GRAVITY OF COMPACTED HOT MIX ASPHALT (HMA) USING SATURATED SURFACE-DRY SPECIMENS **FOP FOR AASHTO T 166**

Participant Name		ipant Name Exam Date)	
Re	cor	d the symbols "P" for passing or "F" for failing on each step	of the checkli	ist.
Pr	oce	dure Element	Trial 1	Trial 2
Me	etho	d A:		
1.	Ma	ass of dry sample in air determined.		
	a.	Dried overnight at $52 \pm 3^{\circ}$ C ($125 \pm 5^{\circ}$ F) and at successive 2-hour inter to constant mass?	vals	
	b.	Cooled in air to $25 \pm 5^{\circ}$ C (77 $\pm 9^{\circ}$ F)?		
	c.	Dry mass determined to 0.1g?		
2.	Wa	ater at the overflow?		
3.	Ba	lance zeroed?		
4.	Im	mersed weight determined.		
	a.	Water at $25 \pm 1^{\circ}$ C (77 $\pm 1.8^{\circ}$ F)?		
	b.	Immersed, shaken, on side, for 4 ± 1 minutes?		
	c.	Immersed weight determined to 0.1g?		
5.	Sa	mple rapidly surface dried with damp towel(within 5 seconds)?		
6.	Sat	turated surface dry (SSD) mass determined to 0.1g?		
7.	Gm	ab calculated to 0.001?		
8.	Ab	psorption calculated to 0.01 percent		
Me	etho	d B:		
1.	Sp	ecimen dried, cooled, and mass determined as in Method A?		
2.	Sa	aturated surface dry (SSD) mass determined to 0.1g.		
		a. Immersed at least 10 minutes at $25 \pm 1^{\circ}C (77 \pm 1.8^{\circ}F)$?		
		b. Sample rapidly dried with damp towel?		
		c. Specimen mass determined to 0.1g?		
		d. Any water that seeps from specimen included in mass?		
3.		ass of volumeter filled with distilled water at $25 \pm 1^{\circ}C (77 \pm 1.8^{\circ}F)$ termined?		
4.	SS	D specimen placed into volumeter and let stand for 1 minute?		

OVER

Pr	ocedure Element	Trial 1	Trial 2
5.	Temperature of water brought to $25 \pm 1^{\circ}$ C (77 $\pm 1.8^{\circ}$ F) and volumeter covered, allowing some water to escape through the capillary pore of the tapered lid?		
6.	Volumeter wiped dry, and mass of volumeter and contents determined?		
7.	G _{mb} calculated to 0.001?		
8.	Absorption calculated to 0.01 percent?		
M	ethod C/A:		
1.	Immersed weight determined.		
	a. Water at $25 \pm 1^{\circ}$ C (77 $\pm 1.8^{\circ}$ F)?		
	b. Immersed, shaken, on side, for 4 ± 1 minutes?		
	c. Immersed weight determined to 0.1g?		
2.	Sample rapidly surface dried with damp cloth (within 5 seconds)?		
3.	Saturated surface dry mass determined to 0.1g?		
4.	Dry mass determined by:		
	a. Heating in oven at a minimum of 105°C (221°F)?		
	b. Breaking down to $6.3 \text{ mm} (1/4 \text{ in.})$ particles?		
	c. Drying in oven to constant mass (change less than 0.05 percent in 2 hours of additional drying)?		
	d. Cooled in air to 25 ±5°C (77 ±9°F) and mass determined to 0.1g?		
5.	G _{mb} calculated to 0.001?		
6.	Absorption calculated to 0.01?		
M	ethod C/B:		
1.	Saturated surface dry (SSD) mass determined to 0.1g.		
	a. Immersed at least 10 minutes at $25 \pm 1^{\circ}C (77 \pm 1.8^{\circ}F)$?		
	b. Sample rapidly dried with damp towel (within 5 seconds)?		
	c. Specimen mass determined to 0.1g?		
	d. Any water that seeps from specimen included in mass?		
2.	Mass of volumeter filled with distilled water at $25 \pm 1^{\circ}C (77 \pm 1.8^{\circ}F)$ determined to 0.1g?		
3.	SSD specimen placed into volumeter and let stand for 1 minute?		
4.	Temperature of water brought to $25 \pm 1^{\circ}$ C (77 $\pm 1.8^{\circ}$ F) and volumeter covered, allowing some water to escape through the capillary pore of the tapered lid?		
5.	Volumeter wiped dry, and mass of volumeter and contents determined to 0.1g?		

OVER

Procedure Element	Trial 1	Trial 2
6. Dry mass determined by:		
a. Warming in oven at a minimum of 105°C (221°F)?		
b. Breaking down to 6.3 mm (¼ in.) particles?		
c. Drying in oven to constant mass (change less than 0.05 percent in 2 hours of additional drying)?		
d. Cooled in air to $25 \pm 5^{\circ}$ C (77 $\pm 9^{\circ}$ F) and mass determined to 0.1g?		
7. G _{mb} calculated to 0.001?		
8. Absorption calculated to 0.01 percent?		
Comments: First attempt: PassFail Second attempt:	Pass	Fail
Examiner SignatureWAQTC #:		

SAMPLING BITUMINOUS MATERIALS FOP FOR AASHTO T 40

Scope

This procedure covers obtaining samples of liquid bituminous materials in accordance with AASHTO T 40-02. Sampling of solid and semi-solid bituminous materials – included in AASHTO T 40 – is not covered here.

Agencies may be more specific on exactly who samples, where to sample, and what type of sampling device to use.

Warning: Always use appropriate safety equipment and precautions for hot liquids.

Procedure

- 1. Coordinate sampling with contractor or supplier.
- 2. Allow a minimum of 4 L (1 gal) to flow before obtaining a sample(s).
- 3. Obtain samples of:
 - Asphalt binder from hot mix asphalt (HMA) plant from the line between the storage tank and the mixing plant while the plant is in operation, or from the delivery truck.
 - Cutback and emulsified asphalt from distributor spray bar or application device; or from the delivery truck before it is pumped into the distributor. Sample emulsified asphalt at delivery or prior to dilution.

Containers

Sample containers must be new, and the inside may not be washed or rinsed. The outside may be wiped with a clean, dry cloth.

All samples shall be put in 1 L (1 qt) containers and properly identified on the outside of the container with contract number, date sampled, data sheet number, brand and grade of material, and sample number. Include lot and sublot numbers when appropriate.

- Emulsified asphalt: Use wide-mouth plastic jars with screw caps. Protect the samples from freezing since water is a part of the emulsion. The sample container should be completely filled to minimize a skin formation on the sample.
- Asphalt binder and cutbacks: Use metal cans.

Note: The sample container shall not be submerged in solvent, nor shall it be wiped with a solvent saturated cloth. If cleaning is necessary, use a clean dry cloth.

Report

- On forms approved by the agency
- Date
- Time
- Location
- Quantity represented

HOT MIX ASPHALT (HMA) SPECIMENS BY MEANS OF THE SUPERPAVE GYRATORY COMPACTOR FOP FOR AASHTO T 312

Scope

This procedure covers preparing specimens, using samples of plant produced HMA, for determining the mechanical and volumetric properties of HMA in accordance with AASHTO T 312-12.

Apparatus

- Superpave Gyratory Compactor (SGC) meeting the requirements of AASHTO T 312
- Molds meeting the requirements of AASHTO T 312
- Chute, mold funnel or both (Optional)
- Scale meeting the requirements of AASHTO M 231 Class G 5
- Oven, thermostatically controlled, capable of maintaining set temperature within ±3°C (±5°F)
- Thermometers accurate to $\pm 1^{\circ}C$ ($\pm 2^{\circ}F$) between 10 and 232°C (50 450°F)

Note 1: Non-Contact thermometers are not acceptable.

• Miscellaneous pans, spoons, spatulas, hot pads, gloves, paper discs, markers, etc.

Equipment Requirements

The calibration shall be performed on the SGC per the Manufacturer's instructions. See agency requirements for the calibration frequency.

The mold and base plate dimensions shall be checked every twelve months or 80 hours of operation to determine that they are within the tolerances listed in AASHTO T 312.

Equipment Preparation

Prepare the equipment in accordance with manufacturer's recommendations. At a minimum preparation includes:

- Warm-up gyratory compactor
- Verify machine settings
 - Internal Angle: 1.16 ±0.02°
 - Ram Pressure: 600 kPa ±18 kPa
 - Number of gyrations

Note 2: The number of gyrations (N_{des}) is obtained from the Job Mix Formula (JMF).

- Lubricate bearing surfaces
- Prepare recording device as required
- Pre-heat molds and plates at compaction temperature (minimum of 30 min.) or before reuse reheat (minimum of 5 min.)

Note 3: The use of multiple molds will speed up the compaction process.

• Pre-heat chute, mold funnel, spatulas, and other apparatus (not to exceed compaction temperature)

Sample Preparation

Laboratory Prepared HMA

This is a sample produced during the Mix Design process using aggregate and binder that is combined in the laboratory. When designing HMA mixes using the gyratory compactor refer to AASHTO T 312.

Plant Produced HMA

- Determine initial sample size, number of gyrations (N_{des}), and compaction temperature range from the Job Mix Formula (JMF).
- Obtain the sample in accordance with the FOP for AASHTO T 168.
- Reduce the sample in accordance with the FOP for AASHTO R 47.
- The sample size should be such that it results in a compacted specimen that is 115 ±5mm at the desired number of gyrations.

Note 4: Replicate specimens are generally prepared. Refer to agency requirements.

If the material is not in the compaction temperature range:

- 1. Place the appropriate sample mass into a container.
- 2. Spread to a depth of 1 to 2 in. for even heating of mixture.
- 3. Place in the oven until compaction temperature is reached.

Note 5: The material properties may be altered when the times of delivery of the test sample and the placement of the material on the roadway are different.

Compaction Procedure

Follow the manufacturer's recommended loading procedure. This may require the steps below to be performed in a different order. Steps 1 through 8 must be performed before the sample and mold cools below compaction temperature.

- 1. Remove pre-heated mold and plate(s) from the oven (verify mold and plate(s) has been cleaned if previously used).
- 2. Place the base plate and paper disc in bottom of mold.
- 3. Place the mix into the mold in a single lift (care should be taken to avoid segregation or loss of material).
- 4. Level the mix in the mold.
- 5. Place a paper disc and the heated upper plate (if required) on top of the leveled sample.
- 6. Load the mold into the compactor; check settings.
- 7. Start the compaction process.
 - a. Check the pressure (600 ± 18 kPa).
 - b. Check the angle $(1.16 \pm 0.02^{\circ})$.
- 8. Upon completion of the compaction process and record the number of gyrations and specimen height.

Note 6: If the specimen is not 115 ±5mm follow agency requirements.

9. Extrude the specimen from the mold; a brief cooling period may be necessary before fully extruding some specimens to ensure the specimens are not damaged.

Note 7: Clean molds after each use.

- 10. Carefully remove the paper discs.
- 11. Cool the compacted specimen to room temperature.
- 12. Identify the specimen with chalk or other marker.

Report

- On forms approved by the agency
- Number of gyrations
- Specimen height

PERFORMANCE EXAM CHECKLIST

GYRATORY COMPACTION OF HMA MIXTURES FOP FOR AASHTO T 312

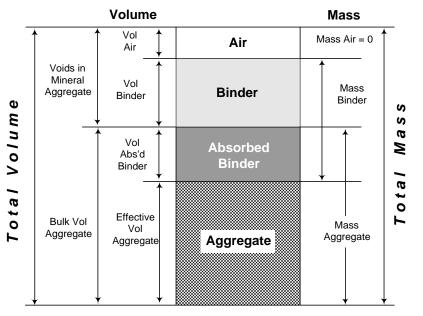
Participant Name Exam Date			
Record the symbols "P" for passing or "F" for failing on each step of the checklist.			
Procedure Element Tr	ial 1	Trial 2	
1. Angle, pressure and number of gyrations set?			
2. Bearing surfaces, rotating base surface, and rollers lubricated?			
3. Representative sample obtained according to the FOP for AASHTO T 168?			
4. Sample reduced according to FOP AASHTO R 47?			
5. HMA heated to compaction temperature?			
6. Mold, base plate, and upper plate heated to compaction temperature?			
 Mold, base plate, and upper plate (if required) removed from oven and paper disk placed on bottom of mold? 			
8. Mix placed into mold in one lift without segregation?			
9. Paper disk placed on top of the HMA?			
10. Mold placed into compactor and upper plate clamped into place?			
11. Pressure applied at 600 kPa ±18 kPa?			
12. Specified number of gyrations applied?			
13. Proper angle confirmed from display?			
14. Compacted specimen removed from mold, paper disc(s) removed, and allowed to cool to room temperature?			
15. HMA sample measured to a height of 115 ±5mm at required gyrations?			
Comments: First attempt: PassFail Second attempt: Pass	F	Fail	
Examiner SignatureWAQTC #:			

Volumetric Properties of Hot Mix Asphalt (HMA) WAQTC TM 13

Scope

This procedure covers the determination of volumetric properties of plant produced Hot Mix Asphalt, i.e., air voids (V_a), voids in mineral aggregate (VMA), voids filled with asphalt binder (VFA), effective asphalt binder content (P_{be}) and Dust to Binder Ratio ($P_{#200}/P_{be}$). The in-production volumetric properties are then compared to agency specifications.

Definition of Terms


- G_{mm} = theoretical maximum specific gravity (Gravity _{mix max})
- G_{mb} = measured bulk specific gravity (Gravity mix bulk)
- G_{sb} = oven-dry bulk specific gravity of aggregate (Gravity _{mix bulk})
- G_{sa} = apparent specific gravity of aggregate (Gravity _{stone apparent})
- G_{se} = effective specific gravity of aggregate (Gravity _{stone effective})
- G_b = specific gravity of the binder (Gravity _{binder})
- V_a = air Voids (Voids _{air})
- VMA = Voids in Mineral Aggregate
- VFA = Voids Filled with Asphalt (binder)
- V_{ba} = absorbed binder volume (Voids _{binder absorbed})
- V_{be} = effective binder volume (Voids _{binder effective})
- P_b = percent binder content (Percent _{binder})
- P_{ba} = percent absorbed binder (Percent _{binder absorbed})
- P_{be} = percent effective binder content (Percent _{binder effective})
- P_s = percent of aggregate (Percent _{stone})
- DP = Dust proportion to effective binder ratio $(P_{0.075}/P_{be})$

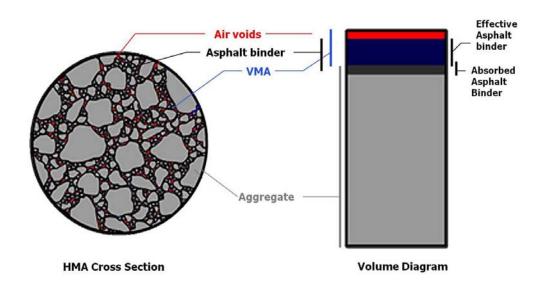
Background

Whether a mix design is developed through a Marshall, Hveem, or Superpave mix design process there are basic volumetric requirements of all. Volumetric properties can include bulk specific gravity, theoretical maximum specific gravity, air voids, and voids in mineral aggregate.

Many agencies specify values of the volumetric properties to ensure optimum performance of the pavement. The HMA must be designed to meet these criteria. In production the HMA is evaluated to determine if the mix still meet the specifications and is consistent with the original mix design (JMF). The production HMA may vary from the mix design and may need to be modified to meet the specified volumetric criteria.

To compare the in-production volumetric properties to agency specifications and the JMF a sample of loose HMA mix is obtained in accordance with FOP for AASHTO T 168. The sample is then compacted in a gyratory compactor to simulate the in-place HMA pavement after it has been placed, compacted, and the volumetric properties of the compacted sample are determined.

HMA Phase Diagram


Each of the properties in the HMA phase diagram can be measured or calculated. For example: The mass of the aggregate is measured; the voids in mineral aggregate (VMA) is calculated; total asphalt binder can be measured but the amount available to act as a binder in the mix must be calculated because it is the quantity left after the aggregate has absorbed some of the asphalt binder.

The volumetric proportions of the asphalt binder and aggregate components of an asphalt mixture and their relationship to the other components are considered. The mass of the

components and their specific gravities are used to determine the volumes of each of the components in the mix. The volumetric properties of a compacted HMA paving mixture: air voids (V_a), voids in mineral aggregate (VMA), voids filled with asphalt binder (VFA), and effective asphalt binder content (P_{be}) provide some indication of the mixtures probable performance.

Volumetric Properties

Volumetric Relationship of HMA Constituents

Required Values

The specific gravities listed in Table 1 and the percent by mass of each of the components in the HMA are needed to determine the volumetric properties. Other values required are also listed. Some of these values are obtained from the JMF and some are measured from a plant produced HMA sample.

	Table 1					
Data	Test Method	Obtained				
G _{sb} - combined aggregate bulk specific gravity	AASHTO T 84 / T 85 or agency approved test method	JMF or performed at the beginning of placement				
G _b – measured specific gravity of the asphalt binder	AASHTO T 228	JMF or from the supplier				
G _{mm} – measured maximum specific gravity of the loose mix	FOP for AASHTO T 209	Performed on the field test sample				
G _{mb} – measured bulk specific gravity of the compacted paving mix	FOP for AASHTO T 166	Performed on the field compacted specimen				
P _b – percent asphalt binder	FOP for AASHTO T 308	Performed on the field test sample				
P. _{#200} – aggregate passing the #200 (0.075 mm) sieve	FOP for AASHTO T 30	Performed on the field test sample				

Air Voids (V_a)

Air voids are the total volume of the small pockets of air between the coated aggregate particles throughout a compacted paving mixture. Appropriate air voids contribute to the stability of the HMA and help the pavement withstand the combined action of environment and traffic loads. The designated percent air voids allows for thermal expansion of the asphalt binder and contributes a cushion for future compaction. Air voids are expressed as a percent of the bulk volume of the compacted mixture (G_{mb}) when compared to the maximum specific gravity (G_{mm}).

$$V_a = 100 \left[\frac{(G_{mm} - G_{mb})}{G_{mm}} \right]$$

Where:

 V_a = air voids in compacted mixture, percent of total volume (report to 0.1) G_{mm} = maximum specific gravity of paving mixture (AASHTO T 209) G_{mb} = bulk specific gravity of compacted mixture (AASHTO T 166)

Percent Aggregate (Stone) (P_s)

 P_s is the percent aggregate (stone) content, expressed as a percentage of the total mass of the sample.

 $P_{\rm s} = 100 - P_{\rm h}$

Where:

- P_s = percent aggregate (stone) (report to 0.1) percent by total weight
- P_b = asphalt binder content (AASHTO T 308)

Voids in the Mineral Aggregate (VMA)

VMA is the volume of intergranular void space between the aggregate particles of the compacted paving mixture that includes the air voids and the effective binder content, expressed as a percent of the total volume of the sample.

$$VMA = 100 - \left[\frac{(G_{mb} \times P_s)}{G_{sb}}\right]$$

Where:

- VMA = voids in mineral aggregate, percent of bulk volume (report to 0.1)
 - G_{sb} = bulk specific gravity of combined aggregate (AASHTO T 85 / T 84 or agency approved method from Job Mix Formula)
 - G_{mb} = bulk specific gravity of compacted mixture (AASHTO T 166)
 - P_s = aggregate content, percent by total weight = $100 P_b$
 - P_b = asphalt binder content (AASHTO T 308) percent by total weight

Voids Filled with Asphalt (binder) (VFA)

VFA is the volume of space between the aggregate particles of the compacted paving mixture filled with asphalt binder, expressed as a percent of the total volume of the sample. The VFA increases as the asphalt binder content increases as it is the percent of voids that are filled with asphalt which doesn't include the absorbed asphalt.

$$VFA = 100 \left[\frac{(VMA - V_a)}{VMA} \right]$$

Where:

VFA = voids filled with asphalt, percent of VMA (report to 1) VMA = voids in mineral aggregate, percent of bulk volume $V_a = air$ voids in compacted mixture, percent of total volume.

Effective Specific Gravity of the Aggregate (Stone) (Gse)

The G_{se} is used to quantify the asphalt binder absorbed into the aggregate particle. This is a calculated value based on the specific gravity of the mixture, G_{mm} , and the specific gravity of the asphalt binder, G_b This measurement includes the volume of the aggregate particle plus the void volume that becomes filled with water during the test soak period minus the volume of the voids that absorb asphalt binder. Effective specific gravity lies between apparent and bulk specific gravity.

 G_{se} is formally defined as the ratio of the mass in air of a unit volume of a permeable material (excluding voids permeable to asphalt binder) at a stated temperature to the mass in air (of equal density) of an equal volume of gas-free distilled water at a stated temperature.

$$G_{se} = \frac{P_s}{\left[\left(\frac{100}{G_{mm}}\right) - \left(\frac{P_b}{G_b}\right)\right]}$$

Where:

 $\begin{array}{lll} G_{se} &= effective \ specific \ gravity \ of \ combined \ aggregate \ (report \ to \ 0.001) \\ P_{s} &= \ aggregate \ content, \ percent \ by \ total \ weight = 100 - P_{b} \\ G_{mm} &= \ maximum \ specific \ gravity \ of \ mix \ (AASHTO \ T \ 209) \\ P_{b} &= \ asphalt \ binder \ content \ (AASHTO \ T \ 308) \ percent \ by \ total \ weight \\ G_{b} &= \ specific \ gravity \ of \ asphalt \ binder \ (JMF \ or \ asphalt \ binder \ supplier) \end{array}$

Percent of Absorbed (asphalt) Binder (P_{ba})

 P_{ba} is the total percent of the asphalt binder that is absorbed into the aggregate, expressed as a percentage of the mass of aggregate rather than as a percentage of the total mass of the mixture. This portion of the asphalt binder content does not contribute to the performance of the mix.

$$P_{ba} = 100 \left[\frac{(G_{se} - G_{sb})}{(G_{sb} \times G_{se})} \right] G_b$$

Where:

 P_{ba} = absorbed asphalt binder (report to 0.1) percent of aggregate

 G_{se} = effective specific gravity of combined aggregate

- G_{sb} = bulk specific gravity of combined aggregate (AASHTO T 85 / T 84 or agency approved method from Job Mix Formula)
- G_b = specific gravity of asphalt binder (JMF or asphalt binder supplier)

Percent of Effective (asphalt) Binder (P_{be})

 P_{be} is the total asphalt binder content of a paving mixture minus the portion of asphalt binder that is lost by absorption into the aggregate particles, expressed as a percentage of the mass of aggregate. It is the portion of the asphalt binder content that remains as a coating on the outside of the aggregate particles. This is the asphalt content that controls the performance of the mix.

$$P_{be} = P_b - \left[\frac{P_{ba}}{100} \times P_s\right]$$

Where:

 P_{be} = effective asphalt binder content, percent by total weight

 P_s = aggregate content, percent by total weight = $100 - P_b$

 P_b = asphalt binder content (AASHTO T 308) percent by total weight

 P_{ba} = absorbed asphalt binder

Dust Proportion – DP (Dust to Effective (asphalt) Binder Ratio)

The DP is the percent passing the No. 200 sieve of the gradation divided by the percent of effective asphalt binder. Excessive dust reduces asphalt binder film thickness on the aggregate which reduces the durability. Insufficient dust may allow excessive asphalt binder film thickness, which may result in a tender, unstable mix.

$$DP = \frac{P_{-\#200}}{P_{be}}$$

Where:

DP = Dust Proportion, (dust-to-binder ratio)

P_{-#200} = aggregate passing the -#200 (0.075 mm) sieve, percent by mass of aggregate (AASHTO T 30)

Mix Design and Production Values

Job Mix Formula

Table 2 includes example data required from the JMF. Some of these values are used in the example calculations.

Note: Some of the targets may change after the HMA is in production based on field test data.

Table 2				
JMF Data				
Asphalt binder grade	PG 64-28			
N _{values}	$N_{ini} = 7$			
	$N_{des} = 75$			
	$N_{max} = 115$			
G _{sb}	2.678			
(combined specific gravity of the aggregate)				
Target P _b	4.75%			
Initial sample mass for	4840 grams			
gyratory specimens				
Mixing temperature range	306 – 312 °F			
Laboratory compaction	286 – 294 °F			
temperature range				
G _b	1.020			
(specific gravity of the asphalt binder)				
	radation			
Sieve Size mm (in.)	Percent Passing			
19.0 (3/4)	100			
12.5 (1/2)	85			
9.5 (3/8)	80			
4.75 (No. 4)	50			
2.36 (No. 8)	30			
01.18 (No. 16)	25			
0.600 (No. 30)	15			
0.300 (No. 50)	10			
0.150 (No. 100)	7			
75 μm (No. 200)	5.0			

Table 2

Sample Test Result

Tables 3 and 4 include data from test results performed on a field sample of HMA used in the example calculations.

Table 3				
Field Data				
	Test method	Example values		
P _b	FOP for AASHTO T 308	4.60%		
G _{mb}	FOP for AASHTO T 166	2.467		
G _{mm}	FOP for AASHTO T 209	2.516		

Table 4					
Sieve Anal	Sieve Analysis				
FOP for AASH	ГО Т 30				
Sieve Size mm (in.)	Percent Passing				
19.0 (3/4)	100				
12.5 (1/2)	86				
9.5 (3/8)	77				
4.75 (No. 4)	51				
2.36 (No. 8)	34				
01.18 (No. 16)	23				
0.600 (No. 30)	16				
0.300 (No. 50)	12				
0.150 (No. 100)	8				
75 µm (No. 200)	4.9				

Sample Calculations

Air Voids (V_a)

$$V_a = 100 \left[\frac{(G_{mm} - G_{mb})}{G_{mm}} \right]$$

$$V_a = 100 \left[\frac{(2.516 - 2.415)}{2.516} \right] = 4.0\%$$

Given:

$$G_{mm} = 2.516$$

 $G_{mb} = 2.415$

Percent Aggregate (Stone) (P_s)

 $P_s = 100 - P_b$

$$P_s = 100 - 4.60\% = 95.40\%$$

Given:

$$P_b = 4.60\%$$

Voids in the Mineral Aggregate (VMA)

$$VMA = 100 - \left[\frac{(G_{mb} \times P_s)}{G_{sb}}\right]$$

$$VMA = 100 - \left[\frac{2.415 \times 95.40\%)}{2.678}\right] = 13.96\%$$

Given:

Voids Filled with Asphalt (binder) (VFA)

$$VFA = 100 \left[\frac{(VMA - V_a)}{VMA} \right]$$

$$VFA = 100 \left[\frac{(13.96\% - 4.0\%)}{13.96\%} \right] = 71\%$$

Effective Specific Gravity of the Aggregate (Stone) (Gse)

$$G_{se} = \frac{P_s}{\left[\left(\frac{100}{G_{mm}}\right) - \left(\frac{P_b}{G_b}\right)\right]}$$

$$G_{se} = \frac{(100 - 4.60\%)}{\left[\left(\frac{100}{2.516}\right) - \left(\frac{4.60\%}{1.020}\right)\right]} =$$

$$G_{se} = \frac{95.40}{39.7456 - 4.5098\%} = 2.707$$

Given:

$$G_b \qquad = 1.020$$

Percent of Absorbed (asphalt) Binder (P_{ba})

$$P_{ba} = 100 \left[\frac{(G_{se} - G_{sb})}{(G_{sb} \times G_{se})} \right] G_b$$

$$P_{ba} = 100 \left[\frac{(2.707 - 2.678)}{(2.678 \times 2.707)} \right] 1.020 =$$

$$P_{ba} = 100 \left[\frac{0.0290}{7.2493} \right] 1.020 = 0.41\%$$

Percent of Effective (asphalt) Binder (P_{be})

$$P_{be} = P_b - \left[\frac{P_{ba}}{100} \times P_s\right]$$

$$P_{be} = 4.6 - \left[\frac{0.41\%}{100} \times (100 - 4.60\%)\right] = 4.21\%$$

Dust Proportion – DP (Dust to Effective (asphalt) Binder Ratio)

$$DP = \frac{P_{-\#200}}{P_{be}}$$

$$DP = \frac{4.9\%}{4.21\%} = 1.16$$

Given:

 $P_{-\#200} = 4.9\%$

Report

- Results on forms approved by the agency
- Air Voids, V_a to 0.1 percent
- Voids in the Mineral Aggregate, VMA to 0.1 percent
- Voids Filled with Asphalt, VFA to nearest whole value
- Effective Specific Gravity of Aggregate (stone), G_{se} to 0.001
- Percent of Absorbed Asphalt (binder), P_{ba} to 0.01
- Percent Effective (asphalt) Binder, P_{be} to 0.01
- Dust Proportion, DP to 0.01

Appendix - Formulas

Air Voids (V_a)

$$V_a = 100 \left[\frac{(G_{mm} - G_{mb})}{G_{mm}} \right]$$

Where:

 V_a = air voids in compacted mixture, percent of total volume (report to 0.1) G_{mm} = maximum specific gravity of paving mixture (AASHTO T 209) G_{mb} = bulk specific gravity of compacted mixture (AASHTO T 166)

Percent Aggregate (Stone) (P_s)

 $P_s = 100 - P_b$

Where:

 P_s = percent aggregate (stone) (report to 0.1) percent by total weight

 P_b = asphalt binder content (AASHTO T 308)

Voids in the Mineral Aggregate (VMA)

$$VMA = 100 - \left[\frac{(G_{mb} \times P_s)}{G_{sb}}\right]$$

Where:

- VMA = voids in mineral aggregate, percent of bulk volume (report to 0.1)
 - G_{sb} = bulk specific gravity of combined aggregate (AASHTO T 85 / T 84 or agency approved method from Job Mix Formula)
 - G_{mb} = bulk specific gravity of compacted mixture (AASHTO T 166)
 - P_s = aggregate content, percent by total weight = $100 P_b$
 - P_b = asphalt binder content (AASHTO T 308) percent by total weight

Voids Filled with Asphalt (binder) (VFA)

$$VFA = 100 \left[\frac{(VMA - V_a)}{VMA} \right]$$

Where:

VFA = voids filled with asphalt, percent of VMA (report to 1)

VMA = voids in mineral aggregate, percent of bulk volume

V_a = air voids in compacted mixture, percent of total volume.

Effective Specific Gravity of the Aggregate (Stone) (Gse)

$$G_{se} = \frac{P_s}{\left[\left(\frac{100}{G_{mm}}\right) - \left(\frac{P_b}{G_b}\right)\right]}$$

Where:

 G_{se} = effective specific gravity of combined aggregate (report to 0.001)

 P_s = aggregate content, percent by total weight = $100 - P_b$

 G_{mm} = maximum specific gravity of mix (AASHTO T 209)

 P_b = asphalt binder content (AASHTO T 308) percent by total weight

 G_b = specific gravity of asphalt binder (JMF or asphalt binder supplier)

Percent of Absorbed (asphalt) Binder (P_{ba})

$$P_{ba} = 100 \left[\frac{(G_{se} - G_{sb})}{(G_{sb} \times G_{se})} \right] G_b$$

Where:

 P_{ba} = absorbed asphalt binder (report to 0.1) percent of aggregate

 G_{se} = effective specific gravity of combined aggregate

 G_{sb} = bulk specific gravity of combined aggregate (AASHTO T 85 from Job Mix Formula)

 G_b = specific gravity of asphalt binder (JMF or asphalt binder supplier)

Percent of Effective (asphalt) Binder (P_{be})

$$P_{be} = P_b - \left[\frac{P_{ba}}{100} \times P_s\right]$$

Where:

 P_{be} = effective asphalt binder content, percent by total weight

 P_s = aggregate content, percent by total weight = $100 - P_b$

 P_b = asphalt binder content (AASHTO T 308) percent by total weight

 $P_{ba} =$ absorbed asphalt binder

Dust Proportion – DP (Dust to Effective (asphalt) Binder Ratio)

$$DP = \frac{P_{-\#200}}{P_{be}}$$

Where:

DP = Dust Proportion, (dust-to-binder ratio)

 $P_{-#200}$ = aggregate passing the -#200 (0.075 mm) sieve, percent by mass of aggregate (AASHTO T 30)

SAMPLING HOT MIX ASPHALT (HMA) AFTER COMPACTION (OBTAINING CORES)

WAQTC TM 11

Scope

- This method describes the process for removal of a core sample of compacted hot mix asphalt (HMA) from a pavement for laboratory testing. Cores may range in diameter from 2 in. to 12 in.
- The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.
- Safety— This method does not purport to address all of the safety problems associated with its use. This test method involves potentially hazardous conditions.

Significance

- Samples obtained in accordance with the procedure may be used for measuring pavement thickness and density. Additional testing may be performed as required by the agency.
- When cores are used to determine nuclear gauge correlation, see WAQTC TM 8.
 - Nuclear gauges see WAQTC TM 8
 - Electronic gauges see AASHTO TP 68
- When cores are used to determine pavement density, the Bulk Specific Gravity (G_{mb}) is determined according to WAQTC FOP for AASHTO T 166 / T 275.

Apparatus

- Coring Machine A motor driven core machine shall be used to obtain the sample. The device shall be capable of obtaining a core to the full depth of the HMA and mounted on a platform such that the core barrel is perpendicular to the pavement during the cutting process. A Core Drill Machine of sufficient horsepower and depth to minimize distortion of the compacted cores of HMA.
- Core Bit The cutting edge of the core drill bit shall be of hardened steel or other suitable material with diamond chips embedded in the metal cutting edge. The core barrel inside diameter shall be as specified.
- Separation Equipment –A saw or other method(s) that provides a clean smooth plane representing the layer to be tested.

• Retrieval Device – A device for removing core samples that will preserve the integrity of the core. The device may be a steel rod of suitable length and with a diameter that will fit into the space between the core and the pavement material. There may be a 90 degree bend at the top to form a handle and a 90 degree bend at the bottom, approximately 2 in. (50 mm) long, forming a hook to assist in the retrieval of the core or other suitable device.

Material

• Cooling agent such as: water, ice, dry ice, or liquid nitrogen.

Test Site Location

- The number of cores obtained shall be determined by the test procedure or agency requirements.
- Core location(s) shall be determined by the agency.

Procedure

- 1. For freshly compacted HMA, the core shall be taken when the material has had sufficient amount of time to cool to prevent damage to the core.
- 2. To accelerate the coring process, a cooling agent may be used.
- 3. Place the coring machine such that the core bit is over the selected location.
- 4. Provide a means such as water or air to aid in the removal of cuttings and to minimize the generation of heat caused by friction.
- 5. Keep the core bit perpendicular to the HMA surface during the coring process. *Note #1*: If any portion of the coring machine shifts during the operation, the core may break or distort.
- 6. Apply constant downward pressure on the core bit. Failure to apply constant pressure, or too much pressure, may cause the bit to bind or distort the core.
- 7. Continue the coring operation until the desired depth is achieved.
- 8. Use a retrieval device to obtain the core.
- 9. Clearly label the core.

Filling Core Holes

• The hole made from the coring operation shall be filled with a material that will not become dislodged.

Transporting

- Transport cores on a smooth surface, top side down in a container(s) that prevents damage from jarring, rolling or impact with any object.
- Prevent cores from freezing or from excessive heat, 54° C (130°F), during transport.

Note #2: In extreme ambient temperature conditions, an insulated container should be used during transport.

Layer Separation

• Separate two or more pavement courses, lifts, or layers; by the use of separation equipment on the designated lift line.

Note #3: Lift lines are often more visible by rolling the core on a flat surface.

Thickness Determination

• Measure the thickness of the designated lift to 0.10 in. (3 mm). Three or more measurements shall be taken around the lift and averaged.

Report

- On forms approved by the agency
- Date
- Coring location
- The lift / layer being evaluated
- Material type
- Average thickness

SAMPLING FRESHLY MIXED CONCRETE FOP FOR WAQTC TM 2

Scope

This method covers procedures for obtaining representative samples of fresh concrete delivered to the project site. The method includes sampling from stationary, paving and truck mixers, and from agitating and non-agitating equipment used to transport central mixed concrete.

This method also covers the removal of large aggregate particles by wet sieving.

Sampling concrete may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices.

Warning—Fresh Hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.

Apparatus

- Wheelbarrow
- Cover for wheelbarrow (plastic, canvas, or burlap)
- Buckets
- Shovel
- Cleaning equipment, including scrub brush, rubber gloves, water
- Apparatus for wet sieving, including: a sieve(s), conforming to AASHTO M 92, of suitable size and conveniently arranged and supported so that the sieve can be shaken rapidly by hand.

Procedure

- 1. Use every precaution in order to obtain samples representative of the true nature and condition of the concrete being placed being careful not to obtain samples from the very first or very last portions of the batch. The size of the sample will be 1.5 times the volume of concrete required for the specified testing, but not less than 0.03 m³ (1 ft³).
- *Note 1:* Sampling should normally be performed as the concrete is delivered from the mixer to the conveying vehicle used to transport the concrete to the forms; however, specifications may require other points of sampling, such as at the discharge of a concrete pump.

• Sampling from stationary mixers, except paving mixers

Sample the concrete after a minimum of $1/2 \text{ m}^3 (1/2 \text{ yd}^3)$ of concrete has been discharged. Perform sampling by passing a receptacle completely through the discharge stream, or by completely diverting the discharge into a sample container. Take care not to restrict the flow of concrete from the mixer, container, or transportation unit so as to cause segregation. These requirements apply to both tilting and nontilting mixers.

• Sampling from paving mixers

Sample after the contents of the paving mixer have been discharged. Obtain material from at least five different locations in the pile and combine into one test sample. Avoid contamination with subgrade material or prolonged contact with absorptive subgrade. To preclude contamination or absorption by the subgrade, the concrete may be sampled by placing a shallow container on the subgrade and discharging the concrete across the container.

• Sampling from revolving drum truck mixers or agitators

Sample the concrete after a minimum of $1/2 \text{ m}^3 (1/2 \text{ yd}^3)$ of concrete has been discharged. Obtain samples after all of the water has been added to the mixer. Do not obtain samples from the very first or last portions of the batch discharge. Sample by repeatedly passing a receptacle through the entire discharge stream or by completely diverting the discharge into a sample container. Regulate the rate of discharge of the batch by the rate of revolution of the drum and not by the size of the gate opening.

• Sampling from open-top truck mixers, agitators, non-agitating equipment or other types of open-top containers

Sample by whichever of the procedures described above is most applicable under the given conditions.

• Sampling from pump or conveyor placement systems

Sample after a minimum of $1/2 \text{ m}^3 (1/2 \text{ yd}^3)$ of concrete has been discharged. Obtain samples after all of the pump slurry has been eliminated. Sample by repeatedly passing a receptacle through the entire discharge system or by completely diverting the discharge into a sample container. Do not lower the pump arm from the placement position to ground level for ease of sampling, as it may modify the air content of the concrete being sampled. Do not obtain samples from the very first or last portions of the batch discharge.

- 2. Transport samples to the place where fresh concrete tests are to be performed and specimens are to be molded. They shall then be combined and remixed with a shovel the minimum amount necessary to ensure uniformity. Protect the sample from direct sunlight, wind, rain, and sources of contamination.
- 3. Complete test for temperature and start tests for slump and air content within 5 minutes of obtaining the sample. Start molding specimens for strength tests within 15 minutes of obtaining the sample. Complete the test methods as expeditiously as possible.

Wet Sieving

When required due to oversize aggregate, the concrete sample shall be wet sieved, after transporting but prior to remixing, for slump testing, air content testing or molding test specimens, by the following:

- 1. Place the sieve designated by the test procedure over the dampened sample container.
- 2. Pass the concrete over the designated sieve. Do not overload the sieve (one particle thick).
- 3. Shake or vibrate the sieve until no more material passes the sieve. A horizontal back and forth motion is preferred.
- 4. Discard oversize material including all adherent mortar.
- 5. Repeat until sample of sufficient size is obtained. Mortar adhering to the wet-sieving equipment shall be included with the sample.
- 6. Using a shovel, remix the sample the minimum amount necessary to ensure uniformity.
- *Note 2:* Wet sieving is not allowed for samples being used for density determinations according to the FOP for AASHTO T 121.

Report

- On forms approved by the agency
- Date
- Time
- Location
- Quantity represented

PERFORMANCE EXAM CHECKLIST

SAMPLING FRESHLY MIXED CONCRETE FOP FOR WAQTC TM 2

Pa	rticipant NameExam Date		
Re	cord the symbols "P" for passing or "F" for failing on each step of the checklist.		
Pr	ocedure Element	Trial 1	Trial 2
1.	 Obtain a representative sample from drum mixer: a) Concrete sampled after 1/2 m³ (1/2 yd³) discharged? b) Receptacle passed through entire discharge stream or discharge stream completely diverted into sampling container? 		
2.	Obtain a representative sample from a paving mixer:a) Concrete sampled after all the concrete has been discharged?b) Material obtained from at least 5 different locations in the pile?c) Avoid contaminating the sample with sub-grade materials.		
3.	 Obtain a representative sample from a pump: a) Concrete sampled after 1/2 m³ (1/2 yd³) has been discharged? b) All the pump slurry is out of the lines? c) Receptacle passed through entire discharge stream or discharge stream completely diverted into sampling container? d) Do not lower the pump arm from the placement position. 		
4.	Samples transported to place of testing?		
5.	Sample(s) combined, or remixed, or both?		
6.	Sample protected?		
7.	Minimum size of sample used for strength tests 0.03 m ³ (1ft ³)?		
8.	Completed temperature test within 5 minutes of obtaining sample?		
9.	Start tests for slump and air within 5 minutes of obtaining sample?		
10.	Start molding cylinders within 15 minutes of obtaining sample?		
11.	Protect sample against rapid evaporation and contamination?		
12.	 Wet Sieving: a) Required sieve size determined for test method to be performed? b) Concrete placed on sieve and doesn't overload the sieve. c) Sieve shaken until no more material passes the sieve. d) Sieving continued until required testing size obtained. 		

OVER

CONCRETE		WA	QTC / IDAHO	WAQTC TM 2 (09)
	nent sized aggregate d ple remixed.	iscarded.		Trial 1 Trial 2
Comments:	First attempt:	Pass	Fail	Second attempt: PassFail
Examiner Signatu	ire			_WAQTC #:

This checklist is derived, in part, from copyrighted material printed in ACI CP-1, published by the American Concrete Institute.

TEMPERATURE OF FRESHLY MIXED PORTLAND CEMENT CONCRETE FOP FOR AASHTO T 309

Scope

This procedure covers the determination of the temperature of freshly mixed Portland Cement Concrete in accordance with AASHTO T 309-11.

Warning—Fresh Hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.

Apparatus

- Container The container shall be made of non-absorptive material and large enough to provide at least 75 mm (3 in.) of concrete in all directions around the sensor; concrete cover must also be a least three times the nominal maximum size of the coarse aggregate.
- Temperature measuring device The temperature measuring device shall be calibrated and capable of measuring the temperature of the freshly mixed concrete to ±0.5°C (±1°F) throughout the temperature range likely to be encountered. Partial immersion liquid-inglass thermometers (and possibly other types) shall have a permanent mark to which the device must be immersed without applying a correction factor.
- Reference temperature measuring device The reference temperature measuring device shall be a thermometric device readable to 0.2°C (0.5°F) that has been verified and calibrated. The calibration certificate or report indicating conformance to the requirements of ASTM E 77 shall be available for inspection.

Calibration of Temperature Measuring Device

Each temperature measuring device shall be verified for accuracy annually and whenever there is a question of accuracy. Calibration shall be performed by comparing readings on the temperature measuring device with another calibrated instrument at two temperatures at least 15°C or 27°F apart.

Sample Locations and Times

The temperature of freshly mixed concrete may be measured in the transporting equipment, in forms, or in sample containers, provided the sensor of the temperature measuring device has at least 75 mm (3 in.) of concrete cover in all direction around it.

Complete the temperature measurement of the freshly mixed concrete within 5 minutes of obtaining the sample.

Concrete containing aggregate of a nominal maximum size greater than 75 mm (3 in.) may require up to 20 minutes for the transfer of heat from the aggregate to the mortar after batching.

Procedure

- 1. Dampen the sample container.
- 2. Obtain the sample in accordance with the FOP for WAQTC TM 2.
- 3. Place sensor of the temperature measuring device in the freshly mixed concrete so that it has at least 75 mm (3 in.) of concrete cover in all directions around it.
- 4. Gently press the concrete in around the sensor of the temperature measuring device at the surface of the concrete so that air cannot reach the sensor.
- 5. Leave the sensor of the temperature measuring device in the freshly mixed concrete for a minimum of two minutes, or until the temperature reading stabilizes.
- 6. Complete the temperature measurement of the freshly mixed concrete within 5 minutes of obtaining the sample.
- 7. Read and record the temperature to the nearest $0.5^{\circ}C$ (1°F).

Report

- Results on forms approved by the agency
- Measured temperature of the freshly mixed concrete to the nearest $0.5^{\circ}C(1^{\circ}F)$

PERFORMANCE EXAM CHECKLIST

TEMPERATURE OF FRESHLY MIXED CONCRETE FOP FOR AASHTO T 309

Participant Name	_ Exam Date
Record the symbols "P" for passing or "F" for failing on each s	tep of the checklist.
Procedure Element	Trial 1 Trial 2
1. Obtain sample of concrete large enough to provide a min 75 mm (3") of concrete cover around sensor in all dir	
 Place temperature measuring device in sample with a mir (3") cover around sensor? 	nimum of 75 mm
3. Gently press concrete around thermometer?	
4. Read temperature after a minimum of 2 minutes or when temperature reading stabilizes?	
5. Complete temperature measurement within 5 minutes of obtaining sample?	
6. Record temperature to nearest $0.5^{\circ}C (1^{\circ}F)$?	
Comments: First attempt: PassFail	Second attempt: PassFail
Examiner SignatureW	/AQTC #:

This checklist is derived, in part, from copyrighted material printed in ACI CP-1, published by the American Concrete Institute.

SLUMP OF HYDRAULIC CEMENT CONCRETE FOP FOR AASHTO T 119

Scope

This procedure provides instructions for determining the slump of hydraulic cement concrete in accordance with AASHTO T 119-11. It is not applicable to non-plastic and non-cohesive concrete. With concrete using 37.5mm ($1\frac{1}{2}$ in.) or larger aggregate, the +37.5mm ($1\frac{1}{2}$ in.) aggregate must be removed in accordance with the FOP for WAQTC TM 2.

Warning—Fresh Hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.

Apparatus

- Mold: The metal mold shall be provided with foot pieces and handles. The mold must be constructed without a seam. The interior of the mold shall be relatively smooth and free from projections such as protruding rivets. The mold shall be free from dents. A mold that clamps to a rigid nonabsorbent base plate is acceptable provided the clamping arrangement is such that it can be fully released without movement of the mold.
- Mold: If other than metal, it must conform to AASHTO T 119, Sections 5.1.2.1 & 5.1.2.2.
- Tamping rod: 16 mm (5/8 in.) diameter and approximately 600 mm (24 in.) long, having a hemispherical tip the same diameter as the rod. (Hemispherical means "half a sphere"; the tip is rounded like half of a ball.)
- Scoop: a receptacle of appropriate size so that each representative increment of the concrete sample can be placed in the container without spillage.
- Tape measure or ruler with at least 5 mm or 1/8 in. graduations
- Base: Flat, rigid, non-absorbent moistened surface on which to set the slump cone

Procedure

1. Obtain the sample in accordance with the FOP for WAQTC TM 2. If any aggregate 37.5mm (1½ in.) or larger aggregate is present, aggregate must be removed in accordance with the Wet Sieving portion of the FOP for WAQTC TM 2.

Note 1: Testing shall begin within five minutes of obtaining the sample.

- 2. Dampen the inside of the cone and place it on a dampened, rigid, nonabsorbent surface that is level and firm.
- 3. Stand on both foot pieces in order to hold the mold firmly in place.
- 4. Use the scoop to fill the cone 1/3 full by volume, to a depth of approximately 67 mm (2 5/8 in.) by depth.

5. Consolidate the layer with 25 strokes of the tamping rod, using the rounded end. Distribute the strokes evenly over the entire cross section of the concrete.

For this bottom layer, incline the rod slightly and make approximately half the strokes near the perimeter, and then progress with vertical strokes, spiraling toward the center.

- 6. Use the scoop to fill the cone 2/3 full by volume, to a depth of approximately 155 mm (6 1/8 in.) by depth.
- 7. Consolidate this layer with 25 strokes of the tamping rod, just penetrating into the bottom layer. Distribute the strokes evenly.
- 8. Use the scoop to fill the cone to overflowing.
- 9. Consolidate this layer with 25 strokes of the tamping rod, just penetrating into the second layer. Distribute the strokes evenly. If the concrete falls below the top of the cone, stop, add more concrete, and continue rodding for a total of 25 strokes. Keep an excess of concrete above the top of the mold at all times. Distribute strokes evenly as before.
- 10. Strike off the top surface of concrete with a screeding and rolling motion of the tamping rod.
- 11. Clean overflow concrete away from the base of the mold.
- 12. Remove the mold from the concrete by raising it carefully in a vertical direction. Raise the mold 300 mm (12 in.) in 5 ± 2 seconds by a steady upward lift with no lateral or torsional (twisting) motion being imparted to the concrete.

The entire operation from the start of the filling through removal of the mold shall be carried out without interruption and shall be completed within an elapsed time of $2 \frac{1}{2}$ minutes. Immediately measure the slump by:

- 13. Invert the slump cone and set it next to the specimen.
- 14. Lay the tamping rod across the mold so that it is over the test specimen.
- 15. Measure the distance between the bottom of the rod and the displaced original center of the top of the specimen to the nearest 5 mm (1/4 in.).

Note 2: If a decided falling away or shearing off of concrete from one side or portion of the mass occurs, disregard the test and make a new test on another portion of the sample. If two consecutive tests on a sample of concrete show a falling away or shearing off of a portion of the concrete from the mass of the specimen, the concrete probably lacks the plasticity and cohesiveness necessary for the slump test to be applicable.

16. Discard the tested sample.

Report

- Results on forms approved by the agency
- Slump to the nearest 5 mm (1/4 in.).

PERFORMANCE EXAM CHECKLIST

SLUMP OF HYDRAULIC CEMENT CONCRETE FOP FOR AASHTO T 119

Par	ticipant Name E	xam Date				
Record the symbols "P" for passing or "F" for failing on each step of the checklist.						
Pr	ocedure Element		Trial 1	Trial 2		
Fir	rst layer					
1.	Cone and floor or base plate dampened?					
2.	Cone held firmly against the base by standing on the ty pieces? Cone not allowed to move in any way during					
3.	Representative sample scooped into the cone, mov perimeter of the mold to evenly distribute the concrete					
4.	Cone approximately one third (by volume), 67 mm (2	5/8 in) deep?				
5.	Layer rodded throughout its depth 25 times with hemis end of rod, uniformly distributing strokes?	spherical				
Sec	cond layer					
6.	Representative samples scooped into the cone, moving perimeter of the mold to evenly distribute the concrete					
7.	Cone filled approximately two thirds (by volume), 155 mm (6 1/8 in), deep?					
8.	Layer rodded throughout its depth 25 times with hemis end of rod, uniformly distributing strokes, just penetra underlying layer?					
Th	ird layer					
9.	Representative sample scooped into the cone, moving perimeter of the mold to evenly distribute the concrete					
10.	Cone filled to just over the top of the cone?					
11.	Layer rodded throughout its depth 25 times with hemis end of rod, uniformly distributing strokes, just penetra underlying layer?					
12.	Excess concrete kept above the mold at all times while	rodding?				
13.	Concrete struck off level with top of cone using tamping	ng rod?				
14.	Concrete removed from around the outside bottom of the	the cone?				

OVER

Procedure Element	Trial 1	Trial 2
15. Cone lifted upward 300 mm (12in) in one smooth motion, without a lateral or twisting motion of the cone, in 5 ± 2 seconds?		
16. Test performed from start of filling through removal of the mold within 2 1/2 minutes?		
17. Slump immediately measured to the nearest 5 mm $(1/4 \text{ in})$ from the top of the cone to the displaced original center of the top surface of the specimen?		
Comments: First attempt: PassFail Second attempt:	PassF	Fail
Examiner SignatureWAQTC #:		
This checklist is derived, in part, from copyrighted material printed in ACI CP-1, pul American Concrete Institute.	blished by the	e

DENSITY (UNIT WEIGHT), YIELD, AND AIR CONTENT (GRAVIMETRIC) OF CONCRETE FOP FOR AASHTO T 121

Scope

This procedure covers the determination of density, or unit weight, of freshly mixed concrete in accordance with AASHTO T 121-12. It also provides formulas for calculating the volume of concrete produced from a mixture of known quantities of component materials, and provides a method for calculating cement content and cementitious material content – the mass of cement or cementitious material per unit volume of concrete. A procedure for calculating water/cement ratio is also covered.

Warning—Fresh Hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.

Apparatus

- Measure: May be the bowl portion of the air meter used for determining air content under the FOP for AASHTO T 152. Otherwise, it shall be a metal cylindrical container meeting the requirements of AASHTO T 121. The capacity and dimensions of the measure shall conform to those specified in Table 1.
- Balance or scale: Accurate to within 45 g (0.1 lb) or 0.3 percent of the test load, whichever is greater, at any point within the range of use.
- Tamping rod: 16 mm (5/8 in.) diameter and approximately 600 mm (24 in.) long, having a hemispherical tip the same diameter as the rod. (Hemispherical means "half a sphere"; the tip is rounded like half of a ball.)
- Vibrator: 7000 vibrations per minute, 19 to 38 mm (3/4 to 1 1/2 in.) in diameter, and the length of the shaft shall be at least 610 mm (24 in.).
- Scoop: a receptacle of appropriate size so that each representative increment of the concrete sample can be placed in the container without spillage.
- Strike-off plate: A flat rectangular metal plate at least 6 mm (1/4 in.) thick or a glass or acrylic plate at least 12 mm (1/2 in.) thick, with a length and width at least 50 mm (2 in.) greater than the diameter of the measure with which it is to be used. The edges of the plate shall be straight and smooth within tolerance of 1.5 mm (1/16 in.).
- Mallet: With a rubber or rawhide head having a mass of 0.57 ±0.23 kg (1.25 ±0.5 lb) for use with measures of 0.014 m³ (1/2 ft³) or less, or having a mass of 1.02 ±0.23 kg (2.25 ±0.5 lb) for use with measures of 0.028 m³ (1 ft³).

Dimensions of Measures						
Capacity	Inside Diameter			Thicknesses (in.)	Nominal Maximum Size of Coarse Aggregate**	
$m^{3}(ft^{3})$	mm (in.)	mm (in.)	Bottom	Wall	mm (in.)	
0.0071	203 ± 2.54	213 ±2.54	5.1	3.0	25	
(1/4)*	(8.0 ± 0.1)	(8.4 ±0.1)	(0.20)	(0.12)	(1)	
0.0142	254 ± 2.54	279 ± 2.54	5.1	3.0	50	
(1/2)	(10.0 ± 0.1)	(11.0 ±0.1)	(0.20)	(0.12)	(2)	
0.0283	356 ± 2.54	284 ± 2.54	5.1	3.0	76	
(1)	(14.0 ± 0.1)	(11.2 ± 0.1)	(0.20)	(0.12)	(3)	

Table 1			
Dimensions of Measures			

* Note: Measure may be the base of the air meter used in the FOP for AASHTO T 152.

** Nominal maximum size: One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

Standardization of Measure

Standardization is a critical step to ensure accurate test results when using this apparatus. Failure to perform the standardization procedures as described herein will produce inaccurate or unreliable test results.

- 1. Determine the mass of the dry measure and strike-off plate.
- 2. Fill the measure with water at a temperature between 16°C and 29°C (60°F and 85°F) and cover with the strike-off plate in such a way as to eliminate bubbles and excess water.
- 3. Wipe the outside of the measure and cover plate dry, being careful not to lose any water from the measure.
- 4. Determine the mass of the measure, strike-off plate, and water in the measure.
- 5. Determine the mass of the water in the measure by subtracting the mass in Step 1 from the mass in Step 4.
- 6. Measure the temperature of the water and determine its density from Table 2, interpolating as necessary.
- 7. Calculate the volume of the measure, V_m , by dividing the mass of the water in the measure by the density of the water at the measured temperature, from Table 2.

$$V_m = \frac{Mass \ of \ Water}{Density \ of \ Water}$$

Example: at $23^{\circ}C(73.4^{\circ}F)$

	$V_m = \frac{7.06}{997.54}$	$\frac{2 kg}{kg/m^3} = 0$	$.007079m^3$	$V_m = \frac{1}{2}$	15.53 <i>lb</i> 62.274 <i>lb/f</i>	$\frac{1}{13} = 0.2494$	ft^3
	997.54	kg/m ^s		ble 2	62.2/4 <i>lD</i> /J	l	
				s of Water			
				to 30°C	L		
°C	(° F)	kg/m ³	(lb/ft ³)	°C	(° F)	kg/m ³	(lb/ft ³)
15	(59.0)	999.10	(62.372)	23	(73.4)	997.54	(62.274)
15.6	(60.0)	999.01	(62.366)	23.9	(75.0)	997.32	(62.261)
16	(60.8)	998.94	(62.361)	24	(75.2)	997.29	(62.259)
17	(62.6)	998.77	(62.350)	25	(77.0)	997.03	(62.243)
18	(64.4)	998.60	(62.340)	26	(78.8)	996.77	(62.227)
18.3	(65.0)	998.54	(62.336)	26.7	(80.0)	996.59	(62.216)
19	(66.2)	998.40	(62.328)	27	(80.6)	996.50	(62.209)
20	(68.0)	998.20	(62.315)	28	(82.4)	996.23	(62.192)
21	(69.8)	997.99	(62.302)	29	(84.2)	995.95	(62.175)
21.1	(70.0)	997.97	(62.301)	29.4	(85.0)	995.83	(62.166)
22	(71.6)	997.77	(62.288)	30	(86.0)	995.65	(62.156)

Procedure Selection

There are two methods of consolidating the concrete – rodding and vibration. If the slump is greater than 75 mm (3 in.), consolidation is by rodding. When the slump is 25 to 75 mm (1 to 3 in.), internal vibration or rodding can be used to consolidate the sample, but the method used must be that required by the agency in order to obtain consistent, comparable results. For slumps less than 25 mm (1 in.), consolidate the sample by internal vibration.

Procedure – Rodding

1. Obtain the sample in accordance with the FOP for WAQTC TM 2. Testing may be performed in conjunction with the FOP for AASHTO T 152. When doing so, this FOP should be performed prior to the FOP for AASHTO T 152.

Note 1: If the two tests are being performed using the same sample, this test shall begin within five minutes of obtaining the sample.

- 2. Determine the mass of the dry empty measure.
- 3. Dampen the inside of the measure.
- 4. Use the scoop to fill the measure approximately 1/3 full with concrete . Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.
- 5. Consolidate the layer with 25 strokes of the tamping rod, using the rounded end. Distribute the strokes evenly over the entire cross section of the concrete. Rod throughout its depth without hitting the bottom too hard.

- 6. Tap the sides of the measure smartly 10 to 15 times with the mallet to close voids and release trapped air.
- 7. Add the second layer, filling the measure about 2/3 full. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.
- 8. Consolidate this layer with 25 strokes of the tamping rod, penetrating about 25 mm (1 in.) into the bottom layer.
- 9. Tap the sides of the measure smartly 10 to 15 times with the mallet.
- 10. Add the final layer, slightly overfilling the measure. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.
- 11. Consolidate this layer with 25 strokes of the tamping rod, penetrating about 25 mm (1 in.) into the second layer.
- 12. Tap the sides of the measure smartly 10 to 15 times with the mallet.

Note 2: The measure should be slightly over full, about 3 mm (1/8 in.) above the rim. If there is a great excess of concrete, remove a portion with the scoop. If the measure is under full, add a small quantity. This adjustment may be done only after consolidating the final layer and before striking off the surface of the concrete.

- 13. Strike off by pressing the strike-off plate flat against the top surface, covering approximately 2/3 of the measure. Withdraw the strike-off plate with a sawing motion to finish the 2/3 originally covered. Cover the original 2/3 again with the plate; finishing the remaining 1/3 with a sawing motion (do not lift the plate; continue the sawing motion until the plate has cleared the surface of the measure). Final finishing may be accomplished with several strokes with the inclined edge of the strike-off plate. The surface should be smooth and free of voids.
- 14. Clean off all excess concrete from the exterior of the measure including the rim.
- 15. Determine and record the mass of the measure and the concrete.
- 16. If the air content of the concrete is to be determined, proceed to Rodding Procedure Step 13 of the FOP for AASHTO T 152.

Procedure - Internal Vibration

- 1. Perform Steps 1 through 3 of the rodding procedure.
- 2. Use the scoop to fill the measure approximately 1/2 full with concrete. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure..

3. Insert the vibrator at four different points in each layer when a 0.0283 m³ (1 ft³) measure is used, and three different points in each layer when a 0.0142 m³ (1/2 ft³), or smaller, measure is used. Do not let the vibrator touch the bottom or sides of the measure.

Note 3: Remove the vibrator slowly, so that no air pockets are left in the material.

Note 4: Continue vibration only long enough to achieve proper consolidation of the concrete. Over vibration may cause segregation and loss of appreciable quantities of intentionally entrained air.

- 4. Fill the measure a bit over full. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.
- 5. Insert the vibrator as in Step 3. Do not let the vibrator touch the sides of the measure, but do penetrate the first layer approximately 25 mm (1 in.).
- 6. Return to Step 13 of the rodding procedure and continue.

Calculations

• **Density** – Calculate the net mass, M_m, of the concrete in the measure by subtracting the mass of the measure from the gross mass of the measure plus the concrete. Calculate the density, W, by dividing the net mass, M_m, by the volume, V_m, of the measure as shown below.

$$W = \frac{M_m}{V_m}$$

Example: $W = \frac{16.290 \ kg}{0.007079 \ m^3} = 2390 \ kg/m^3 \ W = \frac{36.06 \ lb}{0.2494 \ ft^3} = 144.6 \ lb/ft^3$

• **Yield** – Calculate the yield, Y, or volume of concrete produced per batch, by dividing the total mass of the batch, W₁, by the density, W, of the concrete as shown below.

$$W = \frac{W_1}{W} \quad \text{Example: } Y = \frac{2436 \ kg}{2390 \ kg/m^3} = 1.02 \ m^3 \ Y = \frac{3978 \ lb}{27 \times 144.6 \ lb/ft^3} = 1.02 \ yd^3$$

Note 5: The total mass, W₁, includes the masses of the cement, water, and aggregates in the concrete.

• **Cement Content** – Calculate the actual cement content, N, by dividing the mass of the cement, N_t, by the yield, Y, as shown below.

Note 6: Specifications may require Portland cement content and cementitious materials content

$$N = \frac{N_t}{Y} \quad \text{Example: } N = \frac{261 \ kg}{1.02 \ m^3} = 256 \ kg/m^3 \ N = \frac{602 \ lb}{1.02 \ yd^3} = 590 \ lb/yd^3$$

- Water Content Calculate the mass of water in a batch of concrete by summing the:
 - water added at batch plant
 - water added in transit
 - water added at jobsite
 - free water on coarse aggregate
 - free water on fine aggregate
 - liquid admixtures (if the agency requires this)

This information is obtained from concrete batch tickets collected from the driver. Use the following conversion factors.

To Convert From	То	Multiply By
Liters, L	Kilograms, kg	1.0
Gallons, gal	Kilograms, kg	3.785
Gallons, gal	Pounds, lb	8.34
Milliliters, mL	Kilograms, kg	0.001
Ounces, oz	Milliliters, mL	28.4
Ounces, oz	Kilograms, kg	0.0284
Ounces, oz	Pounds, lb	0.0625
Pounds, lb	Kilograms, kg	0.4536

Calculate the mass of free water on aggregate as follows:

$$Free Water Mass = Total Aggregate Mass - \frac{Total Aggregate Mass}{1 + (Free Water Percentage/100)}$$

Example:

Total Aggregate Mass = 3540 kg (7804 lb)

Free Water Percentage = 1.7^*

* To determine Free Water percentage:

Total moisture content of the aggregates – absorbed moisture = Free Water

Free Water Mass =
$$3540 \ kg - \frac{3540 \ kg}{1 + (1.7\%/100)}$$
 7804 lb $- \frac{7804 \ lb}{1 + (1.7\%/100)}$

Example for actual water content:

CONCRETE

Water added at batch plant =	300 L	79 gal
Water added in transit =	0 L	
Water added at jobsite =	<u>40 L</u> 340 L=340 kg	$\frac{11 \text{ gal}}{90 \text{ gal}} = 751 \text{ lb}$

Coarse aggregate: 3540 kg (7804 lbs) @ 1.7% free water

Fine aggregate: 2490 kg (5489 lb) @ 5.9% free water

$$CA \ Free \ Water = 3540 kg - \frac{3540 kg}{1 + (1.7\%/100)} = 59 kg \ 7804 \ lb - \frac{7804 \ lb}{1 + (1.7\%/100)} = 130 \ lb$$

$$FA Free Water = 2490kg - \frac{2490kg}{1 + (5.9\%/100)} = 139kg \ 5489 \ lb - \frac{5489 \ lb}{1 + (5.9\%/100)} = 306 \ lb$$

Mass of water in batch = 59 kg + 139 kg = 538 kg 130 lb + 306 lb = 1187 lb

Water/Cement Ratio – Calculate the water/cement ratio by dividing the mass of water in a batch of concrete by the mass of cementitious material in the batch. The masses of the cementitious materials are obtained from concrete batch tickets collected from the driver.

Example:

Cement:	950 kg		2094 lb
Fly Ash:	180 kg		397 lb
Water:	538 kg	(from previous example)	1187 lb

$$W/C = \frac{538 \, kg}{980 \, kg + 180 \, kg} = 0.476 \ W/C = \frac{1187 \, lb}{2094 \, lb + 397 \, lb} = 0.48$$

Report 0.48

Report

- Results on forms approved by the agency
- Density (unit weight) to 1 kg/m³ (0.1 lb/ft³)
- Yield to $0.01 \text{ m}^3 (0.01 \text{ yd}^3)$
- Cement content to 1 kg/m³ (1 lb/yd³)
- Cementitious material content to 1 kg/m³ (1 lb/yd³)
- Water/Cement ratio to 0.01

PERFORMANCE EXAM CHECKLIST

DENSITY (UNIT WEIGHT), YIELD, AND AIR CONTENT (GRAVIMETRIC) OF CONCRETE FOP FOR AASHTO T 121

Par	rticipant Name Exam Date		
Rec	cord the symbols "P" for passing or "F" for failing on each step of the che	ecklist.	
Pro	ocedure Element	Trial 1	Trial 2
1.	Mass and volume of empty measure determined?		
Fir	rst Layer		
2.	Dampened measure filled approximately one third full, moving a score the perimeter of the mold to evenly distribute the concrete as discharge		
3.	Layer rodded throughout its depth 25 times, without forcibly striking the bottom of the measure, with hemispherical end of rod, uniformly distributing strokes?		
4.	Sides of the measure tapped 10 to 15 times with the mallet after roddi	ng?	
Sec	cond layer		
5.	Measure filled approximately two thirds full, moving a scoop around the perimeter of the mold to evenly distribute the concrete as discharg	ged?	
6.	Layer rodded throughout its depth, just penetraiting the previous layer (approximately 25 mm (1 in.)) 25 times with hemispherical end of rod uniformly distributing strokes?		
7.	Sides of the measure tapped 10 to 15 times with the mallet after roddi	ng?	
Th	ird layer		
8.	Measure filled, moving a scoop around the perimeter of the mold to e distribute the concrete as discharged?	venly	
9.	Layer rodded throughout its depth, just penetraiting the previous layer (approximately 25 mm (1 in.)) 25 times with hemispherical end of rod uniformly distributing strokes?		
10.	Sides of the measure tapped 10 to 15 times with the mallet after rodding each layer?		
11.	Any excess concrete removed using a trowel or a scoop, or small quantity of concrete added to correct a deficiency, after consolidation of final layer?		

OVER

Procedure Element	Trial 1	Trial 2
12. Strike-off plate placed flat on the measure covering approximately2/3 of the surface, then sawing action used to withdraw the strike-off plate across the previously covered surface?		
13. Strike-off plate placed flat on the measure covering approximately2/3 of the surface, then sawing action used to advance the plate across the entire measure surface?		
14. Strike off completed using the inclined edge of the plate creating a smooth surface?		
15. All excess concrete cleaned off and mass of full measure determined?		
16. Net mass calculated?17. Density calculated correctly?		
Comments: First attempt: PassFail Second attempt: P	assF	Fail
Examiner SignatureWAQTC #:		

This checklist is derived, in part, from copyrighted material printed in ACI CP-1, published by the American Concrete Institute.

AIR CONTENT OF FRESHLY MIXED CONCRETE BY THE PRESSURE METHOD FOP for AASHTO T 152

Scope

This procedure covers determination of the air content in freshly mixed Portland Cement Concrete containing dense aggregates in accordance with AASHTO T 152-12, Type B meter. It is not for use with lightweight or highly porous aggregates. This procedure includes standardization of the Type B air meter gauge, and two methods for standardizing the gauge are presented.

Concrete containing aggregate that is 37.5 mm $(1 \frac{1}{2})$ or larger must be wet sieved. Sieve a sufficient amount of the sample over the 37.5 mm $(1 \frac{1}{2})$ sieve in accordance with the wet sieving portion of the FOP for WAQTC TM 2.

Warning—Fresh Hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.

Apparatus

- Air meter: Type B, as described in AASHTO T 152
- Balance or scale: Accurate to 0.3 percent of the test load at any point within the range of use (for Method 1 standardization only)
- Tamping rod: 16 mm (5/8 in.) diameter and approximately 600 mm (24 in.) long, having a hemispherical tip the same diameter as the rod. (Hemispherical means "half a sphere"; the tip is rounded like half of a ball.)
- Vibrator: 7000 vibrations per minute, 19 to 38 mm (0.75 to 1.50 in.) in diameter, at least 75 mm (3 in.) longer than the section being vibrated for use with low slump concrete
- Scoop: a receptacle of appropriate size so that each representative increment of the concrete sample can be placed in the container without spillage.
- Container for water: rubber syringe (may also be a squeeze bottle)
- Strike-off bar: Approximately 300 mm x 22 mm x 3 mm (12 in. x 3/4 in. x 1/8 in.)
- Strike-off plate: A flat rectangular metal plate at least 6 mm (1/4 in.) thick or a glass or acrylic plate at least 12 mm (1/2 in.) thick, with a length and width at least 50 mm (2 in.) greater than the diameter of the measure with which it is to be used. The edges of the plate shall be straight and smooth within tolerance of 1.5 mm (1/16 in.).

Note 1: Use either the strike-off bar or strike-off plate; both are not required.

• Mallet: With a rubber or rawhide head having a mass of 0.57 ± 0.23 kg (1.25 ± 0.5 lb)

Standardization of Air Meter Gauge

Standardization is a critical step to ensure accurate test results when using this apparatus. Failure to perform the standardization procedures as described below will produce inaccurate or unreliable test results.

There are two methods for standardizing the air meter, mass or volume, both are covered below.

- 1. Screw the short piece of straight tubing into the threaded petcock hole on the underside of the cover. Determine the mass of the dry, empty air meter bowl and cover assembly (mass method only).
- 2. Fill the bowl nearly full with water.
- 3. Clamp the cover on the bowl with the tube extending down into the water. Mark the petcock with the tube attached for future reference.
- 4. Add water through the petcock having the pipe extension below until all air is forced out the other petcock. Rock the meter slightly until all air is expelled through the petcock.
- 5. Wipe off the air meter bowl and cover assembly, and determine the mass of the filled unit (mass method only).
- 6. Pump up the air pressure to a little beyond the predetermined initial pressure indicated on the gauge. Wait a few seconds for the compressed air to cool, and then stabilize the gauge hand at the proper initial pressure by pumping up or relieving pressure, as needed.
- 7. Close both petcocks and immediately open the main air valve exhausting air into the bowl. Wait a few seconds until the meter needle stabilizes. The gauge should now read 0 percent. If two or more tests show a consistent variation from 0 percent in the result, change the initial pressure line to compensate for the variation, and use the newly established initial pressure line for subsequent tests.
- 8. Determine which petcock has the straight tube attached to it. Attach the curved tube to external portion of the same petcock.
- 9. Pump air into the air chamber. Open the petcock with the curved tube attached to it. Open the main air valve for short periods of time until 5 percent of water by mass or volume has been removed from the air meter. Remember to open both petcocks to release the pressure in the bowl and drain the water in the curved tube back into the bowl. To determine the mass of the water to be removed, subtract the mass found in Step 1 from the mass found in Step 5. Multiply this value by 0.05. This is the mass of the water that must be removed. To remove 5 percent by volume, remove water until the external standardization vessel is level full.
- *Note 3:* Many air meters are supplied with a standardization vessel(s) of known volume that are used for this purpose. Standardization vessel(s) should be brass, not plastic, and must be protected from crushing or denting. If an external standardization vessel is used, confirm what percentage volume it represents for the air meter being used. Vessels commonly represent 5 percent volume, but they are for specific size meters. This should be confirmed by mass.
- 10. Remove the curved tube. Pump up the air pressure to a little beyond the predetermined initial pressure indicated on the gauge. Wait a few seconds for the compressed air to cool,

and then stabilize the gauge hand at the proper initial pressure by pumping up or relieving pressure, as needed.

- 11. Close both petcocks and immediately open the main air valve exhausting air into the bowl. Wait a few seconds until the meter needle is stabilized. The gauge should now read 5.0 ± 0.1 percent. If the gauge is outside that range, the meter needs adjustment. The adjustment could involve adjusting the starting point so that the gauge reads 5.0 ± 0.1 percent when this standardization is run, or could involve moving the gauge needle to read 5.0 percent. Any adjustment should comply with the manufacturer's recommendations.
- *Note 4:* Standardization shall be performed at the frequency required by the agency. Record the date of the standardization, the standardization results, and the name of the technician performing the standardization in the log book kept with each air meter.
- 12. When the gauge hand reads correctly at 5.0 percent, additional water may be withdrawn in the same manner to check the results at other values such as 10 percent or 15 percent.
- 13. If an internal standardization vessel is used, follow steps 1 through 8 to set initial reading.
- 14. Release pressure from the bowl and remove cover. Place the internal standardization vessel into the bowl. This will displace 5 percent of the water in the bowl. (See AASHTO T 152 for more information on internal standardization vessels.)
- 15. Place the cover back on the bowl and add water through the petcock until all the air has been expelled.
- 16. Pump up the air pressure chamber to the initial pressure. Wait a few seconds for the compressed air to cool, and then stabilize the gauge hand at the proper initial pressure by pumping up or relieving pressure, as needed.
- 17. Close both petcocks and immediately open the main air valve exhausting air into the bowl. Wait a few seconds until the meter needle stabilizes. The gauge should now read 5 percent.
- *Note 5:* Remove the extension tubing from threaded petcock hole in the underside of the cover before starting the test procedure.

Procedure Selection

There are two methods of consolidating the concrete – rodding and vibration. If the slump is greater than 75 mm (3 in.), consolidation is by rodding. When the slump is 25 to 75 mm (1 to 3 in.), internal vibration or rodding can be used to consolidate the sample, but the method used must be that required by the agency in order to obtain consistent, comparable results. For slumps less than 25 mm (1 in.), consolidate the sample by internal vibration.

Procedure – Rodding

1. Obtain the sample in accordance with the FOP for WAQTC TM 2. If any aggregate 37.5mm (1½ in.) or larger is present, aggregate must be removed in accordance with the Wet Sieving portion of the FOP for WAQTC TM 2.

Note 6: Testing shall begin within five minutes of obtaining the sample.

- 2. Dampen the inside of the air meter bowl and place on a firm level surface.
- 3. Use the scoop to fill the bowl approximately 1/3 full with concrete. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.
- 4. Consolidate the layer with 25 strokes of the tamping rod, using the rounded end. Distribute the strokes evenly over the entire cross section of the concrete. Rod throughout its depth without hitting the bottom too hard.
- 5. Tap the sides of the bowl smartly 10 to 15 times with the mallet to close voids and release trapped air.
- 6. Add the second layer, filling the bowl about 2/3 full. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.
- 7. Consolidate this layer with 25 strokes of the tamping rod, penetrating about 25 mm (1 in.) into the bottom layer.
- 8. Tap the sides of the bowl 10 to 15 times with the mallet.
- 9. Add the final layer, slightly overfilling the bowl. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.
- 10. Consolidate this layer with 25 strokes of the tamping rod, penetrating about 25 mm (1 in.) into the second layer.
- 11. Tap the sides of the bowl smartly 10 to 15 times with the mallet.
- *Note 7:* The bowl should be slightly over full, about 3 mm (1/8 in.) above the rim. If there is a great excess of concrete, remove a portion with the trowel or scoop. If the bowl is under full, add a small quantity. This adjustment may be done only after consolidating the final layer and before striking off the surface of the concrete.
- 12. Strike off the surface of the concrete and finish it smoothly with a sawing action of the strike-off bar or plate, using great care to leave the bowl just full. The surface should be smooth and free of voids.
- 13. Clean the top flange of the bowl to ensure a proper seal.
- 14. Moisten the inside of the cover and check to see that both petcocks are open and the main air valve is closed.
- 15. Clamp the cover on the bowl.
- 16. Inject water through a petcock on the cover until water emerges from the petcock on the other side.
- 17. Incline slightly and gently rock the air meter until no air bubbles appear to be coming out of the second petcock. The petcock expelling water should be higher than the petcock where water is being injected. Return the air meter to a level position and verify that water is present in both petcocks.
- 18. Close the air bleeder valve and pump air into the air chamber until the needle goes past the initial pressure determined for the gauge. Allow a few seconds for the compressed air to cool.

- 19. Tap the gauge gently with one hand while slowly opening the air bleeder valve until the needle rests on the initial pressure. Close the air bleeder valve.
- 20. Close both petcocks.
- 21. Open the main air valve.
- 22. Tap the sides of the bowl smartly with the mallet.
- 23. With the main air valve open, lightly tap the gauge to settle the needle, and then read the air content to the nearest 0.1 percent.
- 24. Release or close the main air valve.
- 25. Open both petcocks to release pressure, remove the concrete, and thoroughly clean the cover and bowl with clean water.
- 26. Open the main air valve to relieve the pressure in the air chamber.

Procedure - Internal Vibration

- 1. Obtain the sample in accordance with the FOP for WAQTC TM 2. If any aggregate 37.5mm (1½ in.) or larger is present, aggregate must be removed in accordance with the Wet Sieving portion of the FOP for WAQTC TM 2.
- 2. Dampen the inside of the air meter bowl and place on a firm level surface.
- 3. Use the scoop to fill the measure approximately 1/2 full with concrete. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.
- 4. Insert the vibrator at three different points. Do not let the vibrator touch the bottom or sides of the bowl.

Note 8: Remove the vibrator slowly, so that no air pockets are left in the material.

- *Note 9:* Continue vibration only long enough to achieve proper consolidation of the concrete. Over vibration may cause segregation and loss of appreciable quantities of intentionally entrained air.
- 5. Use the scoop to fill the bowl a bit over full. Evenly distribute the concrete in a circular motion around the inner perimeter of the measure.
- 6. Insert the vibrator as in Step 4. Do not let the vibrator touch the sides of the bowl, and penetrate the first layer approximately 25 mm (1 in.).
- 7. Return to Step 12 of the rodding procedure and continue.

Report

- Results on forms approved by the agency
- Percent of air to the nearest 0.1 percent.
- Some agencies require an aggregate correction factor in order to determine total % entrained air.

Total % entrained air = Gauge reading – aggregate correction factor from mix design (See AASHTO T 152 for more information.)

PERFORMANCE EXAM CHECKLIST

AIR CONTENT OF FRESHLY MIXED CONCRETE BY THE PRESSURE METHOD FOP FOR AASHTO T 152

Par	ticipant Name Exam Date		
Ree	cord the symbols "P" for passing or "F" for failing on each step of the checklist.		
Pr	ocedure Element	Trial 1	Trial 2
1.	Representative sample selected?		
Fir	rst Layer		
1.	Dampened measure filled approximately one third full, moving a scoop around the perimeter of the mold to evenly distribute the concrete as discharged?		
2.	Layer rodded throughout its depth 25 times, without forcibly striking the bottom of the measure, with hemispherical end of rod, uniformly distributing strokes?		
3.	Sides of the measure tapped 10 to 15 times with the mallet after rodding?		
Sec	cond layer		
4.	Measure filled approximately two thirds full, moving a scoop around the perimeter of the mold to evenly distribute the concrete as discharged?		
5.	Layer rodded throughout its depth, just penetraiting the previous layer (approximately 25 mm (1 in.)) 25 times with hemispherical end of rod, uniformly distributing strokes?		
6.	Sides of the measure tapped 10 to 15 times with the mallet after rodding?		
Th	ird layer		
7.	Measure filled, moving a scoop around the perimeter of the mold to evenly distribute the concrete as discharged?		
8.	Layer rodded throughout its depth, just penetraiting the previous layer (approximately 25 mm (1 in.)) 25 times with hemispherical end of rod, uniformly distributing strokes?		
9.	Sides of the measure tapped 10 to 15 times with the mallet after rodding each layer?		
10.	Concrete struck off level with top of container using the bar or strike-off plate and rim cleaned off?		
11.	Top flange of base cleaned?		

OVER

WAQTC / IDAHO

Procedure Element	Trial 1	Trial 2
Using a Type B Meter:		
12. Both petcocks open?		
13. Air valve closed between air chamber and the bowl?		
14. Inside of cover cleaned and moistened before clamping to base?		
15. Water injected through petcock until it flows out the other petcock?		
16. Water injection into the petcock continued while jarring and or rocking the meter to insure all air is expelled?		
17. Air pumped up to just past initial pressure line?		
18. A few seconds allowed for the compressed air to stabilize?		
19. Gauge adjusted to the initial pressure?		
20. Both petcocks closed?		
21. Air valve opened between chamber and bowl?		
22. The outside of bowl tapped smartly with the mallet?		
23. With the main air valve open, gauge lightly tapped and air percentage read to the nearest 0.1 percent?		
24. Air valve released or closed and then petcocks opened to release pressure before removing the cover?		
25. Aggregate correction factor applied if required?		
26. Air content recorded to 0.1 percent?		
Comments: First attempt: PassFail Second attempt: F	Pass	_Fail
Examiner SignatureWAQTC #:		

This checklist is derived, in part, from copyrighted material printed in ACI CP-1, published by the American Concrete Institute.

METHOD OF MAKING AND CURING CONCRETE TEST SPECIMENS IN THE FIELD FOP FOR AASHTO T 23

Scope

This procedure covers the method for making, initially curing, and transporting concrete test specimens in the field in accordance with AASHTO T 23-08.

Warning—Fresh Hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.

Apparatus and Test Specimens

- Concrete cylinder molds: Conforming to AASHTO M 205 with a length equal to twice the diameter. Standard specimens shall be 150 mm (6 in.) by 300 mm (12 in.) cylinders. Mold diameter must be at least three times the maximum aggregate size unless wet sieving is conducted according to the FOP for WAQTC TM 2. Agency specifications may allow cylinder molds of 100 mm (4 in.) by 200 mm (8 in.) when the nominal maximum aggregate size does not exceed 25 mm (1 in.).
- Beam molds: Rectangular in shape with ends and sides at right angles to each other. Must be sufficiently rigid to resist warpage. Surfaces must be smooth. Molds shall produce length no more than 1.6 mm (1/16") shorter than that required (greater length is allowed). Maximum variation from nominal cross section shall not exceed 3.2 mm (1/8 in.). Ratio of width to depth may not exceed 1:5; the smaller dimension must be at least 3 times the maximum aggregate size. Unless otherwise noted in specifications, beam molds for casting specimens in the field shall result in specimens having width and depth of not less than 150 mm (6 inches). Specimens shall be cast and hardened with the long axes horizontal.
- Standard tamping rod: 16 mm (5/8 in.) in diameter and approximately 600 mm (24 in.) long, having a hemispherical tip of the same diameter as the rod for preparing 150mm (6 in.) x 300 mm (12 in.) cylinders.
- Small tamping rod: 10 mm (3/8 in.) diameter and approximately 305 mm (12 in.) long, having a hemispherical tip of the same diameter as the rod for preparing 100 mm (4 in.) x 200 mm (8 in.) cylinders.
- Vibrator: At least 7000 vibrations per minute, with a diameter no more than ¹/₄ the diameter or width of the mold and at least 75 mm (3 in.) longer than the section being vibrated for use with low slump concrete.
- Scoop: a receptacle of appropriate size so that each representative increment of the concrete sample can be placed in the container without spillage.
- Trowel or float
- Mallet: With a rubber or rawhide head having a mass of 0.57 ± 0.23 kg (1.25 ± 0.5 lb.).
- Rigid base plates and cover plates: may be metal, glass, or plywood.

- Initial curing facilities: Temperature-controlled curing box or enclosure capable of maintaining the required range of 16 to 27°C (60 to 80°F) during the entire initial curing period (for concrete with compressive strength of 40 Mpa (6000 psi) or more, the temperature shall be 20 to 26°C (68 to 78°F). As an alternative, sand or earth for initial cylinder protection may be used provided that the required temperature range is maintained and the specimens are not damaged.
- Thermometer: Capable of registering both maximum and minimum temperatures during the initial cure.

Procedure – Making Specimens – General

- 1. Obtain the sample according to the FOP for WAQTC TM 2.
- 2. Wet Sieving per the FOP for WAQTC TM 2 is required for 150 mm (6 in.) diameter specimens containing aggregate with a nominal maximum size greater than 50 mm (2 in.); screen the sample over the 50 mm (2 in.) sieve.
- 3. Remix the sample after transporting to testing location.
- 4. Begin making specimens within 15 minutes of obtaining the sample.
- 5. Set molds upright on a level, rigid base in a location free from vibration and relatively close to where they will be stored.
- 6. Fill molds in the required number of layers, attempting to slightly overfill the mold on the final layer. Add or remove concrete prior to completion of consolidation to avoid a deficiency or excess of concrete.
- 7. There are two methods of consolidating the concrete rodding and internal vibration. If the slump is greater than 25 mm (1 in.), consolidation may be by rodding or vibration. When the slump is 25 mm (1 in.) or less, consolidate the sample by internal vibration. Agency specifications may dictate when rodding or vibration will be used.

Procedure – Making Cylinders – Rodding

- 1. For the standard 150 mm (6 in.) by 300 mm (12 in.) specimen, fill each mold in three approximately equal layers, moving the scoop or trowel around the perimeter of the mold to evenly distribute the concrete. For the 100 mm (4 in.) by 200 mm (8 in.) specimen, fill the mold in two layers. When filling the final layer, slightly overfill the mold.
- 2. Consolidate each layer with 25 strokes of the appropriate tamping rod, using the rounded end. Distribute strokes evenly over the cross section of the concrete. Rod the first layer throughout its depth without forcibly hitting the bottom. For subsequent layers, rod the layer throughout its depth penetrating approximately 25 mm (1 in.) into the underlying layer.
- 3. After rodding each layer, tap the sides of each mold 10 to 15 times with the mallet (reusable steel molds) or lightly with the open hand (single-use light-gauge molds).
- 4. Strike off the surface of the molds with tamping rod or straightedge and begin initial curing.

Note 1: Floating or troweling is permitted instead of striking off with rod or straightedge.

Procedure – Making Cylinders – Internal Vibration

- 1. Fill the mold in two layers.
- Insert the vibrator at the required number of different points for each layer (two points for 150 mm (6 in.) diameter cylinders; one point for 100 mm (4 in.) diameter cylinders). When vibrating the bottom layer, do not let the vibrator touch the bottom or sides of the mold. When vibrating the top layer, the vibrator shall penetrate into the underlying layer approximately 25 mm (1 in.)
- 3. Remove the vibrator slowly, so that no large air pockets are left in the material.

Note 2: Continue vibration only long enough to achieve proper consolidation of the concrete. Over vibration may cause segregation and loss of appreciable quantities of intentionally entrained air.

- 4. After vibrating each layer, tap the sides of each mold 10 to 15 times with the mallet (reusable steel molds) or lightly with the open hand (single-use light-gauge molds).
- 5. Strike off the surface of the molds with tamping rod or straightedge and begin initial curing.

Procedure – Making Flexural Beams – Rodding

- 1. Fill the mold in two approximately equal layers with the second layer slightly overfilling the mold.
- 2. Consolidate each layer with the tamping rod once for every $1300 \text{ mm}^2 (2 \text{ in}^2)$ using the rounded end. Rod each layer throughout its depth, taking care to not forcibly strike the bottom of the mold when compacting the first layer. Rod the second layer throughout its depth, penetrating approximately 25 mm (1") into the lower layer.
- 3. After rodding each layer, strike the mold 10 to 15 times with the mallet and spade along the sides and end using a trowel.
- 4. Strike off to a flat surface using a float or trowel and begin initial curing.

Procedure – Making Flexural Beams – Vibration

- 1. Fill the mold to overflowing in one layer.
- 2. Consolidate the concrete by inserting the vibrator vertically along the centerline at intervals not exceeding 150 mm (6 in.). Take care to not over-vibrate, and withdraw the vibrator slowly to avoid large voids. Do not contact the bottom or sides of the mold with the vibrator.
- 3. After vibrating, strike the mold 10 to 15 times with the mallet.
- 4. Strike off to a flat surface using a float or trowel and begin initial curing.

Procedure – Initial Curing

• When moving cylinder specimens made with single use molds support the bottom of the mold with trowel, hand, or other device.

- For initial curing of cylinders, there are two methods, use of which depends on the agency. In both methods, the curing place must be firm, within ¹/₄ in. of a level surface, and free from vibrations or other disturbances.
- Maintain initial curing temperature of 16 to 27° C (60 to 80°F) or 20 to 26°C (68 to 78°F) for concrete with strength of 40 Mpa (6000 psi) or more.
- Prevent loss of moisture.

Method 1 – Initial cure in a temperature controlled chest-type curing box

- 1. Finish the cylinder using the tamping rod, straightedge, float, or trowel. The finished surface shall be flat with no projections or depressions greater than 3.2 mm (1/8 in.).
- 2. Place the mold in the curing box. When lifting light-gauge molds be careful to avoid distortion (support the bottom, avoid squeezing the sides).
- 3. Place the lid on the mold to prevent moisture loss.
- 4. Mark the necessary identification data on the cylinder mold and lid.

Method 2 – Initial cure by burying in earth or by using a curing box over the cylinder

- *Note 3:* This procedure may not be the preferred method of initial curing due to problems in maintaining the required range of temperature.
- 1. Move the cylinder with excess concrete to the initial curing location.
- 2. Mark the necessary identification data on the cylinder mold and lid.
- 3. Place the cylinder on level sand or earth, or on a board, and pile sand or earth around the cylinder to within 50 mm (2 in.) of the top.
- 4. Finish the cylinder using the tamping rod, straightedge, float, or trowel. Use a sawing motion across the top of the mold. The finished surface shall be flat with no projections or depressions greater than 3.2 mm (1/8 in.).
- 5. If required by the agency, place a cover plate on top of the cylinder and leave it in place for the duration of the curing period, or place the lid on the mold to prevent moisture loss.

Procedure – Transporting Specimens

- After 24 to 48 hours of initial curing, the specimens will be transported to the laboratory for a final cure. Specimen identity will be noted along with the date and time the specimen was made and the maximum and minimum temperatures registered during the initial cure.
- While in transport, specimens shall be protected from jarring, extreme changes in temperature, freezing, or moisture loss.
- Cylinders shall be secured so that the axis is vertical.
- Transportation time shall not exceed 4 hours.

Final Curing

- Upon receiving cylinders at the laboratory, remove the cylinder from the mold and apply the appropriate identification.
- For all specimens (cylinders or beams), final curing must be started within 30 minutes of mold removal. Temperature shall be maintained at 23° ±2°C (73 ±3°F). Free moisture must be present on the surfaces of the specimens during the entire curing period. Curing may be accomplished in a moist room or water tank conforming to AASHTO M 201.
- For cylinders, during the final 3 hours prior to testing the temperature requirement may be waived, but free moisture must be maintained on specimen surfaces at all times until tested.
- Final curing of beams must include immersion in lime-saturated water for at least 20 hours prior to testing.

Report

- On forms approved by the agency
- Pertinent placement information for identification of project, element(s) represented, etc.
- Date and time molded.
- Test ages.
- Slump, air content, & density.
- Temperature (concrete, initial cure max. & min., and ambient).
- Method of initial curing.
- Other information as required by agency, such as: concrete supplier, truck number, invoice number, water added, etc.

PERFORMANCE EXAM CHECKLIST

MAKING AND CURING CONCRETE TEST SPECIMENS IN THE FIELD FOP FOR AASHTO T 23 (6 X 12)

Participant Name Exam Date _		Exam Date			
Re	cord the symbols "P" for passing or "F" for failing on each step of	the checklist.			
Pr	ocedure Element	Tri	al 1	Trial 2	
1.	Molds placed on a level, rigid, horizontal surface free of vibra	tion?			
2.	Representative sample selected?				
3.	Making of specimens begun within 15 minutes of sampling?				
Fir	rst layer				
4.	Concrete placed in the mold, moving a scoop or trowel around perimeter of the mold to evenly distribute the concrete as discl				
5.	Mold filled approximately one third full?				
6.	Layer rodded throughout its depth 25 times with hemispherica end of rod, uniformly distributing strokes?	1			
7.	Sides of the mold tapped 10-15 times after rodding each layer?				
	a. With mallet for reusable steel molds				
	b. With the open hand for flexible light-gauge molds				
See	cond layer				
8.	8. Concrete placed in the mold, moving a scoop or trowel around the perimeter of the mold to evenly distribute the concrete as discharged?				
9.	9. Mold filled approximately two thirds full?				
10.	Layer rodded 25 times with hemispherical end of rod, uniform distributing strokes and penetrating 25 mm (1 in.) into the und	5			
11.	Sides of the mold tapped 10-15 times after rodding?				
	a. With mallet for reusable steel molds				
	b. With the open hand for flexible light-gauge molds				
Th	ird layer				
12.	Concrete placed in the mold, moving a scoop or trowel around perimeter of the mold to evenly distribute the concrete as disc				

OVER

Procedure Ele	ment				Trial 1	Trial 2
13. Mold filled,	attempting to exac	tly fill the	e mold on the	last layer?		
•	1 25 times with her strokes and penetra			uniformly the underlying layer?		
15. Sides of the	mold tapped 10-15	times af	ter rodding?			
a. With ma	llet for reusable st	eel molds	5			
b. With the	open hand for flex	kible ligh	t-gauge molds			
16. Concrete struwith a trowel	ick off with tampin l or float?	ng rod or	, if necessary,	finished		
17. Specimens co	overed with non-al	osorptive	, non-reactive	cap or plate?		
Comments:	First attempt:	Pass	Fail	Second attempt: P	assI	Fail
Examiner Signa	ature			WAQTC #:		
This checklist	is derived in part f	rom convi	ighted material	printed in ACI CP-1 publ	ished by th	ρ

This checklist is derived, in part, from copyrighted material printed in ACI CP-1, published by the American Concrete Institute.

TOTAL EVAPORABLE MOISTURE CONTENT OF AGGREGATE BY DRYING FOP FOR AASHTO T 255 LABORATORY DETERMINATION OF MOISTURE CONTENT OF SOILS FOP FOR AASHTO T 265

Scope

This procedure covers the determination of moisture content of aggregate and soil in accordance with AASHTO T 255-00 and AASHTO T 265-12. It may also be used for other construction materials.

Apparatus

- Balance or scale: capacity sufficient for the principle sample mass, accurate to 0.1 percent of sample mass or readable to 0.1 g, and meeting the requirements of AASHTO M 231
- Containers, clean, dry and capable of being sealed
- Suitable drying containers
- Microwave safe containers
- Heat source, temperature controlled:
 - Forced draft oven
 - Ventilated / convection oven
- Heat source, uncontrolled:
 - Microwave oven (600 watts minimum)
 - Infrared heater, hot plate, fry pan, or any other device/method that will dry the sample without altering the material being dried
- Utensils such as spoons
- Hot pads or gloves

Sample Preparation

For aggregate, select the proper sample mass, in its existing condition, based on Table 1 or other information that may be specified by the agency. Obtain the sample in accordance with the FOP for AASHTO T 2.

Immediately seal or cover samples to prevent any change in moisture content.

TABLE 1			
Sample Sizes for Moi	sture Content of Aggregate		
Nominal Maximum	Minimum Sample Mass		
Size*	g (lb)		
mm (in.)			
4.75 (No. 4)	500 (1.1)		
9.5 (3/8)	1500 (3.3)		
12.5 (1/2)	2000 (4)		
19.0 (3/4)	3000 (7)		
25.0 (1)	4000 (9)		
37.5 (1 1/2)	6000 (13)		
50 (2)	8000 (18)		
63 (2 1/2)	10,000 (22)		
75 (3)	13,000 (29)		
90 (3 1/2)	16,000 (35)		
100 (4)	25,000 (55)		
150 (6)	50,000 (110)		

* One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum.

For soil, select the proper sample mass, in its existing condition, based on Table 2 or other information that may be supplied by the agency.

TABLE 2
Sample Sizes for Moisture Content of Soil

Maximum Particle	Minimum Sample Mass	
Size	g	
mm (in)		
0.425 (No. 40)	10	
4.75 (No. 4)	100	
12.5 (1/2)	300	
25.0 (1)	500	
50 (2)	1000	

Procedure

For aggregate, determine and record all masses to the nearest 0.1 percent of the sample mass or to the nearest 0.1 g. For soil, determine and record all masses to the nearest 0.1 g. When determining mass, allow the sample and container to cool sufficiently so as not to damage or interfere with the operation of the balance or scale.

- 1. Determine and record the mass of the container.
- 2. Place the wet sample in the container and record the total mass of the container and wet sample.
- 3. Determine the wet mass of the sample by subtracting the mass in Step 1 from the mass in Step 2.
- 4. Dry the sample to a constant mass in accordance with the directions given under Directions for Drying below. Measures will be taken to protect the scale from excessive heat while determining constant mass.
- 5. Allow the sample to cool and record the total mass of the container and dry sample.
- 6. Determine the dry mass of the sample by subtracting the mass in Step 1 from the mass in Step 5.

Directions for Drying Aggregate

- **Controlled**: Forced draft (preferred), ventilated or convection oven
- 1. Spread sample in the container.
- 2. Dry to constant mass at $110 \pm 5^{\circ}$ C (230 $\pm 9^{\circ}$ F). Constant mass has been reached when there is less than a 0.10 percent change after a minimum of 30 minutes additional drying time.
- Uncontrolled

Where close control of temperature is not required (such as with aggregate not altered by higher temperatures; with aggregate that will not be used in further tests; or where precise information is not required), higher temperatures or other suitable heat sources may be used. Other heat sources may include microwaves, hot plates, or heat lamps.

- Microwave oven
- 1. Heap sample in pile in the center of the container and cover. This cover must allow moisture to escape.

2. Dry to constant mass. Constant mass has been reached when there is less than a 0.10 percent change after an additional 10 minutes of drying.

Caution: Some minerals in the sample may cause the aggregate to overheat, altering the aggregate gradation.

- Hot plates, heat lamps, etc.
- 1. Spread sample in container.
- 2. Stir the sample frequently to avoid localized overheating and aggregate fracturing.
- 3. Dry to a constant mass. Constant mass has been reached when there is less than a 0.10 percent change after an additional 20 minutes of drying.

Directions for Drying Soil

- Oven (preferably forced draft / air)
 - 1. Place sample in container.
 - 2. Dry to constant mass at $110 \pm 5^{\circ}$ C ($230 \pm 9^{\circ}$ F). Constant mass has been reached when there is no change after a minimum of 1 hour additional drying time. A sample dried overnight (15 to 16 hours) is sufficient in most cases.

Note 1: Soils containing gypsum or significant amounts of organic material require special drying. For reliable moisture contents dry these soils at 60°C (140°F). For more information see AASHTO T 265, Note 2.

Calculation

Constant Mass for Aggregates:

Calculate constant mass using the following formula:

$$\frac{M_p - M_n}{M_p} \times 100 = \%$$
 Change

Where:

 M_p = previous mass measurement M_n = new mass measurement

Example:

Mass of container: 1232.1 g

Mass of container & sample after first drying cycle: 2637.2 g

Mass, M_p , of possibly dry sample: 2637.2 g - 1232.1 g = 1405.1 g Mass of container and dry sample after second drying cycle: 2634.1 g Mass, M_n , of dry sample: 2634.1 g - 1232.1 g = 1402.0 g

$$\frac{1405.1 \, g - 1402.0 \, g}{1405.1 \, g} \times 100 = 0.22\%$$

0.22 percent is not less than 0.10 percent, so continue drying

EMBANKMENT AND BASE

IN-PLACE DENSITY

Mass of container and dry sample after third drying cycle: 2633.0 g Mass, M_n , of dry sample: 2633.0 g - 1232.1 g = 1400.9 g

$$\frac{1402.0g - 1400.9g}{1402.0g} \times 100 = 0.08\%$$

0.08 percent is less than 0.10 percent, so constant mass has been reached for an aggregate, but continue drying for soil.

Moisture Content Aggregate and Soils:

Calculate the moisture content, as a percent, using the following formula:

$$w = \frac{M_W - M_D}{M_D} \times 100$$

Where:

w = moisture content, percent $M_W = wet mass$ $M_D = dry mass$

Example:

Mass of container: 1232.1 g Mass of container and wet sample: 2764.7 g Mass, M_W , of wet sample: 2764.7 g - 1232.1 g = 1532.6 g Mass of container and dry sample (COOLED): 2633.0 g Mass, M_D, of dry sample: 2633.0 g - 1232.1 g = 1400.9 g

$$w = \frac{1532.6\text{g} - 1400.9\text{g}}{1400.9\text{g}} \times 100 = \frac{131.7\text{g}}{1400.9\text{g}} \times 100 = 9.39\% \text{ report } 9.4\%$$

Report

- Results on forms approved by the agency
- M_W, wet mass
- M_D, dry mass
- w, moisture content to nearest 0.1 percent

PERFORMANCE EXAM CHECKLIST

TOTAL EVAPORABLE MOISTURE CONTENT OF AGGREGATE BY DRYING **FOP FOR AASHTO T 255** LABORATORY DETERMINATION OF MOISTURE CONTENT OF SOILS FOP FOR AASHTO T 265

Particip	pant Name	Exam Date		
Record	the symbols "P" for passing or "F" for failing on each step	of the checklist.		
Proced	lure Element		Trial 1	Trial 2
1. Rep	presentative sample of appropriate mass obtained?			
2. Mas	ss of container determined to 0.1 g?			
3. San	nple placed in container and mass determined to 0.1 g?			
4. Tes	st sample mass conforms to the required mass?			
5. Wet	et sample mass determined to 0.1 g?			
6. Los	ss of moisture avoided prior to mass determination?			
7. San	nple dried by a suitable heat source?			
	ggregate heated by means other than a controlled oven, is nple stirred to avoid localized overheating?			
ove time	aggregate: if other than a forced draft, microwave or conen, is aggregate heated for a minimum of 20 minutes addite and then mass determined and compared to previous mass than 0.10 percent loss?	ional drying		
	soil: Is soil heated for at least 1 hour additional drying ti ermined and compared to previous mass - showing no los			
	nple cooled, dry mass determined & recorded to the neare percent?	est		
	bisture content calculated correctly and recorded to the new percent?	arest		
Comm	nents: First attempt: PassFailS	econd attempt: Pa	issF	Fail
Examir	ner Signature	WAQTC #:		

MOISTURE-DENSITY RELATIONS OF SOILS: USING A 2.5 kg (5.5 lb) RAMMER AND A 305 mm (12 in.) DROP FOP FOR AASHTO T 99 USING A 4.54 kg (10 lb) RAMMER AND A 457 mm (18 in.) DROP FOP FOR AASHTO T 180

Scope

This procedure covers the determination of the moisture-density relations of soils and soilaggregate mixtures in accordance with two similar test methods:

- AASHTO T 99-10: Methods A, B, C, and D
- AASHTO T 180-10: Methods A, B, C, and D

This test method applies to soil mixtures having 40% or less retained on the 4.75 mm (No 4) sieve for methods A or B, or, 30% or less retained on the 19 mm (³/₄") with methods C or D. The retained material is defined as oversize (coarse) material. If no minimum percentage is specified, 5% will be used. Samples that contain oversize (coarse) material that meet percent retained criteria should be corrected by using the FOP for AASHTO T 224. Samples of soil or soil-aggregate mixture are prepared at several moisture contents and compacted into molds of specified size, using manual or mechanical rammers that deliver a specified quantity of compactive energy. The moist masses of the compacted samples are multiplied by the appropriate factor to determine moist density values. Moisture contents of the compacted samples are determined and used to obtain the dry density values of the same samples. Maximum dry density and optimum moisture content for the soil or soil-aggregate mixture is determined and used to obtain the dry density and moisture content.

Apparatus

- Mold Cylindrical, made of metal and with the dimensions shown in Table 1 or Table 2. It shall include a detachable collar and a base plate to which the mold can be fastened. If permitted by the agency, the mold may be of the "split" type, consisting of two half-round sections, which can be securely locked in place to form a cylinder.
- Rammer –Manually or mechanically-operated rammers as detailed in Table 1 or Table 2. A manually-operated rammer shall be equipped with a guide sleeve to control the path and height of drop. The guide sleeve shall have at least four vent holes no smaller than 9.5 mm (3/8 in.) in diameter, spaced approximately 90 degrees apart and approximately 19 mm (3/4 in.) from each end. A mechanically-operated rammer will uniformly distribute blows over the sample and will be calibrated with several soil types, and be adjusted, if necessary, to give the same moisture-density results as with the manually operated rammer. For additional information concerning calibration, see the FOP for AASHTO T 99 and T 180.
- Sample extruder A jack, lever frame, or other device for extruding compacted specimens from the mold quickly and with little disturbance.

• Balance(s) or scale(s) of the capacity and sensitivity required for the procedure used by the agency.

A balance or scale with a capacity of 20 kg (45 lb) and a sensitivity of 5 g (0.01 lb) for obtaining the sample, meeting the requirements of AASHTO M 231.

A balance or scale with a capacity of 2 kg and a sensitivity of 0.1 g is used for moisture content determinations done under both procedures, meeting the requirements of AASHTO M 231.

- Drying apparatus A thermostatically controlled drying oven, capable of maintaining a temperature of 110 ±5°C (230 ±9°F) for drying moisture content samples in accordance with the FOP for AASHTO T 255/T 265.
- Straightedge A steel straightedge at least 250 mm (10 in.) long, with one beveled edge and at least one surface plane within 0.1 percent of its length, used for final trimming.
- Sieve(s) -4.75 mm (No. 4) and/or 19.0 mm (3/4 in.), conforming to AASHTO M 92.
- Mixing tools Miscellaneous tools such as a mixing pan, spoon, trowel, spatula, etc., or a suitable mechanical device, for mixing the sample with water.
- Containers with close-fitting lids to prevent gain or loss of moisture in the sample.

Comparison of Apparatus, Sample, and Procedure – Metric			
	Т 99	T 180	
Mold Volume, m ³	Methods A, C: 0.000943	Methods A, C: 0.000943	
	± 0.00008	± 0.00008	
	Methods B, D: 0.002124	Methods B, D: 0.002124	
	± 0.000021	± 0.000021	
Mold Diameter, mm	Methods A, C: 101.6± 0.41	Methods A, C: 101.6±0.41	
	Methods B, D: 152.4±2.54	Methods B, D: 152.4±2.54	
Mold Height, mm	116.43 ± 0.13	116.43 ± 0.13	
Detachable Collar Height, mm	50.80 ± 0.64	50.80 ± 0.64	
Rammer Diameter, mm	50.80	50.80	
Rammer Mass, kg	2.495	4.536	
Rammer Drop, mm	305	457	
Layers	3	5	
Blows per Layer	Methods A, C: 25	Methods A, C: 25	
	Methods B, D: 56	Methods B, D: 56	
Material Size, mm	Methods A, B: 4.75 minus	Methods A, B: 4.75 minus	
	Methods C, D: 19.0 minus	Methods C, D: 19.0 minus	
Test Sample Size, kg	Method A: 3	Method B: 7	
	Method C: $5(1)$	Method D: 11(1)	
Energy, kN-m/m ³	592	2,693	

Table 1
Comparison of Apparatus, Sample, and Procedure – Metric

(1) This may not be a large enough sample depending on your nominal maximum size for moisture content samples.

Comparison of Apparatus, Sample, and Procedure – English			
	Т 99	T 180	
Mold Volume, ft ³	Methods A, C: 1/30	Methods A, C: 1/30	
	$(0.0333) \pm 0.0003$	$(0.0333) \pm 0.0003$	
	Methods B, D: 1/13.33	Methods B, D: 1/13.33	
	$(0.0750) \pm 0.00075$	$(0.0750) \pm 0.00075$	
Mold Diameter, in.	Methods A, C: 4.000±0.016	Methods A, C: 4.000±0.016	
	Methods B, D: 6.000± 0.100	Methods B, D: 6.000± 0.100	
Mold Height, in.	4.584 ± 0.005	4.584 ± 0.005	
Detachable Collar Height, in.	2 ± 0.025	2 ± 0.025	
Rammer Diameter, in.	2.000 ± 0.025	2.000 ± 0.025	
Rammer Mass, lb	5.5 ± 0.02	10 ± 0.02	
Rammer Drop, in.	12	18	
Layers	3	5	
Blows per Layer	Methods A, C: 25	Methods A, C: 25	
	Methods B, D: 56	Methods B, D: 56	
Material Size, in.	Methods A, B: No. 4 minus	Methods A, B: No.4 minus	
	Methods C, D: 3/4 minus	Methods C, D: 3/4 minus	
Test Sample Size, lb	Method A: 7 Method B: 16		
-	Method C: 12(1) Method D: 25(1)		
Energy, lb-ft/ft ³	12,375	56,250	

	Table 2			
Comparison of Apparatus, Sample, and Procedure – English				
	Т 00	Т 180		

(1) This may not be a large enough sample depending on your nominal maximum size for moisture content samples.

Molds Out of Tolerance Due to Use—A mold that fails to meet manufacturing tolerances after continued service may remain in use provided those tolerances are not exceeded by more than 50 percent; and the volume of the mold, calibrated in accordance with T 19M/T 19, is used in the calculations.

Sample

If the sample is damp, dry it until it becomes friable under a trowel. Drying may be in air or by use of a drying apparatus maintained at a temperature not exceeding 60° C (140°F). Thoroughly break up aggregations in a manner that avoids reducing the natural size of individual particles.

Obtain a representative test sample of the mass required by the agency by passing the material through the sieve required by the agency. See Table 1 or Table 2 for test sample mass and material size requirements.

Note 1: Both T 99 and T 180 have four methods (A, B, C, D) that require different masses and employ different sieves.

Note 2: If the sample is plastic (clay types), it should stand for a minimum of 12 hours after the addition of water to allow the moisture to be absorbed. In this case, several samples at different moisture contents should be prepared, put in sealed containers and tested the next day. In instances where the material is prone to degradation, i.e., granular material, a compaction sample with differing moisture contents should be prepared for each point.

Procedure

- 1. Determine the mass of the clean, dry mold. Include the base plate, but exclude the extension collar. Record the mass to the nearest 0.005 kg (0.01 lb).
- 2. Thoroughly mix the selected representative sample with sufficient water to dampen it to approximately 4 to 8 percentage points below optimum moisture content. See Note 2. For many materials this condition can be identified by forming a cast by hand.
- 3. Form a specimen by compacting the prepared soil in the mold (with collar attached) in approximately equal layers. For each layer, spread the loose material uniformly in the mold. Lightly tamp the fluffy material with the manual rammer or other similar device. This establishes a firm surface on which to hold the rammer sleeve. Compact each layer with uniformly distributed blows from the rammer. See Table 1 for mold size, number of layers, number of blows, and rammer specification for the various test methods. Use the method specified by the agency. If material that has not been compacted remains adjacent to the walls of the mold and extends above the compacted surface, trim it down.

Note 3: During compaction, the mold shall rest firmly on a dense, uniform, rigid, and stable foundation or base. This base shall remain stationary during the compaction process.

- 4. Remove the extension collar. Avoid shearing off the sample below the top of the mold. A rule of thumb is that the material compacted in the mold should not be over 6 mm (1/4 in.) above the top of the mold once the collar has been removed.
- 5. Trim the compacted soil even with the top of the mold with the beveled side of the straightedge.
- 6. Determine the mass of the mold and wet soil in kg to the nearest 0.005 kg (0.01 lb) or better.
- 7. Determine the wet mass of the sample by subtracting the mass in Step 1 from the mass in Step 6.
- 8. Calculate the wet density as indicated below under "Calculations."
- 9. Extrude the material from the mold. For soils and soil-aggregate mixtures, slice vertically through the center and take a representative moisture content sample from one of the cut faces, ensuring that all layers are represented. For granular materials, a vertical face will not exist. Take a representative sample. This sample must meet the sample size requirements of the test method used to determine moisture content.

Note 4: When developing a curve for free-draining soils such as uniform sands and gravels, where seepage occurs at the bottom of the mold and base plate, taking a representative moisture content from the mixing bowl may be preferred in order to determine the amount of moisture available for compaction.

10. Determine the moisture content of the sample in accordance with the FOP for AASHTO T 255 / T 265.

- 11. Thoroughly break up the remaining portion of the molded specimen until it will again pass through the sieve, as judged by eye, and add to the remaining portion of the sample being tested. See Note 2.
- 12. Add sufficient water to increase the moisture content of the remaining soil by approximately 1 to 2 percentage points and repeat steps 3 through 11.
- 13. Continue determinations until there is either a decrease or no change in the wet density. There will be a minimum of three points on the dry side of the curve and two points on the wet side.

Note 5: In cases of free-draining granular material, the development of points on the wet side of optimum may not be practical.

Calculations

When the mold meets the criteria of Table 1 or Table 2 calculating unit mass can be accomplished by multiplication using a Mold Factor, by division using a Mold volume; or by division using a measured volume (determined by performing AASHTO T 19).

For molds not meeting the criteria of Table 1 or Table 2 but within 50%, a measured volume must be used.

Mold Factor

1a. Calculate the wet density, in kg/m^3 (lb/ft³), by multiplying the wet mass from Step 7 by the appropriate factor chosen from the two below.

Methods A and C molds: 1060 (30)

Methods B and D molds: 471 (13.33)

Note 6: The moist mass is in kg (lb). The factors are the inverses of the mold volumes in m^3 (ft³) shown in Table 1 or Table 2. If the moist mass is in grams, use 1.060 or 0.471 for factors when computing kg/m³.

Example – Methods A or C mold:

Wet mass = 1.916 kg (4.22 lb)

 $(1.916)(1060) = 2031 \text{ kg/m}^3 \text{ Wet Density}^*$ $(4.22)(30) = 126.6 \text{ lb/ft}^3 \text{ Wet Density}^*$

Volume

1b. Calculate the wet density, in kg/m^3 (lb/ft³), by dividing the wet mass from Step 7 by the appropriate volume from Table 1 or Table 2.

39

Example – Methods A or C mold:

Wet mass = 1.916 kg (4.22 lb)

 $\frac{1.1916 \, kg}{0.000943 \, m^3} = 2023 kg/m^3 \, Wet \, Density^* \qquad \frac{4.22 \, lb}{0.0333 ft^3} = 126.7 lb/ft^3 \, Wet \, Density^*$

* Differences in wet density are due to rounding in the respective calculations.

Measured Volume

1c. Calculate the wet density, in kg/m^3 (lb/ft³), by dividing the wet mass by the measured volume of the mold (T 19).

Example – Methods A or C mold:

Wet mass = 1.916 kg (4.22 lb)

Measured volume of the mold = $0.000946m^3$ (0.0334 ft^3)

 $\frac{1.1916 \ kg}{0.000946 \ m^3} = 2025 \ kg/m^3 \ Wet \ Density^* \qquad \frac{4.22 \ lb}{0.0334 \ ft^3} = 126.3 \ lb/ft^3 \ Wet \ Density^*$

2. Calculate the dry density as follows.

$$\rho_{d} = \left(\frac{\rho_{w}}{w + 100}\right) \times 100 \quad or \quad \rho_{d} = \frac{\rho_{w}}{\left(\frac{w}{100}\right) + 1}$$

Where:

$$\label{eq:rho_d} \begin{split} \rho_d &= Dry \; density, \; kg/m^3 \; (lb/ft^3) \\ \rho_w &= Wet \; density, \; kg/m^3 \; (lb/ft^3) \\ w &= Moisture \; content, \; as \; a \; percentage \end{split}$$

Example:

$$\rho_w$$
 = 2030 kg/m 3 (126.6 lb/ft $^3)$ and w = 14.7%

$$\rho_d = \left(\frac{2030 \, kg/m^3}{14.7 + 100}\right) \times 100 = 1770 \, kg/m^3 \ \rho_d = \left(\frac{126.6 \, lb/ft^3}{14.7 + 100}\right) \times 100 = 110.4 \, lb/ft^3$$

or

EMBANKMENT AND BASE IN-PLACE DENSITY

$$\rho_d = \left(\frac{2030 \, kg/m^3}{\frac{14.7}{100} + 1}\right) = 1770 \, kg/m^3 \, \rho_d = \left(\frac{126.6 \, lb/ft^3}{\frac{14.7}{100} + 1}\right) = 110.4 \, lb/ft^3$$

Moisture-Density Curve Development

When dry density is plotted on the vertical axis versus moisture content on the horizontal axis and the points are connected with a smooth line, a moisture-density curve is developed. The coordinates of the peak of the curve are the maximum dry density, or just "maximum density," and the "optimum moisture content" of the soil.

Example:

Given the following dry density and corresponding moisture content values develop a moisture-density relations curve and determine maximum dry density and optimum moisture content.

Dry De kg/m ³	nsity	Moisture Content, %		
kg/m ³	lb/ft ³			
1846	114.3	11.3		
1868	115.7	12.1		
1887	116.9	12.8		
1884	116.7	13.6		
1871	115.9	14.2		
1000-				
È 100-		-		o,
		5	117	/ft
j. 1880-		/ `		- Ib
		øъ		⊢ ►
2 1000-	1	/	115	Dry density – lb/ft
Distance of the second		ď		len
S. 1960-	1			y d
1000			113	Dr.
1000				
	8 18	10 10 14 16 1	ē	
		Meleture Content - %		

In this case, the curve has its peak at:

Maximum dry density = $1890 \text{ kg/m}^3 (117.0 \text{ lb/ft}^3)$ Optimum water content = 13.2%

Note that both values are approximate, since they are based on sketching the curve to fit the points.

Report

- Results on forms approved by the agency
- Maximum dry density to the closest $1 \text{ kg/m}^3 (0.1 \text{ lb/ft}^3)$
- Optimum moisture content to the closest 0.1 percent

PERFORMANCE EXAM CHECKLIST

MOISTURE-DENSITY RELATION OF SOILS FOP FOR AASHTO T 99

Par	ticipant Name	Exam Date	
Ree	cord the symbols "P" for passing or "F" for failing on each s	step of the checklist.	
Pr	ocedure Element	Trial	1 Trial 2
1.	If damp, sample dried in air or drying apparatus, not exce $60^{\circ}C (140^{\circ}F)$?	eeding	
2.	Sample broken up and an adequate amount sieved over the sieve (4.75 mm / No. 4 or 19.0 mm / 3/4 in.) to determine particle) percentage?		
3.	Sample passing the sieve has appropriate mass?		
4.	If soil is plastic (clay types):		
	a. Multiple samples mixed with water varying moisture 2 percent, bracketing the optimum moisture content?		
	b. Samples placed in covered containers and allowed to at least 12 hours?	o stand for	
5.	Sample determined to be 4 to 8 percent below expected of moisture content?	optimum	
6.	Mold placed on rigid and stable foundation?		
7.	Layer of soil (approximately one third compacted depth) with collar attached?	placed in mold	
8.	Soil compacted with appropriate number of blows (25 or		
9.	Material adhering to the inside of the mold trimmed?		
10.	Layer of soil (approximately two thirds compacted depth with collar attached?	n) placed in mold	
11.	Soil compacted with appropriate number of blows (25 or		
12.	Material adhering to the inside of the mold trimmed?		
13.	Mold filled with soil such that compacted soil will be abo	ove the mold?	
14.	Soil compacted with appropriate number of blows (25 or	. 56)?	
15.	Collar removed without shearing off sample?		

OVER

Procedure Element	Trial 1	Trial 2
16. Approximately 6 mm (1/4 in.) of compacted material above the top of the mold (without the collar)?		
17. Soil trimmed to top of mold with the beveled side of the straightedge?		
18. Mass of mold and contents determined to appropriate precision?		
19. Wet density calculated from the wet mass?		
20. Soil removed from mold using a sample extruder if needed?		
21. Soil sliced vertically through center (non-granular material)?		
22. Moisture sample removed ensuring all layers are represented?		
23. Moist mass determined immediately to 0.1 g?		
24. Moisture sample mass of correct size?		
25. Sample dried and water content determined according to T 255/T 265?		
26. Remainder of material from mold broken up until it will pass through the sieve as judged by eye, and added to remainder of original test sample?	,	
27. Water added to increase moisture content of the remaining sample in 1 to 2 percent increments?		
28. Steps 2 through 26 repeated for each increment of water added?		
29. If material is degradable:		
Multiple samples mixed with water varying moisture content by 1 to 2 percent, bracketing the optimum moisture content?		
30. Process continued until wet density either decreases or stabilizes?		
31. Moisture content and dry density calculated for each sample?		
32. Dry density plotted on vertical axis, moisture content plotted on horizontal axis, and points connected with a smooth curve?		
33. Moisture content at peak of curve recorded as optimum water content and recorded to nearest 0.1 percent?		
34. Dry density at optimum moisture content reported as maximum density to nearest 1 kg/m ³ (0.1 lb/ft ³)?		
Comments: First attempt: PassFail Second attempt: Pa	issl	Fail
Examiner SignatureWAQTC #:		

FAMILY OF CURVES – ONE-POINT METHOD FOP FOR AASHTO T 272

Scope

This procedure provides for a rapid determination of the maximum density and optimum moisture content of a soil sample, utilizing a family of curves and a one-point determination in accordance with AASHTO T 272-10. This procedure is related to the FOP for AASHTO T 99/T 180.

One-point determinations are made by compacting the soil in a mold of a given size with a specified rammer dropped from a specified height. Four alternate methods – A, B, C, and D – are used and correspond to the methods described in the FOP for AASHTO T 99/T 180. The method used in AASHTO T 272 must match the method used in the FOP for AASHTO T 99/T 180.

Apparatus

See the FOP for AASHTO T 99/T 180.

Sample

Sample size determined according to the FOP for AASHTO T 310. In cases where the existing family cannot be used a completely new curve will need to be developed and the sample size will be determined by the FOP for AASHTO T 99/T 180.

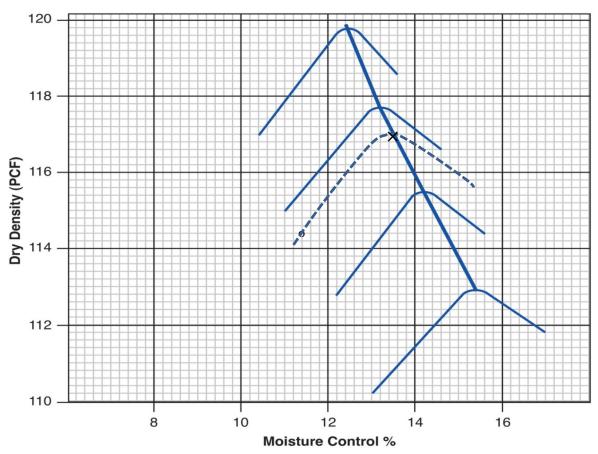
Procedure

See the FOP for AASHTO T 99/T 180.

Calculations

See the FOP for AASHTO T 99/T 180.

Maximum Dry Density and Optimum Moisture Content Determination


- 1. If the moisture-density one-point falls on one of the curves in the existing family of curves, the maximum dry density and optimum moisture content defined by that curve shall be used.
- 2. If the moisture-density one-point falls within the family of curves but not on an existing curve, a new curve shall be drawn through the plotted single point, parallel and in character with the nearest existing curve in the family of curves. The maximum dry density and optimum moisture content as defined by the new curve shall be used.

3. The one-point must fall either between or on the highest or lowest curves in the family. If it does not, then a full curve must be developed.

WAQTC / IDAHO

- 4. If the one-point plotted within or on the family of curves does not fall in the 80 to 100 percent of optimum moisture content, compact another specimen, using the same material, at an adjusted moisture content that will place the one point within this range.
- 5. If the family of curves is such that the new curve through a one-point is not well defined or is in any way questionable, a full moisture-density relationship shall be made for the soil to correctly define the new curve and verify the applicability of the family of curves.

Note 1: New curves drawn through plotted single point determinations shall not become a permanent part of the family of curves until verified by a full moisture-density procedure following the FOP for AASHTO T 99/T 180.

EXAMPLE

Example

A moisture-density procedure (FOP for AASHTO T 99/T 180) was performed. A dry density of 114.4 lb/ft³ and a corresponding moisture content of 11.4 percent were determined. This point was plotted on the appropriate family between two previously developed curves.

The "dashed" curve beginning at the moisture-density one-point was sketched between the two existing curves. A maximum dry density of 117.0 lb/ft³ and a corresponding optimum moisture content of 13.5 percent were estimated.

Report

EMBANKMENT AND BASE

IN-PLACE DENSITY

- Results on forms approved by the agency
- Maximum dry density to the closest $1 \text{ kg/m}^3 (0.1 \text{ lb/ft}^3)$
- Optimum moisture content to the closest 0.1 percent

PERFORMANCE EXAM CHECKLIST

FAMILY OF CURVES - ONE-POINT METHOD FOP FOR AASHTO T 272 (T 99)

Pa	rticipant Name Exam Da	.te	
Re	cord the symbols "P" for passing or "F" for failing on each step of the check	klist.	
Pr	ocedure Element	Trial 1	Trial 2
1.	One-point determination of dry density and corresponding moisture content made in accordance with the FOP for AASHTO T 99?	?	
	a. Correct size (4.75 mm / No. 4 or 19.0 mm / 3/4 in.) material used?		
2.	If damp, sample dried in air or drying apparatus, not exceeding 60°C (140°F)?		
3.	Sample broken up and an adequate amount sieved over the appropriate sieve (4.75 mm / No. 4 or 19.0 mm / $3/4$ in.) to determine oversize (coaparticle) percentage?	rse	
5.	Sample passing the sieve has appropriate mass?		
6.	Layer of soil (approximately one third compacted depth) placed in mole with collar attached?	d	
7.	Soil compacted with appropriate number of blows (25 or 56)?		
8.	Material adhering to the inside of the mold trimmed?		
9.	Layer of soil (approximately two thirds compacted depth) placed in motwith collar attached?	ld	
10.	Soil compacted with appropriate number of blows (25 or 56)?		
11.	Material adhering to the inside of the mold trimmed?		
12.	Mold filled with soil such that compacted soil will be above the mold?		
13.	Soil compacted with appropriate number of blows (25 or 56)?		
14.	Collar removed without shearing off sample?		
15.	Approximately 6 mm $(1/4 \text{ in.})$ of compacted material above the top of the mold (without the collar)?		
16.	Soil trimmed to top of mold with the beveled side of the straightedge?		
17.	Mass of mold and contents determined to appropriate precision?		
18.	Wet density calculated from the wet mass?		
19.	Soil removed from mold using a sample extruder if needed?		
20.	Soil sliced vertically through center (non-granular material)?		
21.	Moisture sample removed ensuring all layers are represented?		

OVER

Procedure Element	Trial 1	Trial 2
22. Moist mass determined immediately to 0.1 g?		
23. Moisture sample mass of correct size?		
24. Sample dried and water content determined according to T 255/T 265?		
25. One-point plotted on family of curves supplied?		
26. One-point falls within 80 to 100 percent of optimum moisture content in order to be valid?		
27. If one-point does not fall within 80 to 100 percent of optimum moisture content, another one-point determination with an adjusted water content is made?		
28. Maximum dry density and corresponding optimum moisture content correctly estimated?		
Comments: First attempt: PassFail Second attem	npt: Pass	Fail
Examiner SignatureWAQTC #	ŧ:	

SPECIFIC GRAVITY AND ABSORPTION OF COARSE AGGREGATE FOP FOR AASHTO T 85

Scope

This procedure covers the determination of specific gravity and absorption of coarse aggregate in accordance with AASHTO T 85-10. Specific gravity may be expressed as bulk specific gravity (G_{sb}), bulk specific gravity, saturated surface dry (G_{sb} SSD), or apparent specific gravity (G_{sa}). G_{sb} and absorption are based on aggregate after soaking in water. This procedure is not intended to be used with lightweight aggregates.

Terminology

Absorption – the increase in the mass of aggregate due to water being absorbed into the pores of the material, but not including water adhering to the outside surface of the particles, expressed as a percentage of the dry mass. The aggregate is considered "dry" when it has been maintained at a temperature of $110 \pm 5^{\circ}$ C ($230 \pm 9^{\circ}$ F) for sufficient time to remove all uncombined water.

Saturated Surface Dry (SSD) – condition of an aggregate particle when the permeable voids are filled with water, but no water is present on exposed surfaces.

Specific Gravity – the ratio of the mass, in air, of a volume of a material to the mass of the same volume of gas-free distilled water at a stated temperature.

Apparent Specific Gravity (G_{sa})– the ratio of the mass, in air, of a volume of the impermeable portion of aggregate to the mass of an equal volume of gas-free distilled water at a stated temperature.

Bulk Specific Gravity (G_{sb}) - the ratio of the mass, in air, of a volume of aggregate (including the permeable and impermeable voids in the particles, but not including the voids between particles) to the mass of an equal volume of gas-free distilled water at a stated temperature.

Bulk Specific Gravity (SSD) (G_{sb} SSD) – the ratio of the mass, in air, of a volume of aggregate, including the mass of water within the voids filled to the extent achieved by submerging in water for 15 to 19 hours (but not including the voids between particles), to the mass of an equal volume of gas-free distilled water at a stated temperature.

Apparatus

• Balance or scale: with a capacity of 5 kg, sensitive to 1 g. Meeting the requirements of AASHTO M 231.

- Sample container: a wire basket of 3.35 mm (No. 6) or smaller mesh, with a capacity of 4 to 7 L (1 to 2 gal) to contain aggregate with a nominal maximum size of 37.5 mm (1 1/2 in.) or smaller; or a larger basket for larger aggregates, or both.
- Water tank: watertight and large enough to completely immerse aggregate and basket, equipped with an overflow valve to keep water level constant.
- Suspension apparatus: wire used to suspend apparatus shall be of the smallest practical diameter.
- Sieves 4.75 mm (No. 4) or other sizes as needed, conforming to AASHTO M 92.
- Large absorbent towel

Sample Preparation

- 1. Obtain the sample in accordance with the FOP for AASHTO T 2 (see Note 1).
- 2. Mix the sample thoroughly and reduce it to the approximate sample size required by Table 1 in accordance with the FOP for AASHTO T 248.
- 3. Reject all material passing the appropriate sieve by dry sieving.
- 4. Thoroughly wash sample to remove dust or other coatings from the surface and re-screen the washed dry sample over the appropriate sieve. Reject all material passing that sieve.
- 5. The sample shall meet or exceed the minimum mass given in Table 1.

Note 1: If this procedure is used only to determine the Bulk G_{sb} of oversized material for the FOP for AASHTO T 99 / T 180 and in the calculations for the FOP for AASHTO T 224, the material can be rejected over the appropriate sieve. For T 99 / T 180 Methods A and B, use the 4.75 mm (No. 4) sieve; T 99 / T 180 Methods C and D use the 19 mm (3/4 in).

Table 1			
Nominal Maximum Size*	Minimum Mass of Test		
mm (in.)	Sample, g (lb)		
12.5 (1/2) or less	2000 (4.4)		
19.0 (3/4)	3000 (6.6)		
25.0 (1)	4000 (8.8)		
37.5 (1 1/2)	5000 (11)		
50 (2)	8000 (18)		
63 (2 1/2)	12,000 (26)		
75 (3)	18,000 (40)		

* One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum size.

Procedure

1. Dry the test sample to constant mass at a temperature of $110 \pm 5^{\circ}C (230 \pm 9^{\circ}F)$ and cool in air at room temperature for 1 to 3 hours.

Note 2: Where the absorption and specific gravity values are to be used in proportioning concrete mixtures in which the aggregates will be in their naturally moist condition, the requirement for initial drying to constant mass may be eliminated, and, if the surfaces of the particles in the sample have been kept continuously wet until test, the 15-to-19 hour soaking may also be eliminated.

2. Immerse the aggregate in water at room temperature for a period of 15 to 19 hours.

Note 3: When testing coarse aggregate of large nominal maximum size requiring large test samples, it may be more convenient to perform the test on two or more subsamples, and then combine the values obtained.

- 3. Place the empty basket into the water bath and attach to the balance. Inspect the immersion tank to ensure the water level is at the overflow outlet height. Tare the balance with the empty basket attached in the water bath.
- 4. Remove the test sample from the water and roll it in a large absorbent cloth until all visible films of water are removed. Wipe the larger particles individually.

Note 4: A moving stream of air may be used to assist in the drying operation, but take care to avoid evaporation of water from aggregate pores.

- 5. Determine the SSD mass of the sample, and record this and all subsequent masses to the nearest 0.1 g or 0.1 percent of the sample mass, whichever is greater. Designate this mass as "B".
- 6. Re-inspect the immersion tank to insure the water level is at the overflow outlet height. Immediately place the SSD test sample in the sample container and weigh it in water maintained at $23.0 \pm 1.7^{\circ}$ C ($73.4 \pm 3^{\circ}$ F). Shake the container to release entrapped air before recording the weight. Designate this submerged weight as "C".

Note 5: The container should be immersed to a depth sufficient to cover it and the test sample during mass determination. Wire suspending the container should be of the smallest practical size to minimize any possible effects of a variable immersed length.

- 7. Remove the sample from the basket. Ensure all material has been removed. Place in a container of known mass.
- Dry the test sample to constant mass in accordance with the FOP for AASHTO T 255 / T 265 (Aggregate section) and cool in air at room temperature for 1 to 3 hours. Designate this mass as "A".

Calculations

Perform calculations and determine values using the appropriate formula below. In these formulas, A =oven dry mass, B =SSD mass, and C =weight in water.

Bulk specific gravity (G_{sb})

$$G_{sb} = \frac{A}{B-C}$$

Bulk specific gravity, SSD (Gsb SSD)

$$G_{sb}SSD = \frac{B}{B-C}$$

Apparent specific gravity (G_{sa})

$$G_{sa} = \frac{A}{A - C}$$

Absorption

Absorption
$$=$$
 $\frac{B-A}{A} \times 100$

Sample Calculations

Sample	Α	В	С	B - C	A - C	B - A
1	2030.9	2044.9	1304.3	740.6	726.6	14.0
2	1820.0	1832.5	1168.1	664.4	651.9	12.5
3	2035.2	2049.4	1303.9	745.5	731.3	14.2

Sample	G _{sb}	G _{sb} SSD	G_{sa}	Absorption
1	2.742	2.761	2.795	0.7
2	2.739	2.758	2.792	0.7
3	2.730	2.749	2.783	0.7

These calculations demonstrate the relationship between G_{sb} , G_{sb} SSD, and G_{sa} . G_{sb} is always lowest, since the volume includes voids permeable to water. G_{sb} SSD is always intermediate. G_{sa} is always highest, since the volume does not include voids permeable to water. When running this test, check to make sure the values calculated make sense in relation to one another.

Report

•

- Results on forms approved by the agency
- Specific gravity values to 3 decimal places
- Absorption to 0.1 percent

PERFORMANCE EXAM CHECKLIST

SPECIFIC GRAVITY AND ABSORPTION OF COARSE AGGREGATE FOP FOR AASHTO T 85

Par	ticipant Name Exam D	Date			
Rec	Record the symbols "P" for passing or "F" for failing on each step of the checklist.				
Pro	ocedure Element	Trial 1	Trial 2		
1.	Sample obtained by FOP for AASHTO T 2 and reduced by FOP for AASHTO T 248 or from FOP for AASHTO T 99 / T 180?				
2.	Screened on the appropriate size sieve?				
3.	Sample mass appropriate?				
4.	Particle surfaces clean?				
5.	Dried to constant mass 110 $\pm5^{\circ}C$ (230 $\pm9^{\circ}F)$ and cooled to room temp	perature?			
6.	Covered with water for 15 to 19 hours?				
7.	Basket placed into immersion tank and attached to balance?				
8.	Immersion tank inspected for proper water height?				
9.	Balance tared with basket in tank and temperature checked $23.0 \pm 1.7^{\circ}C (73.4 \pm 3^{\circ}F)$?				
10.	Sample removed from water and rolled in cloth to remove visible films of water?				
11.	Larger particles wiped individually?				
12.	Evaporation avoided?				
13.	Sample mass determined to 0.1 g?				
14.	Sample immediately placed in basket, in immersion tank?				
15.	Entrapped air removed before weighing by shaking basket while immersed?				
16.	Immersed sample weight determined to 0.1 g?				
17.	All the sample removed from basket?				
18.	Sample dried to constant mass and cooled to room temperature?				

OVER

Procedure Ele	ment	Trial 1 Trial 2
19. Sample mass	s determined to 0.1 g?	
20. Proper form	ulas used in calculations?	
Comments:	First attempt: PassFail	Second attempt: PassFail
Examiner Signa	ature	WAQTC #:

CORRECTION FOR COARSE PARTICLES IN THE SOIL COMPACTION TEST FOP FOR AASHTO T 224

Scope

This procedure covers the adjustment of the maximum dry density determined by FOP for AASHTO T 99 / T 180 to compensate for coarse particles retained on the 4.75 mm (No. 4) or 19.0 mm (3/4 in.) sieve. For Methods A and B of the FOP for AASHTO T 99 / T 180 the adjustment is based on the percent, by mass, of material retained on the 4.75 mm (No. 4) sieve and the bulk specific gravity (G_{sb}) of the material retained on the 4.75 mm (No. 4) sieve. A maximum of 40 percent of the material can be retained on the 4.75 mm (No. 4) sieve for this method to be used. For Methods C and D of the FOP for AASHTO T 99 / T 180, the adjustment is based on the percent, by mass, of material retained on the 19.0 mm (3/4 in.) sieve and the bulk specific gravity (G_{sb}) of the material retained on the 19.0 mm (3/4 in.) sieve for this method to be used. For Methods C and D of the FOP for AASHTO T 99 / T 180, the adjustment is based on the percent, by mass, of material retained on the 19.0 mm (3/4 in.) sieve and the bulk specific gravity (G_{sb}) of the material retained on the 19.0 mm (3/4 in.) sieve. A maximum of 30 percent of the material can be retained on the 19.0 mm (3/4 in.) sieve for this method to be used. Whether the split is on the 4.75 mm (No. 4) or the 19.0 mm (3/4 in.) sieve, all material retained on that sieve is defined as oversized material.

This method applies to soils with percentages up to the maximums listed above for oversize particles. A correction may not be practical for soils with only a small percentage of oversize material. The agency shall specify a minimum percentage below which the method is not needed. If not specified, this method applies when more than 5 percent by weight of oversize particles is present.

This procedure covers the lab-to-field corrections in accordance with AASHTO T 224-10 (see AASHTO T 224 for field-to-lab corrections).

Adjustment Equation Moisture

Along with density, the moisture content can be corrected. The moisture content can be determined by the FOP for AASHTO T 255 / T 265, other agency approved methods, or the nuclear density gauge moisture content reading from the FOP for AASHTO T 310. If the nuclear gauge moisture reading is used, or when the moisture content is determined on the entire sample (both fine and oversized particles), the use of the adjustment equation is not needed. Combined moisture contents with material having an appreciable amount of silt or clay should be performed using FOP for AASHTO T 255 / T 265 (Soil). Moisture contents used from FOP for AASHTO T 310 must meet the criteria for that method.

When samples are split for moisture content (oversized and fine materials) the following adjustment equations must be followed:

- 1. Split the sample into oversized material and fine material.
- 2. Dry the oversized material following the FOP for AASHTO T 255 / T 265 (Aggregate). If the fine material is sandy in nature, dry using the FOP for AASHTO T 255 / T 265 (Aggregate), or other agency approved methods. If the fine material has any appreciable

amount of clay, dry using the FOP for AASHTO T 255 / T 265 (Soil) or other agency approved methods.

3. Calculate the dry mass of the oversize and fine material as follows:

$$M_D = \frac{M_m}{1 + \text{MC}}$$

Where:

 M_D = mass of dry material (fine or oversize particles). M_m = mass of moist material (fine or oversize particles). MC = moisture content of respective fine or oversized, expressed as a decimal.

4. Calculate the percentage of the fine and oversized particles by dry weight of the total sample as follows: See Note 2.

$$P_f = \frac{100M_{DF}}{M_{DF} + M_{DC}} \qquad \frac{100 \times 15.4 \, lbs}{15.4 \, lbs + 5.7 \, lbs} = 73\% \qquad \frac{100 \times 7.034 \, kg}{7.03 \, kg + 2.602 \, kg} = 73\%$$

And

$$P_c = \frac{100M_{DC}}{M_{DF} + M_{DC}} \qquad \frac{100 \times 5.7 \ lbs}{15.4 \ lbs + 5.7 \ lbs} = 27\% \qquad \frac{100 \times 2.602 \ kg}{7.03 \ kg + 2.602 \ kg} = 27\%$$

Or for P_c : $P_c = 100 - P_f$

Where:

- P_f = percent of fine particles, of sieve used, by weight.
- P_c = percent of oversize particles, of sieve used, by weight.
- $M_{DF} =$ mass of fine particles.
- M_{DC} = mass of oversize particles.

5. Calculate the corrected moisture content as follows:

$$MC_T = \frac{(MC_F \times P_f) + (MC_c \times P_c)}{100} \qquad \frac{(10.6\% \times 73.0\%) + (2.1\% \times 27.0\%)}{100} = 8.3\%$$

- MC_T = corrected moisture content of combined fines and oversized particles, expressed as a % moisture.
- MC_F = moisture content of fine particles, as a % moisture. MC_C = moisture content of oversized particles,

as a % moisture.

Note 1: Moisture content of oversize material can be assumed to be two (2) percent for most construction applications.

Note 2: In some field applications agencies will allow the percentages of oversize and fine materials to be determined with the materials in the wet state.

Adjustment Equation Density

6. Calculate the corrected dry density of the total sample (combined fine and oversized particles) as follows:

$$D_d = \frac{100 \times D_f \times k}{\left(D_f \times P_c\right) + \left(k \times P_f\right)} \qquad or \qquad D_d = \frac{100}{\frac{P_f}{D_f} + \frac{P_c}{k}}$$

Where:

- $D_d = corrected total dry density (combined fine and oversized particles) kg/m³ (lb/ft³)$
- $D_f = dry$ density of the fine particles kg/m³ (lb/ft³), determined in the lab
- P_c= percent of oversize particles, of sieve used, by weight.
- $P_f =$ percent of fine particles, of sieve used, by weight.
- k = Metric: 1,000 * Bulk Specific Gravity (G_{sb}) (oven dry basis) of coarse particles (kg/m³).
- k = English: 62.4 * Bulk Specific Gravity (G_{sb}) (oven dry basis) of coarse particles (lb/ft³)

Note 3: If the specific gravity is known, then this value will be used in the calculation. For most construction activities the specific gravity for aggregate may be assumed to be 2.600.

Calculation

Sample Calculations:

• Metric:

Maximum laboratory dry density (D_f):2329 kg/m³Percent coarse particles (P_c):27%Percent fine particles (P_f):73%Mass per volume coarse particles (k):(2.697) (1000) = 2697 kg/m³

$$D_d = \frac{100 \times D_f \times k}{\left(D_f \times P_c\right) + \left(k \times P_f\right)} \quad or \quad D_d = \frac{100}{\frac{P_f}{D_f} + \frac{P_c}{k}}$$

$$D_d = \frac{100 \times 2329 \, kg/m^3 \times 2697 \, kg/m^3}{(2329 \, kg/m^3 \times 27\%) + (2697 \, kg/m^3 \times 73\%)}$$

or
$$D_d = \frac{100}{\frac{73\%}{2329 \, kg/m^3} + \frac{27\%}{2697 \, kg/m^3}}$$

 $D_d = \frac{628,131,300 \, kg/m^3}{(628,883 \, kg/m^3 + \, 2697 \, kg/m^3)} \quad or \ D_d = \frac{100}{0.03134 \, kg/m^3 + \, 0.01001 \, kg/m^3}$

 $D_d = 2418.1 \, kg/m^3 \, report \, 2418 \, kg/m^3$

or
$$D_d = 2418.1 \, kg/m^3 \, report \, 2418 \, kg/m^3$$

EMBANKMENT AND BASE IN-PLACE DENSITY

WAQTC / IDAHO

English:

Maximum laboratory dry density (D_f): 140.4 lb/ft³

Percent coarse particles (P_c): 27%

Percent fine particles (P_f):73%

Mass per volume of coarse particles (k): $(2.697) (62.4) = 168.3 \text{ lb/ft}^3$

$$D_d = \frac{100 \times D_f \times k}{\left(D_f \times P_c\right) + \left(k \times P_f\right)} \qquad or \qquad D_d = \frac{100}{\frac{P_f}{D_f} + \frac{P_c}{k}}$$

$$D_d = \frac{100 \times 140.4 \, lb/ft^3 \times 168.3 \, lb/ft^3}{(140.4 \, lb/ft^3 \times 27\%) + (168.3 \, lb/ft^3 \times 73\%)}$$

$$or \ D_d = \frac{100}{\frac{73\%}{140.4 \, lb/ft^3} + \frac{27\%}{168.3 \, lb/ft^3}}$$

$$D_d = \frac{2,362,932 \, lb/ft^3}{(3790.8 \, lb/ft^3 + 12285.9 \, lb/ft^3)} \quad or \ D_d = \frac{100}{0.51994 \, lb/ft^3 + 0.16043 \, lb/ft^3}$$

$$D_d = \frac{2,362,932 \, lb/ft^3}{16,076.7 \, lb/ft^3} \quad or \ D_d = \frac{100}{0.68037 \, lb/ft^3}$$

$$D_d = 146.98 \, lb/ft^3 \ report \ 147.0 \ lb/ft^3$$

Report

- Results on forms approved by the agency
- Adjusted maximum dry density to the closest $1 \text{ kg/m}^3 (0.1 \text{ lb/ft}^3)$
- Adjusted optimum moisture to the 0.1 percent

USE OF AKDOT & PF ATM 212, ITD T 74, WSDOT TM 606, OR WFLHD HUMPHRYS CURVES

Background

Coarse-grained granular soils are free-draining and have little or no cohesion. These soils are, therefore, not particularly well suited for the moisture-density relations procedures of AASHTO T 99 or AASHTO T 180. Transportation agencies have developed specialized test methods that are hybrids of those moisture-density procedures and methods that employ compaction under load with vibration. Those methods include:

- AKDOT & PF's ATM 212
- ITD's T 74
- WSDOT's TM 606
- WFLHD's Humphrys

Description of Procedure

In these tests, material is compacted in a mold and in a manner similar to those used in a Proctor test, after which the material is further compacted through a combination of applied loads and vibration. A laboratory maximum dry density is determined, as is the percent of material passing a certain sieve such as the 4.75 mm (No. 4). A number of determinations are made for different percentages passing the specified sieve. A graph is developed in which dry density is plotted versus the percentage of material passing that sieve. These tests are conducted in the agency's central lab, and the curve developed is a central lab function. Figure 1 is an example of such a curve.

Construction specifications will call out a percent of maximum dry density required for the granular materials used on the job. These specified values will be based on ATM 212, T 74, TM 606, or Humphrys, depending on the agency.

In the field, the dry density of the granular material will be determined in accordance with the FOP for AASHTO 310. The percent of material passing the specified sieve will be determined for a sample obtained at the site of the density test. The dry density and percent passing values will then be compared with the curve developed in the lab for that particular granular material to determine conformance with the project specifications.

WAQTC

EMBANKMENT AND BASE IN-PLACE DENSITY

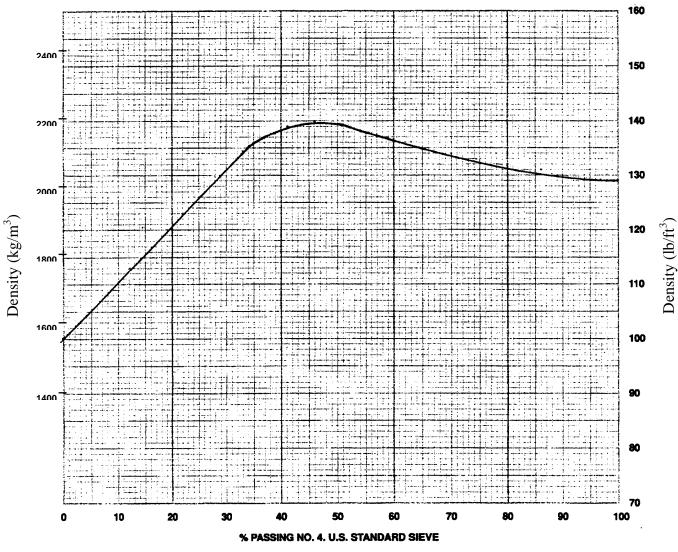


Figure 1. Maximum Density Curve Graph

Example:

A compaction test was taken and a sample was removed from the test site per the FOP for AASHTO T 310. The sample was graded over a 4.75 mm (No. 4) sieve. The following results were reported.

Dry density from T 310 =	2141 kg/m ³ (metric) 137.0 lb/ft ³ (English)
Percent passing 4.75 mm (No.4) sieve =	49%
Maximum density =	2173 kg/m ³ (metric) 139.0 lb/ft ³ (English)
Percent compaction =	99%

IN-PLACE DENSITY OF BITUMINOUS MIXES USING THE NUCLEAR MOISTURE-DENSITY GAUGE FOP FOR WAQTC TM 8

Scope

This test method describes a test procedure for determining the density of bituminous mixes by means of a nuclear gauge employing either direct transmission or backscatter methods. Correlation with densities determined under the FOP for AASHTO T 166 is required by some agencies.

Apparatus

- Nuclear density gauge with the factory-matched standard reference block.
- Drive pin, guide/scraper plate, and hammer for testing in direct transmission mode.
- Transport case for properly shipping and housing the gauge and tools.
- Instruction manual for the specific make and model of gauge.
- Radioactive materials information and calibration packet containing:
 - Daily standard count log
 - Factory and laboratory calibration data sheet
 - Leak test certificate
 - Shippers' declaration for dangerous goods
 - Procedure memo for storing, transporting and handling nuclear testing equipment
 - Other radioactive materials documentation as required by local regulatory requirements

Material

• Filler material: Fine-graded sand from the source used to produce the asphalt pavement or other agency approved materials.

Radiation Safety

This method does not purport to address all of the safety problems associated with its use. This test method involves potentially hazardous materials. The gauge utilizes radioactive materials that may be hazardous to the health of the user unless proper precautions are taken. Users of this gauge must become familiar with the applicable safety procedures and governmental regulations. All operators will be trained in radiation safety prior to operating nuclear density gauges. Some agencies require the use of personal monitoring devices such as a thermoluminescent dosimeter or film badge. Effective instructions, together with routine safety procedures such as source leak tests, recording and evaluation of personal monitoring device data, etc., are a recommended part of the operation and storage of this gauge.

Calibration

Calibrate the nuclear gauge as required by the agency. This calibration may be performed by the agency using the manufacturer's recommended procedures or by other facilities approved by the agency. Verify or re-establish calibration curves, tables, or equivalent coefficients every 12 months.

Standardization

- 1. Turn the gauge on and allow it to stabilize (approximately 10 to 20 minutes) prior to standardization. Leave the power on during the day's testing.
- 2. Standardize the nuclear gauge at the construction site at the start of each day's work and as often as deemed necessary by the operator or agency. Daily variations in standard count shall not exceed the daily variations established by the manufacturer of the gauge. If the daily variations are exceeded after repeating the standardization procedure, the gauge should be repaired, recalibrated, or both.
- 3. Record the standard count for both density and moisture in the daily standard count log. The exact procedure for standard count is listed in the manufacturer's Operator's Manual.

Note 1: New standard counts may be necessary more than once a day. See agency requirements.

Test Site Location

- 1. Select a test location(s) randomly and in accordance with agency requirements. Test sites should be relatively smooth and flat and meet the following conditions:
 - a. At least 10 m (30 ft) away from other sources of radioactivity.
 - b. At least 3 m (10 ft) away from large objects.
 - c. If the gauge will be closer than 600 mm (24 in.) to any vertical mass, or less than 300 mm (12 in.) from a vertical pavement edge, use the gauge manufacturer's correction procedure.

Overview

There are two methods for determining the in-place density of HMA. See agency requirements for method selection.

- Direct Transmission
- Backscatter

Procedure

Direct Transmission

- 1. Maximum contact between the base of the gauge and the surface of the material under test is critical.
- 2. Use the guide and scraper plate as a template and drill a hole to a depth of at least 7 mm (1/4 in.) deeper than the measurement depth required for the gauge.
- 3. Place the gauge on the prepared surface so the source rod can enter the hole. Insert the probe in the hole and lower the source rod to the desired test depth using the handle and trigger mechanism. Position the gauge with the long axis of the gauge parallel to the direction of paving. Pull the gauge so that the probe is firmly against the side of the hole.
- 4. Take one four-minute test and record the wet density (WD) reading.

Backscatter

- 1. Maintain maximum contact between the base of the gauge and the surface of the material under test. Use filler material to fill surface voids. Spread a small amount of filler material over the test site surface and distribute it evenly. Strike off the surface with a straightedge (such as a lathe or flat-bar steel) to remove excess material.
- 2. Place the gauge on the test site. Using a crayon (not spray paint), mark the outline or footprint of the gauge. Extend the probe to the backscatter position.
- 3. Take a one-minute test and record the wet density reading.
- 4. Rotate the gauge 90 degrees about the probe. Mark the outline or footprint of the gauge.
- 5. Take another one-minute test and record the wet density reading.
- 6. If the difference between the two one-minute tests is greater than 40 kg/m³ (2.5 lb/ft³), retest in both directions. If the difference of the retests is still greater than 40 kg/m³ (2.5 lb/ft³) test at 180 and 270 degrees.

7. The density reported for each test site shall be the average of the two individual oneminute wet density readings.

Calculation of Results

Percent compaction is determined by comparing the in-place wet density as determined by this method to the appropriate agency density standard. See appropriate agency policy for use of density standards.

Backscatter Example:

Reading #1:	141.5 lb/ft ³	
Reading #2:	140.1 lb/ft ³	Are the two readings within the tolerance? (YES)
Reading average:	140.8 lb/ft ³	
Core correction :	+2.1 lb/ft ³	
Corrected reading:	142.9 lb/ft ³	

 G_{mm} and maximum density from the FOP for AASHTO T 209: $G_{mm} = 2.466 = 153.5 \text{ lb/ft}^3$

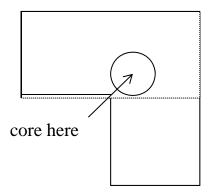
 $\frac{Corrected Reading}{Maximum Density} \times 100 = \% \ compaction \qquad \frac{142.9 \ lb/ft^3}{153.5 \ lb/ft^3} \times 100 = 93.1\%$

Direct Transmission Example:

Reading:	140.8 lb/ft^3
----------	-------------------------

Core correction: $+2.1 \text{ lb/ft}^3$

Corrected reading: 142.9 lb/ft³


 G_{mm} and maximum density from the FOP for AASHTO T 209: $G_{mm} = 2.466 = 153.5 \text{ lb/ft}^3$

 $\frac{Corrected Reading}{Maximum Density} \times 100 = \% \ compaction \qquad \frac{142.9 \ lb/ft^3}{153.5 \ lb/ft^3} \times 100 = 93.1\%$

Correlation with Cores

Note 2: When density correlation with the FOP for AASHTO T 166 is required, correlation of the nuclear gauge with pavement cores shall be made on the first day's paving (within 24 hours) or from a test strip constructed prior to the start of paving. Cores must be taken before traffic is allowed on the pavement.

- 1. Determine the number of cores required for correlation from the agency's specifications. Cores shall be located on the first day's paving or on the test strip. Locate the test sites in accordance with the agency's specifications. Follow the "Procedure" section above to establish test sites and obtain densities using the nuclear gauge.
- 2. Obtain a pavement core from each of the test sites in accordance with WAQTC TM 11. The core should be taken from the center of the nuclear gauge footprint. If direct transmission was used, locate the core at least 25 mm (1 in.) away from the edge of the drive pin hole.

- 3. Determine the density of the cores by the FOP for AASHTO T 166, Bulk Specific Gravity of Compacted Bituminous Mixtures Using Saturated Surface Dry Specimens.
- 4. Calculate a correlation factor for the nuclear gauge reading as follows:
 - a. Calculate the difference between the core density and the average nuclear gauge density at each test site to the nearest $1 \text{ kg/m}^3 (0.1 \text{ lb/ft}^3)$. Calculate the average difference and standard deviation of the differences for the entire data set to the nearest $1 \text{ kg/m}^3 (0.1 \text{ lb/ft}^3)$.
 - b. If the standard deviation of the differences is equal to or less than 40 kg/m^3 (2.5 lb/ft³), the correlation factor applied to the average nuclear gauge density shall be the average difference calculated above in 4.a.
 - c. If the standard deviation of the differences is greater than 40 kg/m³ (2.5 lb/ft³), the test site with the greatest variation from the average difference shall be eliminated from the data set and the data set properties and correlation factor recalculated following 4.a and 4.b.

d. If the standard deviation of the modified data set still exceeds the maximum specified in 4.b, additional test sites will be eliminated from the data set and the data set properties and correlation factor recalculated following 4.a and 4.b. If the data set consists of less than five test sites, additional test sites shall be established.

Note 3: The exact method used in calculating the nuclear gauge correlation factor shall be defined by agency policy.

Note 4: The above correlation procedure must be repeated if there is a new job mix formula. Adjustments to the job mix formula beyond tolerances established in the contract documents will constitute a new job mix formula. A correlation factor established using this procedure is only valid for the particular gauge and in the mode and at the probe depth used in the correlation procedure. If another gauge is brought onto the project, it shall be correlated using the same procedure. Multiple gauges may be correlated from the same series of cores if done at the same time.

Note 5: For the purpose of this procedure, a job mix formula is defined as the percent and grade of paving asphalt used with a specified gradation of aggregate from a designated aggregate source. A new job mix formula may be required whenever compaction of the wearing surface exceeds the agency's specified maximum density or minimum air voids.

Core Correlation Example:

English

Core results from T 166: 144.9 lb/ft ³ 142.8 lb/ft ³ 143.1 lb/ft ³ 140.7 lb/ft ³ 145.1 lb/ft ³ 144.2 lb/ft ³ 143.8 lb/ft ³	$\frac{\text{Density results from TM 8:}}{142.1 \text{ lb/ft}^3}$ 140.9 lb/ft^3 140.7 lb/ft^3 138.9 lb/ft^3 143.6 lb/ft^3 142.4 lb/ft^3 141.3 lb/ft^3 Average Difference: Standard Deviation $(n - 1)$:	Difference: 2.8 lb/ft ³ 1.9 lb/ft ³ 2.4 lb/ft ³ 1.5 lb/ft ³ 1.5 lb/ft ³ 2.5 lb/ft ³ 2.5 lb/ft ³ 2.1 lb/ft ³ 0.47 lb/ft ³
	Metric	
Core results from T 166: 2338 kg/m ³ 2306 kg/m ³ 2314 kg/m ³ 2274 kg/m ³ 2343 kg/m ³ 2329 kg/m ³ 2322 kg/m ³	Density results from TM 8: 2295 kg/m ³ 2275 kg/m ³ 2274 kg/m ³ 2243 kg/m ³ 2319 kg/m ³ 2300 kg/m ³ 2282 kg/m ³	Difference: 43 kg/m ³ 31 kg/m ³ 40 kg/m ³ 31 kg/m ³ 24 kg/m ³ 29 kg/m ³ 40 kg/m ³
	Average Difference: Standard Deviation (n – 1):	34 kg/m ³ 7.0 kg/m ³

Report

- Results on forms approved by the agency
- Location of test and thickness of layer tested
- Mixture type
- Make, model and serial number of the nuclear moisture-density gauge
- Mode of measurement, depth, calculated wet density of each measurement and any adjustment data
- Standard density
- Percent compaction, percent air voids, or both
- Name and signature of operator

PERFORMANCE EXAM CHECKLIST

IN-PLACE DENSITY OF BITUMINOUS MIXES USING THE NUCLEAR MOISTURE-DENSITY GAUGE FOP FOR WAQTC TM 8

	Exam Date	
Record the symbols "P" for passing or "F" for failing on each step	p of the checklist.	
Procedure Element	Trial	1 Trial 2
1. Gauge turned on approximately 10 to 20 minutes before use	e?	
2. Gauge calibrated and standard count recorded?		
3. Test location selected appropriately [600 mm (24 in.) from projections or 10 m (30 ft) from any other radioactive source		
4. Direct Transmission:		
a. Hole made 7 mm $(1/4 \text{ in.})$ deeper than intended probe d	lepth?	
b. Gauge placed, probe extended, gauge pulled toward sca	aler/detector?	
c. One four-minute test taken?		
5. Backscatter:		
a. Filler spread evenly over test site?		
b. Excess filler material removed by striking off the surface	ce?	
c. Gauge placed on pavement surface and footprint of gau	ige marked?	
d. Probe extended to backscatter position?		
e. One-minute count taken; gauge rotated 90°, reseated, an one-minute count taken?	nd another	
f. Densities averaged?		
g. If difference of the wet densities is greater than 40 kg/m^3 (2.5 lb/ft ³), retest conducted in both directions	s?	
6. Core correlation applied if required?		
7. Percent compaction calculated correctly?		
Comments: First attempt: PassFail	Second attempt: Pass	_Fail
Examiner Signature	_WAQTC #:	

IN-PLACE DENSITY AND MOISTURE CONTENT OF SOIL AND SOIL-AGGREGATE BY NUCLEAR METHODS (SHALLOW DEPTH) FOP FOR AASHTO T 310

Scope

This procedure covers the determination of density, moisture content, and relative compaction of soil, aggregate, and soil-aggregate mixes in accordance with AASHTO T 310-11. This field operating procedure is derived from AASHTO T 310. The nuclear moisture-density gauge is used in the direct transmission mode.

Apparatus

- Nuclear density gauge with the factory matched standard reference block.
- Drive pin, guide/scraper plate, and hammer for testing in direct transmission mode.
- Transport case for properly shipping and housing the gauge and tools.
- Instruction manual for the specific make and model of gauge.
- Radioactive materials information and calibration packet containing:
 - Daily Standard Count Log.
 - Factory and Laboratory Calibration Data Sheet.
 - Leak Test Certificate.
 - Shippers Declaration for Dangerous Goods.
 - Procedure Memo for Storing, Transporting and Handling Nuclear Testing Equipment.
 - Other radioactive materials documentation as required by local regulatory requirements.
- Sealable containers and utensils for moisture content determinations.

Radiation Safety

This method does not purport to address all of the safety problems associated with its use. This test method involves potentially hazardous materials. The gauge utilizes radioactive materials that may be hazardous to the health of the user unless proper precautions are taken. Users of this gauge must become familiar with the applicable safety procedures and governmental regulations. All operators will be trained in radiation safety prior to operating nuclear density gauges. Some agencies require the use of personal monitoring devices such as a thermoluminescent dosimeter or film badge. Effective instructions together with routine safety procedures such as source leak tests, recording and evaluation of personal monitoring device data, etc., are a recommended part of the operation and storage of this gauge.

Calibration

Calibrate the nuclear gauge as required by the agency. This calibration may be performed by the agency using manufacturer's recommended procedures or by other facilities approved by the agency. Verify or re-establish calibration curves, tables, or equivalent coefficients every 12 months.

Standardization

- 1. Turn the gauge on and allow it to stabilize (approximately 10 to 20 minutes) prior to standardization. Leave the power on during the day's testing.
- 2. Standardize the nuclear gauge at the construction site at the start of each day's work and as often as deemed necessary by the operator or agency. Daily variations in standard count shall not exceed the daily variations established by the manufacturer of the gauge. If the daily variations are exceeded after repeating the standardization procedure, the gauge should be repaired and/or recalibrated.
- 3. Record the standard count for both density and moisture in the Daily Standard Count Log. The exact procedure for standard count is listed in the manufacturer's Operator's Manual.

Note 1: New standard counts may be necessary more than once a day. See agency requirements.

Overview

There are two methods for determining in-place density of soil / soil aggregate mixtures. See agency requirements for method selection.

- Method A Single Direction
- Method B Two Direction

Procedure

- 1. Select a test location(s) randomly and in accordance with agency requirements. Test sites should be relatively smooth and flat and meet the following conditions:
 - a. At least 10 m (30 ft) away from other sources of radioactivity
 - b. At least 3 m (10 ft) away from large objects

- c. The test site should be at least 150 mm (6 in.) away from any vertical projection, unless the gauge is corrected for trench wall effect.
- 2. Remove all loose and disturbed material, and remove additional material as necessary to expose the top of the material to be tested.
- 3. Prepare a flat area sufficient in size to accommodate the gauge. Plane the area to a smooth condition so as to obtain maximum contact between the gauge and the material being tested. For Method B, the flat area must be sufficient to permit rotating the gauge 90 or 180 degrees about the source rod.
- 4. Fill in surface voids beneath the gauge with fines of the material being tested passing the 4.75 mm (No. 4) sieve or finer. Smooth the surface with the guide plate or other suitable tool. The depth of the filler should not exceed approximately 3 mm (1/8 in.).
- 5. Make a hole perpendicular to the prepared surface using the guide plate and drive pin. The hole shall be at least 50 mm (2 in.) deeper than the desired probe depth, and shall be aligned such that insertion of the probe will not cause the gauge to tilt from the plane of the prepared area. Remove the drive pin by pulling straight up and twisting the extraction tool.
- 6. Place the gauge on the prepared surface so the source rod can enter the hole without disturbing loose material.
- 7. Insert the probe in the hole and lower the source rod to the desired test depth using the handle and trigger mechanism.
- 8. Seat the gauge firmly by partially rotating it back and forth about the source rod. Ensure the gauge is seated flush against the surface by pressing down on the gauge corners, and making sure that the gauge does not rock.
- 9. Pull gently on the gauge to bring the side of the source rod nearest to the scaler / detector firmly against the side of the hole.
- 10. Perform one of the following methods, per agency requirements:
 - a. Method A Single Direction: Take a test consisting of the average of two, one minute readings, and record both density and moisture data. The two wet density readings should be within $32 \text{ kg/m}^3 (2.0 \text{ lb/ft}^3)$ of each other. The average of the two wet densities and moisture contents will be used to compute dry density.
 - b. Method B Two Direction: Take a one-minute reading and record both density and moisture data. Rotate the gauge 90 or 180 degrees, pivoting it around the source rod. Reseat the gauge by pulling gently on the gauge to bring the side of the source rod nearest to the scaler/detector firmly against the side of the

hole and take a one-minute reading. (In trench locations, rotate the gauge 180 degrees for the second test.) Some agencies require multiple one-minute readings in both directions. Analyze the density and moisture data. A valid test consists of wet density readings in both gauge positions that are within 50 kg/m^3 (3.0 lb/ft³). If the tests do not agree within this limit, move to a new location. The average of the wet density and moisture contents will be used to compute dry density.

11. If required by the agency, obtain a representative sample of the material, 4 kg (9 lb) minimum, from directly beneath the gauge full depth of material tested. This sample will be used to verify moisture content and / or identify the correct density standard. Immediately seal the material to prevent loss of moisture.

The material tested by direct transmission can be approximated by a cylinder of soil approximately 300 mm (12 in.) in diameter directly beneath the centerline of the radioactive source and detector. The height of the cylinder will be approximately the depth of measurement. When organic material or large aggregate is removed during this operation, disregard the test information and move to a new test site.

12. To verify the moisture content from the nuclear gauge, determine the moisture content with a representative portion of the material using the FOP for AASHTO T 255/T 265 or other agency approved methods. If the moisture content from the nuclear gauge is within ±1 percent, the nuclear gauge readings can be accepted. Retain the remainder of the sample at its original moisture content for a one-point compaction test under the FOP for AASHTO T 272, or for gradation, if required.

Note 2: Example: A gauge reading of 16.8 percent moisture and an oven dry of 17.7 percent are within the ± 1 percent requirements. Moisture correlation curves will be developed according to agency guidelines. These curves should be reviewed and possibly redeveloped every 90 days.

13. Determine the dry density by one of the following.

- a. From nuclear gauge readings, compute by subtracting the mass (weight) of the water $(kg/m^3 \text{ or } lb/ft^3)$ from the wet density $(kg/m^3 \text{ or } lb/ft^3)$ or compute using the percent moisture by dividing wet density from the nuclear gauge by 1 + moisture content expressed as a decimal.
- b. When verification is required and the nuclear gauge readings cannot be accepted, the moisture content is determined by the FOP for AASHTO T 255/T 265 or other agency approved methods. Compute dry density by dividing wet density from the nuclear gauge by 1 + moisture content expressed as a decimal.

Percent Compaction

• Percent compaction is determined by comparing the in-place dry density as determined by this procedure to the appropriate agency density standard. For soil or soil-aggregate mixes, these are moisture-density curves developed using the FOP for AASHTO

T 99/T 180. When using curves developed by the FOP for AASHTO T 99 / T 180, it may be necessary to use the FOP for AASHTO T 224 and FOP for AASHTO T 272 to determine maximum density and moisture determinations.

For coarse granular materials, the density standard may be density-gradation curves developed using a vibratory method such as AKDOT&PF's ATM 212, ITD's T 74, WSDOT's TM 606, or WFLHD's Humphrys.

See appropriate agency policies for use of density standards.

Calculation

Wet density readings from gauge: 1963 kg/m³ (121.6 lb/ft³) 1993 kg/m³ (123.4 lb/ft³)

Avg: 1978 kg/m³ (122.5 lb/ft³)

Moisture readings from gauge: 14.2% and 15.4% = Avg 14.8%

Moisture content from the FOP's for AASHTO T 255/ T 265: 15.9%

Moisture content is greater than 1 percent different so the gauge moisture cannot be used.

Calculate the dry density as follows:

$$\rho_d = \left(\frac{\rho_w}{w+100}\right) \times 100 \quad or \quad \rho_d = \left(\frac{\rho_w}{\frac{W}{100}+1}\right)$$

Where:

 ho_d = Dry density, kg/m³ (lb/ft³) ho_w = Wet density, kg/m³ (lb/ft³) w = Moisture content from the FOP's for AASHTO T 255 / T 265, as a percentage

$$\rho_d = \left(\frac{1978 \, kg/m^3 \, or \, 122.5 \, lb/ft^3}{15.9 + 100}\right) \times 100 \quad \rho_d = \left(\frac{1978 \, kg/m^3 \, or \, 122.5 \, lb/ft^3}{\frac{15.9}{100} + 1}\right)$$

Corrected for moisture Dry Density: 1707 kg/m³ (105.7 lb/ft³)

Calculate percent compaction as follows:

% Compaction =
$$\frac{\rho_d}{Agency \ density \ standard} \times 100$$

Report

- Results on forms approved by the agency
- Location of test, elevation of surface, and thickness of layer tested.
- Visual description of material tested.
- Make, model and serial number of the nuclear moisture-density gauge.
- Wet density to 0.1 lb/ft^3 .
- Moisture content as a percent, by mass, of dry soil mass to 0.1 percent.
- Dry density to 0.1 lb/ft^3 .
- Standard density to 0.1 lb/ft³.
- Percent compaction.
- Name and signature of operator.

PERFORMANCE EXAM CHECKLIST

IN-PLACE DENSITY AND MOISTURE CONTENT OF SOIL AND SOIL-AGGREGATE BY NUCLEAR METHODS (SHALLOW DEPTH) **FOP FOR AASHTO T 310**

Participant Name		pant Name Exam Date		
Rec	ord	the symbols "P" for passing or "F" for failing on each step of the checklist.		
Pro	oceo	lure Element	Trial 1	Trial 2
1.	Ga	uge turned on 10 to 20 minutes before use?		
2.	Cal	libration verified?		
3.		ndard count taken and recorded in accordance with nufacturer's instructions?		
4.	rad	st location selected appropriately 10 m (30 ft) from other ioactive sources, 3 m (10ft) from large objects, 150 mm (6 in) away m vertical projections?		
5.	Lo	ose, disturbed material removed?		
6.	Fla	t, smooth area prepared?		
7.		face voids filled with native fines $(-#4)$ to 3 mm $(1/8 \text{ in})$ maximum ckness?		
8.	Ho	le driven 50 mm (2 in) deeper than probe depth?		
9.		uge placed, probe placed, and source rod lowered hout disturbing loose material?		
10.	Me	thod A:		
	a.	Gauge firmly seated, and gently pulled back so that the source rod is against the side of the hole toward the scaler / detectors?	t	
	b.	Two, one-minute reading taken; wet density within $32 \text{ kg/m}^3 (2.0 \text{ lb/ft}^3)$?		
	c.	Density and moisture data averaged?		
11.	Me	thod B:		
	a.	Gauge firmly seated, and gently pulled back so that the source rod is against the side of the hole toward the scaler / detectors?	t	
	b.	A minimum of a one-minute reading taken; density and moisture data recorded?		
	c.	Gauge turned 90° or 180° (180° in trench)?		

OVER

Procedure Element	Trial 1	Trial 2
d. Gauge firmly seated, and gently pulled back so that the source rod is aga the side of the hole toward the scaler / detectors?	ainst	
e. A minimum of a one-minute reading taken; density and moisture data recorded?		
f. Wet densities within 50 kg/m ³ (3.0 lb/ft ³)?		
g. Density and moisture data averaged?		
12. Representative sample (4 kg or 9 lbs) obtained from test location?		
13. Sample sealed immediately to prevent moisture loss?		
14. Moisture content correctly determined using other means than the nuclear density gauge reading ?		
15. Dry Density calculated using proper moisture content?		
16. Percent compaction calculated correctly?		
Comments: First attempt: PassFail Second attempt:	Pass]	Fail
Examiner SignatureWAQTC #:		

TOTAL EVAPORABLE MOISTURE CONTENT OF AGGREGATE BY DRYING FOP FOR AASHTO T 255 (11) LABORATORY DETERMINATION OF MOISTURE CONTENT OF SOILS FOP FOR AASHTO T 265 (11)

Scope

This procedure covers the determination of moisture content of aggregate and soil in accordance with AASHTO T 255 and AASHTO T 265. It may also be used for other construction materials.

Apparatus

- Balance or scale: capacity sufficient for the principle sample mass, accurate to 0.1 percent of sample mass or readable to 0.1 g, and meeting the requirements of AASHTO M 231
- Containers, clean, dry and capable of being sealed
- Suitable drying containers
- Microwave safe containers
- Heat source, temperature controlled:
 - Forced draft oven
 - Ventilated / convection oven
- Heat source, uncontrolled:
 - Microwave oven (600 watts minimum)
 - Infrared heater, hot plate, fry pan, or any other device/method that will dry the sample without altering the material being dried
- Utensils such as spoons
- Hot pads or gloves

Sample Preparation

For aggregate, select the proper sample mass, in its existing condition, based on Table 1 or other information that may be specified by the agency. Obtain the sample in accordance with the FOP for AASHTO T 2.

Immediately seal or cover samples to prevent any change in moisture content.

Sample Sizes for Moisture Content of Aggrega		
Nominal Maximum	Minimum Sample Mass	
Size*	g (lb)	
mm (in.)		
4.75 (No. 4)	500 (1.1)	
9.5 (3/8)	1500 (3.3)	
12.5 (1/2)	2000 (4)	
19.0 (3/4)	3000 (7)	
25.0 (1)	4000 (9)	
37.5 (1 1/2)	6000 (13)	
50 (2)	8000 (18)	
63 (2 1/2)	10,000 (22)	
75 (3)	13,000 (29)	
90 (3 1/2)	16,000 (35)	
100 (4)	25,000 (55)	
150 (6)	50,000 (110)	

TABLE 1
Sizes for Moisture Content of Aggregate

* One sieve larger than the first sieve to retain more than 10 percent of the material using an agency specified set of sieves based on cumulative percent retained. Where large gaps in specification sieves exist, intermediate sieve(s) may be inserted to determine nominal maximum.

For soil, select the proper sample mass, in its existing condition, based on Table 2 or other information that may be supplied by the agency.

TABLE 2

Sample Sizes for Moisture Content of Soil

Maximum Particle	Minimum Sample Mass
Size	g
mm (in)	
0.425 (No. 40)	10
4.75 (No. 4)	100
12.5 (1/2)	300
25.0(1)	500
50 (2)	1000

Procedure

For aggregate, determine and record all masses to the nearest 0.1 percent of the sample mass or to the nearest 0.1 g. For soil, determine and record all masses to the nearest 0.1 g. When determining mass, allow the sample and container to cool sufficiently so as not to damage or interfere with the operation of the balance or scale.

- 1. Determine and record the mass of the container.
- 2. Place the wet sample in the container and record the total mass of the container and wet sample.
- 3. Determine the wet mass of the sample by subtracting the mass in Step 1 from the mass in Step 2.
- 4. Dry the sample to a constant mass in accordance with the directions given under Directions for Drying below. Measures will be taken to protect the scale from excessive heat while determining constant mass.
- 5. Allow the sample to cool and record the total mass of the container and dry sample.
- 6. Determine the dry mass of the sample by subtracting the mass in Step 1 from the mass in Step 5.

Directions for Drying Aggregate

- **Controlled**: Forced draft (preferred), ventilated or convection oven
- 1. Spread sample in the container.
- 2. Dry to constant mass at $110 \pm 5^{\circ}$ C (230 $\pm 9^{\circ}$ F). Constant mass has been reached when there is less than a 0.10 percent change after a minimum of 30 minutes additional drying time.
- Uncontrolled

Where close control of temperature is not required (such as with aggregate not altered by higher temperatures; with aggregate that will not be used in further tests; or where precise information is not required), higher temperatures or other suitable heat sources may be used. Other heat sources may include microwaves, hot plates, or heat lamps.

- Microwave oven
- 1. Heap sample in pile in the center of the container and cover. This cover must allow moisture to escape.
- 2. Dry to constant mass. Constant mass has been reached when there is less than a 0.10 percent change after an additional 10 minutes of drying.

Caution: Some minerals in the sample may cause the aggregate to overheat, altering the aggregate gradation.

- Hot plates, heat lamps, etc.
- 1. Spread sample in container.

- 2. Stir the sample frequently to avoid localized overheating and aggregate fracturing.
- 3. Dry to a constant mass. Constant mass has been reached when there is less than a 0.10 percent change after an additional 20 minutes of drying.

Directions for Drying Soil

- Oven (preferably forced draft / air)
 - 1. Place sample in container.
 - 2. Dry to constant mass at $110 \pm 5^{\circ}$ C ($230 \pm 9^{\circ}$ F). Constant mass has been reached when there is no change after a minimum of 1 hour additional drying time. A sample dried overnight (15 to 16 hours) is sufficient in most cases.

Note 1: Soils containing gypsum or significant amounts of organic material require special drying. For reliable moisture contents dry these soils at 60°C (140°F). For more information see AASHTO T 265, Note 2.

Calculation

Constant Mass for Aggregates:

Calculate constant mass using the following formula:

$$\frac{M_p - M_n}{M_p} \times 100 = \%$$
 Change

Where:

 M_p = previous mass measurement M_n = new mass measurement

Example:

Mass of container: 1232.1 g Mass of container& sample after first drying cycle: 2637.2 g Mass, M_p , of possibly dry sample: 2637.2 g - 1232.1 g = 1405.1 g Mass of container and dry sample after second drying cycle: 2634.1 g Mass, M_n , of dry sample: 2634.1 g - 1232.1 g = 1402.0 g

$$\frac{1405.1 \ g - 1402.0 \ g}{1405.1 \ g} \times 100 = 0.22\%$$

0.22% is not less than 0.10%, so continue drying

Mass of container and dry sample after third drying cycle: 2633.0 g Mass, M_n , of dry sample: 2633.0 g - 1232.1 g = 1400.9 g

$$\frac{1402.0\mathrm{g} - 1400.9\mathrm{g}}{1402.0} \times 100 = 0.08\%$$

0.08% is less than 0.10%, so constant mass has been reached for an aggregate, but continue drying for soil.

Moisture Content Aggregate and Soils:

Calculate the moisture content, as a percent, using the following formula:

$$w = \frac{M_W - M_D}{M_D} \times 100$$

Where:

$$\label{eq:w} \begin{split} &w = moisture \ content, \ percent \\ &M_W = wet \ mass \\ &M_D = dry \ mass \end{split}$$

Example:

Mass of container: 1232.1 g Mass of container and wet sample: 2764.7 g Mass, M_W , of wet sample: 2764.7 g - 1232.1 g = 1532.6 g Mass of container and dry sample (COOLED): 2633.0 g Mass, M_D , of dry sample: 2633.0 g - 1232.1 g = 1400.9 g

$$w = \frac{1532.6\text{g} - 1400.9\text{g}}{1400.9} \times 100 = \frac{131.7g}{1400.9g} \times 100 = 9.39\% \text{ report } 9.4\%$$

Report

Results shall be reported on standard forms approved for use by the agency. Include:

- M_W, wet mass
- M_D, dry mass
- w, moisture content to nearest 0.1 percent

PERFORMANCE EXAM CHECKLIST

TOTAL EVAPORABLE MOISTURE CONTENT OF AGGREGATE BY DRYING FOP FOR AASHTO T 255 LABORATORY DETERMINATION OF MOISTURE CONTENT OF SOILS FOP FOR AASHTO T 265

Pa	rticipant Name Exam Date		
Re	cord the symbols "P" for passing or "F" for failing on each step of the checklist.		
Pr	ocedure Element	Trial 1	Trial 2
1.	Representative sample of appropriate mass obtained?		
2.	Mass of container determined to 0.1 g?		
3.	Sample placed in container and mass determined to 0.1 g?		
4.	Test sample mass conforms to the required mass?		
5.	Wet sample mass determined to 0.1 g?		
6.	Loss of moisture avoided prior to mass determination?		
7.	Sample dried by a suitable heat source?		
8.			
9.	For aggregate: if other than a forced draft, microwave or conventional oven, is aggregate heated for a minimum of 20 minutes additional drying time determined and compared to previous mass – showing less than 0.10 percent loss?	and then	mass
10	. For soil: Is soil heated for at least 1 hour additional drying time and then mas determined and compared to previous mass - showing no loss?	s 	
11	. Sample cooled, dry mass determined & recorded to the nearest 0.1 percent?		
12. Moisture content calculated correctly and recorded to the nearest			
Сс	omments: First attempt: PassFailSecond attempt: Pa	assl	Fail
Ex	aminer SignatureWAQTC #:		

FAMILY OF CURVES – ONE-POINT METHOD FOP FOR AASHTO T 272 (11)

Scope

This procedure provides for a rapid determination of the maximum density and optimum moisture content of a soil sample, utilizing a family of curves and a one-point determination in accordance with AASHTO T 272. This procedure is related to the FOP for AASHTO T 99/T 180.

One-point determinations are made by compacting the soil in a mold of a given size with a specified rammer dropped from a specified height. Four alternate methods – A, B, C, and D – are used and correspond to the methods described in the FOP for AASHTO T 99/T 180. The method used in AASHTO T 272 must match the method used in the FOP for AASHTO T 99/T 180.

Apparatus

See the FOP for AASHTO T 99/T 180.

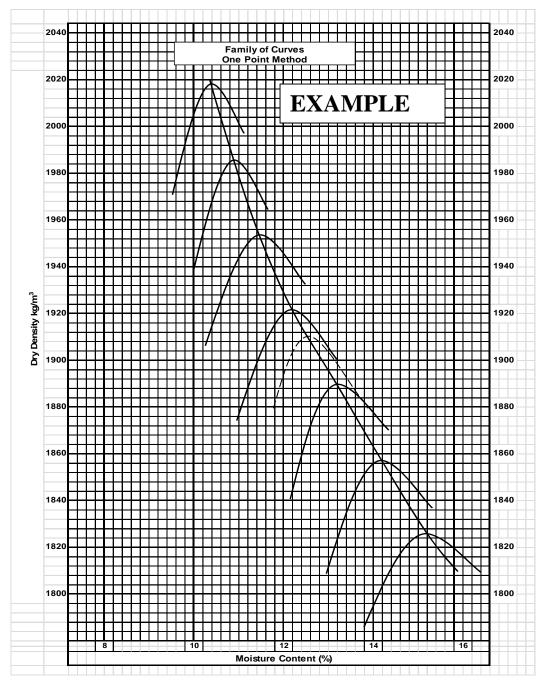
Sample

Sample size determined according to the FOP for AASHTO T 310. In cases where the existing family cannot be used a completely new curve will need to be developed and the sample size will be determined by the FOP for AASHTO T 99/T 180.

Procedure

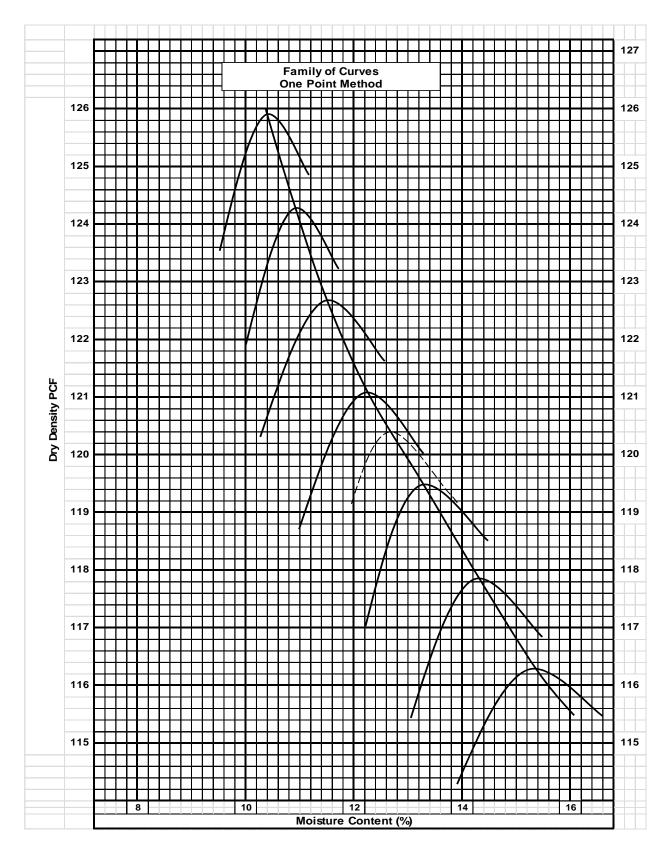
See the FOP for AASHTO T 99/T 180.

Calculations


See the FOP for AASHTO T 99/T 180.

Maximum Dry Density and Optimum Moisture Content Determination

- 1. If the moisture-density one-point falls on one of the curves in the existing family of curves, the maximum dry density and optimum moisture content defined by that curve shall be used.
- 2. If the moisture-density one-point falls within the family of curves but not on an existing curve, a new curve shall be drawn through the plotted single point, parallel and in character with the nearest existing curve in the family of curves. The maximum dry density and optimum moisture content as defined by the new curve shall be used.
- 3. The one-point must fall either between or on the highest or lowest curves in the family. If it does not, then a full curve must be developed.


- EMBANKMENT AND BASE IN-PLACE DENSITY
- 4. If the one-point plotted within or on the family of curves does not fall in the 80 to 100 percent of optimum moisture content, compact another specimen, using the same material, at an adjusted moisture content that will place the one point within this range.
- 5. If the family of curves is such that the new curve through a one-point is not well defined or is in any way questionable, a full moisture-density relationship shall be made for the soil to correctly define the new curve and verify the applicability of the family of curves.

Note 1: New curves drawn through plotted single point determinations shall not become a permanent part of the family of curves until verified by a full moisture-density procedure following the FOP for AASHTO T 99/T 180.

WAQTC / IDAHO

EMBANKMENT AND BASE IN-PLACE DENSITY

Example

A moisture-density procedure (FOP for AASHTO T 99/T 180) was run. A dry density of 1885 kg/m³ and a corresponding moisture content of 11.5 percent or 119.1 lb/ft³ at 11.9 percent were determined. This point was plotted on the appropriate family between two previously developed curves.

The "dashed" curve beginning at the moisture-density one-point was sketched between the two existing curves. A maximum dry density of 1915 kg/m³ and a corresponding optimum moisture content of 12.4 percent or 120.4 lb/ft³ and 12.7 percent moisture were estimated.

Report

Results shall be reported on standard forms approved by the agency. Report maximum dry density to the closest 1 kg/m³ (0.1 lb/ft3) and optimum moisture content to the closest 0.1 percent.

PERFORMANCE EXAM CHECKLIST

FAMILY OF CURVES - ONE-POINT METHOD FOP FOR AASHTO T 272

Participant Name	Exam Date
Record the symbols "P" for passing or "F" for failing o	n each step of the checklist.
Procedure Element	Trial 1 Trial 2
1. One-point determination of dry density and corre moisture content made in accordance with the FC	
a. Correct size (4.75 mm / No. 4 or 19.0 mm / 3	/4 in.) material used?
b. Correct number of blows per layer used (25 c	or 56)?
c. Correct number of layers used (3 or 5)?	
d. Moisture content determined in accordance w AASHTO T 255/T 265?	vith FOP for
2. One-point plotted on family of curves supplied?	
3. One-point falls within 80 to 100 percent of optim content in order to be valid?	um moisture
4. If one-point does not fall within 80 to 100 percen moisture content, another one-point determination water content is made?	
5. Maximum dry density and corresponding optimus content correctly estimated?	m moisture
Comments: First attempt: PassFail	
Examiner Signature	WAQTC #:

CORRECTION FOR COARSE PARTICLES IN THE SOIL COMPACTION TEST FOP FOR AASHTO T 224

Scope

This procedure covers the adjustment of the maximum dry density determined by FOP for AASHTO T 99 / T 180 to compensate for coarse particles retained on the 4.75 mm (No. 4) or 19.0 mm (3/4 in.) sieve. For Methods A and B of the FOP for AASHTO T 99 / T 180 the adjustment is based on the percent, by mass, of material retained on the 4.75 mm (No. 4) sieve and the bulk specific gravity (G_{sb}) of the material retained on the 4.75 mm (No. 4) sieve. A maximum of 40 percent of the material can be retained on the 4.75 mm (No. 4) sieve for this method to be used. For Methods C and D of the FOP for AASHTO T 99 / T 180, the adjustment is based on the percent, by mass, of material retained on the 19.0 mm (3/4 in.) sieve and the bulk specific gravity (G_{sb}) of the material retained on the 19.0 mm (3/4 in.) sieve for this method to be used. For Methods C and D of the FOP for AASHTO T 99 / T 180, the adjustment is based on the percent, by mass, of material retained on the 19.0 mm (3/4 in.) sieve and the bulk specific gravity (G_{sb}) of the material retained on the 19.0 mm (3/4 in.) sieve. A maximum of 30 percent of the material can be retained on the 19.0 mm (3/4 in.) sieve for this method to be used. Whether the split is on the 4.75 mm (No. 4) or the 19.0 mm (3/4 in.) sieve, all material retained on that sieve is defined as oversized material.

This method applies to soils with percentages up to the maximums listed above for oversize particles. A correction may not be practical for soils with only a small percentage of oversize material. The agency shall specify a minimum percentage below which the method is not needed. If not specified, this method applies when more than 5 percent by weight of oversize particles is present.

This procedure covers the lab-to-field corrections in accordance with AASHTO T 224-10 (see AASHTO T 224 for field-to-lab corrections).

Adjustment Equation Moisture

Along with density, the moisture content can be corrected. The moisture content can be determined by the FOP for AASHTO T 255 / T 265, other agency approved methods, or the nuclear density gauge moisture content reading from the FOP for AASHTO T 310. If the nuclear gauge moisture reading is used, or when the moisture content is determined on the entire sample (both fine and oversized particles), the use of the adjustment equation is not needed. Combined moisture contents with material having an appreciable amount of silt or clay should be performed using FOP for AASHTO T 255 / T 265 (Soil). Moisture contents used from FOP for AASHTO T 310 must meet the criteria for that method.

When samples are split for moisture content (oversized and fine materials) the following adjustment equations must be followed:

- 1. Split the sample into oversized material and fine material.
- 2. Dry the oversized material following the FOP for AASHTO T 255 / T 265 (Aggregate). If the fine material is sandy in nature, dry using the FOP for AASHTO T 255 / T 265 (Aggregate), or other agency approved methods. If the fine material has any appreciable

amount of clay, dry using the FOP for AASHTO T 255 / T 265 (Soil) or other agency approved methods.

3. Calculate the dry mass of the oversize and fine material as follows:

$$M_D = \frac{M_m}{1 + \text{MC}}$$

Where:

 M_D = mass of dry material (fine or oversize particles). M_m = mass of moist material (fine or oversize particles). MC = moisture content of respective fine or oversized, expressed as a decimal.

4. Calculate the percentage of the fine and oversized particles by dry weight of the total sample as follows: See Note 2.

$$P_f = \frac{100M_{DF}}{M_{DF} + M_{DC}} \qquad \frac{100 \times 15.4 \, lbs}{15.4 \, lbs + 5.7 \, lbs} = 73\% \qquad \frac{100 \times 7.034 \, kg}{7.03 \, kg + 2.602 \, kg} = 73\%$$

And

$$P_c = \frac{100M_{DC}}{M_{DF} + M_{DC}} \qquad \frac{100 \times 5.7 \ lbs}{15.4 \ lbs + 5.7 \ lbs} = 27\% \qquad \frac{100 \times 2.602 \ kg}{7.03 \ kg + 2.602 \ kg} = 27\%$$

Or for P_c : $P_c = 100 - P_f$

Where:

- P_f = percent of fine particles, of sieve used, by weight.
- P_c = percent of oversize particles, of sieve used, by weight.
- $M_{DF} =$ mass of fine particles.
- M_{DC} = mass of oversize particles.

5. Calculate the corrected moisture content as follows:

$$MC_T = \frac{(MC_F \times P_f) + (MC_c \times P_c)}{100} \qquad \frac{(10.6\% \times 73.0\%) + (2.1\% \times 27.0\%)}{100} = 8.3\%$$

- MC_T = corrected moisture content of combined fines and oversized particles, expressed as a % moisture.
- MC_F = moisture content of fine particles, as a % moisture. MC_C = moisture content of oversized particles,

as a % moisture.

Note 1: Moisture content of oversize material can be assumed to be two (2) percent for most construction applications.

Note 2: In some field applications agencies will allow the percentages of oversize and fine materials to be determined with the materials in the wet state.

Adjustment Equation Density

6. Calculate the corrected dry density of the total sample (combined fine and oversized particles) as follows:

$$D_d = \frac{100 \times D_f \times k}{\left(D_f \times P_c\right) + \left(k \times P_f\right)} \qquad or \qquad D_d = \frac{100}{\frac{P_f}{D_f} + \frac{P_c}{k}}$$

Where:

- $D_d = corrected total dry density (combined fine and oversized particles) kg/m³ (lb/ft³)$
- $D_f = dry$ density of the fine particles kg/m³ (lb/ft³), determined in the lab
- P_c= percent of oversize particles, of sieve used, by weight.
- $P_f =$ percent of fine particles, of sieve used, by weight.
- k = Metric: 1,000 * Bulk Specific Gravity (G_{sb}) (oven dry basis) of coarse particles (kg/m³).
- k = English: 62.4 * Bulk Specific Gravity (G_{sb}) (oven dry basis) of coarse particles (lb/ft³)

Note 3: If the specific gravity is known, then this value will be used in the calculation. For most construction activities the specific gravity for aggregate may be assumed to be 2.600.

Calculation

Sample Calculations:

• Metric:

Maximum laboratory dry density (D_f):2329 kg/m³Percent coarse particles (P_c):27%Percent fine particles (P_f):73%Mass per volume coarse particles (k):(2.697) (1000) = 2697 kg/m³

$$D_d = \frac{100 \times D_f \times k}{\left(D_f \times P_c\right) + \left(k \times P_f\right)} \quad or \quad D_d = \frac{100}{\frac{P_f}{D_f} + \frac{P_c}{k}}$$

$$D_d = \frac{100 \times 2329 \, kg/m^3 \times 2697 \, kg/m^3}{(2329 \, kg/m^3 \times 27\%) + (2697 \, kg/m^3 \times 73\%)}$$

or
$$D_d = \frac{100}{\frac{73\%}{2329 \, kg/m^3} + \frac{27\%}{2697 \, kg/m^3}}$$

 $D_d = \frac{628,131,300 \, kg/m^3}{(628,883 \, kg/m^3 + \, 2697 \, kg/m^3)} \quad or \ D_d = \frac{100}{0.03134 \, kg/m^3 + \, 0.01001 \, kg/m^3}$

 $D_d = 2418.1 \, kg/m^3 \, report \, 2418 \, kg/m^3$

or
$$D_d = 2418.1 \, kg/m^3$$
 report $2418 \, kg/m^3$

EMBANKMENT AND BASE IN-PLACE DENSITY

WAQTC / IDAHO

English:

Maximum laboratory dry density (D_f): 140.4 lb/ft³

Percent coarse particles (P_c): 27%

Percent fine particles (P_f):73%

Mass per volume of coarse particles (k): $(2.697) (62.4) = 168.3 \text{ lb/ft}^3$

$$D_d = \frac{100 \times D_f \times k}{\left(D_f \times P_c\right) + \left(k \times P_f\right)} \qquad or \qquad D_d = \frac{100}{\frac{P_f}{D_f} + \frac{P_c}{k}}$$

$$D_d = \frac{100 \times 140.4 \, lb/ft^3 \times 168.3 \, lb/ft^3}{(140.4 \, lb/ft^3 \times 27\%) + (168.3 \, lb/ft^3 \times 73\%)}$$

$$or \ D_d = \frac{100}{\frac{73\%}{140.4 \, lb/ft^3} + \frac{27\%}{168.3 \, lb/ft^3}}$$

$$D_d = \frac{2,362,932 \, lb/ft^3}{(3790.8 \, lb/ft^3 + 12285.9 \, lb/ft^3)} \quad or \ D_d = \frac{100}{0.51994 \, lb/ft^3 + 0.16043 \, lb/ft^3}$$

$$D_d = \frac{2,362,932 \, lb/ft^3}{16,076.7 \, lb/ft^3} \quad or \ D_d = \frac{100}{0.68037 \, lb/ft^3}$$

$$D_d = 146.98 \, lb/ft^3 \ report \ 147.0 \ lb/ft^3$$

Report

- Results on forms approved by the agency
- Adjusted maximum dry density to the closest $1 \text{ kg/m}^3 (0.1 \text{ lb/ft}^3)$
- Adjusted optimum moisture to the 0.1 percent

USE OF AKDOT & PF ATM 212, ITD T 74, WSDOT TM 606, OR WFLHD HUMPHRYS CURVES (08)

Background

Coarse-grained granular soils are free-draining and have little or no cohesion. These soils are, therefore, not particularly well suited for the moisture-density relations procedures of AASHTO T 99 or AASHTO T 180. Transportation agencies have developed specialized test methods that are hybrids of those moisture-density procedures and methods that employ compaction under load with vibration. Those methods include:

- AKDOT & PF's ATM 212
- ITD's T 74
- WSDOT's TM 606
- WFLHD's Humphrys

Description of Procedure

In these tests, material is compacted in a mold and in a manner similar to those used in a Proctor test, after which the material is further compacted through a combination of applied loads and vibration. A laboratory maximum dry density is determined, as is the percent of material passing a certain sieve such as the 4.75 mm (No. 4). A number of determinations are made for different percentages passing the specified sieve. A graph is developed in which dry density is plotted versus the percentage of material passing that sieve. These tests are conducted in the agency's central lab, and the curve developed is a central lab function. Figure 1 is an example of such a curve.

Construction specifications will call out a percent of maximum dry density required for the granular materials used on the job. These specified values will be based on ATM 212, T 74, TM 606, and/or Humphrys, depending on the agency.

In the field, the dry density of the granular material will be determined in accordance with the FOP for AASHTO 310. The percent of material passing the specified sieve will be determined for a sample obtained at the site of the density test. The dry density and percent passing values will then be compared with the curve developed in the lab for that particular granular material to determine conformance with the project specifications.

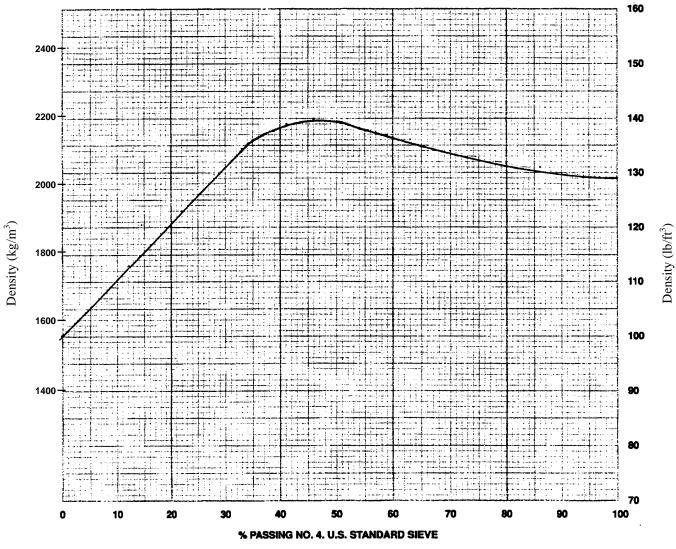


Figure 1. Maximum Density Curve Graph

Example:

A compaction test was taken and a sample was removed from the test site per the FOP for AASHTO T 310. The sample was graded over a 4.75 mm (No. 4) sieve. The following results were reported.

Dry density from T 310 =	2141 kg/m ³ (metric) 137.0 lb/ft ³ (English)
Percent passing 4.75 mm (No.4) sieve =	49%
Maximum density =	2173 kg/m ³ (metric) 139.0 lb/ft ³ (English)
Percent compaction =	99%

SECTION 580.00 – IDAHO Field Operating Procedures

- 1. ASTM D 4791 Flat and Elongated Particles in Coarse Aggregate
- 2. AASHTO T304 Uncompacted Void Content Of Fine Aggregate
- 3. AASHTO T 343 Density of In-Place Hot Mix Asphalt (HMA) Pavement by Electronic Surface Contact Devices
- 4. AASHTO TP83 Standard Practice for Field Sampling and Fabrication of 50-mm (2-in) Cube Specimens using Grout (Non-Shrink) and or Mortar

FLAT AND ELONGATED PARTICLES IN COARSE AGGREGATE FOP FOR ASTM D 4791

Scope

This FOP covers the determination of the percentage, by mass, of flat and elongated particles in coarse aggregates for comparison with specification limits.

This FOP can be performed in conjunction with AASHTO T 27/T 11.

Flat and elongated particles of aggregates, for some construction applications, may interfere with consolidation and result in harsh, difficult to place materials and a potentially unstable mixture.

Apparatus

- Balance or scale: Capacity sufficient for the principal sample mass, accurate to 0.1 percent of the sample mass or readable to 0.1 g. Meets the requirements of AASHTO M 231.
- Sieves, meeting requirements of AASHTO M 92.
- Proportional Caliper Device, meeting the requirements of ASTM D 4791. The device typically consists of a base plate with two fixed posts and a swinging arm mounted between them so that the openings between the arm and the posts maintain a constant ratio. The numbers on the arm represent the ratios for which the apparatus can be set. For example, the number 5 represents the 5:1 ratio.

Terminology

Flat and elongated particles are defined as those coarse aggregate particles that have a ratio of length to thickness equal to or greater than a specified value such as 5:1.

Sample and Sample Preparation

- 1. Sample the aggregate in accordance with the FOP for AASHTO T 2. When the sample contains both coarse (+ #4) and fine (- #4) material, the fine portion must be removed to determine the minimum sample size from Table 1.
- 2. Mix the sample and reduce to sample size in accordance with the FOP for AASHTO T 248. See Table 1 for minimum required sample mass.

Nominal Maximum	Coarse Sample Mass, min.	
Size	kg	lb
3/8"	1	2
1/2"	2	4
3/4"	5	11
1"	10	22
1½"	15	33

Table 1 Coarse Sample Size

- 3. Dry the sample to constant mass.
- 4. Sieve the aggregate according to the FOP for AASHTO T 27/11.
- 5. If an individual sieve size fraction is not represented by at least 10% of the coarse portion (+No. 4) aggregate material, combine that sieve size fraction with the next smaller fraction for all sieves except the 3/8" sieve. If the 3/8" sieve is not represented by at least 10% of the course portion (+No. 4), combine the 3/8" sieve material with the next larger sieve size material.
- 6. Reduce each individual sieve size fraction through and including the 3/8" sieve to approximately 100 particles per T-248 (Reduction to an exact amount is not permitted).

Procedure

From Step 6, perform the following for each sieve size fraction:

- 1. Determine the total dry mass of each fraction to the nearest 0.1 g. This mass is designated as **T** in the calculation.
- 2. Set the proportional caliper device to the ratio required in the contract specifications: (2:1, 3:1, or 5:1).
- **3**. Expedite testing through preliminary visual separation of all material which obviously is not flat and elongated.
- 4. Test each questionable particle by setting the larger opening of the proportional caliper device equal to the maximum dimension of the particle's length. Determine the dimension which represents the particle thickness (the smallest dimension). Pull the particle horizontally through the smaller opening without rotating, maintaining contact of the particle with the fixed post at all times. If the entire particle thickness can be pulled through the smaller opening, the particle is flat and elongated. Develop two categories of aggregate for each size fraction, flat and elongated and not flat and elongated.
- 5. Determine the dry mass of the flat and elongated particles in each size fraction to the nearest 0.1 g. This mass is designated as **F** in the calculation.

Calculations

1. Calculate the percentage of flat and elongated particles in each size fraction to the nearest 0.1% according to the equation shown below.

$$P_i = \frac{F}{T} x 100$$

where:

- P_i = percent flat & elongated of individual size fraction
- F = mass of flat and elongated particles in fraction
- T = total mass of particles in fraction

Example –

• Individual Percent Flat & Elongated for 3/4" Sieve Size Fraction:

$$P = \frac{196.4}{1178.0} \times 100 = 16.7, \text{ report } 17\%$$

Sample Report

Sieve Size	Total Mass in Size Fraction (Mass)	Mass of Flat & Elongated Particles (Mass)	Flat & Elongated (Percent) *	
1"	1640.9	589.2	36	
3/4"	1178.0	196.4	17	
1/2"	825.7	70.1	8	
3/8"	277.0	23.3	8	

* Report to the nearest 1 percent.

PERFORMANCE EXAM CHECKLIST

Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate Fop for ASTM D 4791

Participant Name: Exam Date:		
Record the symbols "P" for passing or "F" for failing on each step of the checkli	st.	
Procedure Element	Trial 1	Trial 2
Sample Preparation		
 Sample obtained, mixed and reduced in accordance with AASHTO T 2 and AASHTO T 248 to approximately the amount required for testing? For combined samples fine portion (- # 4) removed? Minimum dry sample mass meets requirements of Table 1? 		
Procedure		
1. Sample sieved according to AASHTO T 27?		
2. Each coarse aggregate size fraction present in amount of 10% or more of original coarse sample reduced according to T 248 until approximately 100 particles obtained?		
Flat and Elongated Particle Test:		
3. Each particle in each size fraction tested and placed into one of two groups: (1) flat and elongated or (2) not flat and elongated?		
4. Proportional caliper device positioned at proper ratio?5. Larger opening set equal to particle <u>length</u>?		
 6. Particle is <u>flat and elongated</u> if the <u>thickness</u> can be placed in the smaller opening? 		
8. Proportion of sample in each group determined by count or by mass, as required?		
Calculation		
1. Percentage of flat and elongated particles calculated to nearest 1% for each sieve size greater than No. 4?		
 When weighted average for sample is required, sieve sizes not tested (those representing less than 10% of sample) assumed to have same percentage of flat particles, elongated particles, or flat and elongated particles as the next smaller or the next larger size? Or if both are present, is average for next smaller and larger sizes used? 		
Comments and Score: First Attempt: Pass Fail Second A	ttempt: Pass 🗌	Fail 🗌
Signature of Examiner:		

UNCOMPACTED VOID CONTENT OF FINE AGGREGATE FOP FOR AASHTO T 304

Scope

This Idaho Field Operating Procedure (FOP) covers a method for determining the loose uncompacted void content of a sample of fine aggregate

Three procedures are included for the measurement of void content:

- Standard Graded Sample (Method A)
- Individual Size Fractions (Method B)
- As-Received Grading (Method C)

For Method A or C, the percent void content is determined directly and the average value of two test runs is reported.

For Method B, the mean percent void content is calculated using the results from each of the three individual size fractions.

Significance

Methods A and B provide percent void content determined under standardized conditions which depend on the particle shape and texture of a fine aggregate. An increase in void content by these procedures indicates greater angularity, less sphericity, rougher surface texture, or some combination of these three factors.

Method C measures the uncompacted void content of the minus No. 4 portion of the as-received material. This void content depends on grading as well as particle shape and texture.

The standard graded sample (Method A) is most useful as a quick test that indicates the particle shape properties of a graded fine aggregate. Typically, the material used to make up the standard graded sample can be obtained from the remaining size fractions after performing a single sieve analysis of the fine aggregate.

Obtaining and testing individual size fractions (Method B) is more time-consuming and requires a larger initial sample than using the graded sample. However, Method B provides additional information concerning the shape and texture characteristics of individual size fractions.

Testing samples in the as-received grading (Method C) may be useful in selecting proportions of the components used in a variety of mixtures. In general, high void content suggests that the material could be improved by providing additional fine aggregate or more binder may be needed to fill the voids between particles.

The bulk dry specific gravity of the fine aggregate (G_{sb}) is used to calculate the void content. The effectiveness of these methods of determining void content and its relationship to particle shape and texture depend on the bulk specific gravity of the various size fractions being equal (or nearly so).

Void content information from Methods A, B, and C may be a useful indicator of properties such as:

- Mixing water demand of hydraulic cement concrete.
- Flowability, pumpability, or workability of grouts and mortars.
- The effect of fine aggregate on stability, strength and VMA in bituminous concrete.
- Stability and strength of base course material.

Apparatus

- **Cylindrical Measure:** A right cylinder of approximately 100 mL capacity having an inside diameter of approximately 1.5 inches and an inside height of approximately 3.4 inches made of drawn copper water tube. The bottom of the measure shall be at least 0.25 inches thick, shall be firmly sealed to the tubing, and shall be provided with the means for aligning the axis of the cylinder with that of the funnel. Determine the volume of the measure to the nearest 0.1 mL.
- **Funnel:** A funnel such that the lateral surface of the right frustum of the cone is sloped 60 □4° from the horizontal with an opening 0.5 □0.02 inches diameter. The funnel section shall be a piece of metal, smooth on the inside, and at least 1.5 inches high. It shall have a volume of at least 200 mL, or shall be provided with a supplemental container to provide the required volume.
- **Funnel stand:** A three or four-legged support capable of holding the funnel firmly in position with the axis of the funnel collinear (within 4° angle and a displacement of 0.07 inches) with the axis of the cylinder measure. The funnel opening shall be 4.5 inches above the top of the cylinder.
- **Glass Plate:** A square glass plate approximately 2.3 by 2.3 inches with a minimum 0.15-inch thickness.
- **Pan:** A metal or plastic pan of sufficient size to contain the funnel stand and prevent loss of material.
- **Spatula:** A metal spatula with a blade approximately 4 inches long and at least 0.75 inches wide, with straight edges. The end shall be cut at a right angle to the edges.
- **Balance:** A balance with a capacity of 1000 g and sensitive to 0.1 g.

Sample

The samples used for this test shall be obtained using AASHTO T 2 and AASHTO T 248, or from sieve analysis samples used for AASHTO T 27, or from an extracted bituminous concrete sample.

For Methods A and B, the sample is washed over a No. 100 or No. 200 sieve in accordance with AASHTO T 11 and then dried and sieved into separate size fractions according to AASHTO T 27. Maintain the necessary size fractions obtained from one or more sieve analyses in a dry condition in separate containers for each size.

For Method C, dry a split of the as-received sample in accordance with the drying provisions of AASHTO T 27.

Sample Preparation

Method A – Standard Graded Sample

Weigh out and combine the following quantities of fine aggregate that has been dried and sieved in accordance with AASHTO T 27.

Individual Size Fraction	<u>Mass, g</u>
Passing No. 8 to Retained on No. 16	44 ±0.2
Passing No. 16 to Retained on No. 30	57 ±0.2
Passing No. 30 to Retained on No. 50	72 ±0.2
Passing No. 50 to Retained on No. 100	<u>17 ±0.2</u>
	190 ± 0.2

Method B – Individual Size Fractions

Prepare a separate 190 g sample of fine aggregate, dried and sieved in accordance with AASHTO T 27 for each of the following size fractions:

Individual Size Fraction		Mass, g
Passing No. 8 to Retained on No.	16	190 ± 1
Passing No. 16 to Retained on No.	30	190 ± 1
Passing No. 30 to Retained on No.	50	190 ± 1

Do not mix fractions together. Each size is tested separately.

Method C – As-received Grading

Pass the sample (dried in accordance with AASHTO T 27) through a No. 4 sieve. Obtain a 190 \pm 1 g sample of this material for the test.

Specific Gravity of Fine Aggregate

If the bulk specific gravity (G_{sb}) of the fine aggregate sample is unknown, determine it according to Idaho IT-144.

Procedure

- 1. Record all masses to the nearest 0.1 g.
- 2. Record the mass of the empty measure
- 3. Mix each test sample with the spatula until it appears to be homogeneous.
- 4. Position the jar and funnel section in the stand and center the cylindrical measure with the axis of the funnel. Use a finger to block the opening of the funnel.
- 5. Pour the test sample into the funnel. Level the material in the funnel with the spatula.
- 6. Remove the finger and allow the sample to freely flow into the cylindrical measure.
- 7. After the funnel empties, strike off excess from the top of the cylindrical measure by a single pass of the spatula with the width of the blade vertical, using the straight part of its edge in light contact

with the top of the measure. Until this operation is complete, avoid vibration or disturbance that could cause compaction of the fine aggregate in the measure (see note).

- 8. Brush adhering grains from the outside of the cylindrical measure. Determine the mass of the measure and its contents to the nearest 0.1 g.
- 9. Recombine the sample from the retaining pan and cylindrical measure, repeat the procedure, and average the results of the two test runs.

Calculation

Calculate the uncompacted voids for each determination according to the following formula:

$$U = \frac{V - \left(\frac{F}{G}\right)}{V} \times 100$$

where:

U = uncompacted voids, percent, in the material;

V = volume of cylindrical measure, mL;

F = net mass of fine aggregate in measure, g; and,

G = bulk specific gravity (G_{sb}) of aggregate

For Methods A and C: Calculate the average uncompacted voids for the two determinations.

For Method B: First determine the uncompacted void content for each of the individual size fractions; then calculate the mean uncompacted void content as follows:

$$U_{m} = \frac{U_{1} + U_{2} + U_{3}}{3}$$

where:

 U_m = Mean uncompacted void content, % U₁, U₂, U₃ = Uncompacted void content of individual size fractions

Calculation Examples

$$U = \frac{99.8 - \left(\frac{146.2}{2.636}\right)}{99.98} \times 100 = 44.43, \text{ say } 44.4\%$$

where:

U = Uncompacted void content, %; V = 99.8 mL F = 146.2 g.G = 2.636

$$U_{\rm m} = \frac{48.7 + 49.9 + 47.0}{3} = 48.53$$
, say 48.5%

where:

Report

Results shall be reported on Form ITD-1046 to the nearest 0.1 percent.

_ _

_ __

PERFORMANCE EXAM CHECKLIST

Uncompacted Void Content of Fine Aggregate for AASHTO T 304

Pa	rticipant Name: Example Example Tricipant Name:Example Tricipant Name	m Date:	
Re	cord the symbols "P" for passing or "F" for failing on each s	step of the checklist.	
Pr	ocedure Element (all test methods are AASHTO u	Inless otherwise shown)	
Sa	mpling	Trial 1	Trial 2
1.	Sample obtained by one of the following:		
	(a) T 2 & T 248 (sampling, splitting and quartering)?		
or	(b) From sieve analysis samples used for T 27?		
or	(c) From aggregate extracted from a bituminous concrete	e specimen (T 308)?	
2.	Methods A		
	(a) Sample washed over No. 100 or No. 200 sieve in acc	cordance with T 11?	
	(b) Sample dried and sieved into separate size fractions	in accordance with T 27?	
	(c) Necessary size fractions obtained from sieve analysis condition in separate containers for each size?	s maintained in a dry	
~			

Sample Preparation

Method A- Standard Graded Sample

1. Following quantities of aggregate that has been dried and sieved in accordance with T 27 weighed out and combined?

		OK?
Individual Size Fractions	Mass, g	
No. 8 to No. 16	44 ± 0.2	
No. 16 to No. 30	57 ± 0.2	
No. 30 to No. 50	72 ± 0.2	
No. 50 to No. 100	17 ± 0.2	
Total:	190 ± 0.2	

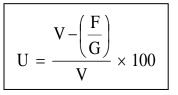
Specific Gravity of Fine Aggregate

If bulk dry specific gravity of aggregate from the source is unknown, specific gravity determined on material passing No. 4 sieve in accordance with IT 144.

Procedure

- 1. Each test sample mixed with spatula until it appears to be homogeneous?
- 2. Funnel stand apparatus with cylindrical measure, positioned in retaining pan?
- 3. Finger used to block opening of funnel?
- 4. Test sample poured into funnel?

- 5. Material in funnel leveled with spatula?
- 6. After funnel empties, excess heaped aggregate struck off from cylindrical measure by single pass of spatula, with blade width vertical and using straight part of its edge in light contact with top of measure?
- 7. Care exercised to avoid vibration or any disturbance that could cause compaction of aggregate into cylindrical measure?


Note: After strike-off, measure may be tapped lightly to compact sample to make it easier to transfer container to scale or balance without spilling any of the sample.

- 8. Adhering grains brushed from outside of container?
- 9. Mass of cylindrical measure and contents determined to nearest 0.1 g?
- 10. All aggregate particles retained for second test run?
- 11. Sample from retaining pan and cylindrical measure recombined and procedure repeated?
- 12. Mass of empty measure recorded?
- 13. Calculations performed properly?

Formula for Calculation of Uncompacted Voids, percent

where:

- U = uncompacted voids, percent;
- V = volume of cylindrical measure to nearest 0.1 mL;
- F = net mass, g, of fine aggregate in measure; and,
- $G = bulk dry specific gravity of fine aggregate (G_{sb})$

Comments:	First attempt:	Pass Fail	Second attempt: Pass Fail

Signature of Examiner_____.

Density of In-Place Hot Mix Asphalt (HMA) Pavement by Electronic Surface Contact Devices FOP for AASHTO T 343

Scope

This procedure covers the in-place density determination of Hot Mix Asphalt (HMA) in accordance with AASHTO T343using an electronic surface contact device / gauge. This field operating procedure is derived from AASHTO T343. The gauge measures density and relative compaction of HMA pavements by measuring changes in the electromagnetic field resulting from the compaction process.

Apparatus

- electronic surface contact gauge shall meet the following requirements:
 - be housed in an enclosure of heavy-duty construction.
 - function in the temperature and moisture levels experienced during the placement of HMA pavements.
 - include the internal circuitry suitable for displaying individual measurements.
 - include a continuous measurement mode of operation.
 - provide power to the sensor which allows data acquisition, readout function, and calibration.

Calibration

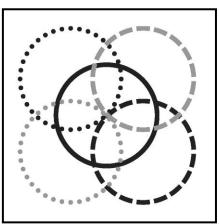
Calibration of the gauge shall be performed as specified in the Idaho Transportation Departments Laboratory Operations Manual section 200.

Standardization

Standardize the gauge daily per the manufacturers instructions. Note: gauges are paired to the standardization (reference) blocks. Using only the standardization block paired with the gauge.

PQI 301. Establish initial reference reading with the standardization block after calibration. Calculate and record upper and lower limits. Record date. Record and compare daily readings to upper and lower limits. Remove gauge from service if values are not within limits

PQI 380. Record date. Record results (pass/fail). Remove failing gauge from service


Pavetracker. Record date. Remove gauge from service if it displays an error message.

Correlation with Cores

Correlate the gauge for each Job Mix Formula (JMF) and each pavement lift. These correlation measurements / readings should be taken at the same temperature range as the acceptance tests.

- 1. Determine the number of cores required for correlation. Cores shall be located on the first day's paving or on the test strip. For projects with test strips locate the test sites in accordance with the IT125. Test sites shall be determined using random sampling practices.
- 2. Clear any existing correlations from the gauge.
- 3. Place the gauge on the HMA mat at the test sites and draw an outline around the base of the gauge. The mat shall have no noticeable moisture visible. The mat shall be flat, relatively smooth and clear of any loose particles.

4. Perform and record five (5) measurements as shown in diagram #1. Determine and record the average test site measurement / reading.

DIAGRAM # 1

- 5. Obtain a 6" core from of each test site in accordance with WAQTC TM 11. The core should be taken from approximately the center of the footprint.
- 5. Determine the density of the cores by the FOP for AASHTO T 166, Bulk Specific Gravity of Compacted Bituminous Mixtures Using Saturated Surface Dry Specimens.
- 6. Calculate a correlation factor for the gauge reading as follows:
 - a. Calculate the difference between the core density and the average gauge density at each test site to the nearest 0.1 lb/ft^3 . Calculate the average difference and standard deviation of the differences for the entire data set to the nearest 0.1 lb/ft^3 .
 - b. If the standard deviation of the differences is equal to or less than 2.5 lb/ft³, the correlation factor applied to the gauge reading shall be the average difference calculated above in 6.a.
 - c. If the standard deviation of the differences is greater than 2.5 lb/ft³, the test site with the greatest variation from the average difference shall be eliminated from the data set and the data set properties and correlation factor recalculated following 6.a and 6.b.
 - d. If the standard deviation of the modified data set still exceeds the maximum specified in 5.b, additional test sites will be eliminated from the data set and the data set properties and correlation factor recalculated following 6.a and 6.b. If the data set consists of less than five (5) test sites, additional test sites shall be established.

Core Correlation Example:

Core Density <u>T 166:</u>	Avg. Test site In-Place <u>T343:</u>	Difference:
144.9 lb/ft ³ 142.8 lb/ft ³ 143.1 lb/ft ³ 140.7 lb/ft ³ 145.1 lb/ft ³ 144.2 lb/ft ³ 143.8 lb/ft ³	142.1 lb/ft ³ 140.9 lb/ft ³ 140.7 lb/ft ³ 138.9 lb/ft ³ 143.6 lb/ft ³ 142.4 lb/ft ³ 141.3 lb/ft ³	2.8 lb/ft ³ 1.9 lb/ft ³ 2.4 lb/ft ³ 1.8 lb/ft ³ 1.5 lb/ft ³ 1.8 lb/ft ³ 2.5 lb/ft ³
	Average Difference: Standard Deviation $(n - 1)$:	+ 2.1 lb/ft³ 0.47 lb/ft ³

7. Adjust the gauge, following the manufacturer's procedures, to account for the average difference. This will calibrate the instrument to the HMA mat by adding (or subtracting) the average difference.

Procedure

- 1. Select a test location(s) randomly and in accordance with ITD requirements. Ensure that the device is correlated in accordance with "Correlation with Cores Section". Locate the measurement area away from any known sources of electromagnetic interference such as overhead high-tension power lines or large metal objects. For best results avoid surfaces with large temperature extremes.
- 2. Brush the surface clear to remove any loose particles. The mat shall have no noticeable moisture visible. It shall be flat, relatively smooth and clear of any loose particles.
- 3. Place the gauge firmly on the test surface and trace an outline around the probe (base) of the unit.
- 4. Perform and record five (5) measurements as shown in diagram #1. Determine and record the average test site measurement / reading.

Calculation

Density measurements / readings from gauge: 142.9 lb/ft³, 141.9 lb/ft³, 142.6 lb/ft³, 141.6 lb/ft³, & 143.1 lb/ft³

Avg. density: 142.4 lb/ft³ Core Correction: +2.1 lb/ft³ Avg. corrected Density: 144.5 lb/ft³

Percent Compaction

Percent compaction is determined by comparing the average corrected test site density as determined by this procedure to the maximum density from AASHTO T 209.

 G_{mm} and maximum density from the FOP for AASHTO T 209: $G_{mm} = 2.466 = 153.5 \text{ lb/ft}^3$

 $\frac{\text{Corrected Reading}}{\text{Maximum Density}} X100 = \% \text{ compaction} \qquad \frac{144.5}{153.5} X100 = 94.1\%$

Report

Results shall be reported on standard forms approved by ITD. Include the following information:

- Location of test and thickness of layer tested.
- Visual description of material tested.
- Make, model and serial number of the density gauge.
- Density readings to 0.1 lb/ft³.
- Average Density readings to 0.1 lb/ft³.
- Core Correction to 0.1 lb/ft³.
- Maximum density to 0.1 lb/ft³.
- Percent compaction to 0.1%.
- Name and signature and STQP / WAQTC qualification number of the tester.

PERFORMANCE EXAM CHECKLIST

Density of In-Place Hot Mix Asphalt (HMA) Pavement by Electronic Surface Contact Devices FOP for AASHTO T 343

Participant Name _____ Exam Date _____ Record the symbols "P" for passing or "F" for failing on each step of the checklist. **Procedure Element** Trial 1 Trial 2 1. Gauge turned on? 2. Gauge calibrated using data from cores? 3. Test location selected away from any known sources of electromagnetic interference such as overhead high-tension power lines or large metal objects? 4. The HMA surface is free of moisture, relitively flat, and smooth? 5. Surface brushed clear of loose particles? ____ 6. Gauge placed firmly on HMA surface? 7. Outline traced around base? ____ 8. Five (5) measurements taken per diagram # 1 and recorded? ____ 9. Average density calculated? 10. Compaction calculated to 0.1%? First attempt: Pass Fail Second attempt: Pass Fail Comments: Examiner Signature ______ WAQTC #:_____

Examiner Signature ______WAQTC #:_____

Sampling and Fabrication of 50-mm Cube Specimens Using Grout (Non-Shrink) or Mortar FOP FOR AASHTO TP 83

1. Scope

- 1.1. This method covers field sampling and fabrication and initial curing of 50-mm (2-in) cube specimens of non-shrink grout and/or mortar materials.
- 1.2. The values stated in either SI or inch-pound units shall be regarded separately as standard. The inch-pound units are shown in brackets. The values stated might not be exact equivalents; therefore, each system must be used independently of the other.

Note 1—Unit weight was the previous terminology used to describe the property determined by this test method, which is mass per unit volume.

- 1.3. The text of this test method references notes and footnotes that provide explanatory information. These notes and footnotes (excluding those in tables) shall not be considered as requirements of this test method.
- 1.4. This standard does not purport to address all of the safety problems, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

Warning—Fresh hydraulic cementitious mixtures are caustic and may cause chemical burns to skin and tissue upon prolonged exposure.

2. Referenced Documents

- 2.1. AASHTO / ASTM
 - C 1107 Standard Specification for Packaged Dry, Hydraulic-Cement Grout (Non-shrink)
 - T 106 / C 109 Test method for Compressive Strength of Hydraulic Cement Mortars (Using 2in. or 50-mm Cube Specimens.)

3. Terminology

- 3.1. *Definitions*
- 3.1.1. Plastic mix material viscous enough that an indentation will be left in the surface of the grout after tamping.
- 3.1.2. Fluid mix material fluid enough that little or no indentation will be left in the surface after puddling.

4. Apparatus

4.1. Specimen Molds including cover plate (s): The 2 in. (50 mm) cube specimen molds shall be tight fitting and made of brass or other suitable material. This material shall not be susceptible to attack by the cement mortar. The molds shall have not more than three (3) cube compartments and shall be separable into not more than two (2) parts. The parts of the molds, when assembled, shall be positively held together. The cover plate(s) working surface shall be plane and shall be positively attached to the side walls of the mold. The interior faces of the molds shall conform to the tolerances of table 1.

Table	1
-------	---

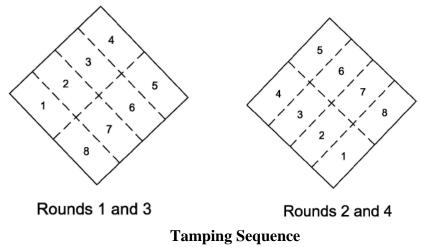
Permissible Variations of Specimen Molds					
2 in. Cube Molds 50-mm Cube Molds					
Parameter New In Use New In				In Use	
Planeness of Sides	<0.001 in.	<0.002 in.	<0.025 mm	<0.05 mm	
Distance Between Opposite Sides	2 in. + 0.005 in.	2 in. + 0.02 in.	50 mm + 0.13 mm	50 mm + 0.50 mm	
Height of Each Compartment	2 in. + 0.001 in. to -0.005 in.	2 in. + 0.01 in. to -0.015 in.	50 mm + 0.25 mm to -0.013 mm	50 mm + 0.25 mm to -0.38 mm	
Angle Between Adjacent FacesA	90 + 0.5 °	90 + 0.5 °	90 + 0.5 °	90 + 0.5 °	

^A Measured at points slightly removed from the intersection. Measured separately for each compartment between all the interior faces and the adjacent face and between interior faces and top and bottom planes of the mold.

- 4.2. Tamper: A non-absorptive, nonabrasive, non-brittle material such as a hard rubber compound having a Shore A durometer hardness of 80 ± 10 . The tamper shall have a cross section of about 1/2 in. x 1 in. (13 mm x 25 mm) and a length of 5 in. to 6 in. (125 mm to 150 mm). The tamping face shall be flat and at right angles to the length of the tamper.
- 4.3. Trowel: Steel bladed, (100 to 150 mm (4" to 6") in length, with straight edges.
- 4.4. Water tight container: a 6 in. x 12 in. (150 mm x 300 mm) concrete cylinder mold with lid
- 4.5. Other Equipment: Rubber gloves, scoop, clamps to secure the cover plate, light release oil for oiling the molds, small brush or lint-free cloth for applying and removing excess release oil, burlap or wrapping cloth capable of retaining moisture.

5. Sampling

5.1. Samples shall be obtained in accordance with WAQTC TM 2 when the batch equals or exceeds 1 m3 (1 cy). When the batch is less than 1 m3 (1 cy) sample from the batch after discharge. If remixing is required sample after remixing. Begin molding the specimens within an elapsed time of not more than 2 1/2 minutes from completion of the mixing.


Note 2—This test is to be used only for grouts with 100 percent passing the 3/8- in. (9.5-mm) sieve.

5.2. Obtain a representative sample of the mix. Samples shall be a minimum size of 2000 g (4 lb) for each set of three (3) cubes to be fabricated.

6. Procedure

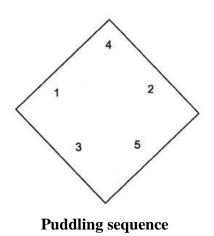

- 6.1. Assemble both portions of the mold and the bottom cover plate. All joints shall be water tight. If not water tight, seal the surfaces where the halves of the mold join by applying a coating of light cup grease (non water soluble). The amount should be sufficient to extrude slightly when the halves are tightened together. Repeat this process for attaching the mold to the bottom cover plate. Remove any excess grease. Apply a thin coating of release agent to the interior faces of the mold and the bottom cover plate. Wipe the mold faces and base plate as necessary to remove any excess release agent and to achieve a thin, even coating on the interior surfaces. Adequate coating is that which is just sufficient to allow a distinct fingerprint to remain following light finger pressure.
- 6.2. Place a layer of grout about 25 mm (1") (approximately one-half of the depth of the mold) in all of the cube compartments. Consolidated according to the consistency (plastic or fluid) of the mix.
- 6.2.1. For plastic mixes, tamp the lift in four rounds of 8 tamps for a total of 32 tamps with the rubber tamper in 10 seconds. See Figure 1 for tamping sequence of each round. Rounds 1 and 3; and 2 and 4 shall be the same.

FIGURE #1

6.2.2. For fluid mixes, puddle the lift 5 times with a gloved finger. See Figure 2 for tamping sequence.

FIGURE # 2

- 6.3. Place the second lift in each of the cube compartments, slightly over-filling each compartment Consolidate the material in the same fashion as the first lift with the additional requirement that during consolidation of the second lift any grout forced out onto the top of the mold after each round will be pushed back onto the compartment by means of the tamper and/or gloved fingers before the next consolidation round. When consolidation of the grout is completed, material should extend slightly above the top of the mold. Push any grout forced out onto the top of the mold after the last round back onto the compartment with the trowel.
- 6.4. Smooth off the cubes by drawing the flat side of the trowel (with the leading edge slightly raised) once across the top of each cube at right angles to the length of the mold. Then, for the purpose of leveling the mortar and making the mortar that protrudes above the top of the mold of more uniform thickness, draw the flat trailing edge of the trowel (with leading edge slightly raised) once lightly along the length of the mold. Cut off the mortar to a plane surface flush with the top of the mold by drawing the straight edge of the trowel (held nearly perpendicular to the mold) with a sawing motion over the length of the mold. The material shall be flush with the top of the mold.
- 6.5. Immediately secure the top cover plate to the cube mold.
- 6.6. Place the molds in a secure location away from vibration and as close as possible to the structure for initial curing. Cover with wet burlap, towels, or rags, seal it in a plastic sack in a level location out of direct sunlight, and record the time. These samples shall remain undisturbed and protected from freezing or overheating for a period of 24 ± 4 hours.
- 6.7. At the end of the initial curing period as required by the agency either.

- 6.7.1. Place the sealed plastic sack into a water tight container. Transport the cube samples immediately to the location of final curing. During transport, the cube samples shall be protected from jarring, freezing, and moisture loss.
- 6.7.2. Disassemble the mold and carefully remove the cube samples. Using a permanent marker, identify the cube samples. Handling the cube samples very carefully, wrap them in wet burlap or wet towels and place them into a water tight container. Transport the cube samples immediately to the location of final curing. During transport, the cube samples shall be protected from jarring, freezing, and moisture loss.
- 6.8. Final curing shall consist of immersing the cube samples in a lime-saturated water storage tank. They are to remain in the storage tank until time of test. (Curing cube samples of material other than hydraulic cement shall be in conformance with the manufacturer's recommendations.) The storage tank shall be made of non-corroding materials.

SECTION 590.00 – IDAHO TRANSPORTATION DEPARTMENT (ITD) SAMPLER / TESTER QUALIFICATION PROGRAM (STQP)

590.10 Individual Test Method Qualifications. 590.10.1Non-ITD Personnel.

Section 590.00 – Idaho Transportation Department (ITD) Sampler / Tester Qualification Program (STQP)

Information found in this section can also be found in the Laboratory Operations Manual, Section 250.

Qualifications are granted by ITD through the STQP. The purpose of the ITD STQP is for conformance to State and Federal requirements. All individuals shall be qualified who sample or test on ITD projects. Valid sampler / tester qualification for ITD projects is only available through this program.

The ITD STQP includes Six (6) Western Alliance for Quality Transportation Construction (WAQTC) modules, two (2) ITD STQP modules, and nineteen (19) individual test method qualifications.

Details on the five WAQTC and three ITD STQP modules are located in the Registration Policies and Information Hand book (RP &IH) which can be downloaded from the Sampler Tester qualification web page. <u>http://itd.idaho.gov/highways/ops/materials/techqual/techqual.asp</u>. Details on individual test method qualifications are found in section 590.10.

QUALIFICATION (S) ARE VALID WHEN POSTED ON THE ITD'S WEB PAGE UNDER "INSPECTOR AND SAMPLER / TESTER QUALIFICATION (WAQTC).

590.10 Individual Test Method Qualifications. Table 1 below lists the individual test methods that require qualification. Prerequisite Sampler / Tester (WAQTC) qualifications are required before any performance examination can occur. Performance exam documentation (Registration Form, Rights and Responsibilities form, and completed Performance Exam Checklist) shall be submitted to HQ Central Laboratory. The Individual Qualification certificate is form ITD-949 for all test methods.

Vj g"hqmqy kpi "r gthqto cpeg"gzco "ej gemkuvu"ctg"\q"dg"wugf "cmpi "y kj "y g"crrtqrtkcvg"CCUJ VQ"Vguv cpf "K cj q"Vguv"o gy qf u'0

Table 1 Individual Test Methods

Test Method	Test Reference	Notes For Pre-Qualification			
Aggregates					
Cleanness Value	Idaho IT 72	AgTT Qualification is required.			
Specific Gravity and Absorption of Fine Aggregate	Idaho IT 144	AgTT Qualification is required. Performance exam administered by HQ Central Laboratory			
Bulk Density ("Unit Weight") and Voids in Aggregate	AASHTO T19	AgTT Qualification is required.			
Specific Gravity and Absorption of Fine Aggregate	AASHTO T 84	AgTT Qualification is required.			
Uncompacted Void Content Of	AASHTO T 304	AgTT Qualification is required.			
Fine Aggregate					
Flat and Elongated Particles in	ASTM D4791	AgTT Qualification is required.			
Coarse Aggregate					
	Bituminous Materials				
Saybolt Viscosity	Idaho IT 61	AsTT Qualification is required.			
Bituminous Coating	Idaho IT 96	AsTT Qualification is required.			
Anti-strip Detection	Idaho IT 99				
Hveem Stability	AASHTO T246	AsTT Qualification is required. Performance exam administered by HQ Materials			
Effect of Water on Compressive Strength of Compacted Bituminous Mixtures	AASHTO T165	AsTT Qualification is required. Performance exam administered by HQ Central Laboratory			
Preparation of Test Specimens for Cal. Kneading Compactor	AASHTO T247	AsTT Qualification is required. Performance exam administered by HQ Central Laboratory			
Density of In-place HMA Pavement by Electronic Surface Contact Device	AASHTO TP 68	DTT Qualification is required.			
Bulk Specific Gravity and Density					
of Compacted Hot Mix Asphalt (HMA) using Automatic Vacuum Sealing Method (CoreLok)	AASHTO T 331	AsTT Qualification is required.			
Field Sampling Bituminous					
Material after Compaction	WAQTC TM 11	AsTT Qualification is required.			
(Obtaining Cores)					
	Soils				
Determining the Plastic Limit and Plasticity Index of Soils	AASHTO T90	EbTT Qualification is required.			
Determining the Liquid Limit of Soils	AASHTO T89	EbTT Qualification is required.			
Specific Gravity of Soils	AASHTO T100	EbTT Qualification is required.			
	Concrete				
Sampling & Fabrication of 2" Cube Specimens using Grout or Mortar	AASHTO TP83	CTT Qualification is required.			

PERFORMANCE EXAM CHECKLIST

CLEANNESS VALUE – IDAHO IT 72

Record the symbols "P" for passing or "F" for failing on each step of the checklist.

~	Procedure Element		Trial 1	Trial 2
Genera 1.	I The sample was maintained moist in sealed container.			
2.	The sample is equal to 1000 ± 50 grams.			
3.	There is 7 ml of SE solution in SE tube.3	2 _		
4.	The graduate assembly including sieves, funnel and 500 ml g cylinder is properly put together.	graduate 3 _		
5.	CCM sample was placed in washing vessel or jar and water wadded just covering the aggregate.	vas		
Mechar	nical Method	<u> </u>		
6.	The vessel was secure in the shaker.	6		
7.	Agitation was started after one (1) minute.			
8.	The vessel was agitated for two minutes.	/		
Hand M	1ethod	° _		
9.	Agitation was started after one (1) minute.	9		
10.	The vessel was properly rotated with 150mm radius.			
11.	Vessel was agitated 3 complete rotations per second.			
12.	Vessel was agitated for one (1) full minute.			
Measur	e for Cleanness	12 _		
13.	All contents of vessel or jar were washed over sieves into the graduate cylinder.			
14.	Cylinder was rapidly turned upside down at 180°, ten (10) tin	nes		
15.	Mixture was poured into SE cylinder to 15 inch mark.			
16.	SE Cylinder was rotated at least ten (10) complete cycles. Bu traveled full length of tube.	ibble		
17.	Cylinder was allowed to stand 20 minutes on work table free vibrations.	from		
18.	The sediment reading was to the nearest 0.1 inch.			
19.	Calculations were accurate to the nearest whole number.			
Comme	ents: First Attempt: Pass 🗌 Fail 🗌 Se	cond Attempt:		Fail 🗌
Testing	g Technician's Name:W	AQTC # :	Date:	
Examir	ner's Name:Signature			

Idaho Standard Method of Test for

Specific Gravity and Absorption of Fine Aggregate Using Automatic Vacuum Sealing (CoreLok) Method

Idaho IT-144-08

1 Scope

- 1.1 This standard covers the determination of specific gravity and absorption of fine aggregates.
- 1.2 The values are stated in SI units and are regarded as the standard units.
- 1.3 This standard may involve hazardous materials, operations and equipment. This standard does not purport to address all of the safety problems associated with its use. It is the responsibility of the user of this standard to consult and establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

2 Referenced Documents

- 2.1 AASHTO Standards:
 - M 132, Terms Relating to Density and Specific Gravity of Solids, Liquids and Gases
 - M 231, Weighing Devices Used in the Testing of Materials
 - T 2, Standard Practice for Sampling of aggregates
 - T 19, Standard Test Method for Bulk Density (Unit Weight) and Voids in Aggregate
 - T 248, Standard Practice for Reducing Samples of Aggregate to Testing Size
 - T255, Total Evaporable Moisture Content of Aggregate by Drying
- 2.2 Other Standards
 - CoreLok Operational Instructions (InstroTek, Inc.)

3 Terminology

- 3.1 absorption—the increase in the mass of aggregate due to water in the pores of the material, but not including water adhering to the outside surface of the particles, expressed as a percentage of the dry mass. The aggregate is considered "dry" when it has been maintained at a temperature of $110 \pm 5^{\circ}$ C for sufficient time to remove all uncombined water.
- 3.2 specific gravity—the ratio of the mass (or weight in air) of a unit volume of a material to the mass of the same volume of water at stated temperatures. Values are dimensionless.
- 3.3 apparent specific gravity—the ratio of the weight in air of a unit volume of the impermeable portion of aggregate at a stated temperature to the weight in air of an equal volume of gas-free distilled water at a stated temperature.

- 3.4 bulk specific gravity—the ratio of the weight in air of a unit volume of aggregate (including the permeable and impermeable voids in the particles, but not including the voids between particles) at a stated temperature to the weight in air of an equal volume of gas-free distilled water at a stated temperature.
- 3.5 bulk specific gravity (SSD)—the ratio of the mass in air of a unit volume of aggregate, including the mass of water within the voids filled to the extent achieved by vacuum saturating (but not including the voids between particles) at a stated temperature, compared to the weight in air of an equal volume of gas-free distilled water at a stated temperature.

4 Summary Of Method

4.1 Sufficient fine aggregate sample is dried to constant mass and representative dry fine aggregate samples of the same material are selected for testing. One sample is sealed in a vacuum chamber inside a plastic bag and opened under water for rapid saturation of the aggregate. The dry mass and submerged mass of the sample is used for calculation of apparent specific gravity. Other samples of the same aggregate are tested in a known volume metal pycnometer. The known mass of the pycnometer with water, mass of the dry aggregate, and mass of the dry aggregate and pycnometer filled with water is averaged and used for calculation of bulk specific gravity oven dry (OD.) The results from the samples tested are used to calculate absorption, and bulk specific gravity saturated-surface-dry (SSD).

5 Apparatus

- 5.1 Balance—A balance that conforms to AASHTO M231. The balance shall be sensitive, readable and accurate to 0.1% of the test sample mass. The balance shall be equipped with suitable apparatus for suspending the sample in water.
- 5.2 Water Bath—A large container that will allow for completely submerging the sample in water while suspended, equipped with an overflow outlet for maintaining a constant water level. Temperature controls may be used to maintain the water temperature at $25 \pm 1^{\circ}$ C ($77 \pm 2^{\circ}$ F).

Note 1—It is preferable to keep the water temperature constant by using a temperature controlled heater. Also, to reduce the chance for the bag to touch the sides of the water tank, it is preferable to elevate the water tank to a level at which the sample can be placed on the weighing mechanism while the operator is standing up (waist height), and the placement of the sample and the bag in the water tank can easily be inspected.

- 5.3 Sample holder for water displacement of the sample, having no sharp edges.
- 5.4 Vacuum Chamber—with a pump capable of evacuating a sealed and enclosed chamber to a pressure of 6 mm Hg, when at sea level. The device shall automatically seal the plastic bag and exhaust air back into the chamber in a controlled manner to ensure proper conformance of the plastic to the specimen. The air exhaust and vacuum operation time shall be set at the factory so that the chamber is brought to atmospheric pressure in 80 to 125 seconds, after the completion of the vacuum operations.
- 5.5 A Vacuum Measurement Gauge, independent of the vacuum sealing device, that could be placed directly inside the chamber to verify vacuum performance and the chamber door sealing condition of the unit. The gauge shall be capable of reading down to 3 mm Hg and readable to ± 1 mm Hg. The gauge shall be NIST traceable.

- 5.6 Plastic Bags, used with the vacuum device, shall have a minimum opening of 235 mm (9.25 in.) and maximum opening of 260 mm (10.25 in.). The bags shall be of plastic material, shall be puncture resistant, and shall be impermeable to water. The bags shall have a minimum thickness of 0.127mm (0.005 in.). The manufacturer shall provide the apparent specific gravity for the bags.
- 5.7 Metal pycnometer and lid, with 137 ± 0.13 mm (5.375 ± 0.005 in.) inside diameter (ID) and 89 \pm 0.41 mm (3.5 \pm 0.016 in.) height, for testing fine aggregates. The pycnometer shall be machined to be smooth on all surfaces. The inside of the lid shall be machined at a 5° angle to create an inverted conical surface.
- 5.8 Pycnometer clamping device to hold and secure the lid on the metal pycnometer from lifting during fine aggregate tests. The device shall be provided with a level indicator.
- 5.9 Syringe with a needle no larger in diameter than 3 mm (0.125 in.)
- 5.10 Thermometer or other temperature device with range to 40°C (100°F) accurate to $\pm 1^{\circ}$.
- 5.11 Isopropyl alcohol Technical Grade
- 5.12 Accessories— A bag cutting knife or scissors, spray bottle for the isopropyl alcohol, a bucket large enough to allow the pycnometer to be fully submerged in water, water containers to dispense water into pycnometer during testing, small paint brush and 25 mm (1 in.) wide aluminum spatula.

6 Verification

- 6.1 System Verification: The vacuum settings of the vacuum chamber shall be verified once every 12 months and after major repairs and after each shipment or relocation.
- 6.1.1 Place the gauge inside the vacuum chamber and record the setting, while the vacuum unit is operating. The gauge should indicate a pressure of 6 mm Hg or less. The unit shall not be used if the gauge reading is above 6 mm Hg.

Note 2— In line vacuum gauges, while capable of indicating vacuum performance of the pump, are not suitable for use in enclosed vacuum chambers and cannot accurately measure vacuum levels.

- 6.2 Calibration of Pycnometer:
- 6.2.1 Prior to testing, condition the pycnometer to $25 \pm 1^{\circ}C (77 \pm 2^{\circ}F)$ by placing it inside a bucket of water that is maintained at $25 \pm 1^{\circ}C (77 \pm 2^{\circ}F)$. Place the pycnometer clamping device on a level surface. Use a level indicator or the provided level to level the device.

Note 3 – The clamping device must be protected from hot or cold ambient laboratory temperatures that are more or less than $25 \pm 1^{\circ}C$ ($77 \pm 2^{\circ}F$).

- 6.2.2 Remove the pycnometer from the water bucket and dry it with a towel. Place the pycnometer in the device and push it back until it makes contact with the stops.
- 6.2.3 Fill the pycnometer with $25 \pm 1^{\circ}C (77 \pm 2^{\circ}F)$ water to approximately 10 mm (0.375 in.) from the top. Using the alcohol spray bottle, spray the surface of the water to remove bubbles.
- 6.2.4 Gently place the lid on the pycnometer and close the clamps on the device.
- 6.2.5 Using a syringe filled with $25 \pm 1^{\circ}C (77 \pm 2^{\circ}F)$ water, slowly fill the pycnometer through the large fill hole on the lid post. Make sure the syringe tip is far enough in the pycnometer to be below the water level. Gentle application in this step prevents formation of air bubbles inside the pycnometer.

- 6.2.6 Fill the pycnometer until water comes out of the 3 mm(1/8-in.) hole on the surface of the lid.
- 6.2.7 Wipe any remaining water from the top of the lid with a towel.
- 6.2.8 Place the entire device with the pycnometer on the scale and record the mass. Record the mass to 0.1 in the top portion of the Aggregate Worksheet. (See Appendix 1)
- 6.2.9 Clean the pycnometer and repeat steps 6.2.1 to 6.2.8 two more times and average the calibration masses obtained in 6.2.8.
- 6.2.10 If the range for the 3 calibration masses is larger than 0.5 grams, then the test is not being run correctly. Check to see if the device is level. Make certain the water injection with the syringe is done below the pycnometer water surface and is applied gently. Check the water temperature. Check the pycnometer temperature. Repeat the above procedure until you have three masses that are within a 0.5 gram range.
- 6.2.11 The pycnometer must be re-calibrated daily prior to testing.

7 Sampling

- 7.1 Sampling shall be performed in accordance with AASHTO T 2.
- 7.2 Samples shall be dried to constant mass in accordance with AASHTO T255.
- 7.3 Samples shall be reduced in accordance with AASHTO T 248.

8 Procedures

8.1 Equipment Preparation:

Note 4 – Make certain water temperature used for this test remains at $25 \pm 1^{\circ}C (77 \pm 2^{\circ}F)$.

- 8.1.1 Prior to testing, condition the pycnometer to 25 ± 1°C (77 ± 2°F) by placing it inside a bucket of water that is maintained at 25 ± 1°C (77 ± 2°F).
- 8.1.2 Remove the pycnometer from the water bucket and dry thoroughly with a towel.
- 8.1.3 Place the pycnometer clamping device on a level surface. Use a level indicator or the provided level to level the device.
- 8.1.4 Place the empty pycnometer in the pycnometer clamping device and push it back until it makes contact with the stops.
- 8.2 Determine Bulk Specific Gravity:
- 8.2.1 Oven dry to constant mass according to AASHTO T255, enough fine aggregate to obtain three 500 gram samples and one 1000 gram sample, reduced according to AASHTO T248..
- 8.2.2 Allow the sample to cool to $25 \pm 1^{\circ}C (77 \pm 2^{\circ}F)$.
- 8.2.3 Determine the mass of a 500 \pm 1 gram dry sample, Trial 1, that is at 25 \pm 1°C (77 \pm 2°F) and record to 0.1 on the Aggregate Worksheet.
- 8.2.4 Steps 8.2.5 to 8.2.13 shall be completed in less than 2 minutes.
- 8.2.5 Place approximately 500 ml of $25 \pm 1^{\circ}C$ (77 $\pm 2^{\circ}F$) water in the pycnometer (halfway full).

- 8.2.6 Slowly and evenly pour the sample into the pycnometer. Make certain aggregate is not lost in the process of filling the pycnometer. Use a brush if necessary to sweep any remaining fines into the pycnometer. If any aggregate is lost during the process of filling the pycnometer, start the test over.
- 8.2.7 Use a metal spatula and push it to the bottom of the pycnometer against the inside circumference. Slowly and gently drag the spatula to the center of the pycnometer, removing the spatula after reaching the center. Repeat this procedure in eight equal increments until the entire circumference is covered. If necessary, use a squeeze water bottle to rinse any sample residue off the spatula into the pycnometer.
- 8.2.8 Fill the pycnometer with $25 \pm 1^{\circ}$ C (77 $\pm 2^{\circ}$ F) water to approximately 10 mm (0.375 in.) of the pycnometer rim. It is important the water level be kept at or below the 10 mm line to avoid spills during lid placement.
- 8.2.9 Use the spray bottle filled with isopropyl alcohol to spray the top of the water to remove air bubbles.
- 8.2.10 Gently place the lid on the pycnometer and lock the clamping device. Using the syringe, slowly fill the pycnometer through the center hole on top of the lid post. Make sure the syringe tip is far enough in the pycnometer to be below the water level. Gentle application in this step will prevent formation of air bubbles inside the pycnometer.
- 8.2.11 Fill the pycnometer until water comes out of the 3 mm(1/8-in.) hole on the surface of the lid.
- 8.2.12 Wipe any remaining water from around the 3 mm(1/8-in.) hole with a towel.

Note 5 - Do not wipe water from the rim of the pycnometer if it seeps between the lid and the pycnometer. Allow this water to remain.

- 8.2.13 Determine the mass of the sample, the pycnometer and the device. Record the mass to 0.1 in B of the Aggregate Worksheet.
- 8.2.14 Discard the sample and prepare the equipment according to step 8.1.1 to 8.1.4.
- 8.2.15 Repeat steps 8.2.3 to 8.2.13 for another 500 ± 1 gram sample, Trial 2.
- 8.2.15.1 The difference in the mass of Trial 1 and Trial 2 recorded in B must be 1.0 gram or less. If the difference is greater than 1.0, then repeat steps 8.2.14 and 8.2.15 using another 500 ±1 gram dry sample.
- 8.2.16 Calculate the average mass for the two trials that are within 1 gram; record to 0.1 on Aggregate Worksheet.
- 8.2.17 Record the average weight of the pycnometer from section 6.2.9 on Aggregate Worksheet.
- 8.3 Determine Apparent Specific Gravity:
- 8.3.1 Set the vacuum device according to manufacturer's recommendation.
- 8.3.2 Tare the immersed weighing basket in the water bath.
- 8.3.3 Use a small plastic bag and inspect the bag to make sure there are no holes, stress points or side seal discontinuities in the bag. If any of the above conditions are noticed, use another bag.
- 8.3.4 Determine the mass of the bag and record to 0.1 on Aggregate Worksheet.

Note 6—Always handle the bag with care to avoid creating weak points and punctures.

8.3.5 Determine the mass of a 1000 ± 1 gram sample of oven dry aggregate and record 0.1 at E on Aggregate Worksheet.

- 8.3.6 Place the sample in the bag. Support the bottom of the bag on a smooth tabletop when pouring the aggregate to protect against punctures and impact points.
- 8.3.7 Place the bag containing the sample inside the vacuum chamber.
- 8.3.8 Grab the two sides of the bag and spread the sample flat by gently shaking the bag side to side. Do not press down or spread the sample from outside the bag. Pressing down on the sample from outside the bag will cause the bag to puncture and will negatively impact the results. Lightly spray mist aggregates with high minus 75-μm (No. 200) sieve material to hold down dust prior to sealing.
- 8.3.9 Place the open end of the bag over the seal bar and close the chamber door. The unit will draw a vacuum and seal the bag, before the chamber door opens.
- 8.3.10 Gently remove the sample from the chamber and immediately (within 5 seconds) submerge the sample in the water bath equipped with a balance for water displacement analysis.

Note 7 - It is extremely important the bag be removed from the vacuum chamber and immediately placed in the water bath. Leaving the bag in the vacuum chamber or on a bench top after sealing can cause air to slowly enter the bag and can result in low apparent specific gravity results.

- 8.3.11 Completely submerge the bag at least 2-inches below the surface of the water during cutting.
- 8.3.12 Make a small cut across the top edge of the immersed bag approximately 25 to 50 mm (1 to 2 in.).
- 8.3.13 Hold the immersed bag open at the cut for approximately 45 seconds allowing the water to freely flow into the bag. Allow any small residual air bubbles to escape. Do not shake or squeeze the sample, as these actions will cause the fines to escape from the bag.
- 8.3.14 After water has filled in, make another cut on the opposite side of the immersed bag approximately 25 to 50 mm (1 to 2 in.). Squeeze any residual air bubbles on top portion of the bag through the openings by running your fingers across the top of the bag. Do not completely remove any portion from the bag nor allow any portion of the bag to reach the surface of the water. Keep the sample and bag at least 2-inches below the surface of the water at all times.
- 8.3.15 Place the bag containing the sample in the immersed weighing basket to obtain the under water mass. Allow water to freely flow into the bag. Make certain the bag or the sample are not touching the bottom, the sides, or floating out of the water bath.
- 8.3.16 Allow the sample to stay in the water bath for a minimum of fifteen (15) minutes but not more than 20 minutes.
- 8.3.17 Record the submerged mass on the Aggregate Worksheet and wait one minute. If after this time the mass increases by more than one-gram, wait an additional five minutes. Record the mass and continue this process until the mass stops increasing.

9 Calculations

- 9.1 Test result calculations for percent absorption, apparent specific gravity and bulk specific gravity will be obtained from the software supplied by the manufacturer. Use the data from the Aggregate Worksheet. The software will provide a report of the test results.
- 9.2 The final test result will be determined from an average of two laboratory specimens.

Appendix 1 Aggregate Worksheet

Weight of	Weight of pycnometer and clamping device filled with water.			1.	2.	3.	Avg.	
Sample Number or Label	Tria	l Number	A Dry Sample Mass (500 g)	B Mass of pycnometer with sample and water (g)	C Plastic bag mass (g)	D Mass of two rubber sheets (g)	E Dry Sample Mass (1000 g)	F Mass of Sealed sample opened under water
	1							
	2							
	3*							
	Avg							
	1							
	2							
	3*							
	Avg							
	1							
	2							
	3*							
	Avg							

* Trial 3 is only necessary if the mass in B for the first 2 trials is larger than 1.0 grams.

PERFORMANCE EXAM CHECKLIST

SPECIFIC GRAVITY AND ABSORPTION OF FINE AGGREGATE USING AUTOMATIC VACUUM SEALING (CORELOK) METHOD IDAHO IT-144-08

Participant Name Exam		Exam Date		
Re	cord 'P' For Passing "F" for failing each step of the checklis	t.		
Ve	Verification Element		Trial 1	Trial 2
1.	Pycnometer and lid placed inside a bucket of water at $25^{\circ} \pm 1C$ (77°±2F)?		
2.	Pycnometer and lid removed from water dried well and placed o device until it makes contact with stops?	n clamping		
3.	Pycnometer filled with $25^{\circ} \pm 1C (77^{\circ} \pm 2F)$ water to $10mm (3/8")$ with Isopropyl alcohol to remove air?	of top, sprayed		
4.	Lid gently placed on Pycnometer and clamped?			
5.	A syringe filled with $25^{\circ} \pm 1C (77^{\circ} \pm 2F)$ inserted in top of lid and until water is expelled through the 3mm (1/8") hole?	gently added		
6.	Water wiped from lid, device water and pycnometer weighed and 0.1 g?	d recorded to		
7.	Procedure repeated two additional times (no greater than 0.5 g or recorded to work sheet and averaged?	difference)		
Pro	ocedure Element		Trial 1	Trial 2
8.	Representative samples obtained per FOP for AASHTO T 2?			
9.	Reduced per FOP for AASHTO T 248?			
10	Dried per FOP for AASHTO T 255?			
11.	Samples cooled to 25°±1C (77°±2F)?			
12	Three samples obtained @ 500g \pm 1g and one @ 1000g \pm 1g?			
13	Pycnometer and lid removed from water, dried and pycnometer clamping device until it makes contact with stops?	placed on		
14	Water added to pycnometer (at $25^{\circ} \pm 1C$, $77^{\circ} \pm 2F$) to approxima	ately half full?		

Procedure Element	Trial 1	Trial 2
15. Sample at 500 g ± 1g slowly added to pycnometer?		
16. Metal spatula inserted against side of pycnometer and slowly pushed to center removed, repeated in eight equal increments?		
17. Water added at 25°± 1C (77°± 2F) to within 10mm (3/8") of rim?		
18. Sprayed with isopropyl alcohol to remove air?		
19. Lid gently placed on pycnometer with 3mm (1/8") hole to the front and clamped?		
20. Syringe filled with 25°±1C (77°±2F) water inserted in top of lid and water slowly added until it is expelled through 3mm (1/8") hole?		
21. Excess water wiped from lid?		
22. Clamping device, pycnometer and sample mass recorded to 0.1 g?		
23. Clamping device, pycnometer and sample mass determined no more than 2 minutes from time sample was submerged?		
24. Second 500g ±1 g sample tested and mass recorded?		
25. If recorded mass of first and second sample greater than 1 g, was a third 500 g \pm 1 g sample tested?		
26. Vacuum device set at manufacture's recommended setting?		
27. Small plastic bag inspected and mass determined to 0.1 g and recorded?		
28. 1000 g \pm 1 g sample mass determined and recorded?		
29. 1000 g ±1 g sample placed in the bag, supported by a smooth surface to prevent punctures?		
30. Sample placed in vacuum device and spread flat by grasping both sides of bag and gently shaking?		
31. Open end of bag placed over seal bar and closed?		
32. Sample removed from vacuum chamber when door opens and submerged in 25°± 1C (77°± 2F) water bath within 5 seconds?		
33. Bag maintained at a minimum depth of two inches?		
34. A small cut made at corner of bag approximately 25 to 50mm (1" to 2")?		
 Submerged bag held open until water flows freely into bag (approximately 45 seconds) 		

Procedure Element	Trial 1	Trial 2
36. A second cut approximately 25 to 50mm (1" to 2") made to opposite side of bag?		
37. Residual air removed from bag by running fingers across top of submerged bag?		
38. Bag placed in weighing basket and water allowed to flow freely into bag?		
39. Sample mass determined and recorded after 15 minutes but not more than 20 minutes and recorded to 0.1g?		
40. Test data entered into manufacture's software to obtain test results?		
COMMENTS: First Attempt : Pass 🗆 Fail 🗖 Second Attempt: Pass 🗆	Fail 🗆]
Examiner Signature: Sampler / Tester Qualificatio	on #	
Examiner Signature:Sampler / Tester Qualification	on #	

PERFORMANCE EXAM CHECK LIST

BULK DENSITY (UNIT WEIGHT) AND VOIDS IN AGGREGATE AASHTO T 19

Particip	ant Name: Exam Date:	
Record	the symbols "P" for passing or "F" for failing on each step of the checklist:	
Procedu	ire Elements:	Trial#1 Trial#2
1.	Obtain Sample. Use the FOP for AASHTO T 2.	
2.	Aggregate dried to constant mass per the FOP for AASHTO T 255.	
3.	Reduce Sample to required size. Use the FOP for AASHTO T 248. Sample shall be 125% to 200% of the quantity needed to fill the measure.	
4.	Inspect measure and other apparatus. Measure must be calibrated within the last 12 months, balance conforms to M 231, scoop/ shovel, & tamping rod in good working order.	
5.	Rodding aggregate NMS 1 1/2" (37.5 mm) or less	
a.	Measure filled 1/3 full, leveled by hand, and rodded 25 times evenly distributed. The rod shall not strike the bottom of the measure forcibly.	
b.	Measure filled 2/3 full, leveled by hand, and rodded 25 times evenly distributed. The rod shall not penetrate into the first layer.	
с.	Measure filled to overflowing, and rodded 25 times evenly distributed. The rod shall only penetrate the top lift. The surface shall be leveled in such a way either by hand or straightedge that the number of slight projections equals the voids.	
6.	Jigging: aggregates NMS greater than 1 ½" (37.5 mm) but not exceeding 5" (125mm)	
a.	Measure filled 1/3 full.	
b.	Measure placed on concrete floor with opposite side lifted 2" (50mm) and allowed to drop freely, continue this process for 25 times then drip it 25 more times from the opposite side for a total of 50 drops and leveled by hand.	
с.	Measure filled 2/3 full and placed on concrete floor with opposite side lifted 2" (50mm) and allowed to drop freely, continue this process for 25 times then drip it 25 more times from the opposite side for a total of 50 drops and leveled by hand	
d.	Measure filled to overflowing, and placed on concrete floor with opposite side lifted 2" (50mm) and allowed to drop freely, continue this process for 25 times then drip it 25 more times from the opposite side for a total of 50 drops and leveled. The surface shall be leveled in such a way either by hand or straightedge that the number of slight projections equals the voids.	

_ _

___ __

7. Shoveling: only when specified

a.	Measure filled to overflowing with shovel or scoop. Material placed into measure from a height not to exceed 2" (50mm) above the top of the measure minimizing segregation while filling.
b.	Measure leveled by hand or straightedge. The surface shall be leveled in such a way either by hand or straightedge that the number of slight projections equals the voids.

- 8. Determine mass of the measure and aggregate and mass of the measure alone to 0.1lb (0.05 kg).
- 9. Determined & record the mass of Aggregate 0.1lb (0.05 kg).
- 10. Calculate the bulk density to 1 lb/ft³ (10 kg/ m³).

COMMENTS:	First Attempt : Pass 🗌 Fail 🗌	Second Attempt: Pass	Fail 🗌

Examiner Signature:______ Sampler / Tester Qualification # ______

Examiner Signature:	Sampler / Tester Qualification	#
---------------------	--------------------------------	---

Specific Gravity and Absorption of Fine Aggregate FOP for AASHTO T 84

Pa	rticipant Name	Exam Date	
Re	cord the symbols "P" for passing or "F" for failing on each step of the checklist	· -	
Sa	mple Preparation	Trial 1	Trial 2
1.	Sampled according to AASHTO T 2?		
2.	Sample reduced according to AASHTO T 248 to approximately 2000 g?		
3.	Dried to a constant mass at $230 \pm 9^{\circ}$ F, cooled to a comfortable handling temp.?		
4.	Addition of 6% moisture to sample?		
5.	Allowed to stand 15 – 19 hours?		
6.	Uniformly dried by a current of warm air, with frequent stirring?		
7.	Mold placed on flat, non-absorbent surface and filled to over-flowing?		
8.	Sample compacted with 25 light drops of tamper from 0.2" above top of sample?		
9.	Tamper allowed to fall freely under gravitational attraction?		
10	Loose sand removed from around bases and mold lifted vertically?		
11	Sample fails to slump on the first test?		
12	If it does slump, is water added, sample covered and allowed to stand 30 minutes?		
13	Drying continued, and test repeated at frequent intervals until sample slump slightly? Slight slump is when there is some evidence of slumping around circumference of the cone?	L	
Те	sting Procedure		
1.	Split out two 500 gram samples that weigh within 0.2 grams of each other.		
2. 3.	1000 ml Pycnometer partially filled with water and first sample added? Second sample dried back to constant mass?		
4.	Pycnometer filled to 90 % of calibrated capacity and agitated to eliminate a bubbles?	uir	
5.	Temperature adjusted to $73.4 \pm 3^{\circ}$ F.?		
6.	Water level brought to calibrated capacity and agitated to eliminate air bubbles?		

- 7. Second sample cooled in air at room temperature for 1.0 ± 0.5 hr. and weighed?
- 8. Pycnometer calibrated mass determined?
- 9. All masses determined to nearest 0.1 g?
- 10. Calculations performed and values rounded correctly?

Formulas for Specific Gravities and Absorption

Bulk Specific Gravity	$\frac{A}{B+S-C}$
Bulk Specific Gravity (SSD)	$\frac{S}{B+S-C}$
Apparent Specific Gravity	$\frac{A}{B+A-C}$
Absorption, percent	$\frac{(S-A)}{A} \times 100$
B = mass of pycnor C = mass of pycnor	lry specimen (second sample) in air, g; meter filled with water, g; meter with specimen and water to calibration mark, g; and ed surface-dry specimen (weight of first sample), g.
Comments: First attempt:	Pass Fail Second attempt: Pass Fail
Examiner Signature:	Sampler / Tester Qualification #

_ _

_ __

_ _

PERFORMANCE EXAM CHECKLIST

Uncompacted Void Content of Fine Aggregate for AASHTO T 304

Pa	ticipant Name:	Exam Date:		-
Re	cord the symbols "P" for passing or "F" for failing o	n each step of the checklist.		
Pr	ocedure Element (all test methods are AASI	HTO unless otherwise shown)		
Sa	npling		Trial 1	Trial 2
1.	Sample obtained by one of the following:			
	(a) T 2 & T 248 (sampling, splitting and quartering	ng)?		
or	(b) From sieve analysis samples used for T 27?			
or	(c) From aggregate extracted from a bituminous of	concrete specimen (T 308)?		
2.	Methods A			
	(a) Sample washed over No. 100 or No. 200 siev	e in accordance with T 11?		
	(b) Sample dried and sieved into separate size fra	ctions in accordance with T 27?		
	(c) Necessary size fractions obtained from sieve a condition in separate containers for each size	5		

Sample Preparation

Method A- Standard Graded Sample

1. Following quantities of aggregate that has been dried and sieved in accordance with T 27 weighed out and combined?

Individual Size Fractions	Mass, g	OK?
No. 8 to No. 16	44 ± 0.2	
No. 16 to No. 30	57 ± 0.2	
No. 30 to No. 50	72 ± 0.2	
No. 50 to No. 100	17 ± 0.2	
Total:	190 ± 0.2	

Specific Gravity of Fine Aggregate

If bulk dry specific gravity of aggregate from the source is unknown, specific gravity determined on material passing No. 4 sieve in accordance with IT 144.

Procedure

- 1. Each test sample mixed with spatula until it appears to be homogeneous?
- 2. Funnel stand apparatus with cylindrical measure, positioned in retaining pan?
- 3. Finger used to block opening of funnel?
- 4. Test sample poured into funnel?
- 5. Material in funnel leveled with spatula?

- 6. After funnel empties, excess heaped aggregate struck off from cylindrical measure by single pass of spatula, with blade width vertical and using straight part of its edge in light contact with top of measure?
- 7. Care exercised to avoid vibration or any disturbance that could cause compaction of aggregate into cylindrical measure?

Note: After strike-off, measure may be tapped lightly to compact sample to make it easier to transfer container to scale or balance without spilling any of the sample.

- 8. Adhering grains brushed from outside of container?
- 9. Mass of cylindrical measure and contents determined to nearest 0.1 g?
- 10. All aggregate particles retained for second test run?
- 11. Sample from retaining pan and cylindrical measure recombined and procedure repeated?
- 12. Mass of empty measure recorded?
- 13. Calculations performed properly?

Formula for Calculation of Uncompacted Voids, percent

$U = \frac{V - \left(\frac{F}{G}\right)}{V} \times 100$	where: U V F G	 uncompacted voids, percent; volume of cylindrical measure to nearest 0.1 mL; net mass, g, of fine aggregate in measure; and, bulk dry specific gravity of fine
Comments: First attempt: Pass	Fail	aggregate (G _{sb}) Second attempt: Pass Fail
Signature of Exam	iner	

Flat Particles, Elongated Particles, or Flat and Elongated Particles in Coarse Aggregate Fop for ASTM D 4791

Participant Name: Exam Date:		
Record the symbols "P" for passing or "F" for failing on each step of the checkli	st.	
Procedure Element	Trial 1	Trial 2
Sample Preparation		
 Sample obtained, mixed and reduced in accordance with AASHTO T 2 and AASHTO T 248 to approximately the amount required for testing? For combined samples fine portion (- # 4) removed? Minimum dry sample mass meets requirements of Table 1? 		
Procedure		
1. Sample sieved according to AASHTO T 27?		
2. Each coarse aggregate size fraction present in amount of 10% or more of original coarse sample reduced according to T 248 until approximately 100 particles obtained?		
Flat and Elongated Particle Test:		
3. Each particle in each size fraction tested and placed into one of two groups: (1) flat and elongated or (2) not flat and elongated?		
4. Proportional caliper device positioned at proper ratio?5. Larger opening set equal to particle <u>length</u>?		
 6. Particle is <u>flat and elongated</u> if the <u>thickness</u> can be placed in the smaller opening? 		
8. Proportion of sample in each group determined by count or by mass, as required?		
Calculation		
1. Percentage of flat and elongated particles calculated to nearest 1% for each sieve size greater than No. 4?		
 When weighted average for sample is required, sieve sizes not tested (those representing less than 10% of sample) assumed to have same percentage of flat particles, elongated particles, or flat and elongated particles as the next smaller or the next larger size? Or if both are present, is average for next smaller and larger sizes used? 		
Comments and Score: First Attempt: Pass Fail Second A	ttempt: Pass 🗌	Fail 🗌
Signature of Examiner:		

QUALIFICATION CHECKLIST FIELD VISCOSITY – IDAHO T 61

Record the symbols "P" for passing or "F" for failing on each step of the checklist.

Procedure Element

Sampling		Trial 1 Trial 2
1. Sample taken using a valve:		
a. Minimum of 4 L (1gal) allowed to f	low before sample taken?	1a
b. Sample taken in clean 1 L (1 quart)	wide mouth jar?	1b
2. Sample taken with Thief device.		
a. Sample can immersed approximately	to middle of tanker?	2a
b. Rubber stopper removed from can and / tank?	d sample taken from the middle o	
3. A portion of the sample transferred to a or a stopper having a thermometer in the cen		
Equipment		
4. Temperature of the viscometer bath at 50°	C (122°F)?	4
5. Viscosity tube clean and dry and cork inst	alled?	5
Testing		
6. Sample cooled to $51.7 \pm 0.3^{\circ}$ C (125 $\pm 0.5^{\circ}$)	F)?	6
7. Sample poured through a #20 sieve prior t	o entering the brass viscosity tub	
8. Enough sample poured into the tube to all	ow overflow into gallery?	8
9. Thermometer placed into tube and sample reached?	stirred slowly until testing tempe	
10. Thermometer withdrawn and excess in the pipette without touching overflow rim?	e overflow gallery siphoned out	
11. Emulsified asphalt sample in viscometer	immediately covered?	11
12. Cork pulled allowing the sample roll dow	vn the inside lip of the receiving t	
13. Timer immediately started when cork is j	oulled?	13
14. Timer stopped when bottom of sample m	eniscus reaches graduation mark	? 14
15. Test results reported to nearest 1 second	on ITD-1045 form?	
First	Attempt: Pass Fail	Second Attempt: Pass Fail
Comments:		
Participant Name	Exam Date	WAQTC#
Examiner's Name:	Signature	

WAQTC #:_____

Idaho Standard Method of Test for

Determining the Percent of Coated Particles in Bituminous Mixtures

Idaho IT-96-98

ITD Standard Specification Designation: Idaho T-96

1. Scope

1.1. The intent of this test is to establish a length of mixing time for the operation of a bituminous mixing plant. The method is based on the premise that the coarse aggregate is the most difficult and last to coat with asphalt. The aim is the least mixing time cycle that will produce a mix in which a minimum of 95% of the coarse aggregate particles are completely coated and all other specifications are satisfied.

2. Apparatus

- 2.1. Sieves One (1) or more box-type screens of the size required for the mix.
 - 2.1.1. For 1/2 in. (12.5 mm) maximum size aggregate, a No. 4 (4.75 mm) screen may be used.
 - 2.1.2. For 1/2 to 1 in. (12.5 to 25.0 mm) maximum size aggregate, a 3/8 in. (9.5 mm) screen may be used.
 - 2.1.3. For plus 1 in. (25.0 mm) maximum size aggregate, a 1/2 in. (12.5 mm) screen may be used.
- 2.2. Sample pan or trays.
- 2.3. Sample scoop or shovel.
- 2.4. Several sheets of manila paper, approximately 24 in. x 36 in. (600 mm x 900 mm).
- 2.5. Flood lamps, if required.
- 2.6. Stiff wire brush.
- 2.7. Small spatula.
- 2.8. Solvent and cleaning rags.

3. Procedure

- 3.1. Permit the plant to operate at an established mixing time per batch (timed by stop watch).
- 3.2. Take a sufficiently large sample to obtain a coarse fraction count of from 200 to 500 coarse particles. This will generally require from 5 to 8 lb. (2.5 to 4 kg) of plant mix.
- 3.3. Three (3) separate samples shall be obtained from material produced under identical conditions, immediately after discharge from the pug mill.
- 3.4. Sieve the samples immediately, while they are still hot, through the proper size sieve. Do not overload the sieves. If necessary, sieve each sample in two (2) or three (3) operations. Shaking should be reduced to a minimum to prevent coating of uncoated particles.

4. Calculations

- 4.1. Spread the coarse particles on a sheet of manila paper and very carefully examine each particle. Any particle that has a spot (even pinpoint size) which is not coated, is counted as uncoated.
- 4.2. Group the counted particles, placing the uncoated ones on one side and the coated ones on the other side.
- 4.3. Counting in normal daylight is the best, but a flood light may be used if necessary.
- 4.4. The percentage of coated and uncoated particles is obtained by dividing each group by the total number of particles.

5. Report

5.1. In all samples, the number of coated particles must be 95% or above. If the count is below 95%, the mixing time shall be increased in increments and additional counts made until the count rises to 95% or more.

QUALIFICATION CHECKLIST

DETECTION OF ANTI-STRIP ADDITIVE IN ASPHALT – IDAHO T 99

Record the symbols "P" for passing or "F" for failing on each step of the checklist.

	Procedure Element	Trial 1	Trial 2
G	eneral		
1.	All containers and or stir sticks were clean and chemical solutions were fresh.	1	
D	etection test by Color Method only		
2.	A control blank was performed.	2	
3.	40ml of Reagent Isopropyl Alcohol or equivalent was used.	3	
4.	The asphalt mixture was heated on a hot plate.	4	
5.	Heating of sample was stopped before mixture became too dark.	5	
6.	The same amount of Bromophenol Blue Indicator was added to both mixtures.	6	
7.	Test results were accurately interpreted and recorded on the proper ITD form.	7	
	omments: First Attempt: Pass Fail Second Attemp		
16	esting Technician's Name:WAQT	L # :L	
Ez	xaminer's Name: Signature		

Resistance to Deformation and Cohesion Of Bituminous Mixtures By Means Of Hveem Apparatus For AASHTO T246

Record the symbols "P" for passing or "F" for failing on each step of the checklist. Trial 1 Trial 1 Trial 1 Trial 1 Trial 1 Trial 1 Trial 1 Trial 1 Trial 1 Trial 2 Adjustment of Stabilometer 1 Base adjusted so that distance from bottom of upper tapered ring to top of base is 89 mm (3.5 in.)?
Adjustment of Stabilometer 1. Base adjusted so that distance from bottom of upper tapered ring to top of base is 89 mm (3.5 in.)? 2. Calibration cylinder inserted into stabilometer? 3. A horizontal pressure of 34.5kPa (5 psi) applied? 4. Turns indicator dial adjusted to zero? 5. Pump handle turned until the stabilometer dial reads 689kPa (100 psi)? 6. Pump handle turned at approx. two turns per second? 7. Turns indicator dial reads 1.95 and 2.05 turns? 8. If not, is in the air in the cell adjusted and procedure repeated? Resistance to Deformation 1. Test specimens mixed and compacted in accordance with T247? 2. Specimen brought to $60 \pm 3^{\circ}C$ ($140 \pm 5^{\circ}F$)? 3. Specimen transferred from mold to stabilometer by means of the push-out device? 4. Tamped end of specimen is up? 5. Follower placed on top of specimen? 6. Vertical movement of press begun? 7. Speed of 1.3 mm/min (0.05 in./min)?
 Base adjusted so that distance from bottom of upper tapered ring to top of base is 89 mm (3.5 in.)? Calibration cylinder inserted into stabilometer? A horizontal pressure of 34.5kPa (5 psi) applied? Turns indicator dial adjusted to zero? Pump handle turned until the stabilometer dial reads 689kPa (100 psi)? Pump handle turned at approx. two turns per second? Turns indicator dial reads 1.95 and 2.05 turns? If not, is in the air in the cell adjusted and procedure repeated? Resistance to Deformation Test specimens mixed and compacted in accordance with T247? Specimen brought to 60 ± 3°C (140 ± 5°F)? Specimen transferred from mold to stabilometer by means of the push-out device? Tamped end of specimen is up? Follower placed on top of specimen? Vertical movement of press begun? Speed of 1.3 mm/min (0.05 in./min)?
ring to top of base is 89 mm (3.5 in.)?
 2. Calibration cylinder inserted into stabilometer? 3. A horizontal pressure of 34.5kPa (5 psi) applied? 4. Turns indicator dial adjusted to zero? 5. Pump handle turned until the stabilometer dial reads 689kPa (100 psi)? 6. Pump handle turned at approx. two turns per second? 7. Turns indicator dial reads 1.95 and 2.05 turns? 8. If not, is in the air in the cell adjusted and procedure repeated? Resistance to Deformation 1. Test specimens mixed and compacted in accordance with T247? 2. Specimen brought to 60 ± 3°C (140 ± 5°F)? 3. Specimen transferred from mold to stabilometer by means of the push-out device? 4. Tamped end of specimen is up? 5. Follower placed on top of specimen? 6. Vertical movement of press begun? 7. Speed of 1.3 mm/min (0.05 in./min)?
3. A horizontal pressure of 34.5kPa (5 psi) applied?
 4. Turns indicator dial adjusted to zero? 5. Pump handle turned until the stabilometer dial reads 689kPa (100 psi)? 6. Pump handle turned at approx. two turns per second? 7. Turns indicator dial reads 1.95 and 2.05 turns? 8. If not, is in the air in the cell adjusted and procedure repeated? Resistance to Deformation 1. Test specimens mixed and compacted in accordance with T247? 2. Specimen brought to 60 ± 3°C (140 ± 5°F)? 3. Specimen transferred from mold to stabilometer by means of the push-out device? 4. Tamped end of specimen is up? 5. Follower placed on top of specimen? 6. Vertical movement of press begun? 7. Speed of 1.3 mm/min (0.05 in./min)?
 5. Pump handle turned until the stabilometer dial reads 689kPa (100 psi)? 6. Pump handle turned at approx. two turns per second? 7. Turns indicator dial reads 1.95 and 2.05 turns? 8. If not, is in the air in the cell adjusted and procedure repeated? Resistance to Deformation 1. Test specimens mixed and compacted in accordance with T247? 2. Specimen brought to 60 ± 3°C (140 ± 5°F)? 3. Specimen transferred from mold to stabilometer by means of the push-out device? 4. Tamped end of specimen is up? 5. Follower placed on top of specimen? 6. Vertical movement of press begun? 7. Speed of 1.3 mm/min (0.05 in./min)?
 5. Pump handle turned until the stabilometer dial reads 689kPa (100 psi)? 6. Pump handle turned at approx. two turns per second? 7. Turns indicator dial reads 1.95 and 2.05 turns? 8. If not, is in the air in the cell adjusted and procedure repeated? Resistance to Deformation 1. Test specimens mixed and compacted in accordance with T247? 2. Specimen brought to 60 ± 3°C (140 ± 5°F)? 3. Specimen transferred from mold to stabilometer by means of the push-out device? 4. Tamped end of specimen is up? 5. Follower placed on top of specimen? 6. Vertical movement of press begun? 7. Speed of 1.3 mm/min (0.05 in./min)?
 6. Pump handle turned at approx. two turns per second? 7. Turns indicator dial reads 1.95 and 2.05 turns? 8. If not, is in the air in the cell adjusted and procedure repeated? Resistance to Deformation Test specimens mixed and compacted in accordance with T247? Specimen brought to 60 ± 3°C (140 ± 5°F)? Specimen transferred from mold to stabilometer by means of the push-out device? Tamped end of specimen is up? Follower placed on top of specimen? Vertical movement of press begun? Speed of 1.3 mm/min (0.05 in./min)?
 7. Turns indicator dial reads 1.95 and 2.05 turns? 8. If not, is in the air in the cell adjusted and procedure repeated? Resistance to Deformation Test specimens mixed and compacted in accordance with T247? Specimen brought to 60 ± 3°C (140 ± 5°F)? Specimen transferred from mold to stabilometer by means of the push-out device? Tamped end of specimen is up? Follower placed on top of specimen? Vertical movement of press begun? Speed of 1.3 mm/min (0.05 in./min)?
Resistance to Deformation 1. Test specimens mixed and compacted in accordance with T247? 2. Specimen brought to $60 \pm 3^{\circ}C$ ($140 \pm 5^{\circ}F$)? 3. Specimen transferred from mold to stabilometer by means of the push-out device? 4. Tamped end of specimen is up? 5. Follower placed on top of specimen? 6. Vertical movement of press begun? 7. Speed of 1.3 mm/min (0.05 in./min)?
Resistance to Deformation 1. Test specimens mixed and compacted in accordance with T247? 2. Specimen brought to $60 \pm 3^{\circ}C$ ($140 \pm 5^{\circ}F$)? 3. Specimen transferred from mold to stabilometer by means of the push-out device? 4. Tamped end of specimen is up? 5. Follower placed on top of specimen? 6. Vertical movement of press begun? 7. Speed of 1.3 mm/min (0.05 in./min)?
 Test specimens mixed and compacted in accordance with T247?
 2. Specimen brought to 60 ± 3°C (140 ± 5°F)? 3. Specimen transferred from mold to stabilometer by means of the push-out device? 4. Tamped end of specimen is up? 5. Follower placed on top of specimen? 6. Vertical movement of press begun? 7. Speed of 1.3 mm/min (0.05 in./min)?
 2. Specimen brought to 60 ± 3°C (140 ± 5°F)? 3. Specimen transferred from mold to stabilometer by means of the push-out device? 4. Tamped end of specimen is up? 5. Follower placed on top of specimen? 6. Vertical movement of press begun? 7. Speed of 1.3 mm/min (0.05 in./min)?
 3. Specimen transferred from mold to stabilometer by means of the push-out device? 4. Tamped end of specimen is up? 5. Follower placed on top of specimen? 6. Vertical movement of press begun? 7. Speed of 1.3 mm/min (0.05 in./min)?
the push-out device?
5. Follower placed on top of specimen?
5. Follower placed on top of specimen?
6. Vertical movement of press begun? 7. Speed of 1.3 mm/min (0.05 in./min)?
7. Speed of 1.3 mm/min (0.05 in./min)?
8. If locking shims used on spherical head of loading device,
shims removed prior to stabilometer test?
9. Stabilometer gauge readings recorded at vertical loads of 2.23,
4.45, 8.90, 13.4, 17.8, 22.3 and 26.7 kN (500, 1000, 2000,
3000, 4000, 5000, 6000 lbf)?
10. Vertical movement of press stopped at 26.7 kN (6000 lbf) load?
11. Vertical load immediately reduced to 4.45 kN (1000 lbf)?
12. Horizontal pressure adjusted to 34.5 kPa(5 psi)?
<i>Note: This will result in a further reduction of the vertical load and is normal.</i>
13. Pump handle turned until the stabilometer dial reads 689
kPa (100 psi)?
14. Pump handle turned at approx. two turns per second?
15. Number of turns recorded as the displacement reading (D)?
16. Stabilometer value calculated correctly?
17. If height of specimen is not $64 \pm 3 \text{ mm} (2.5 \pm 0.1 \text{ in.})$, is
stabilometer value corrected as shown below?

$S = \frac{22.2}{P_{h} * D / (P_{v} - P_{h}) + 0.222}$	Where: $S =$ stabilometer value $P_h =$ horizontal pressure		
$r_{h} + D / (r_{v} - r_{h}) + 0.222$	P_h = nonzontal pressure P_v = vertical pressure D = displacement		
COMMENTS: First attempt: Pass Fail [Second attempt: Pass Fail .		

Signature of Examiner _____

Preparation of Test Specimens Of Bituminous Mixtures By Means of California Kneading Compactor For AASHTO T247

		Exam Date:		
Record the symbols "P" for passing	g or "F" for failing o	on each step of the ch	ecklist.	
			Trial 1	Trial 2
1. Estimated optimum bitume				
2. Tests conducted on 3 sample				
at estimated optimum, one		elow?		
3. Aggregate separated into fr	actions?			
4. Aggregate dried?	200 = af an action	l ana din al		·
5. Aggregate recombined to 1	• •			
6. Asphalt and aggregate at co begins (see table below)?	orrect temperature	when mixing		
begins (see table below)?				
Asphalt Grade	AASHTO min.	maximum		
AC-2.5, AR 1000, or 200-300 Pen	107 (225)	121 (250)		
AC-5, AR 2000, or 120-150 Pen	121 (250)	135 (275)		
AC-10, AR 4000, or 85-100 Pen	135 (275)	149 (300)		
AC-20, AR 8000, or 60-70 Pen AC-40, AR 16000, or 40-50 Pen	149 (300) 149 (300)	163 (325) 163 (325)		
AC-40, AR 10000, 01 40-50 I Ch	149 (500)	105 (525)		
7. Asphalt and aggregate rapid	llv and thoroughl	v mixed?		
8. Mixture and molds brought				
(230°F)] for paving grade a	1	L		
9. Mold placed on mold holde	1	placed on bottom		
of mold?				
10. Shim placed under mold?				
11. Mass of mixture for one spe	11. Mass of mixture for one specimen placed in preheated trough?			
12. Mixture spread uniformly in				
13. One half of mixture pushed				
14. Mixture rodded 20 times in	center and 20 tin	nes around		
periphery with preheated rod?				
15. Rest of mixture placed in m	old and rodding i	repeated?		
16. Compactor foot heated?	1.			
17. Mold holder and mold place	-	·> 1: 10		
18. Approx. 20 tamping blows	· •	, 1		
19. Shim removed and mold tig				
20. 150 tamping blows at 3.4 M			·	
21. Mold and mixture placed in				
(a) For 1 hour if compacted	1 at 00 C (140°F)	Inquia grade		
asphalt]? (b) For 1.5 hours if compac	oted at 110°C (22)	0°E) [naving		
grade asphalt]?	al 110 C (25			
Since aspirary.				

Quality Assurance	ITD ST	QP		590.00
22. Followers inserted into mol 23. Leveling-off load of 6.9 MI	Pa (1000 psi) applie	d to specimen		
using followers ad plungers 24. Height measured to the nea 25. Specimen returned to 60°C obtain desired temp. for tes	rest 0.25 mm (0.01 (140°F) oven in mc	· · · · · · · · · · · · · · · · · · ·	_	
COMMENTS: First attempt:	Pass 🗌 Fail 🗌	Second attempt: Pas	ss 🗌	Fail 🔲

Signature of Examiner _____

Density of In-Place Hot Mix Asphalt (HMA) Pavement by Electronic Surface Contact Devices FOP for AASHTO TP 68

Participant Name _____ Exam Date _____ Record the symbols "P" for passing or "F" for failing on each step of the checklist. **Procedure Element** Trial 1 Trial 2 1. Gauge turned on? 2. Gauge calibrated using data from 6 inch cores? 3. Test location selected away from any known sources of electromagnetic interference such as overhead high-tension power lines or large metal objects? 4. The HMA surface is free of moisture, relitively flat, and smooth? 5. Surface brushed clear of loose particles? ____ 6. Gauge placed firmly on HMA surface? 7. Outline traced around base? 8. Five (5) measurements taken per diagram # 1 and recorded? 9. Average density calculated? 10. Compaction calculated to 0.1%? First attempt: Pass Fail Second attempt: Pass Fail Comments: Examiner Signature ______ WAQTC #:_____

Examiner Signature ______WAQTC #:_____

BULK SPECIFIC GRAVITY AND DENSITY OF COMPACTED HOT MIX ASPHALT (HMA) USING AUTOMATIC VACUUM SEALING METHOD FOP FOR AASHTO T 331

Participant Name		ipant Name Ex	am Date		
Re	cord	l the symbols "P" for passing or "F" for failing on each step of th	ne checklist.		
Pr	oce	dure Element	Tria	al 1	Trial 2
1.	Ma	Mass of dry sample in air determined?			
	a.	Dried overnight at 125°F and at successive 2-hour intervals			
		to constant mass?			
	b.	Cooled in air to $77^{\circ} \pm 9^{\circ}$ F?			
	c.	Dry mass determined to 0.1g?			
	d.	Record initial dry mass as (A)?			
2.	Ba	g weight recorded?			
	a.	Bag inspected for holes or irregularities?			
	b.	Bag weight recorded?			
3.	Ba	g placed in vacuum chamber?			
4.	Sp	ecimen placed in bag 25mm or 1in. from end of bag?			
5.	Ch	eck that there are no wrinkles in the bag along the seal bar.			
6.	Lie	d closed and lid retaining latch engaged?			
7.	Or	nce sealed remove the specimen carefully from chamber?			
8.	W	eight Specimen in bag in air?			
	a.	Record mass to 0.1g?			
	b.	Subtract bag weight from total mass, record mass as (B).			
9.	Se	aled puck quickly placed in water bath at $77^{\circ} \pm 1.8^{\circ}$ F?			
	a.	From time vacuum lid opens to being submerged in water, n	ot to exceed		
		1 min?			
	b.	Specimen fully submerged?			
	c.	Specimen not touching edges of water bath?			
	d.	Once scale stabilizes, record mass as (E).			
10.	Ba	g removed from water bath?			
11. Sample removed from bag?					

12. Sample Mass determined and designated as (C)?				
a. Verify mass (A) is no more than 5g from mass specimen (C)?				
b. If more than 5g different, oven dry to constant mass and retest?				
Gmb = A/([C + (B - A)] - E - [(B - A)/F])				
G_{mb} = specimen bulk specific gravity;				
A = initial mass of the dried specimen in air, g;				
B = calculated mass of the dry, sealed specimen, g;				
C = final mass of the specimen after removal from the sealed bag, g;				
E = mass of the sealed specimen underwater, g; and				
F = apparent specific gravity of the plastic sealing material at 77°F, provided by the				
Manufacture.				
Comments: First attempt: PassFailSecond attempt: PassFail				
Examiner SignatureWAQTC #:				

WAQTC Standard Practice for

Field Sampling Bituminous Material after Compaction (Obtaining Cores)

WAQTC TM 11 - 07

1 Scope

- 1.1 This method describes the process for removal of a core sample of compacted bituminous material from a pavement for laboratory testing. Cores may range in size from 2 in. to 12 in.
- 1.2 The values stated in SI units are to be regarded as the standard. The values given in parentheses are for information only.
- 1.3 **Safety**—This method does not purport to address all of the safety problems associated with its use. This test method involves potentially hazardous conditions.

2 Referenced Documents

- 2.1 WAQTC / AASHTO standard
 - WAQTC TM 8, In-Place Density of Bituminous Mixes using the Nuclear Density Gauge
 - WAQTC FOP for AASHTO T 166 / 275, Bulk Specific Gravity of Compacted Hot Mix Asphalt Mixtures Using Saturated Surface – Dry Specimens & Bulk Specific Gravity of Compacted Bituminous Mixtures Using Paraffin – Coated Specimens
 - T 331 Bulk Specific Gravity and Density of Compacted Asphalt Mixtures Using Automatic Vacuum Sealing Method

3 Significance and Use

- 3.1 Samples obtained in accordance with the procedure may be used for measuring pavement thickness and density. Additional testing may be performed as required by the agency.
- 3.2 When cores are used to determine nuclear gauge correlation, see WAQTC TM 8.
- 3.3 When cores are used to determine pavement density, the Bulk Specific Gravity (G_{mb}) is determined according to WAQTC FOP for AASHTO T 166 / T 275 or AASHTO T 331.

4 Apparatus

- 4.1 Coring Machine –A motor driven core machine shall be used to obtain the sample. The device shall be capable of obtaining a core to the full depth of the bituminous material.
- 4.2 Core Bit The cutting edge of the core drill bit shall be of hardened steel or other suitable material with diamond chips embedded in the metal cutting edge. The core barrel inside diameter shall be as specified.
- 4.3 Separation Equipment –A saw or other method(s) that provides a clean smooth plane representing the layer to be tested.
- 4.4 Retrieval Device A device for removing core samples that will preserve the integrity of the core.

5 Material

5.1 Cooling agent such as: water, ice, dry ice, or liquid nitrogen.

6 Test Site Location

- 6.1 The number of cores obtained shall be determined by the test procedure or agency requirements.
- 6.2 Core location(s) shall be determined by the agency.

7 Procedure

- 7.1 For freshly compacted bituminous materials, the core shall be taken when the material has had sufficient amount of time to cool to prevent damage to the core.
- 7.2 To accelerate the coring process, a cooling agent may be used.
- 7.3 Place the coring machine such that the core bit is over the selected location.
- 7.4 Provide a means such as water or air to aid in the removal of cuttings and to minimize the generation of heat caused by friction.
- 7.5 Keep the core bit perpendicular to the bituminous surface during the coring process.
- 7.6 Apply constant downward pressure on the core bit. Failure to apply constant pressure, or too much pressure, may cause the bit to bind or distort the core.
- 7.7 Continue the coring operation until the desired depth is achieved.
- 7.8 Use a retrieval device to obtain the core.
- 7.9 Clearly label the core.

8 Filling Core Holes

8.1 The hole made from the coring operation shall be filled with a material that will not become dislodged.

9 Transporting

- 9.1 Transport cores on a smooth surface, top side down in a container(s) that prevents damage from jarring, rolling or impact with any object.
- 9.2 Prevent cores from freezing or from excessive heat, 54° C (130° F), during transport.

Note 1— In extreme ambient temperature conditions, an insulated container should be used during transport.

10 Layer Separation

10.1 Separate two or more pavement courses, lifts, or layers; by the use of separation equipment on the designated lift line.

Note 2— Lift lines are often more visible by rolling the core on a flat surface.

11 Thickness Determination

11.1 Measure the thickness of the designated lift to 3 mm (0.10 in). Three or more measurements shall be taken around the lift and averaged.

12 Report

- 12.1 Core information shall be reported on standard agency forms. Include the following information:
- 13.1.1. Date
- 13.1.2. Coring Location
- 13.1.3. Lift / Layer being evaluated
- 13.1.4. Material Type
- 13.1.5. Average Thickness.

PERFORMANCE EXAM CHECK LIST DETERMINING THE PLASTIC LIMIT AND PLASTICITY INDEX OF SOILS AASHTO T-90

Partici	pant Name:	Exam Date:		
Record the symbols "P" for passing or "F" for failing on each step of the checklist:				
Procedure Elements: Tr				
1.	Inspect and clean apparatus. Apparatus include mixing dish, spatcontainers with lids, balance readable to 0.01g and a drying oven dry and within specifications. Moisture containers and their lids we before each test.	n. All apparatus should be clean		
2.	Prepare sample . As per AASHTO T-87 or AASHTO T-146. This tes 20g of material. Material for this test can be obtained from mate			
3.	Adjustment of moisture content. Moisture content shall be such into a ball and is not sticky. Use distilled or demineralized water of			
4.	Roll sample to 3.0 mm (approx. 1/8"). Take approximately 8g of into1.5–2.0 gram increments. Roll on a ground surface with just of uniform diameter for it's entire length. A rolling rate of 80 to 9 When the diameter of the thread becomes 3.0 mm (approx. 1/8" then make a ball and repeat process. There is a 2 minute time to (approx. 1/8").	enough pressure to make a thread 90 strokes/minute shall be used. ") break thread into 6 to 8 pieces		
5.	Re-roll until thread breaks or crumbles. Repeat step # 4 until thr segments 6.4 mm $(1/4")$ to 9.5 mm $(3/8")$ in length. The sampler at least once before it breaks or crumbles, if failure occurs on the steps. Do not attempt to produce failure at 3.0 mm $(1/8")$ in diam	must be rolled to 3.0 mm (1/8") e first try add moisture and repeat		
6.	Collect crumbled particles. Using the spatula, gather all portions a suitable container, cover immediately and determine the mass	-		
7.	Remove cover and place in oven at 110±5° C (230±9° F) and dry When removing sample from the drying oven cover immediately			
8.	Determine moisture content. After drying to a constant mass, co to the nearest 0.01g and calculate moisture content to the neare			
9.	Report Plastic Limit. Plastic Limit is recorded as the nearest whol	le number		
10.	Determine Plasticity Index (PI). Calculate the Plasticity Index of t its Liquid Limit and its Plastic Limit. Example: LL – PL = PI, the result whole number.			
COMMENTS: First Attempt : Pass 🗆 Fail 🔲 Second Attempt: Pass 🗔 Fail 🔲				
Examir	ner Signature:	Sampler / Tester Qualification #		
Examir	ner Signature:	Sampler / Tester Qualification #		

PERFORMANCE EXAM CHECK LIST DETERMINING THE LIQUID LIMIT OF SOILS AASHTO T-89 (METHOD "B" ONE POINT)

Participant Name: Exam Date:					
Record	Record the symbols "P" for passing or "F" for failing on each step of the checklist:				
Procedure Elements: Tr			Trial#2		
1.	Prepare sample. Using AASHTO T-87 or AASHTO T-146. This test requires a minimum of 50g of minus # 40 (0.425 mm) material.				
2.	Inspect and adjust test apparatus. Apparatus includes liquid limit device, porcelain mixing dish, spatula, grooving tool, gauge for cup height drop, containers with lids, balance readable to the hundredth and a drying oven. All apparatus shall be clean, dry and within specifications. Moisture containers and lids will be weighed and recorded before each test. Check the drop height on the liquid limit device using the gauge and a piece of tape and adjust as necessary.				
3.	Adjust sample moisture and mix. Use distilled or demineralized water only Add 8 to 10 ml of water to material and mix thoroughly, approximately 5 to 10 minutes. Moisture may then be adjusted by adding increments of 1 to 3 ml of water and mixing thoroughly, approximately 1 minute, or by air drying while mixing and kneading. Moisture may not be adjusted by adding dry soil to the moistened sample. Cover the sample and allow to season for 30 minutes.				
4.	Spread sample into cup of device. Remix sample and spread above the spot where cup rests on the base. The top surface should be as level as possible and 10 mm in thickness at it's maximum depth. Use as few strokes as possible, do not entrap air into the sample. Return excess material to the mixing dish.				
5.	Cut groove into the sample. Cut groove through the center of the sample, perpendicular to the hinge pin of the cup. Use as few strokes as possible. Up to 6 strokes may be used, only the last stroke should touch the bottom of the cup.				
6.	Turn the device on and count the taps. Count the number of taps required to close the groove for a length of approx. $\frac{1}{2}$ " (13 mm). If sample slides instead of flowing, add water, remix and repeat test. If problem re-occurs discontinue test and note.				
7.	Repeat steps 3 through 6 until the grove closes with a range of 22 and 28 taps. Return remaining soil in the brass cup to the mixing dish with something other than the spatula. Apparatus shall be cleaned and dried between tests. Adjustment of moisture shall follow the guidelines in step 3.				
8.	Take sample for moisture content determination. Using the spatula, take a slice of the sample the width of the spatula at the point of closure. The slice shall extend from edge to edge of the soil and perpendicular to the groove for the full depth of the sample. Place the moisture sample in a suitable container, cover immediately, determine the mass to the nearest 0.01g and record immediately.				
9.	Remove cover, place in oven at 110±5° C (230±9° F) and dry to a constant mass. When removing the sample from the oven to determine constant mass cover immediately.				

ITD STQP

Procedure Elements continued:		Trial#1 Trial#2	
10.	Complete moisture content determination on samples. After drying to a concept to room temperature and determine the mass to a 0.01g and record. Calcontent to the nearest 0.1%		
11.	Calculate the Liquid Limit. Using the formula $LL = (w_N) (N/25)^{0.121}$ calculate Liquid Limit for 25 taps to the nearest 0.1%.	e the corrected	
12.	Report the Liquid Limit. The Liquid Limit is the nearest whole number.		
сомм	1ENTS: First Attempt : Pass 🗌 Fail 🗌 Second Attempt: Pass 🗌 Fail 🗌]	
Examin	ner Signature: Sampler / Tes	ter Qualification #	
Examin	ner Signature: Sampler / Tes	ter Qualification #	-

DETERMINING THE SPECIFIC GRAVITY OF SOILS

AASHTO T-100

Participant Name: _____ Exam Date: _____

Record the symbols "P" for passing or "F" for failing on each step of the checklist:

Procedure Elements:		Trial#2
1. Sample obtained?		
2. Flask filled three quarters with distilled water?		
3. Entrapped air removed?		
4. Vacuum 100mm or less?		
5. Flask agitated gently for the allowed amount of time?		
a. Oven dried sample $2 - 4$ hours		
b. Low plasticity 4 – 6 hours		
c. High plasticity containing moisture 6 -8 hours		
6. Pycnometer filled to calibration mark?		
7. Pycnometer mass determined?		
8. Temperature determined?		

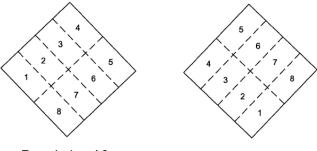
Specific Gravity, $T_x / T_x = W_o / [W_o + (W_a - W_b)]$ Specific Gravity, $T_x / 20^\circ C = (Specific Gravity, T_x/T_x) \times K$

Where:

 T_x = temperature of the contents of the Pycnometer when mass W_b was determined, in degrees Celsius;

W_o = mass of sample of oven-dried soil in grams

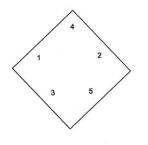
 W_a = mass of pycnometer filled with water at temperature T_x in grams


 W_b = mass of pycnomter filled with water and soil at temperature T_x , in grams

K = Correction Factor = (Rel. Density of Water at T_x / Rel. Density of Water at 20°C)

COMMENTS: First Attempt : Pass 🗆 Fail 🗔	Second Attempt: Pass 🔲 Fail 🔲
Examiner Signature:	Sampler / Tester Qualification #
Examiner Signature:	Sampler / Tester Qualification #

PERFORMANCE EXAM CHECK LIST SAMPLING & FABRICATION OF 2" (50 – MM) CUBE SPECIMENS USING GROUT (NON-SHRINK) MORTAR AASHTO TP 83


Partici	oant Name: Exam Date:			
Record	Record the symbols "P" for passing or "F" for failing on each step of the checklist:			
Proced	ure Elements:	Trial#1 Trial#2		
1.	Obtain Sample. Use AASHTO T-141 for 1 yd ³ or more or for less than 1 yd ³ sample from discharge after remixing takes place.			
2.	Inspect and adjust test apparatus. Apparatus includes mold assembly, tamper, trowel, watertight container.			
3.	Mold portion attached to bottom plate and joints are water tight. Use of a light coating o non water-soluble grease is allowed.	f		
4.	Place a 1"(approximately 1/2 the depth of the mold) layer of Grout or non-shrink mortar into the mold. Grout or mortar shall be placed in all compartments.			
5.	Consolidate the mix. The mix shall be consolidated depending on the consistency, either plastic or fluid.			
6.	Plastic mixes: tamp lift in 4 rounds, 8 tamps per round, for a total of 32 tamps in 10 second with rubber tamper. Rounds 1 and 3 and 2 and 4 shall be the same.	5		

Rounds 1 and 3

Rounds 2 and 4

7. Fluid Mixes: puddle the lift 5 times with gloved finger.

Quality Assurance 590.00 **Procedure Elements continued:** Trial#1 Trial#2 8. Place the second lift into all of the mold compartments and consolidate: Slightly overfill. Consolidate in same fashion as first lift. After consolidation material should extend slightly above the top of the mold. Push any grout forced out onto the top of the mold back onto the compartment with a trowel. 8. Strike off the surface. Using the trowel draw the flat side with the leading edge slightly raised once across the top of each cube at right angles to the length of the mold. Then draw the flat trailing edge of the trowel, with leading edge slightly raised,) once lightly along the length of the mold. Cut off the mortar to a plane surface flush with the top of the mold by drawing the straight edge of the trowel (held nearly perpendicular to the mold) with a sawing motion over the length of the mold. The material shall be flush with the top of the mold. 9. Immediately secure the top plate to the molds. 10. Molds properly stored: Cover with wet burlap, towels, or rags, seal it in a plastic sack in a level location out of direct sunlight, and record the time. These samples shall remain undisturbed and protected from freezing or overheating for a period of 24 ± 4 hours. COMMENTS: First Attempt : Pass Fail Second Attempt: Pass Fail Examiner Signature:______Sampler / Tester Qualification # Examiner Signature:______ Sampler / Tester Qualification # ______