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I. INTRODUCTION 

To ensure longevity and minimize maintenance costs of roads and bridges it is important for 

the trucking industry to comply with load regulations. Maximum permissible load is based 

upon vehicle axle configuration. The Idaho Transportation Department was interested in 

developing an advisory system that promotes voluntary compliance by informing drivers of 

the maximum permissible load. Current systems used to enforce load regulations include 

weigh bridges, weigh-in-motion systems and road tubes. Weigh bridges use static scales, 

requiring the truck to be stationary, to measure gross weight and weight per axle and are not 

viable due to the volume of truck traffic on highways. Weigh-in-motion systems can be used 

to weigh trucks in motion at highway speeds. They also measure speed, height of the truck, 

number of axles and inter-axle distance [1]. However, such systems are expensive, non-

portable, and pavement intrusive. Road tubes, used to count the number of axles, provide 

good accuracy but have associated maintenance costs and are often pavement intrusive.  

In this paper we discuss an alternate approach using image analysis. This method ispromising 

as it offers high flexibility without pavement intrusion. It provides inter-axle spacing and can 

be extended without requiring additional hardware resources to collect other traffic 

parameters such as speed and body type, without interference to traffic. Furthermore, a video-

based method can detect the presence of a variable load suspension (VLS) system, an 

auxiliary axle that can be raised or lowered. Road protection requires proper use of such 

systems; thus, the Idaho Transportation Department is interested in collecting data on the 

usage of VLS systems. Current methods in use cannot gather this information.  

A number of studies involving image processing for collecting traffic parameters, such as 

traffic volume, vehicle type and queue parameters have been reported in the literature. In [2], 

image windows are placed on lanes to detect vehicles by applying edge detection within the 

window and processing the histogram of each window. Speed is computed by measuring the 

time taken for the vehicle to travel between the windows. Motion detection and vehicle 
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detection are applied to detect queue parameters. In [3], the use of imaging techniques to 

identify vehicle make and model is described. Infrared images are used to reduce sensitivity to 

body color and lighting conditions. Local features are extracted and matched against a 

training set to recognize vehicles. In [4], a system for the detection and classification of 

vehicles is described. The location, width, length and velocity of regions that are a part of the 

vehicle are detected to classify them. This scheme, while collecting most vehicle 

characteristics, does not detect axles and VLS systems. 

An optical system was developed to count axles as explained in [5]. It uses a laser diode to 

scan the lane, while a position detector detects reflected light from the road surface, axle and 

vehicle body. A range image is formed by collecting reflected light positions and used to 

distinguish between reflecting surfaces such as the road, vehicle body and wheels. A peak in 

the range image indicates the presence of an axle. This method, while offering good accuracy, 

does not provide the advantage of extending the system to collect other traffic parameters and 

provides only binary information on the presence of axles. 

The Hough transform is a pattern recognition technique used to identify shapes that can be 

parameterized, such as straight lines, circles, and ellipses. The Hough transform algorithm and 

its variations have been used in numerous pattern recognition applications as listed in [6]. In 

[7], the Hough transform is used to detect circular and sub-circular features from aerial 

photographs, representing archaeological monuments. We use the generalized Hough 

transform to detect the presence of circular patterns representing wheels, as the transform is 

robust to missing data and noise in the image. A survey of Hough transform methods is 

presented in [8]. 

This paper is organized as follows. Section II describes the experimental setup. Section III is 

an introduction to the Hough transform algorithm. Section IV details the methods employed. 

Section V is a tabulation of the results obtained. Section VI provides an estimate of the 

computational complexity and Section VII is a description of a prototype system. Section VIII 

presents the conclusions from this research and identifies areas for future research. 
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II. EXPERIMENTAL SETUP 

We used a collection of pre-existing videotapes provided to us by the Idaho Transportation 

Department. These tapes were recorded in NTSC format from cameras that were mounted on 

the side of two-lane highways. The cameras were mounted at an angle to the road facing the 

on-coming traffic as shown in Figures 1 and 2. The camera field of vision was such that long 

trucks spanned multiple frames. Furthermore, measurements regarding camera position  
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relative to the road were not available. Image sequences from a VCR were acquired into 

image buffers using a Matrox Orion framegrabber, as shown in Figure 3. The Matrox imaging 

software library routines were used to grab and display interlaced images with a resolution of 

640 x 480 pixels from the videotape. The processing algorithms were implemented in the C 

programming language and executed on a 1 GHz Pentium III PC with 512MB of memory.  
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III. HOUGH TRANSFORMATION 

Circular features of the wheels of the truck are detected using the Hough transformation. This 

algorithm is capable of recognizing shapes in images through a voting procedure, using a “one 

to many” mapping of a feature space point to the possible parameter space points. The voting 

is constrained by the parametric equation. The parameter space is an accumulator array, with 

its dimension corresponding to the feature space. Each cell in the parameter space 

accumulates evidence of possible circle centers. The circle is parameterized as 

(x-cx)² + (y-cy)² = r², (1) 

where (cx,cy) are the coordinates of the center of the circle and ‘r’ is the radius of the circle. 

The accumulator array collects votes for possible values of center locations (cx,cy) for each 

edge point (x,y) in the feature space for a specific radius r. Each edge point (x,y) on the circle 

in the feature space contributes votes in a circular shape on the parameter space, as shown in 

Figure 4. The intersection of these circles forms a local maximum in the parameter space, 

indicating the presence of a circle in the feature space. Multi-dimensional accumulator arrays 

are required for detection of circles with differing radii, with each accumulator array 

representing specific radius value [9]. The Hough transform is generally robust to noise, since 

random noise does not contribute uniformly to a single accumulator cell. However, noise due 

to poor image quality and segmentation causes an increase in the background level in the 

Hough accumulator array, while missing object edges or occluded shapes produce lower 

peaks. 

Wheel locations are restricted to a region close to the road, as shown by the band in Figure 5. 

A generalized Hough transformation, as explained above, was used to detect the circular 

feature of the wheels. Votes corresponding to a complete circle in the parameter space must 

be recorded for each edge point in the feature space. This was done by testing points within a 

square region of the parameter space, with a side dimension equal to the diameter of the 

circle, for satisfaction of equation 1. 
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IV. METHOD 

Images from the 

camera using the 

setup described 

above were recorded 

on videotape and 

were used for testing 

the system. Images 

were captured in 

grayscale to reduce 

computation time 

and buffer space 

requirements. The 

processing sequence 

is shown in Figure 

6. The frames were 

captured in a 

synchronous mode 

using MIL library 

functions, at a rate 

of 15 frames/sec. 

This frame rate was 

sufficient to extract 

vehicle features. 
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A. Truck Detection 

In the first stage of processing, frames containing trucks were captured. This was done using a 

trigger at the left hand side of the frame, as shown in Figure 7. A small window of size 5 x 5 

pixels was used as a virtual detector, since processing needs to be performed on this region for 

all the frames at the frame rate of 15 frames/sec. Detectors were positioned for individual 

camera views to avoid triggering by cars, SUV, and traffic in the far lane. Trucks were 

detected by subtracting the background image from the current frame in the window area and 

summing the magnitude of the difference of individual pixels. A suitable threshold was set as 

a trigger for the window area processed by examining the images in the videotapes. Once a 

truck enters the field of view, it triggers the detector. The same method was used to determine 

when a truck exited the field of view. The video frame rate exceeds the axle-processing rate 

and hence all of the captured frames were buffered. Further processing of the video sequence 

is suspended while the buffered frames are processed; this can result in missed vehicles under 

heavy traffic flow. 
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B. Distance Estimation 

In order to reduce processing time, the Hough transform is performed over a small region, as 

shown in Figure 8. As a result, axle detection will span multiple frames and the distance 

traveled by the truck between frames is needed to determine axle spacing. The distance in 

pixels is added to each frame processed to obtain the position of wheels with respect to the 

first detected wheel. A template window of size 60 x 60 pixels, positioned to capture a portion 

of the wheel and the truck body, was used to determine the distance between subsequent 

frames. A moving correlation is performed, with the best correlation indicating the template 

displacement. Computing the distance between alternate frames instead of adjacent frames 

reduces the error in distance estimation. The actual distance traveled by the truck in inches 

can be mapped to the pixel distance by calibrating the camera setting. This could be done 

using a placard of known dimensions on the side of the road or using markings on the road, as 

explained in [4]. Speed of the truck was obtained by using the distance estimate between 

subsequent frames and the frame rate. 
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C. Edge Detection 

The interlaced fields produced ghosting due to the motion of the vehicle between fields. To 

overcome this problem, odd lines from the frame were discarded, reducing the vertical 

resolution by a factor of two. The grayscale images thus obtained were converted into black 

and white images using thresholding. The Sobel gradient-based edge operator was applied to 

the binary image to extract the edge between the rim and the tire. The edge detection was 

performed on a small region equal to the size of the Hough processing window (140 x 70 

pixels) to reduce computation and improve the efficiency of the system. The gradient 

threshold to identify an edge was set based on a study of a series of images. Since the camera 

was mounted at an angle, the edge image obtained is slightly elliptical along the y-axis. As the 

odd fields of the frame are discarded the shape becomes more circular. 

D. Hough Transform 

As mentioned above, the Hough transform was performed over a small portion of the band, in 

order to reduce processing time and the number of duplicate counts. The window size for 

processing was set, as shown in Figure 8, based on the maximum distance traveled by the 

truck in pixels between frames; this ensures that no wheels are missed. 

The accumulator array collects votes for a specific radius and was processed for the presence 

of distinct peaks as an indicator of the location of the wheels. A suitable threshold is fixed to 

indicate the presence of a wheel in the accumulator array. The distance traveled by the truck 

between frames was used to obtain inter-axle distance. The peaks in each of the accumulator 

arrays from individual frames are assembled into a composite to obtain the axle locations. 

This axle location information could be used to access a database of known axle 

configurations mapped to the load limit for the specific configuration. 
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V. RESULTS 

Videotapes recorded under various lighting conditions were tested. The criteria for 

performance evaluation were the accuracies of truck detection, distance estimation and axle 

detection, including variable load suspension systems. 

A. Truck detection result 

A large number of trucks were tested for vehicle detection and the results verified manually. 

The results are tabulated in Table 1 for various lighting conditions and indicate that the 

number of missed trucks is low. False positives are due to recreation vehicles detected as 

trucks and background variations due to changes in ambient lighting. 
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B. Distance estimation result 

The distance traveled in pixels by the truck between frames computed by the algorithm was 

compared with a manual estimate of distance traveled. The manual estimate was calculated by 

inspecting pixel reference points between alternate frames of the truck. These results are 

tabulated in Table 2. Inter-axle distance was obtained by comparing pixel distance to known 

feature dimensions. Error in the distance estimate is caused by inaccuracies in the template 

matching. 

 

 

C. Axle counting result 

The results of the wheel position detection algorithm are tabulated in Table 3. These results, 

as shown in Figure 9, indicate that the false positive count is high. This is due in part to the 
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wires and chains hanging from the body of the truck and grill features on the front of the 

truck. These features result in additional edges in the edge image and subsequent peaks in the 

Hough accumulator array. Furthermore, the wheel image is not perfectly circular, due to the 

camera angle and processing only one field of the interlaced images. This causes a lower peak 

in the Hough accumulator array. Combined, these factors result in multiple peak values that 

are close to those caused by the wheels, resulting in false positives. Strong light conditions 

yield better contrast between the rim and tire resulting in more continuous edges. Axle 

detection hence performs better under strong light and is sensitive to lighting conditions. 

 



 

14 

VI. COMPUTATIONAL COMPLEXITY 

The computational complexity of the algorithms was studied to identify areas for 

improvement. Certain frames undergo more processing compared to others, depending on the 

presence of trucks in the frame. As shown in the Figure 6, the MIL grab function is called at 

the rate of 15 frames/sec, with the left window trigger function performed on every grabbed 

frame. Frame grabbing stops after a truck is captured and resumes only after it has been 

processed. Hence, the number of times this function is called over an interval of time depends 

on the traffic distribution.  

The code was profiled using function-profiling in Visual C++ to determine the computational 

load distribution of the MIL functions and the algorithms over a fixed time, as shown in  

Table 4. This gives an estimate of the time spent, including looping overheads in the code. 

The distance calculation is performed once per captured truck and is shown in the table. The  

 

 

MIL timer function was used to obtain an accurate estimate of the time distribution in 

algorithms per frame after the truck has been detected; the results are shown in Figure 10. 

Processing time for the virtual detectors occupies a very small percentage of the total 

processing time and has not been included. 
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It is clear that the majority of the time was spent in performing the Hough transform. The 

reason for this is that we used the generalized Hough transform with a minor variation as 

explained in Section III. Further reduction in computation could be achieved by using edge 

orientation information as described in [10]. The edge direction on the circle circumference 

points towards the circle center, thus reducing the search area for each edge point. This 

reduces the computation load, since only an arc at a distance equal to the radius in the 

direction of the edge needs to be tested for possible center location. The computational time 

of the Hough transform could be reduced by a factor of six using this method [10]. If this 

scheme were adapted in our method, the computational time for the Hough transform would 

be 25 ms and it would be possible to realize this system in real-time. Other optimization 

techniques for storage and computation requirements are presented in [11] and [12]. 
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VII. HARDWARE IMPLEMENTATION 

The computational complexity in the previous section indicates that a major portion of the 

time is spent in the MIL library functions. This overhead could be reduced and the processing 

implemented in real-time if a dedicated processor was used. A possible stand-alone system 

that could be installed by the side of the road, based on the Clarity ASIC from Sound Vision, 

Inc.1 is shown in Figure 11. Clarity includes an ARM RISC processor, built-in memory 

controller, memory bus interface, USB interface, LCD interface, programmable CCD and 

CMOS sensor interfaces, and various other peripherals. Source code can be written in    

Visual C. 
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The image sensor could be either a CCD array or CMOS sensor. The choice depends 

primarily on the cost and the image quality required. CCDs cost about $120, while CMOS 

sensors cost about $15. However, CMOS sensors have low sensitivity, yielding poor image 

quality under low light conditions due to the pixel fill factor, the ratio of the photodiode area 

to photosensitive area. A portion of the photo site in CMOS sensors is taken by additional 

circuitry required to filter noise. The CCD sensors offer column and row accessibility, which 

facilitates window-of-interest readout. This could prove useful in our application, eliminating 

the need to buffer the entire frame. These sensors have various configurations, such as color 

vs. monochrome, different resolutions, and data rate (frames/sec). A monochrome sensor with 

a resolution of 640 x 480 pixels and data rate of 15 frames/sec would be suitable for our 

application. 

Clarity is not compatible with all types of sensors and LCD displays. Compatible CCD 

devices are manufactured by Sony, Sharp and IBM. CMOS sensor manufacturers include 

Motorola, Hyundai and Agilent. Supported color LCDs are available from Seiko, Epson, 

Unipac and Kopin. The operating temperature of this stand-alone unit is 32º F to 149º F. The 

Clarity’s operating temperature limits the lower operating temperature of the system. This 

would restrict operation to seasons in which the daytime temperature remained above 

freezing. Estimates of the system component costs are shown in Table 5. These costs include  
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only the basic hardware components shown in the block diagram in Figure 11. The 

approximate cost of building this system with just the basic components and the CMOS 

sensor option is $270, while it increases to $375 if CCD arrays are used. 

 

___________________________________________________________________________________________________________________________________________ 

1 Sound Vision Inc. , 432 Boston Post Road, Wayland, MA 01778. (www.soundvision.com) 
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VIII. CONCLUSIONS 

In this paper we have presented a video-based method for the detection of axles. 

Computational complexity and the computation time were estimated. These indicate that this 

method is computationally intense and requires further research to implement as a real-time 

system. Edge detection produces noisy image due to objects in the wheel vicinity, such as the 

grill and wires hanging from the truck. The axle detection results indicate a high false positive 

count and sensitivity to lighting conditions. Results obtained indicate good accuracies with 

truck detection and speed estimation, while altering the camera mounting would yield better 

axle detection. 

Further investigation into edge detection is required to eliminate noise due to objects other 

than the wheel while still preserving the edges at the wheel in order to obtain better 

performance. The camera-mounting angle plays an important role in the correct detection of 

axles, as the wheel shape is dependent on the mounting angle. This video-based system would 

benefit from the use of adaptive thresholding to accommodate varied lighting conditions. 
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