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ABSTRACT 
 

Accurate forecasting of annual average daily traffic data (AADT) minimizes errors in design 

decisions. Several methods produce unfavorable results in rural Idaho where traffic data are 

available and growth trends are not identifiable. The classification and regression tree 

(CART) method can reduce the variability in the AADT annual growth rate. The maximum 

errors for different data subgroups were calculated and the effects of the prediction errors 

were evaluated. Following an asphalt overlay, using both the actual and forecasted AADT 

values, differences in the thickness required for each were evaluated. Second, a level of 

service analysis studying the differences between the values using both actual and forecasted 

AADTs showed that significant differences did not occur unless the ESALs were high 

enough to warrant more than the minimum thickness. In those cases, only ESALs with errors 

of greater than 20 percent exhibited large differences between the forecasted and actual 

AADT values. Only eight percent of the cases would have resulted in incorrect design 

decisions. Because incorrect design decisions rarely occurred in either case, using forecasting 

methods as those depicted in this study is recommended. The CART method should also be 

implemented to improve the classification of AADT data points. 
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Chapter 1 ––Introduction 
This report will cover the basics of AADT estimation, the background and a review of current practices 

throughout the nation. Next, the data available for this research will be described and trends identified. Then, a 

few methods that have been used to forecast AADT will be examined. The method chosen to estimate the 

AADT growth factor for this research is then described, justified, and tested. To take the function of AADT 

forecasting to the next level, two design applications where AADT was required were examined and the 

influence of AADT forecasting errors on design was determined.  

1.1 Background 
Because funding is always an issue in transportation planning, design, and improvement projects, making 

critical decisions in an informed manner is important. Traffic data are an important source of information for 

these decisions; as a result the accuracies of these data are imperative. The AASHTO Guidelines for Traffic 

Data Programs identifies six applications in which traffic data play a significant role. These six include: project 

selection, pavement design, capacity analysis, safety analysis, air quality, and traffic simulation [1]. The annual 

traffic volume, annual average daily traffic (AADT), is one traffic record used in these applications. Often, 

forecasted AADT volumes are required for use in project selection, capacity analysis, and design. Inaccuracies 

in traffic volume forecasts are responsible for the additional costs associated with over and under design. The 

costs associated with an under designed project arise when an additional project must satisfy the original 

inadequacies [1]. Extra materials, labor, and additional right-of-way attainment add to the cost of an over 

designed project [1].  

 

In pavement design, forecasted values of AADT directly affect the estimation of future pavement deterioration 

[1]. This affects which roadways are candidates for overlay projects. High errors in AADT forecasts could 

wrongly influence which roadways planners decide to improve. Also, the required overlay thickness can be 

influenced greatly by the AADT estimate. This could result in over or under design if the errors in the AADT 

estimate are large. 

 

Capacity analysis is used in design, planning, and operational analysis, where AADT is used in level of service 

analysis [1]. Under design could cause a highway project to be at or near capacity upon completion. Over 

design could waste precious funding that can be used in areas where the need for improvement is more crucial. 

There must be a range of estimated AADT values that, though not entirely accurate, would allow the correct 

design decisions to be deduced. The purpose of the research presented here is to develop an improved 

methodology for estimating future AADT values.  
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1.2 Review of Literature and Current Methods 
In this section, the current practices are examined for both the Idaho Transportation Department and other state 

agencies, with a focus on the western rural areas of the United States. Previous AADT forecasting research is 

also explained and examined. Previous research for predicting AADT volumes includes time series models, 

regression models, additional models, and neural networks. Although many of the studies compare forecasting 

methods, the effects of the errors are not explained from a design perspective and this is one of the objects of 

this research.  

   

1.2.1  Overview of Current Practice for Forecasting in Idaho 
The Idaho Transportation Department currently uses annual growth rates, calculated from 20 years of past data, 

to forecast current annual average daily traffic (AADT) volumes to a design year in the future. In Idaho, many 

of the automatic traffic recorder stations (ATR) have recorded data from 1980 to the present. AADT volumes 

are calculated using the volumes collected from these ATR stations. Annual growth rates that represent the 

average percent increase in AADT volume per year are calculated at these ATR stations using Equation 1.1: 

 

1−=
−

n

nt

t

AADT
AADT

g  (1.1) 

where 

AADTt 
AADTt-n 

n 

= 
= 
= 

AADT volume recorded during the most recent year t; 
AADT volume recorded n years prior to the year t; and 
number of years between the most recent (AADT) and past (AADTn) volumes. 

 

The Guidebook to Statewide Travel Forecasting identifies the equation to forecast the AADT volumes as 

equation 1.2 [2]: 
n

tnt gAADTAADT )1( +=+  (1.2) 

where: 

AADTt+n 
AADTt 

g 
n 

= 
= 
= 
= 

AADT value forecasted n years in the future; 
base year AADT value observed during year t; 
annual growth rate; and 
number of years into the future for which a forecast is being made. 

 

In Idaho, the accuracy of the forecasts is questionable because the annual growth rates have not been updated on 

a regular basis. Professionals in Idaho that use the forecasts expressed their concerns with creating a new 

forecasting method. These professionals want a simple model that is easy to explain, to update, and to 

understand [3], [4]. It is also important to realize how the forecasting errors actually affect design and planning 

applications when deciding the required accuracy for such forecasts. 
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In the urban areas of Idaho, metropolitan planning organizations use calibrated four-step models that represent 

the operations within the network. Currently, in Idaho there are five MPOs: COMPASS, Bannock Planning 

Organization, the Bonneville Metropolitan Planning Organization, Kootenai Metropolitan Planning 

Organization, and Lewis-Clark Valley Metropolitan Planning Organization. Land use, economic and 

demographic statistics, and the geometry of the network are just some of the parameters that are incorporated 

into these metropolitan planning models. The first three MPOs mentioned are well established and because this 

study deals with rural areas not within the metropolitan area, locations in these areas were not included in the 

scope of this study. The last two planning organizations are recent additions and may not currently have 

calibrated models. Therefore, rural locations within these areas were included in this project.  

1.2.2  Summary of Current Practice in Idaho and Elsewhere 
Because there are many techniques for forecasting AADT volumes on rural highways, other departments of 

transportation were contacted and the different methods were compiled. Like ITD, many departments use the 

growth factor method. There are other methods represented, as well, such as regression and trend analysis. The 

results are documented in Table 1.1. Time series and regression seem to be the most common AADT 

forecasting methods among the various state departments and the applicability of these methods to the Idaho 

data was evaluated as described in subsequent sections of this report. 
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TABLE 1.1 Summary of Current Practices for Forecasting in Rural Areas 

Department Method  Uniqueness of the Technique 
Idaho Transportation 
Department Growth factor using 20 years of past data   

Washington State  
Department of 
Transportation 

Time series analysis [5] 
 Works well in rural areas, but not as 

accurate in urban fringe areas that are not 
included in an MPO model 

Oregon Department of 
Transportation Time series analysis [6]   

Montana Department of 
Transportation Growth factor [7]    

Utah Department of 
Transportation Time series analysis using 20 years of past data [8]

 Modified by economic/demographic 
variables such as population, number of 
households, and employment. 

Colorado Department of 
Transportation Time series analysis using 20 years of past data [9]  Currently re-evaluating the forecasting 

methods 
Nevada Department of 
Transportation Linear regression [10]   

New Mexico Highway 
and Transportation 
Department  

Growth factor using 20 years of past data [11] 
 Updated and evaluated regularly using 

statistical and conceptual methods  

Florida Department of 
Transportation 

Uses planning models whenever possible, but in 
very rural areas linear regression is used with 10 
years of past data [12] 

 
 

Wisconsin Department of 
Transportation 

Box-Cox regression using 21 years of historical 
data -- when a regression line is not significant, 
annual and flat growth rates are assigned[13] 

 
  

 

1.2.3 Literature Review 

1.2.3.1  Time Series Forecasting Methods 

Time series forecasting methods assume that past trends will continue into the future. With this assumption, the 

past data can be used to forecast AADT volumes to a specified year in the future. As cautioned in the 

Guidebook on Statewide Travel Forecasting circulated by the Federal Highway Administration, time series 

models must be used with care [2]. Because time series models use past data, this method cannot anticipate 

unpredictable or random events that could substantially affect the traffic volumes. Research completed by 

Horowitz and Farmer in 1999 suggested that many departments of transportation use some sort of a time series 

model for forecasting and implied that most could be providing more accurate forecasts by using a statewide 

model [14]. The review explained that many state departments of transportation are trying to use urban planning 

models in rural areas. There are changes to capacity and traffic analysis zone size that are required before the 

urban model can successfully work as a statewide model [14]. Horowitz suggested that some tasks could be 

better handled with time series analysis when a practical statewide model could not be created with an efficient 

use of resources. He went on to recommend that: 
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[I]t is important that the objectives of the model be described well ahead of any decisions on 

data collection, model structure, computer software, and budget. The objectives should 

clearly relate to ongoing policy issues and needs of state transportation plans [14]. 

1.2.3.1.1  Growth Factors  

Many states use growth factors to forecast AADT volumes because of the simplicity of this technique. This 

method assumes that the past trends in percent increase in traffic volume each year will continue into the future. 

Any number of years of past data can be used to find a growth factor and using plenty of historical data usually 

minimizes the effects of spikes in the data. Many methods exist for developing a growth factor and not all are as 

simply calculated as the Idaho Transportation Department’s technique. Memmott explored different methods 

for determining these growth factors. The growth factors were obtained by finding the curve that best fit the 

historical data [15]. Memmott showed the importance in examining the trends in past data to insure that the 

future trend has consistent results. Failing to do so could produce large errors in the volume estimates. He also 

explained that growth could take many forms between the base year and the projection year and have identical 

beginning and ending points (Table 1.2). Figure 1.1 shows the phenomenon mentioned [15]. Memmott notes 

that when finding the trend that fits the historical data most accurately that “overall, the ADT projections are 

good, with an average error of 28.7 percent.” The statement that the projections are “good” does not clarify 

what the errors mean in the context of design or planning. In other words, this research lacks the explanation of 

how the errors would affect planning or design decisions. Research that demonstrated how the errors of 

forecasting methods can affect the design decisions would be beneficial. 

 

TABLE 1.2 Types of Growth 

Functional Form Growth Rate  
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FIGURE 1.1 Different Types of Growth Between the Same Two Points [15] 
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1.2.3.2 Regression 

Linear regression can extrapolate trends in average annual daily traffic into the future. It also uses past trends in 

data, but it can also incorporate the relationship between economic and demographic variables and the traffic 

growth pattern. A general example of a regression equation is: 

 

εβββ ++++= inni XXAADT L110  (1.9) 

where: 

AADT 
Β0 
βj 

Xni 
ε 

= 
= 
= 
= 
= 

value of the dependent AADT value for the ith year; 
constant intercept term; 
regression coefficient for the jth independent variable; 
value of the nth independent variable for the ith year; and 
error term. 

 

Another type of regression is lagged regression, which is actually a form of time series analysis. In lagged 

regression, previous values of the dependent variable are one or more of the independent variables. An example 

of the general form of the lagged regression equation is:  

 

ntnttt AADTAADTAADTAADT −−− ++++= ββββ L22110  (1.10) 

where: 
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β0 
β1, β2, …, βn 
AADTt-1, AADTt-2, …, AADTt-n 

= 
= 
= 

constant intercept term; 
regression coefficients; and 
values of AADT at prior time steps. 

 

A lagged regression equation is also useful when the present AADT value is known with reasonable accuracy. 

In the forecasting equation, the dependent variable is the future year AADT and the present AADT is one of the 

independent variables. Variables are chosen on the basis of causal relationship to the traffic volume and high R-

square values. The Guidebook on Statewide Travel Forecasting advises the analyst to look at the basis for each 

variable chosen to be sure that every variable has a causal relationship with the AADT forecast [2]. This means 

that the relationship between each variable and the traffic volume forecast should be logical.  

 

In the same study cited above, Memmot also considers using multiple-regression for the forecast. These 

equations include a dummy-term for whether the capacity of the roadway is increased or not throughout the 

forecast period. The equations he examines all have a logarithmic transformation and are [15]: 

 

CataaADTt 321)ln( ++=  (1.11) 

CataaADTt 321 )ln()ln( ++=  (1.12) 
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t

t 3
10

21)ln( ++=
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⎤

⎢⎣
⎡ −

  (1.13) 

where: 

   C = 1 if the capacity has increased during the forecast period and zero otherwise. 

 

Memmott suggests that this method opens doors to more accurate regression forecasting models. A 

recommendation is made to study this topic further to find other variables that would significantly predict the 

traffic demand [15]. These equations are used to forecast the AADT values and the accuracy of the projections 

is influenced by several factors. One of these factors is the time period of the forecast, where as the amount of 

time between the base year and projection year increases, the accuracy of the forecast reduces. Also, the stage 

of development of the surrounding area affects the prediction ability of the model. Developing areas seem to 

have higher prediction errors (29.2 percent) than developed areas (24.7 percent) [15]. Memmott suggested that 

the amount of economic activity could have an effect on the accuracies of forecasting models and indicated that 

forecasting models should take this into account [15]. Similar to the part of the study that used growth factors 

and trend analysis to forecast volumes, the errors for the regression analysis are not explained in a design or 

planning sense. Also, this study does not include a multiple regression equation with economic and 

demographic variables such as population, land use, or employment. Research that added these explanatory 

variables to regression models and explained how the errors would affect design and planning decisions could 

be the next natural step.  
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1.2.3.2.1 Clustering 

Often the first step in performing regression analysis is sorting the data into groups with similar characteristics. 

There are several ways to group transportation data. The Federal Highway Administration has set up functional 

classes for different types of roadways, which are documented in the Highway Performance Monitoring System 

Field Book and are shown in Table 1.3 [16]: 

 

TABLE 1.3 The Highway Performance Monitoring System Functional Classes 

Rural Functional Systems Urban Functional Systems 

Interstate Major Collector Interstate Minor Arterial 
Other Principle 
Arterials Minor Collector Other Freeway and             

Expressway Collector 

Minor Arterial Local Other Principle Arterial Local 
 

Usually, the AADT of each section of roadway is also required for grouping. As a result, assigning certain 

roadways to different functional classes can be a difficult and subjective process [17]. On roadways without 

ATR stations, the AADT volume is often not measured. Garber and Bayat-Mokhtari researched a method for 

predicting the current year AADT value that did not require a known, or measured, AADT value and developed 

an alternative method for grouping the data. The method of Garger and Bayat-Mokhtari has three main steps: 

 

1. Dividing roadways into sections that have a homogeneous traffic volume, 

2. Identifying variables that significantly predict AADT, and 

3. Grouping the data by similar characteristics.   

 

In the first step, the roadway is broken into sections that have constant traffic characteristics and roadway 

geometry. A roadway section is defined to begin and end at either major intersections or where the geometry 

changes significantly. In the second step, the variables that have significant influence in predicting the AADT 

value were identified using an analysis of variance procedure. The significant predictor variables were [17]: 

 

• FHWA functional class, 

• Primary functional use such as recreational, local travel, or commercial, 

• Land use of the county in which the roadway section lies, 

• Population of the county in which the roadway section lies, and 

• Type of terrain. 

 

The third step uses the significant variables to group sections by similar characteristics using clustering 

capabilities in statistical software. A regression analysis was then run on the clusters of data that were formed in 
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step three. The coefficient of variation of the AADT values for each cluster were lower than the values 

recommended by FHWA and did not require the initial step of estimating the AADT value on each roadway 

[17, 18]. FHWA recommends, in the Traffic Monitoring Guide, that the absolute precision of estimates be 

within 10 percent [18]. Equation 1.14 shows the relationship between the coefficient of variation and the 

absolute precision. Therefore, the recommended coefficient of variation depends on the number of locations. 

 

n
CtD

n 1,
2

−
= α  (1.14) 

where 

D 
t 

C 
n 

= 
= 
= 
= 

absolute precision; 
value of Student’s t-distribution with 1-a/2 confidence and n-1 degrees of freedom; 
coefficient of variation (equal to the ratio of the standard deviation to the mean); and 
number of ATR locations in sample. 

 

This method did not forecast AADT, but clustered roadways into groups with similar AADT values using 

variables that significantly predict AADT. This method may be used to forecast AADT if the variables used to 

predict AADT were forecasted for the forecast year. Faghri and Chakroborty tried to cluster their traffic data 

into the ideal number of groups. The researchers noticed a problem associated with their clustering technique. 

Several of the ATR stations would change clusters from year to year [19], which is impractical. The AADT 

volumes were not forecasted in this study either.  

1.2.3.2.2  Forecasting Using Present AADT as Independent Variable 

Saha and Fricker developed models to forecast AADT values using disaggregate and aggregate analysis, 

utilizing data from the years 1970 through 1980 from 154 ATR stations. In disaggregate analysis, a model was 

developed for each ATR station separately. In aggregate analysis, the ATR stations were grouped by highway 

type, similar to the convention shown in Table 1.3, and one model was developed for the entire roadway 

classification. Descriptor variables that were used in the analysis to help model the traffic demand volumes 

were [20]: 

 

• Annual average daily traffic, • State vehicle registrations, 

• County vehicle registrations, • State population, 

• US gasoline price, • State households, 

• Year, • State employment, 

• County population, • Consumer price index, 

• County households, • Gross national product, and 

• County employment, • Nationwide per capita disposable income. 
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An elasticity model was used to estimate the future value of the AADT. One problem the researchers noticed 

was that the future values of the variables were required. The model used Equation 1.15 [20]: 
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where 

AADTf 
AADTp 

xj,f 
xj,p 
ej 
n 

= 
= 
= 
= 
= 
= 

AADT in the future year f; 
AADT in the present year p; 
value of variable xj in the future year f; 
value of variable xj in the present year p; 
elasticity of AADT with respect to xj ; and 
number of associated variables. 

 

Saha and Fricker explained that, typically, as more causal variables are included in the regression equation the 

accuracy is improved [20]. They included, however, that the linear regression relationship should be easy to 

understand and implement and; therefore, should not be extremely complex. There were two necessary 

requirements that were followed when choosing the variables. First, the variables had to adequately represent 

the trends in Indiana. Second, the data for these variables had to be easy to obtain and compile in a useful 

format [20]. Saha and Fricker asserted that each variable included in the models have an understandable and 

practical relationship with the traffic volume trends. A correlation matrix was evaluated to determine the 

strength of the relationship between each variable and the future AADT value. Step-wise regression was used to 

select the variable for inclusion in the model. In the aggregate analysis, county and state population and number 

of households were the best predictor variables. The forecasts were made up to twelve years into the future. The 

range of absolute errors for the aggregate analysis was between 0.3 and 30.4 percent with the average absolute 

error being 15.8 percent. When disaggregate analysis was used, the absolute errors were much lower, the range 

being between 1.1 to 7.0 and the average absolute error was 4.0 percent [20].  Of course, disaggregate analysis 

is not efficient because a model must be developed for every ATR station and many highway sections do not 

have an ATR station. The main problem with the linear regression model is the amount of data points required. 

Many states have insufficient counts to produce a statistically significant model.  

 

There are some missing points in the research done by Saha and Fricker. One is the drawback that the input 

variable values must be predicted, leading to an AADT forecast that is based on predictions. Also, the accuracy 

of this method was not compared to other forecasting methods and there was no mention of how the errors, 

either aggregate or disaggregate, would affect design.  
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1.2.3.2.3  Estimation of Present AADT Using a Variety of Independent Variables 

A 1998  study completed by Mohamad, Sinha, Kuczek and Scholer used linear regression to predict AADT 

volumes on county roads in Indiana using economic, demographic, and two-category quantitative variables 

[21]. The predictor variables that were explored were: 

 

• County population, • County state roadway mileage, 

• County households, • Location (urban or rural), 

• County vehicles registration, • Access to state highway system, and 

• County employment, • County per capita income. 

• Presence of interstate highways nearby, 

 

The models were developed to predict the current AADT on county roads given the significant predictor 

variables. Forecasts could be performed with these models if future year predictions of the variables were used, 

but forecasting was not the intention of the research. The researchers used SAS as their primary tool in selecting 

the variables, creating the models, determining the significance of each predictor variable, and determining the 

accuracy of the models [21]. This study tested the regression equations on other county roads that were not used 

in the development of the equations. Because the variables were not normally distributed, the independent 

variables were standardized and a transformation of the AADT was required. Each variable included in the 

models was a significant predictor of the future AADT. The full model, that contained all of the available 

statistically significant variables, accounted for 76.6 percent of the AADT variation. The number of predictor 

variables was kept as low as possible while still generating a reasonable level of accuracy, meaning that a minor 

reduction in R-square was accepted to simplify the model.  The final model that was selected included four 

independent variables: location, access, county population, and total arterial mileage of the county and had an 

R-square of 75.1 percent [21]. The results depicted an absolute average error of 16.78 percent and a range of 1.6 

to 34.2 percent [21]. The researchers found this method to be effective because of the models efficiency, cost-

effectiveness, and simplicity. This method does not forecast AADT, but can be helpful in this research because 

it shows that adding complexity to the model does not always drastically increase the accuracy. Again, the study 

did not compare this method to other prediction techniques or state what these errors, 1.6 to 38.2 percent would 

mean from a planning or design perspective.   

1.2.3.3 Neural Networks 

1.2.3.3.1  Estimation of Current AADT 

Lam and Jianmin Xu completed a study in Hong Kong in 2000 that compares regression techniques to neural 

networks [22]. In this study, AADT volumes are predicted from short period counts, but are not forecasted into 
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the future. The neural networks did approximate the AADT more accurately than the regression equation, but 

only by one to two percent [22]. The primary problems associated with this research are: 1) the neural network 

method requires many neurons and weighted interconnections between the input and output at each neuron, 

making it difficult to explain the relationship between input variables and AADT; 2) the study did not forecast 

the AADT volumes; and 3) because the neural network AADT estimations were only slightly more accurate 

than the regression equations, the impact of the errors probably would not be crucial in design.  

1.2.3.3.2 Forecasting One Hour Ahead 

A report by Clark, Chen, and Grant-Muller in 1999 compared neural networks to more traditional techniques. 

These traditional techniques included time series methods and statistical methods such as regression, 

smoothing, decomposition, and Box-Jenkins techniques. Traditional methods are more simply explained and 

rationalized than neural networks. On the other hand, neural networks can predict more complex relationships 

within the system than the traditional methods can [23]. Several time series models were examined. The first is 

the least complex assuming that the future observation is the same as the current observation. The fifth is the 

most complex time series model explored. In this model, the future observation is a function of the current 

observation and three previous observations. 

 

tt vv =+1  (1.16) 

11 2 −+ −= ttt vvv  (1.17) 

11 5.05.0 −+ += ttt vvv  (1.18) 

211 25.025.05.0 −−+ ++= tttt vvvv   (1.19) 

3211 25.025.025.025.0 −−−+ +++= ttttt vvvvv   (1.20) 

 

An ARIMA model was used for the statistical method because of the smoothing action of the technique. A 

general form of an ARIMA equation is: 

 

tntnttt YYTY εϕϕϕδ +++++= −−− L2211  (1.21) 

 

whereδ andϕ are estimated parameters and tε is an error term that is not used in forecasting. An infinite 

number of terms can be added to the ARIMA model, but each successive term has less and less predictive 

contribution. The model was created using 24 hours of data and the model was used to forecast the 25th and 26th 

hourly observation. 
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The neural network method was compared to the time series and ARIMA methods at four different sites. The 

neural network had an absolute average error of 11.4 percent with a range of 11.1 to 11.8 percent [23]. The time 

series methods had an overall average absolute error of 14.2 and a range that varied from 10.7 to 17.7 percent 

[23]. The ARIMA methods had an overall average absolute error of 14.6 and the range varied from 11.0 to 26.2 

percent [23]. The neural network’s forecasts had lower errors than the time series and ARIMA methods in three 

out of the four sites. The average percent errors for the neural network are 2.8 percent lower than for the other 

methods, but the neural network model is more difficult to create and to explain than the time series and the 

ARIMA models. Because there is no explanation of how this slight decrease in percent error would affect 

design and planning decisions, which method actually produces the correct design decision most often is 

unknown. 

1.3 Problem Statement 
To use funding in the most effective manner, over and under design must be minimized. There are many 

methods for forecasting traffic volumes such as regression models and time series trend analysis. Each of these 

methods can be customized for a particular project.  

 

Of the studies that were examined, not one explained how differences in error associated with each method 

would affect decisions in design or planning applications. In Memmott’s time series study, the average 

forecasting errors were 28.7 percent and he states that this is an acceptable error, but recommends future 

research in this area to improve accuracy. [15]. In the study by Saha and Fricker, the disaggregate analysis 

outperformed the aggregate analysis with average percent errors of 4.0 percent and 15.8 percent, respectively 

[20]. The study by Mohamad, Sinha, Kuczek, and Scholer declared an average error of 16.8 percent for the 

present AADT prediction [21]. The study states that the models were developed as “accurately as possible 

within the limitations of the traffic data” [21]. None of the studies addressed how the forecasting or estimation 

errors would affect design. Forecasts with errors such as these may or may not give the correct design decisions. 

The accuracy of these forecasts is important to allow accurate judgment of professionals responsible for design 

and planning projects that would use these values.  A study that found a method appropriate for forecasting in 

rural Idaho and explained how the AADT forecast errors would affect decisions in design or planning 

applications would be valuable. 

1.4 Research Approach 
First, the AADT, demographic, and econometric data were compiled and organized. Only rural locations were 

used in this study; therefore, urban locations were removed from the data set. Some data such as existing 

pavement and overlay characteristics and highway characteristics such as the directional distribution factor and 

the peak hour factor were required, but were not economically feasible to collect. In these cases, valid 
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assumptions were made. These assumptions did not affect the validity of the research because the differences in 

values were analyzed, not the individual values.  

 

The literature review showed that there are many existing methods that could forecast AADT values with 

reasonable accuracy and the applicability of these methods for use in this project was assessed using the Idaho 

data. The methods that were investigated were 1) the Elasticity-based model and Regression 2) Time Series 

Analysis and 3) Clustering . These methods were found to have unfavorable results for this particular project, 

but helped to realize the type of method that would be promising. 

 

The classification and regression tree method has transportation applications to date, but has yet to be applied to 

estimate the growth factors used to forecast AADT values. This method was verified, calibrated, and validated 

to evaluate its adequacy as a tool for forecasting AADT values.  

 

The AADTs were forecasted from 1990 to 2000 and the forecasted values were compared to the actual 2000 

AADT values and the errors were calculated and assessed. The level of service in the design year and the 

overlay thickness required for the pavement to remain adequate until the design year at each location were 

calculated using the actual design year AADT and the forecasted values. The errors expected when forecasting 

AADT and the design implications of these errors were reviewed. Recommendations for practice were made 

based on these findings.   
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Chapter 2 ––Idaho Data 
Traffic data are important for making informed design decisions. Traffic volumes are one of the primary 

components of the traffic data. There are different forms of traffic volumes such as annual average daily traffic 

(AADT), commercial annual average daily traffic (CAADT), and design hourly volume (DHV). Traffic 

volumes used in highway planning and design are typically provided in the form of AADT. Several types of 

data that were required for this project were: 

• ATR Station Data – There are automatic traffic recorder stations throughout Idaho that constantly 

record traffic and are considered the most accurate type of AADT data. The Idaho Transportation 

Department compiles this data annually and provided their ATR records for use in this project. For this 

project, only ATRs that were located in rural areas were included for the calibration of AADT models, 

because Metropolitan Planning Organizations have more complex models for forecasting within urban 

regions.  

• Portable Counts – ITD provided records of locations where short or portable counts were taken in both 

1990 and 2000, the current and design years for this project. These counts are not as accurate as the 

ATR station data, but they are considered more accurate than the AADT data where no count was 

taken. These portable count data were used as the validation sample for this project, because it was 

important to create a validation sample that was completely independent of the calibration sample. 

• Entire AADT Database – ITD provided the entire AADT database, which includes the AADT, 

CAADT, and functional class among other useful data for most locations on highways in Idaho. The 

accuracy of this database is difficult to assess primarily because it is not feasible to have ATR stations 

or to take portable counts at all locations in Idaho. AADT values in this database are estimated based 

on ATR station and portable count data.  

• Economic and Demographic Data – Data such as county population, county employment, the current 

AADT, annual population growth rate, and the functional classification of the roadway have been used 

in past research and were included in the data set.  

• Other Data – Data required for calculating the design aspects of this report. These were usually 

estimated and included information such as the traffic directional and peak hour flow rates and the 

properties of the existing and overlay pavement.  

2.1 Trends in Data 
There are four notable trends in the ATR data set, two that were expected, one that was not and one that is 

contradictory. These trends are: 

1. There is usually higher traffic growth in high-growth counties.  

2. There can be dissimilar traffic growth within a single county. 
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3. There can be dissimilar traffic growth within a single functional class group. 

4. There are instances where traffic volumes increase, but the population of the county decreases over the 

same period. 

 

The first trend was expected because usually counties with high population growths have larger AADT growth 

on the highways than in counties with lower population growth. Figure 2.1 compares the trends of the ATR 

stations in Kootenai, a high growth county, with Bear Lake and Lemhi, both low growth counties. As, expected 

the traffic growth in the high growth county have steeper slopes than in the low growth counties. This trend 

occurs throughout the state, but not universally. There are instances in the high growth counties where some 

ATR stations exhibit low traffic growth.  
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FIGURE 2.1 Trends in High Growth vs. Low Growth Counties 

 

Kootenai  
(Pop Growth Factor = 0.02) 

Bear Lake or Lemhi  
(Pop Growth Factor = -0.01)

 

The second trend was also expected because different types of traffic may travel different routes through the 

county. For instance, commercial vehicles may be more apt to travel on the interstates and local traffic travels 

on arterials. In any case, it should not be surprising to find variation in traffic growth within a county.  Figure 

2.2 shows that there can be differences in the AADT growth within a county. In Kootenai County, the AADT 

growth varies substantially. ATR 27 has fairly low growth but ATR 21 has high growth. This trend occurs in 

counties throughout the state. Therefore, an annual growth rate assigned by county alone would not be accurate.  
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The third trend was unexpected. In some past research, it was found that the trends in traffic growth were 

similar within the functional class and it was valuable to classify the traffic data based on this characteristic. 

This was not the case in the Idaho data, however, where there is a large range of traffic growth throughout a 

functional class. For instance, Figure 2.3 shows functional class 1, rural interstate. Although, most of these 

stations exhibit fairly high growth, there is still substantial variation within the functional class. Consequently, 

an annual growth rate assigned only by functional class would not match the actual trends. None of the rural 

interstate AADT growth is negative even though some of these stations are located in counties with negative 

growth. Some have a growth rate that is not constant, which could make assigning an annual growth rate to 

these stations difficult. However, there are stations with similar trends within the rural interstate functional 

classification group, however. For example, ATR 25 and ATR 7 seem to exhibit very similar AADT trends. 

These ATR stations are not located in the same county or even in counties that are exhibiting similar growth 

patterns.  Therefore, it is difficult to explain why these ATR stations have similar growth when it seems that the 

only characteristic they have in common is their functional classification.  
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FIGURE 2.3 Function Class 1 (Rural Interstate) AADT Trends 
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The fourth trend contradicts the first trend in that there are instances in very low growth counties where the 

traffic continues to grow despite a dramatic decrease in population. One explanation could be that other routes 

may have become unavailable for traffic traveling through the county. This could increase the traffic on through 

routes. For instance, Butte County had a population growth rate of negative 1.4 percent between 1980 and 1990. 

Surprisingly, the ATR stations in that county all had positive growth of around two percent. This trend is shown 

in several other counties where there is a negative population growth over time, but the AADTs continue to 

increase. These locations are very difficult to forecast because their trends are atypical.  

 

Because trends can vary greatly within a county and a functional class group, a method that takes several 

characteristics of the different locations into account is required. There must be a straightforward way to 

classify the ATR stations into groups with similar attributes and similar annual growth rates such that these 

characteristics could be used to classify highway stations not located at ATR stations and assign an accurate 

annual growth rate.  
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Chapter 3 –Evaluate Existing Methods 
There are several mandatory characteristics for a method focusing on the estimation of annual growth rate and 

forecasting AADT. First, the method must be able to be used on highway sections where an ATR station is not 

present, and/or where past measured AADT data will not be available. A current AADT value could be 

obtained by completing a portable count at the site. This one data point may be the only AADT data available. 

Second, past and current economic and demographic data for the county in which the site is located should be 

easily obtainable. Third, professionals in Idaho also demand that the method be simple and easy to explain. 

Therefore, exceptionally complicated and data intensive methods do not fit within the requirements of this 

project. 

 

In the early stages of this project, several methods for forecasting AADT were identified. Of these, some 

seemed especially promising and their applicability to the Idaho data was investigated. Those investigated are as 

follows: 

 

• Regression; 

• Time Series; 

• Neural Networks; and 

• Clustering. 

 

The first three methods are models to forecast AADT. The research for this report attempted to evaluate each of 

these methods using calibration and validation data sets. These models had unfavorable results when applied to 

the Idaho data and, therefore, were not chosen as the method to forecast AADT. The subsequent sections of this 

chapter examine each method, explain the problems found when trying to apply the methods to the Idaho data, 

and the steps that lead to abandoning these models in search for a more applicable technique.  

3.1 Elasticity-Based Method and Regression 
One of the methods described earlier was the elasticity-based method which uses regression as a basis; 

therefore, given the heterogeneity of the ATR data, it is unlikely that this approach would succeed if the 

underlying methods for regression fail. The first step in this method is to estimate the elasticity of the dependent 

variable to each independent variable. This is achieved by fitting a linear regression with AADT as the 

dependent variable with a variety of independent variables that would seem to have an effect on the AADT 

growth. To adequately fit a linear regression, there has to be a linear correlation between the dependent and 

independent variables. Several variables that were thought to have some influence over traffic growth were 

chosen and their correlations with AADT found. County population had the highest correlation, although still 

low, equal to 0.36. Figure 3 presents a scatter plot of this data, which does not exhibit a trend. Other variables 
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had even lower correlations with AADT and do not reveal recognizable trends, either. Therefore, fitting a linear 

regression to these data would not provide significant results. 
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FIGURE 3.1 Population vs. AADT for All Rural ATR Stations 
 

Saha and Fricker’s Indiana data were first separated into functional class groups and regressions were run on 

each group. It appears that, their data were more linearly correlated once this classification was made [20]. In 

the case of the Idaho data set, this did not occur. Figure 3.2 shows a plot of county population versus AADT for 

only rural primary arterial highways. This scatter plot, which is representative of the other variables and other 

functional classes, does not confirm that trends occur; therefore, there would no value in continuing with this 

method. Because the elasticity-based method failed in the calibration phase, the regression methods had the 

same fate. Transformations were also attempted to investigate non-linear trends, but no strong identifiable 

relationships were identified. Consistent with the elasticity-based research done by Saha and Fricker, different 

types of classification were attempted to help identify some trends, but these efforts were unsuccessful because 

it seems that the data needed to be classified by not one, but many characteristics. These relationships were 

manually unidentifiable; therefore, a method to help identify the best way to group the ATR stations was 

required.  
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FIGURE 3.2 Population vs. AADT For Only Rural Primary Arterials 
 

The Idaho data are not homogenous across any obvious characteristic, meaning that there are many differences 

in the trends ATR stations exhibited throughout the state and within counties. Therefore, classifications on 

combinations of these characteristics may help to identify sets of ATR stations with homogeneous trends. There 

must be other methods that can address this issue when recognizable trends cannot be revealed.  More 

specifically, there is a need for an efficient method for exploring and classifying the ATR data so that trends can 

be established between the dependent and independent variables, thereby making regression or elasticity-based 

methods applicable.  

 

3.2 Time Series 
There are many types of time series methods including growth factors and ARIMA models. All the time series 

methods require measured historical AADT data, at least in the calibration phase. The reason that a method 

requiring measured historical AADT data would not work is that, in practice, not all highway sections have 

measured historical data. Some sort of classification method would need to be applied to highway locations 

based on the current characteristics. As described in the previous sections of this chapter, the Idaho data does 

not exhibit trends that are easily recognizable; therefore, a method that can classify the ATR stations based on 

the characteristics as well as the growth trends of the location would be necessary before time series methods 

could be evaluated.  

 

Assigning annual growth rates is one of the most basic techniques used to forecast AADTs.  An annual growth 

rate cannot be directly calculated for the actual highway locations in the field using any traditional methods 

where measured historical data are not available. Therefore, the method used in this research, to be practical, 
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could not require measured historical AADT data. The annual growth rates for the ATR stations in the 

calibration data set were calculated using Equation 1.1. It should be noted that due to heterogeneity with the 

ATR data, the growth factor method would be more useful if there were a classification method available that 

created groups with similar characteristics and annual growth rates. If this were practical, then highway 

locations would be assigned the average annual growth rates based on which group the site fell into.   

 

ARIMA, autoregressive integrated moving average, has not been used to forecast AADT specifically, but has 

been used in other forecasting applications. ARIMA methods require at least 30 observations without gaps or 

the parameter approximations may be meaningless [25]. Monthly Idaho ATR traffic count data were available; 

therefore, 30 observations could have been obtained. Unfortunately, one or more months were frequently 

missing from these data. To adequately use the ARIMA methodology, the missing months would have to be 

estimated. Also, past data will not be available in practice. Therefore, as described earlier, some way of 

classifying this data would be required. As also found in the regression and clustering sections of this chapter, a 

method is required that could classify the ATR stations based on characteristics that would reduce the 

variability of the AADT annual growth rate. If this initial process could be completed successfully, then it is 

possible that ARIMA time series forecasting techniques could be implemented using ATR stations to create the 

models and assigning these models to highway locations in practice based on the characteristics these highway 

location exhibit.    

 

3.3 Clustering 
Clustering is a method that combines groups of ATR stations based on similarities in the data. This seemed 

promising given the need for classification established by the review of previous existing methods. There are 

several clustering methods all having the hierarchical clustering procedure as a basis. The SAS Online 

Document gives details and descriptions of the primary clustering methods [25]. Each observation begins in a 

single cluster with similar observations being combined into new clusters, two at a time. Clusters are joined 

until all observations are included in one cluster. Before performing the cluster analysis, some assumptions are 

required [25]. 

 

• The variables used must be independent of one another. 
• The variables must have equal variance. 
• The variables must have a small variance. 

 

Variables that were used in the clustering analysis were functional class, county population, annual county 

population growth rate, and AADT, which were also chosen in the research by Garber and Bayat-Mokhtari [17]. 

The variables used in this project are thought to be independent of one another because they have low 

correlations with each other. All the variables do not have low variances, however, and the magnitude of those 
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variances vary. Because variables with large variances have a tendency to have larger effects on the results than 

those with small variances, it was necessary to consider scaling the variables [25]. The average linkage method 

for clustering was utilized and the resulting hierarchical tree is shown in Figure 3.3. ATR station numbers are 

used as identification on the X-axis and the average Euclidean distance between clusters is on the Y-axis. 

Theoretically, clusters with lower distances will have more similar characteristics. For instance in cluster 1, 

ATR station 8 and 21 were the first to be merged. These locations have very similar characteristics. For 

example, they are located in the same county and their AADTs vary by only 89 vehicles per day. ATR station 

25 was then merged to the first two. This station, although located in a different county, has a similar county 

population, AADT, and population growth rate. Therefore, each new addition to the cluster has fewer common 

characteristics than the stations previously merged, but they should still have similar characteristics that make 

such a merge logical. The ranges of the variables in the final clusters are shown in Table 3.1. Figure 3.3 shows 

that ATR station 68 does not fit well within a cluster because the AADT, population, and population growth 

rate are equal to 8931, 13.8, and 0.0330, respectively. These characteristics are not similar to any of the existing 

clusters. This problem could also make it difficult for all highway locations in practice to always fit into one and 

only one cluster. 

 
TABLE 3.1 Cluster Characteristics 

 

Cluster FC AADT GR Var
min max min max min max

Pop GR
min max
AADT GR AADT Pop

1 1,2,7 7733 11362 53.8 90.6 0.0008 0.0161 -0.0026 0.0256 0.000145
2 1,2 6235 11022 7.1 33.8 -0.0024 0.0096 0.0161 0.0396 0.000085
3 2,6,7 912 5311 53.8 90.6 0.0013 0.0161 0.0171 0.0575 0.000284
4 2,6,7 432 3772 2.9 13.8 -0.0224 -0.0069 0.0153 0.0420 0.000066
5 1,2,6 568 5037 3.3 30.7 -0.0034 0.0096 -0.0027 0.0460 0.000279
6 2,6,7 445 2238 3.6 23.8 0.0133 0.0330 0.0151 0.0701 0.000504
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FIGURE 3.3 ATR Hierarchical Cluster Tree 
 

The AADT annual growth rate, AADT GR, in the tables, was not included in the cluster analysis because of the 

assumption that past measured AADT data will usually be unknown in practice; therefore, the analysis cannot 

require this variable. There were two main faults of the clustering method for assigning annual growth rates: 1) 

annual growth rates do not have a narrow range within each cluster and 2) there are gaps between the 

characteristics in the clusters. The clustering process did create subsets of data with similar characteristics, but 

the ranges of AADT annual growth rate are still broad. For instance, cluster 6 has an AADT annual growth rate 

range of 0.0150 to 0.0701. In this case, it would not be reasonable to assign an average annual growth rate from 

this cluster because the growth rates within the cluster vary substantially. Also, there are gaps in the 

characteristics. For instance, data points in counties with populations greater than 33,800 and less than 53,800 

or with AADTs of greater than 5311 and less than 6235 would not fit into any cluster. 

 

Ideally, this clustering process would have provided groups of data with similar characteristics and narrow 

ranges of annual growth rates. Then, locations on Idaho highways, not located at ATR stations, would fit into 

one cluster based on their corresponding characteristics and could easily be assigned an annual growth rate 

based on the average rate of that cluster.  Although this process did create clusters with characteristics in 

common, the method did not necessarily cluster the ATR stations in a way that most effectively reduced the 

range of growth rates in each cluster. Also, the gaps and overlaps in the characteristics of the clusters cause 

problems when placing data points into one, and only one, cluster. These results show that another method that 
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also classified the ATR stations based on characteristics, but did so in a manner that always reduced the 

variability of the annual AADT growth rates in each subgroup and did not allow gaps and overlaps would be 

better suited for assigning annual AADT growth rates in the state of Idaho. 

 

It was found, through investigation of existing methods, that a better method for classifying the ATR stations 

for forecasting Idaho AADTs is needed. This method needs to classify AADTs based on highway 

characteristics, reduce the variability in the annual AADT growth rate for each class, and not allow overlaps or 

gaps between classes. This seems like a logical way to classify and forecast the Idaho AADT data. Furthermore, 

such a classification method could also allow for implementation of some of the existing methods reviewed in 

this research if sufficient data were available. One classification method was found that could meet the needs of 

this research and it was the classification and regression tree method. The classification and regression tree 

(CART) method is readily implemented and the results are easy to explain. Also, this method allows for the 

addition of many variables to create subsets of data that have similar characteristics while reducing the 

variability in the dependent variable, annual AADT growth rate.  
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Chapter 4 ––Description and Justification of Methodology 
Classification and regression trees are currently used in a variety of transportation applications, but have not 

been used to forecast AADTs. CART algorithms have been applied in the following areas: 

 

• emissions estimates by classifying vehicles by type, year, engine type, among others [27]; 

• signal operations and timing to assist in implicating time-of-day timing plans as traffic conditions 

change [28]; 

• assigning quality ratings and methodology for rehabilitation procedures for distressed pavement [29]; 

and; 

• activity generation in planning software from survey data to create subsets of people with similar travel 

patterns for use in assigning trips [30].  

 

The CART algorithm creates regression trees using binary partitioning in which a data set is split by values in 

an independent variable to minimize the variation in the dependent variable in each of the two resulting sub 

groups, thus minimizing the deviance of the dependent variable in each sub group. The criterion used to 

determine the independent variable by which the split will be made is that which will result in the largest 

reduction in deviance of the dependent variable, which in this research was the AADT annual growth rate [26]. 

Research completed by Wolf, Guensler, Washington, and Bachman describes this process [27]. The method is 

generally described as answering two questions: First, which independent variable should be selected to create 

the greatest reduction in the variation of the dependent variable? And second, which value of the selected 

variable should be the breaking point to separate the two groups? Equation 4.1 is the objective function used for 

determining how to answer these two questions and it quantifies the total reduction in the deviance of the 

dependent variable created by a split into two new sub groups, which are referred to below as group b and group 

c [27]. 

 

cba DDD −−=∆  (4.1) 

where: 

∆ 
Da 
Db 
Dc 

=
=
=
=

deviance reduction after split; 
deviance before the split;  
deviance of subgroup b after the split; and 
deviance of subgroup c after the split. 

 

The deviances, also the sum of square errors, are calculated using Equation 4.2 [27]. 
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D 
Yl 
µ  
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total deviance of Y ; 
lth observation in column vector Y; 
arithmetic mean of Y; and 
sample size over which D is calculated. 

This process is continued until the groups cannot be broken down any further either because the deviance could 

not be reduced or subsequent groups would be smaller than the minimum group size specified by the user [27]. 

The initial node of the tree, before any spit, is called the root. Points where splits occur are called nodes and any 

node that is not split further is called the termination node (TN). To automate this process, the CART algorithm 

is available in several statistics software packages including SAS, in the Enterprise Miner Addition, and in S-

Plus, which was chosen for this project. The software allows the user to specify the minimum number of 

observations in a node and the minimum deviance within a node. Once either of these criterions is met a 

termination node is created.  

 

For this research, the dependent variable was the annual AADT growth rate calculated using Equation 1.1 with 

the 1980 AADT as the past value and the 1990 AADT as the current value. Although several independent 

variables made up the dataset, only three independent variables were used in the regression tree analysis to 

explain the growth trend -- county population annual growth rate, functional class of the segment, and current 

AADT of the site [17, 20, 21]. These are independent variables with correlations of 0.2, which is important 

because the method assumes that the independent variables are not highly correlated with each other.  

4.1 Sensitivity Analysis of CART Method 
The CART method has not previously been used to forecast AADT. Therefore, it was important to verify the 

suitability of this application through a sensitivity analysis. Also, it was important to establish that the size of 

the calibration sample was adequate for the purpose of this research. The process for the sensitivity analysis was 

as follows: 

 

• The ATR data set was split randomly into calibration and validation subsets of 42 stations and 10 

stations, respectively. 

• A regression tree was created using the calibration data set and average annual AADT growth rates for 

each terminal node were calculated. 

• Annual AADT growth rates were assigned to the ATRs in the validation data set based on their 

characteristics, using the average annual AADT growth rates in the corresponding CART terminal 

nodes. 
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• The AADTs in the validation data set were forecasted from 1990 to 2000 with the assigned annual 

AADT growth rate using Equation 1.2.  

• Forecast errors were then calculated by comparing the estimated 2000 AADT to the actual 2000 

AADT given in the ATR database. 

 

This process was repeated eight times so that a confidence interval of the mean error could be established to 

demonstrate the ability of the CART method to provide acceptable results. Ideally, this confidence interval 

would consistently be narrow to show that subsequent trials of this method would be expected to provide 

consistent accurate results.  Two performance measures were used to analyze the errors: the absolute percent 

error and the absolute magnitude difference. The absolute percent error is calculated using Equation 4.3. This 

statistic depicted the percent error of the forecasted value and was used to reflect the magnitude of errors 

relative to the true values.  

 

( )
%100×

−
=

act

actCART

X
XXabs

APE  (4.3) 

where 

APE 
Xact 

XCART 
 

= 
= 
= 
 

absolute percent error; 
actual value of AADT; and  
forecasted value of AADT 
 

The mean absolute percent error (MAPE) is calculated by taking the average of the absolute percent error 

values. Trials were completed until the process depicted that additional trials of the CART method would likely 

provide similar results, proven when the results show a narrow confidence interval around the mean error. Eight 

trials were required to validate the CART method and the mean absolute percent error of all the trials had a 95 

percent confidence interval less than 10 percent of the MAPE, which was 8.4 percent.  

 

The regression trees for each trial were similar, which demonstrates that different trials of the CART method 

provide comparable results. However, differences did exist because of the small calibration sample sizes and the 

influence that one data point could have on the partitioning. Two of the eight trees are shown in Figure 4.1 to 

show that similarities exist. Presumably, there would have been fewer differences in trial trees had there been a 

larger calibration data set because the effect that one station could have on the partitioning would have been 

reduced. There were typically six or seven terminal nodes. Because each validation subset only included 10 

ATR stations, all terminal nodes were not tested in each trial. However, this was necessary because there were 

few samples in the ATR data set and most were required to create, or calibrate, the regression tree. It was 

assumed that the limitations of a small validation sample size were effectively addressed by analyzing the 

results of eight iterations. The following trends were observed when comparing the trees resulting from the 

eight iterations. 
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• Several similar partitions occurred in most of the trial regression trees including partitions based on: 

county population growth, 1990 AADT, and functional class of the highway.   

• Population growth was the most frequent first partition in the regression trees, dividing the high growth 

counties from the low to moderate growth counties.  

• Generally, rural highways in the high growth counties have higher traffic growth than the low to 

moderate growth counties; therefore, this partition was expected. Notice how both trees were initially 

split into data sets with county population growth rates greater than or less than 0.7 percent. Also 

notice that the right hand side of the trees (the higher county population growth data set) have AADT 

annual rates greater than or equal to the left hand side (the lower county population growth data set).  

• Low volume highways generally exhibit lower traffic annual growth rates than higher volume 

highways; thus, the next partitions were also anticipated. Notice how the second partitions split off the 

low volume highways. Also notice that the lower volume highways have AADT annual growth rates 

that are consistently lower than or equal to the higher volume highways.  

• Because the partitions follow trends that were expected, this means that subsequent trials of the CART 

method would provide similar regression trees, even more similar if the calibration data set were 

larger.  

| 
 Pop.GF<0.007 

    AADT90<2089 

 PopTh90<4.8  Pop.GF<0.0005 

 AADT90<2582

  Funct:1,7

0.02 0.01 0.03 0.02 

0.03 

0.03 0.04

|
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AADT90<1538

AADT90<1216

Pop.GF<0.009

0.01 0.02

0.03 0.03 

0.03 0.04

 
 

FIGURE 4.1 Typical Verification Trial Regression Trees 
 

In summary, the sensitivity analysis demonstrated that the CART method provided similar regression trees with 

acceptable mean absolute percent errors. Because the trials provided consistently accurate results, this process 

established that the CART method would produce reliable regression trees for determining AADT annual 

growth rates using the Idaho data.  
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4.2 Final Calibrated Regression Tree 
Data from the years 1980 and 1990 for all fifty-two ATR stations were used in the final calibration data set and 

the resulting regression tree, created using the CART method, is shown in Figure 4.2. The original regression 

tree consisted of eight terminal nodes with AADT growth rates ranging from less than one percent to over four 

percent. It was noted that terminal nodes 2 and 3 and 6 and 7 were very similar, respectively, and the final split 

did not add much to the accuracy of the AADT growth rate prediction. Therefore, the data points in terminal 

nodes 2 and 3 and 6 and 7, were combined into terminal nodes 2/3 and 6/7, respectively (see Appendix D). As a 

preliminary test, the AADT for the ATR stations used to calibrate the regression tree were forecasted from the 

year 1990 to the year 2000. As expected, the overall mean absolute percent error of 9.6 is within the 95 percent 

confidence interval that was created during the sensitivity analysis of the CART method. Based on Figure 4.2, a 

notable trend was found. One would expect that the terminal nodes with the highest deviances would have the 

highest MAPE and this is verified where terminal nodes one and eight have the highest deviances and MAPE. 

However, both MAPE and magnitude difference are required to adequately evaluate performance, where lower 

volume highways may have higher MAPEs, but lower magnitude differences and higher volume highways may 

have lower MAPEs and higher magnitude differences.  

 

Similar to the trial regression trees developed as part of the sensitivity analysis, the county population annual 

growth rate was the most influential variable in the creation of the final regression tree, occurring in the tree in 

four different instances. Extremely high growth counties and extremely low growth counties were separated, 

terminal node eight and four, respectively. Terminal node 6/7 addresses the situation where AADT growth is 

sizable while population growth is small, which is why the regression tree works well for the Idaho data. 

Terminal node 6/7 is comprised of data points in counties that have many through routes, which could explain 

why the AADT growth tends to be inconsistently large in comparison to the population growth in these 

counties. The MAPE shown in figure 4.2 is calculated using validation data. This statistic, along with the 

magnitude percent difference for the same data, will show how well the growth rates forecast points that we not 

used to create the regression tree. This will be further addressed in the next section.   
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Root
(52  ATR Stations)

Is the annual population growth 
rate greater than 0.0066?

No (30) Yes (22)

Is the AADT 
greater than 

1536?
No (11)Yes (19)

Is the annual 
population growth rate 
greater than -0.0051?

Terminal Node #4
Deviance = 0.00023
AADT GR = 0.0174
MAPE = 13 +/- 13

Ave Mag Error = 450 +/- 325

No (6)

Yes (13)
Terminal Node #6/7
Deviance = 0.00121
AADT GR = 0.0293

MAPE = 14 +/- 5
Ave Mag Error = 865 +/- 420

Terminal Node #2/3
Deviance = 0.00094
AADT GR = 0.0126

MAPE = 15 +/- 9
Ave Mag Error = 292 +/- 359

Is the AADT greater 
than 1216?

No (5)

Terminal Node #1
Deviance = 0.00075
AADT GR = 0.0293

MAPE = 17 +/- 8
Ave Mag Error = 142 +/- 84

Is the annual population 
growth rate greater than 

0.0094?

Yes (17)

No (7)

Terminal Node #5
Deviance = 0.00035
AADT GR = 0.0330

MAPE = 9 +/- 5
Ave Mag Error = 505 +/- 372

Terminal Node #8
Deviance = 0.00150
AADT GR = 0.0455

MAPE = 16 +/- 9
Ave Mag Error = 1208 +/- 705

Yes (10)

FIGURE 4.2 Final Calibrated Regression Tree 
 

This CART method was also completed for the commercial AADT or CAADT. The data set for the CAADT 

was considerably smaller, however, with only 28 ATR stations having adequate data for inclusion in the CART 

analysis. It is not expected that the CAADT CART results represent the anticipated accuracies had the data set 

been much larger. Furthermore, the CAADT regression tree is provided here to show that this process would 

also work for predicting commercial traffic.  
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 Root 
(28 Rural ATR Stations)

Is the CAADT 
greater than 202?

No (10) Yes (18)

Is the CAADT 
greater than 90.5?No (4)

Yes (6)
Terminal Node #1
Deviance = 0.0159

CAADT GR = 0.0275

Terminal Node #2
Deviance = 0.0133

CAADT GR = 0.0833

Is the roadway classified a 
functional class 1?  (rural 

interstate)
Yes (7)

Terminal Node #3
Deviance = 0.0011

CAADT GR = 0.0386

Is the population density 
greater than 7.55?

No (11)

Yes (7)Terminal Node #4
Deviance = 0.0161

CAADT GR = 0.0071

No (4) Terminal Node #5
Deviance = 0.0034

CAADT GR = 0.0300

 

 

 

 

 

 

 

 

 

 

 

FIGURE 4.3 Calibrated CAADT Regression Tree 
 

4.3 Validating the Regression Tree 
Rural portable count locations were used to complete a validation test of the final regression tree. A stratified 

random sample, based on the terminal node, TN, characteristics, was used to ensure that all TN in the final tree 

were adequately tested. Portable counts were selected in order to make the number of samples in each TN equal 

to at least 10. This was not possible for every TN.  The smallest sample size was 7 portable counts in terminal 

node 5. A validation sample size of 64 was created. The year 2000 AADT values were forecasted using the 

average annual AADT growth rates obtained from the final regression tree for each of the portable count 

locations in the validation sample. The details on the accuracy of each terminal node in the validation data set 

are shown in Table 4.1. The MAPE for the entire validation sample is 14.2 percent, which is consistent with the 

range of errors recommended by professionals in Idaho (i.e., 10 to 20 percent) and is comparable to or better 

than results reported in previous research. Saha and Fricker’s elasticity-based model for Indiana produced a 

mean absolute percent error of 15.8 percent [10]. Memmott’s method of fitting the best growth trend to historic 

data to produce 20-year forecasts had mean absolute errors of 28.7 percent for Dallas, Texas [11]. Of course, 

these studies did not consider conditions that were identical to those found in Idaho, but they do indicate that the 

proposed method is adequate. The MAPEs and average magnitude differences in Figure 4.2, as well as the 95 

percent confidence interval, are based on the errors resulting from the validation data set. The existing growth 

factors from the ITD database were also selected for each portable count and used to forecast the 1990 data to 

the year 2000. This comparison shows that the CART method and the existing ITD method are comparable. 
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Overall, the ITD method had higher accuracy, but considering the following factors, the CART method is 

promising: 

 

1. the ease of the CART method, 

2. the small amount of data in the calibration data sets, 

3. the potential to update ITD growth factors on a more frequent cycle. 

 
TABLE 4.1 Validation Dataset Errors and Details 

TN #

CART 
Growth 

Rate

ITD 
Growth 

Rate
Ave 

APE(CART)
Ave 

APE(ITD)

Ave 
Magnitude 
Difference 

(CART)

Ave 
Magnitude 
Difference 

(ITD)
1 0.0293 0.02 16.8 14.0 142 138

2/3 0.0126 0.02 14.8 15.9 292 298
4 0.0174 0.03 12.7 11.2 450 498
5 0.033 0.03 9.3 10.5 505 518

6/7 0.0293 0.03 13.9 12.5 865 833
8 0.0455 0.03 16.4 11.6 1208 1163

OVERALL AVERAGE = 14.2 13.4 577 572
 

 

Figure 4.4 is a scatter plot comparing the actual AADT against the forecasted AADT values for the validation 

sample. A line representing a perfect correspondence between the two is shown on the plot as well as two lines 

that represent a +/-10 percent deviance from that line. The +/- deviance from perfect correspondence was 

chosen because it represents the lower bound on the Idaho professional guidelines for AADT prediction 

accuracy. This figure shows that most data points fall close to the line of perfect correspondence, if not within 

the boundary. Figure 4.4 illustrates the occurrence of high percent errors in the low AADT region; therefore, the 

magnitude difference may be more useful to evaluate the accuracy of AADT forecasting in low volume 

locations. There were three obvious outliers identified using Figure 4.4. Two of these located are located in both 

terminal node 2/3 and Lincoln County. Both had much higher growth rates from 1990 – 2000 than predicted by 

the CART method. The AADT trends at these locations did not resemble the traffic growth from 1980 – 1990; 

therefore, such dramatic changes are difficult to forecast. Figure 4.5 shows the traffic trend of the portable count 

located on US-26 in Lincoln County. Notice the difference in growth between 1980 and 1990 versus 1990 and 

2000. Figure 4.6 shows the AADT growth trend of the portable count on US-93 in Blaine County. This location 

has fairly consistent growth throughout the decades and is easier to forecast. The results have a R-squared value 

of 0.96, which indicates that the model accounts for 96 percent of the variation between the dependent and 

independent variables. 
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FIGURE 4.4 Scatter Plot of Actual AADT vs. Forecasted AADT 
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FIGURE 4.5 Portable Count on U.S. 26 in Lincoln County 
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FIGURE 4.6 Portable Count on U.S. 93 in Blaine County 
 

Several methods were examined in the early stages of this project such as linear regression, time-series, an 

elasticity-based method, and clustering. These methods did not provide promising results, but did indicate that a 

better method for classifying ATR data was needed. The classification and regression tree (CART) method is 

easily implemented and the results are easy to explain – professionals in Idaho that use the AADT forecasts set 

up both criteria. Also, this method allows for the addition of many variables to create subsets of data that have 

similar characteristics while reducing the variability in the dependent variable. 
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Chapter 5 ––Impacts of Errors 
The importance of this project is to assess the impacts of AADT forecasting errors in transportation design and 

planning applications. Two applications were chosen for this assessment 1) the design of an overlay thickness 

and 2) a level of service analysis. Both applications were analyzed using both the actual and forecasted AADTs 

and differences were evaluated and explained.  

5.1 Overlay Thickness 
The equivalent single axle load, ESAL, is needed to calculate the overlay thickness required on rural roadways. 

ESALs are calculated using the current AADT, the growth factor, truck factors which are the average number of 

18-kip single-axle load applications per truck for different roadways, and the percentage of the total traffic that 

are commercial vehicles [31].  

 

( )( )( )( )( )( )( )( )DLYGTTAADTESAL f 3651990=  (5.1) 

where: 

T 
Tf 
G 
Y 
D 
L

  

= 
= 
= 
= 
= 

percent trucks in decimal format; 
truck factor that varies by facility type; 
growth factor; 
design period in years; 
directional distribution factor; and 
lane distribution factor.     

The growth factor is found using the same equation that was used to find the annual AADT growth rates used in 

forecasting AADT [2].  

( YgG += 1 )  (5.2) 

where: 

g  = the annual AADT growth rate; and  
Y  = the design period in years. 

 

Several assumptions were made when analyzing the pavement. The values were taken from acceptable ranges 

given in Pavement Analysis and Design by Huang and are shown in Table 5.1 [31].  
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TABLE 5.1 Assumptions for Overlay Thickness Design 

Variable Assumed Value 
Truck factor (Tf) for: 
     Rural interstate 
     Rural principle arterial 
     Rural minor arterial 
     Rural major collector 

  
0.52 
0.38 
0.21 
0.30 

 
Directional distribution factor (D)  

  
0.50 

 
Design period (Y) 

  
10 years 

 
Modulus of Elasticity (ksi): 
     Old asphalt layer 
     Base layer 
     Subbase layer 
     Subgrade layer 
     Overlay 

  
 
235 
 25 
  4 
  4 
350 

 
Poisson Ratio: 
     Old asphalt layer 
     Base layer 
     Subbase layer 
     Subgrade layer 
     Overlay 

   
 
0.35 
0.40 
0.40 
0.45 
0.35 

 
Existing Thickness (in): 
     Old asphalt layer 
     Base layer 
     Subbase layer 
 
Temperature at testing (degrees F): 
      Pavement 
      Overlay 
 
Minimum thickness for overlay (in) 

  
 
 3.5 
 8.0 
16.0 
 
 
91  
77 
 
0.5  

 

In Pavement Analysis and Design, the minimum recommended design period for asphalt pavements is 15 years; 

however, the Idaho data only allowed for a 10-year design period [31]. Therefore, the ESALs would have been 

higher had a 15-year horizon been used. Additional assumptions include: 1) The base, subbase, and subgrade 

are all made up of linear granular material; 2) Failure could be caused by either fatigue or rutting in either the 

overlay or the existing pavement; and 3) The seasonal variation factors that modify the normal moduli values, 

based on seasonal temperatures and durations, are determined by locating the site in one of six Idaho climatic 

zones. 

 

The WINFLEX 2000 software was used to determine two overlay thickness that were required using 1) the 

actual annual AADT growth rate and 2) the annual AADT growth rate found using the forecasting method [32]. 

These values and the differences were explained and the discrepancies noted later in this discussion.   
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5.2 Level of Service 
The HCS2000 software was used to find the level of service for each highway using the forecasted AADT and 

the actual AADT values [33]. Similar to the overlay thickness application, a set of assumptions, based on 

acceptable ranges recommended in Traffic Engineering, was required to perform the analysis and they are 

shown in Table 5.2 [24].  

 
TABLE 5.2 Assumptions for HCS2000 Capacity Analysis  

Rural two-lane or  
multi-lane highways 

Rural Interstates 

K = 0.2 K = 0.15 
D = .70 D = .65 
Level Terrain Level Terrain 
PHF = 0.88 PHF = 0.85 
FFS = 60 mph FFS = 70 mph 
Percent No Passing = 50 (only for 2-lane)  
5 access points per mile  

 

For two-lane rural highways, the HCS2000 software determines the level of service based on the percent time 

spent following and the average travel speed. The LOS for multilane highways is determined using the average 

speed, density, volume to capacity ratio, and the service flow rate. The analysis of rural interstates uses density 

to determine the LOS. This software conforms to the guidelines set up in the most recent version of the 

Highway Capacity Manual, which describes these procedures in more detail [34]. 

5.3 Effects of Errors 
Summaries of both transportation applications, overlay design and LOS analysis, are displayed in Tables 5.3 

and 5.4. Table 5.3 shows that nearly half of the portable count locations have low ESALs only requiring the 

minimum overlay thickness of 0.5 inches. This means that the discrepancies in the overlay design were only 

apparent when the ESALs were high enough to require more than the minimum thickness.  One of the locations 

in Lincoln County had an APE of 49.8 percent, but had a low AADT and ESAL. Therefore, because only the 

minimum was required, there was no difference in the required overlay thickness. Designers should not concern 

themselves with the accuracy of the AADT forecast in overlay design unless the calculated ESALs are 

sufficiently high to require a thickness greater than the minimum. 

  

Of those locations that required more than the minimum thickness, 65 percent had less than a 0.3-inch 

difference between the actual overlay thickness and thickness calculated using the CART annual AADT growth 

rates. Forty-five percent of these locations had differences of less than 0.2 inches. The locations with great 

discrepancies in the overlay thickness design also had high forecasted AADT absolute percent errors. For 

instance, the portable count location in Lincoln County in terminal node three has an APE of 59.1 percent and 
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an overlay thickness difference of 1.9 inches. Because the true annual growth rate was much greater than 

predicted, the actual thickness needed was greater than the thickness calculated using the CART annual growth 

rate. The other portable count locations with overlay thickness differences of greater than 0.3 inches also had 

APE of greater than 20 percent.  
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TABLE 5.3 Overlay Design 
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TN# County Route MP ESAL (act) ESAL (CART)
Abs Difference between CART 
and Actual Overlay Thickness 

Requirements (in) 

1 Oneida SH-36 100.2 25,295 29,671 0
1 Madison SH-22 68 15,768 12,716 0
1 Kootenai SH-97 82.196 32,850 31,093 0
1 Custer SH-75 191 45,530 30,694 0
1 Blaine US-93 199.37 128,159 128,301 0
1 Oneida SH-38 1.484 32,850 39,036 0
1 Jefferson SH-33 59.062 57,488 50,517 0
1 Boundary SH-1 0.1 76,285 91,643 0
1 Custer US-93 160.2 61,028 76,277 0

2/3 Clearwater SH-7 41 14,235 12,100 0
2/3 Latah SH-8 36.81 31,025 31,027 0
2/3 Owyhee SH-51 63.395 19,316 22,500 0
2/3 Camas SH-46 42.952 23,393 24,821 0
2/3 Owyhee SH-51 63.595 32,122 25,435 0
2/3 Power SH-37 68.514 45,805 37,232 0
2/3 Lincoln US-26 165.335 55,188 29,885 0
2/3 Caribou SH-34 40 87,600 97,299 0
2/3 Bannock US-91 22 94,663 83,356 0
2/3 Idaho US-12 73.965 162,279 155,629 0
2/3 Clearwater SH-11 0.2 95,564 99,285 0
2/3 Minidoka SH-25 37.775 37,697 37,232 0
2/3 Gooding US-30 173 49,056 45,870 0
2/3 Gooding US-26 139 86,231 87,309 0
2/3 Adams US-95 146 176,843 197,759 0.2
2/3 Lincoln US-93 73.095 450,775 173,011 1.9
4 Lewis US-12 52.389 319,010 312,355 0.1
4 Clark I-15 166.352 526,752 465,989 0.2
4 Idaho US-12 73.7 332,880 357,317 0.1
4 Idaho US-95 240.04 270,465 299,646 0.2
4 Caribou SH-34 59.252 82,125 123,249 0
4 Caribou US-30 386.55 901,550 824,238 0.2
4 Idaho SH-13 0.1 54,038 58,064 0
4 Shoshone I-90 47.328 1,892,686 1,837,499 0
5 Oneida SH-38 0.48 82,125 92,584 0
5 Jefferson I-15 149.143 730,711 624,858 0.3
5 Valley SH-55 121.75 221,920 214,930 0
5 Jefferson I-15 134.89 812,837 818,139 0
5 Bonneville US-26 343.5 374,490 358,857 0
5 Canyon SH-55 8.718 343,283 370,467 0.2
5 Oneida I-15 16.241 1,248,618 1,115,647 0.2
5 Canyon SH-19 16.6 0 0 0

6/7 Benewah US-95 389.84 298,205 260,942 0.1
6/7 Elmore I-84 BUS 0.224 193,906 231,910 0.3
6/7 Owyhee SH-55 0.1 205,970 242,346 0.1
6/7 Lincoln SH-75 74.16 168,630 168,225 0
6/7 Adams SH-55 155.852 228,855 280,843 0.4
6/7 Gooding SH-46 10.702 161,184 120,984 0
6/7 Nez Perce US-12 14.801 679,630 620,562 0.3
6/7 Franklin US-91 7.074 141,803 161,902 0
6/7 Fremont US-20 347.751 516,921 550,172 0
6/7 Bannock I-15 40.108 1,419,704 1,150,122 0.5
6/7 Gooding I-84 140.905 2,239,166 1,927,965 0.2
6/7 Power I-86 52.875 1,958,736 1,907,371 0.1
6/7 Jerome I-84 161.818 3,307,265 2,998,553 0.3
8 Custer US-93 244.425 173,375 185,816 0
8 Boundary US-95 522.829 319,010 338,909 0.1
8 Blaine SH-75 102.224 306,600 413,441 0.4
8 Bonner US-2 6.922 299,592 344,227 0.1
8 Boundary US-2 64.45 381,425 465,197 0.3
8 Kootenai SH-53 13.659 452,235 614,186 0.5
8 Blaine SH-75 119.789 222,285 238,036 0.7
8 Kootenai US-95 439.025 1,165,080 1,273,985 0.1
8 Kootenai I-90 21.77 1,811,641 2,173,690 0.3
8 Bonner US-95 475.4 1,373,130 1,406,962 0



 

 

Usually, designers would only be concerned with the results of LOS analysis, if the outcomes were 

unacceptable. For instance, a minimum LOS classification of C may be chosen for all rural highways. In this 

case, the designer would only be concerned if the analysis provided classifications of D or worse, when it 

actually should have been C or better using the correct AADT growth rate. For this reason, the AADT forecast 

errors on low volume highways do not hold much importance because the correct design decision would be 

determined regardless. Because terminal nodes one and two/three had low AADT values, all have future LOS 

classifications of A, B, or C. Therefore, these highways have acceptable service levels and would not need 

improvement despite forecast errors. In terminal node two/three, the location in Lincoln County was an 

exception. This portable count location had a high MAPE and magnitude difference errors meaning that the 

annual growth rate used to forecast was far different from the actual annual growth rate. As a result, the LOS 

classifications did not agree to the extent that an incorrect design decision would be made.  

 

Only ten of the 64 portable count locations have differences between LOS classification using the actual and 

CART calculated forecasted design hour volumes, meaning that 84 percent of the locations in the validation 

data set had no discrepancy. Because four of these nine locations had LOS classifications on the C – D boarder, 

only eight percent of the validation data would result in an incorrect conclusion. For instance, in terminal node 

six/seven, the portable count location in Adams County actually has a year 2000 LOS of C, but an LOS of D 

was found using the annual growth rate from the CART forecasting method. In this case, funds may be used 

inefficiently to prematurely improve the quality of service on the highway.  

      

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The Effects of Errors in Annual Average Daily Traffic Forecasting: 41 



 

 

42 

TABLE 5.4 LOS Analysis 

The Effects of Errors in Annual Average Daily Traffic Forecasting: 

TN# County Route MP Lanes %trucks
DHV 2000 

Actual
DHV 2000 

CART
Actual 
LOS

CART 
LOS

1 Boundary SH-1 0.1 2 11 140 168 B B
1 Madison SH-22 68.0 2 6 67 54 A A
1 Jefferson SH-33 59.1 2 13 168 148 B B
1 Oneida SH-36 100.2 2 14 46 54 A A
1 Oneida SH-38 1.5 2 7 115 136 A B
1 Custer SH-75 191.0 2 12 139 93 B A
1 Kootenai SH-97 82.2 2 11 77 73 A A
1 Blaine US-93 199.4 2 22 118 118 A A
1 Custer US-93 160.2 2 8 154 192 B B

2/3 Clearwater SH-11 0.2 2 15 168 175 B B
2/3 Minidoka SH-25 37.8 2 5 196 194 B B
2/3 Caribou SH-34 40.0 2 16 140 156 B B
2/3 Power SH-37 68.5 2 8 139 113 B B
2/3 Camas SH-46 43.0 2 9 66 70 A A
2/3 Owyhee SH-51 63.4 2 14 50 59 A A
2/3 Owyhee SH-51 63.6 2 11 102 81 A A
2/3 Clearwater SH-7 41.0 2 13 28 24 A A
2/3 Latah SH-8 36.8 2 17 48 48 A A
2/3 Idaho US-12 74.0 2 18 182 175 B B
2/3 Gooding US-26 139.0 2 15 210 213 B B
2/3 Lincoln US-26 165.3 2 8 252 136 B B
2/3 Gooding US-30 173.0 2 8 224 209 B B
2/3 Bannock US-91 22.0 2 19 182 160 B B
2/3 Lincoln US-93 73.1 2 15 616 236 D C
2/3 Adams US-95 146.0 2 17 210 235 B C
4 Clark I-15 166.4 4 20 283 249 A A
4 Shoshone I-90 47.3 4 17 2030 1961 B B
4 Idaho SH-13 0.1 2 3 658 707 C C
4 Caribou SH-34 59.3 2 6 378 567 C D
4 Lewis US-12 52.4 2 18 350 343 C C
4 Idaho US-12 73.7 2 16 420 451 C C
4 Caribou US-30 386.6 2 27 686 627 D D
4 Idaho US-95 240.0 2 11 476 527 C D
5 Oneida I-15 16.2 4 20 722 635 A A
5 Jefferson I-15 134.9 4 20 449 452 A A
5 Jefferson I-15 149.1 4 20 400 339 A A
5 Canyon SH-19 16.6 4 6 1050 1242 B C
5 Oneida SH-38 0.5 2 6 378 426 C C
5 Valley SH-55 121.8 2 8 532 515 C C
5 Canyon SH-55 8.7 2 9 770 831 D D
5 Bonneville US-26 343.5 2 10 756 724 D D

6/7 Bannock I-15 40.1 4 20 819 642 A A
6/7 Gooding I-84 140.9 4 25 1073 915 A A
6/7 Jerome I-84 161.8 4 25 1658 1433 B B
6/7 Elmore I-84 BUS 0.2 2 14 350 419 C C
6/7 Power I-86 52.9 4 23 1024 997 A A
6/7 Gooding SH-46 10.7 4 6 742 546 A A
6/7 Owyhee SH-55 0.1 2 11 378 445 C C
6/7 Adams SH-55 155.9 2 11 434 533 C D
6/7 Lincoln SH-75 74.2 2 12 532 531 D D
6/7 Nez Perce US-12 14.8 2 14 966 882 E D
6/7 Fremont US-20 347.8 4 13 854 912 A A
6/7 Franklin US-91 7.1 2 7 784 895 D D
6/7 Benewah US-95 389.8 2 16 378 331 C C
8 Kootenai I-90 21.8 4 15 1463 1798 A A
8 Kootenai SH-53 13.7 2 20 826 1122 F F
8 Blaine SH-75 102.2 2 20 560 755 C C
8 Blaine SH-75 119.8 2 4 1820 1949 F F
8 Boundary US-2 64.5 2 11 714 871 D D
8 Bonner US-2 6.9 2 8 756 869 E F
8 Custer US-93 244.4 2 10 336 360 C C
8 Boundary US-95 522.8 2 17 378 402 C C
8 Kootenai US-95 439.0 2 12 1960 2143 D D
8 Bonner US-95 475.4 2 9 3080 3156 F F



 

 

In this chapter, two design applications where AADT was a required input were examined by investigating the 

differences between the findings when using the actual AADT and the CART forecasted AADT. The first 

application was an overlay thickness design. The accuracy of the AADT forecast had no influence on overlay 

design unless the estimated ESALs were sufficiently large to require a thickness greater than the minimum. In 

most cases, large differences in the required overlay thickness did not result unless the APE of an AADT 

forecast was greater than 20 percent and the ESALs were large enough to require an overlay thickness greater 

than the minimum. These two conditions were only met in approximately 10 percent of the cases in the 

validation subset. Consequently, large errors in overlay design due to the inaccuracy of the AADT forecast 

should rarely occur in rural Idaho when using the CART method to assign annual growth rates. However, the 

frequency of large errors will increase as the number of years to the design year increase. 

 

The other design application investigated in this project was an LOS analysis. Because designers would only be 

concerned with the LOS analysis results if the locations were predicted to provide unacceptable levels of 

service, the accuracy of the AADT forecast was less important on low volume roadways where traffic induced 

congestion was not an issue. In addition, discrepancies were only a problem if the forecast would result in an 

incorrect design decision. For instance, if the minimum LOS classification was set at C and the actual and the 

forecasted AADTs provided LOS classifications of A and B, respectively, the design decision that no 

improvements were necessary would be the correct result in each case. However, if the actual and forecasted 

AADTs provided LOS classifications of D and C, respectively, then the decision that no improvements were 

necessary would be incorrect. Therefore, design decisions based on LOS analysis would only provide an 

incorrect result when the LOS outcomes straddled the C – D boarder. Of the 64 portable count locations used in 

the validation data set, only ten had actual and forecasted AADT values that resulted in different LOS 

classifications. And of those, only in five cases would an incorrect design decision result, using the minimum 

acceptable LOS of C. As a result, an LOS analysis performed using AADT forecasts, computed using the 

CART annual growth rates, would seldom result in an incorrect design decision. 
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Chapter 6 ––Conclusions and Recommendations 
This paper had two primary purposes. First, an acceptable method for forecasting AADT volumes was needed 

to assign more accurate annual growth rates to forecast AADTs on highways in rural Idaho. Second, a greater 

understanding of the impacts that AADT forecasting errors have in design applications was needed. The 

usefulness of several existing forecasting methods for this project was examined. It was concluded that a 

method was required that could classify the ATR stations while reducing the variability of the annual growth 

rates. The CART algorithm had been used in other transportation applications, but not for forecasting AADT 

specifically. This method worked well to classify the ATR stations into groups with similar characteristics while 

reducing the variability of the AADT annual growth rates. The method was validated using a stratified sample 

of portable count locations. This validation resulted in a mean absolute percent error of the entire validation data 

set that was 14.2 percent and nearly half of the portable count locations had percent errors of less than 10 

percent. High percent errors at low traffic volume locations may have deceptive connotations. Instead, in these 

low-volume instances, the magnitude difference is a better measure of accuracy.  

 

It must be noted that a ten-year forecast was used in this research and a 20-year forecast would usually be 

required for practical purposes. The restraints of the available data for this project did not allow for a 20-year 

forecast, however. Higher errors should be expected when 20-year forecasts are performed; although the 

magnitude of these errors is impossible to discern without more years of data. Research by Saha and Fricker 

forecasted up to twelve years with an MAPE of 15.8 percent [20]. Research by Memmott forecasted AADTs up 

to 20 years and had an MAPE of 28.7 percent [15]. The research shown in this report had errors similar to those 

accepted by Saha and Fricker and lower than those found acceptable by Memmott. Therefore, the CART 

method produces errors that should also be considered acceptable. Professionals in Idaho recommended that 

AADT 20-year forecasting errors be within 20 percent. Because nearly half of the data points in the validation 

set had errors less than 10 percent for the 10-year forecast, it is probable that most locations in practice would 

have 20-year forecasting errors less than 20 percent.  

 

In the previous chapter, it was found that the design errors using AADT values forecasted using the CART 

method were acceptable. In the overlay thickness section, it was found that on low volume roads, which include 

many of the rural Idaho highways, the minimum overlay thickness was always required. In these cases, the 

forecasted value of the AADT had no effect on the design. For those highways with AADT volumes high 

enough to require more than the minimum overlay thickness, the difference between the thickness required from 

the forecasted AADT value and the actual thickness required was minimal in most cases. In the LOS analysis 

section, it was noted that a design error would only occur if the analysis provided a value close to the critical 

boundary. The C-D boundary was used as the critical boundary in this research. Of those close to this boundary, 

most locations in the validation data set matched LOS designation between the forecasted and actual AADT 
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values. This means that most locations chosen in practice would also provide the correct design decision when 

the CART method is used for AADT forecasting.  

 

The CART method created subsets of data that had similar characteristics and a low variability of annual AADT 

growth rates. If more data were available and the terminal nodes in the regression tree included a greater 

number of data points, the CART method could be used as a first step in the forecasting process. The following 

step would be compromised of other forecasting methods such as ARIMA time series or elasticity-based 

regression models, calibrated to each of the resulting CART subgroups. This was not performed in this project 

because the resulting terminal nodes contained no more than 16 ATR stations, which may be insufficient to 

create individual models by subgroup. A recommendation for future research is to investigate the use of the 

other forecasting techniques once the CART method classified the stations into similar groups. 

   

The CART method was found to provide AADT forecasts with acceptable results using the rural Idaho data. It 

has accuracies similar to that of the existing ITD method and is much simpler to implement and update. The two 

design applications, overlay design and LOS analysis, were analyzed and it was found that the AADT forecasts 

rarely resulted in large design errors. Therefore, it is recommended that the CART method be implemented for 

forecasting AADT values. 
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Appendix A – AADT Database 
ITD provided their ATR database for rural highways, which includes location, AADT, county, and functional 

class for all available years. Years 1980, 1990, and 2000 are shown in Table A.1. 

 

 

TABLE A.1 ATR AADT Database 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ATR Name Route Segment Milepost County Year Type Funct AADT
3 Twin Falls US-30 2040 220.95 Twin Falls 1980 R 7 6943
3 Twin Falls US-30 2040 220.95 Twin Falls 1990 R 7 7733
3 Twin Falls US-30 2040 220.95 Twin Falls 2000 R 6 9090
4 S Pocatello I-15 1330 61.87 Bannock 1980 R 1 8239
4 S Pocatello I-15 1330 61.87 Bannock 1990 R 1 10303
4 S Pocatello I-15 1330 61.87 Bannock 2000 R 1 15150
6 Lewiston US-95 1540 305.1 Nez Perce 1980 R 2 6947
6 Lewiston US-95 1540 305.1 Nez Perce 1990 R 2 8151
6 Lewiston US-95 1540 305.1 Nez Perce 2000 R 2 10342
7 Jerome I-84 1010 159.23 Gooding 1980 R 1 7477
7 Jerome I-84 1010 159.23 Gooding 1990 R 1 11022
7 Jerome I-84 1010 159.23 Gooding 2000 R 1 16821
8 Dudley I-90 1660 35.59 Kootenai 1980 R 1 6316
8 Dudley I-90 1660 35.59 Kootenai 1990 R 1 8134
8 Dudley I-90 1660 35.59 Kootenai 2000 R 1 11050
9 Caldwell SH-19 2050 15.42 Canyon 1980 R 7 4169
9 Caldwell SH-19 2050 15.42 Canyon 1990 R 7 5311
9 Caldwell SH-19 2050 15.42 Canyon 2000 R 6 7672
11 Paris US-89 2380 13.946 Bear Lake 1980 R 6 1464
11 Paris US-89 2380 13.946 Bear Lake 1990 R 6 1426
11 Paris US-89 2380 13.946 Bear Lake 2000 R 2 1700
12 Ririe US-26 2240 352.82 Bonneville 1980 R 2 1840
12 Ririe US-26 2240 352.82 Bonneville 1990 R 2 2292
12 Ririe US-26 2240 352.82 Bonneville 2000 R 2 3287
13 Salmon US-93 2220 301.57 Lemhi 1980 R 2 1790
13 Salmon US-93 2220 301.57 Lemhi 1990 R 2 2156
13 Salmon US-93 2220 301.57 Lemhi 2000 R 2 2742
14 Shoshone SH-75 2230 79.67 Lincoln 1980 R 6 1841
14 Shoshone SH-75 2230 79.67 Lincoln 1990 R 6 2376
14 Shoshone SH-75 2230 79.67 Lincoln 2000 R 6 3450
15 Potlatch US-95 1540 363.89 Latah 1980 R 2 1456
15 Potlatch US-95 1540 363.89 Latah 1990 R 2 1981
15 Potlatch US-95 1540 363.89 Latah 2000 R 2 2547
17 Arco US-20 2240 252.38 Butte 1980 R 2 1540
17 Arco US-20 2240 252.38 Butte 1990 R 2 1870
17 Arco US-20 2240 252.38 Butte 2000 R 2 2028
18 Raft River I-86 1260 14.41 Cassia 1980 R 1 3387
18 Raft River I-86 1260 14.41 Cassia 1990 R 1 4501
18 Raft River I-86 1260 14.41 Cassia 2000 R 1 6193
19 Kamiah US-12 1910 63.663 Lewis 1980 R 2 1614
19 Kamiah US-12 1910 63.663 Lewis 1990 R 2 1824
19 Kamiah US-12 1910 63.663 Lewis 2000 R 2 2121
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ATR Name Route Segment Milepost County Year Type Funct AADT
21 Chilco US-95 1540 442.74 Kootenai 1980 R 2 4667
21 Chilco US-95 1540 442.74 Kootenai 1990 R 2 8045
21 Chilco US-95 1540 442.74 Kootenai 2000 R 2 12329
22 Malad I-15 1330 1.965 Oneida 1980 R 1 3439
22 Malad I-15 1330 1.965 Oneida 1990 R 1 5037
22 Malad I-15 1330 1.965 Oneida 2000 R 1 8223
23 Council US-95 1540 140.38 Adams 1980 R 2 1045
23 Council US-95 1540 140.38 Adams 1990 R 2 1272
23 Council US-95 1540 140.38 Adams 2000 R 2 1464
25 Sand Hollow I-84 1010 19.1 Canyon 1980 R 1 7509
25 Sand Hollow I-84 1010 19.1 Canyon 1990 R 1 11362
25 Sand Hollow I-84 1010 19.1 Canyon 2000 R 1 17069
26 Kootenai SH-200 1610 35.98 Bonner 1980 R 6 1717
26 Kootenai SH-200 1610 35.98 Bonner 1990 R 6 2679
26 Kootenai SH-200 1610 35.98 Bonner 2000 R 6 3633
27 St Maries SH-3 1800 95.34 Kootenai 1980 R 6 906
27 St Maries SH-3 1800 95.34 Kootenai 1990 R 6 1080
27 St Maries SH-3 1800 95.34 Kootenai 2000 R 6 1503
28 Ketchum SH-75 2230 135.95 Blaine 1980 R 6 952
28 Ketchum SH-75 2230 135.95 Blaine 1990 R 6 1108
28 Ketchum SH-75 2230 135.95 Blaine 2000 R 6 1278
29 Rogerson US-93 2220 16.724 Twin Falls 1980 R 2 2097
29 Rogerson US-93 2220 16.724 Twin Falls 1990 R 2 3211
29 Rogerson US-93 2220 16.724 Twin Falls 2000 R 2 3803
30 Cotteral I-84 1010 231 Cassia 1980 R 1 2836
30 Cotteral I-84 1010 231 Cassia 1990 R 1 4279
30 Cotteral I-84 1010 231 Cassia 2000 R 1 6077
31 Swan Valley SH-31 2450 3.54 Bonneville 1980 R 7 648
31 Swan Valley SH-31 2450 3.54 Bonneville 1990 R 7 912
31 Swan Valley SH-31 2450 3.54 Bonneville 2000 R 7 1530
32 Ashton US-20 2070 377.08 Fremont 1980 R 2 1752
32 Ashton US-20 2070 377.08 Fremont 1990 R 2 2307
32 Ashton US-20 2070 377.08 Fremont 2000 R 2 3069
34 Geneva US-89 2380 38.51 Bear Lake 1980 R 6 585
34 Geneva US-89 2380 38.51 Bear Lake 1990 R 6 613
34 Geneva US-89 2380 38.51 Bear Lake 2000 R 2 646
35 Banida US-91 2350 19.89 Franklin 1980 R 6 819
35 Banida US-91 2350 19.89 Franklin 1990 R 6 1004
35 Banida US-91 2350 19.89 Franklin 2000 R 6 1261
36 Border US-30 2040 446.5 Bear Lake 1980 R 2 1026
36 Border US-30 2040 446.5 Bear Lake 1990 R 2 1246
36 Border US-30 2040 446.5 Bear Lake 2000 R 2 1507
38 Marsing US-95 1540 22.72 Owyhee 1980 R 2 1151
38 Marsing US-95 1540 22.72 Owyhee 1990 R 2 1364
38 Marsing US-95 1540 22.72 Owyhee 2000 R 2 1400
39 Fenn US-95 1540 247.03 Idaho 1980 R 2 1889
39 Fenn US-95 1540 247.03 Idaho 1990 R 2 2194
39 Fenn US-95 1540 247.03 Idaho 2000 R 2 2714
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ATR Name Route Segment Milepost County Year Type Funct AADT
40 Rathdrum SH-53 1650 6.64 Kootenai 1980 R 6 2805
40 Rathdrum SH-53 1650 6.64 Kootenai 1990 R 6 3896
40 Rathdrum SH-53 1650 6.64 Kootenai 2000 R 2 6386
41 N Rathdrum SH-41 1630 8.96 Kootenai 1980 R 7 3355
41 N Rathdrum SH-41 1630 8.96 Kootenai 1990 R 7 5261
41 N Rathdrum SH-41 1630 8.96 Kootenai 2000 R 6 8034
42 Athol SH-54 1640 8.36 Kootenai 1980 R 7 854
42 Athol SH-54 1640 8.36 Kootenai 1990 R 7 1682
42 Athol SH-54 1640 8.36 Kootenai 2000 R 7 2203
43 Donnelly SH-55 1990 127.72 Valley 1980 R 2 1844
43 Donnelly SH-55 1990 127.72 Valley 1990 R 2 2484
43 Donnelly SH-55 1990 127.72 Valley 2000 R 2 3079
44 Weiser US-95 1540 77.96 Washington 1980 R 2 2800
44 Weiser US-95 1540 77.96 Washington 1990 R 2 3616
44 Weiser US-95 1540 77.96 Washington 2000 R 2 5294
45 Bovill SH-3 1800 39.89 Latah 1980 R 6 540
45 Bovill SH-3 1800 39.89 Latah 1990 R 6 568
45 Bovill SH-3 1800 39.89 Latah 2000 R 6 503
46 Copeland US-95 1540 527.28 Boundary 1980 R 2 573
46 Copeland US-95 1540 527.28 Boundary 1990 R 2 925
46 Copeland US-95 1540 527.28 Boundary 2000 R 2 999
47 Priest River US-2 1590 2.64 Bonner 1980 R 2 4268
47 Priest River US-2 1590 2.64 Bonner 1990 R 2 6235
47 Priest River US-2 1590 2.64 Bonner 2000 R 2 7201
49 Riggins US-95 1540 203.7 Idaho 1980 R 2 1214
49 Riggins US-95 1540 203.7 Idaho 1990 R 2 1614
49 Riggins US-95 1540 203.7 Idaho 2000 R 2 1783
50 Craters US-93 2240 229.51 Butte 1980 R 2 836
50 Craters US-93 2240 229.51 Butte 1990 R 2 1018
50 Craters US-93 2240 229.51 Butte 2000 R 2 1113
51 Lorenzo US-20 2070 325.74 Jefferson 1980 R 2 6735
51 Lorenzo US-20 2070 325.74 Jefferson 1990 R 2 9775
51 Lorenzo US-20 2070 325.74 Jefferson 2000 R 2 14535
53 Robie Creek SH-21 2140 20.89 Boise 1980 R 6 1484
53 Robie Creek SH-21 2140 20.89 Boise 1990 R 7 2238
53 Robie Creek SH-21 2140 20.89 Boise 2000 R 6 3106
54 Mountain Home US-20 2070 102.02 Elmore 1980 R 2 1263
54 Mountain Home US-20 2070 102.02 Elmore 1990 R 2 1462
54 Mountain Home US-20 2070 102.02 Elmore 2000 R 2 1898.8
55 Dickey US-93 2220 129.08 Custer 1980 R 2 333
55 Dickey US-93 2220 129.08 Custer 1990 R 2 445
55 Dickey US-93 2220 129.08 Custer 2000 R 2 525
56 Howe SH-33 2460 21.94 Butte 1980 R 7 344
56 Howe SH-33 2460 21.94 Butte 1990 R 7 432
56 Howe SH-33 2460 21.94 Butte 2000 R 6 540
58 Leadore SH-28 2500 89.96 Lemhi 1980 R 6 446
58 Leadore SH-28 2500 89.96 Lemhi 1990 R 6 434
58 Leadore SH-28 2500 89.96 Lemhi 2000 R 6 540
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ATR Name Route Segment Milepost County Year Type Funct AADT
59 Newdale SH-33 2460 112.05 Madison 1980 R 7 898
59 Newdale SH-33 2460 112.05 Madison 1990 R 7 1324
59 Newdale SH-33 2460 112.05 Madison 2000 R 6 1761
60 Alexander US-30 2040 399.2 Caribou 1980 R 2 3418
60 Alexander US-30 2040 399.2 Caribou 1990 R 2 3772
60 Alexander US-30 2040 399.2 Caribou 2000 R 2 4889
61 Roberts I-15 1330 132.78 Jefferson 1980 R 1 2422
61 Roberts I-15 1330 132.78 Jefferson 1990 R 1 3419
61 Roberts I-15 1330 132.78 Jefferson 2000 R 1 4505.5
67 Pocatello Air I-86 1260 56.4 Power 1980 R 1 7027
67 Pocatello Air I-86 1260 56.4 Power 1990 R 1 9026
67 Pocatello Air I-86 1260 56.4 Power 2000 R 1 12154
68 Hailey SH-75 2230 119.4 Blaine 1980 R 6 5106
68 Hailey SH-75 2230 119.4 Blaine 1990 R 6 8931
68 Hailey SH-75 2230 119.4 Blaine 2000 R 6 12687
71 Hammett I-84 1010 114.5 Elmore 1980 R 1 5704
71 Hammett I-84 1010 114.5 Elmore 1990 R 1 8501
71 Hammett I-84 1010 114.5 Elmore 2000 R 1 12684
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Appendix B ––Economic and Demographic Data by County 
Economic and demographic data were required to perform different forecasting methods. This data are shown in 

Table B.1 by county. 

 

TABLE B.1 Economic and Demographic Data 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

County Year Population 
(thousands)

Population Density (people 
per square mile)

Employment 
(thousands)

Income       
(per capita)

Adams 1980 3.3 2.4 1.4 16326
Adams 1990 3.3 2.4 1.6 12837
Adams 2000 3.5 2.5 2.0 13955

Bannock 1980 65.7 59.0 31.0 15789
Bannock 1990 66.2 59.5 31.1 16106
Bannock 2000 75.7 68.0 41.5 20090

Bear Lake 1980 7.0 7.2 2.4 13878
Bear Lake 1990 6.1 6.3 2.2 16542
Bear Lake 2000 6.4 6.6 3.0 19719

Blaine 1980 9.9 3.8 7.0 21224
Blaine 1990 13.8 5.2 12.1 12726
Blaine 2000 19.1 7.2 17.2 15641
Boise 1980 3.0 1.6 1.3 15508
Boise 1990 3.6 1.9 1.4 29202
Boise 2000 6.7 3.5 2.2 36906

Bonner 1980 24.3 14.0 9.6 13598
Bonner 1990 26.8 15.4 12.9 17068
Bonner 2000 37.0 21.3 18.8 16533

Bonneville 1980 66.3 35.5 31.8 16664
Bonneville 1990 72.6 38.9 39.5 15619
Bonneville 2000 82.7 44.3 52.7 18036
Boundary 1980 7.3 5.8 3.0 12527
Boundary 1990 8.4 6.6 3.8 20128
Boundary 2000 9.9 7.8 5.2 21859

Butte 1980 3.4 1.5 6.7 14196
Butte 1990 2.9 1.3 8.1 13379
Butte 2000 2.9 1.3 6.8 16777

Canyon 1980 84.0 142.4 37.9 13556
Canyon 1990 90.6 153.7 43.8 15231
Canyon 2000 132.4 224.5 63.3 19217
Caribou 1980 8.7 4.9 4.9 18517
Caribou 1990 7.0 3.9 4.0 16044
Caribou 2000 7.3 4.1 4.6 16857
Cassia 1980 19.5 7.6 10.2 14586
Cassia 1990 19.6 7.6 10.4 16799
Cassia 2000 21.4 8.3 12.7 19899
Custer 1980 3.5 0.7 1.7 15146
Custer 1990 4.2 0.8 2.6 19304
Custer 2000 4.3 0.9 2.6 20252
Elmore 1980 21.7 7.0 10.7 14912
Elmore 1990 21.2 6.9 10.9 17642
Elmore 2000 29.3 9.5 13.9 22119
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County Year Population 
(thousands)

Population Density (people 
per square mile)

Employment 
(thousands)

Income       
(per capita)

Franklin 1980 9.0 13.5 3.5 11075
Franklin 1990 9.3 13.9 3.5 20320
Franklin 2000 11.3 17.0 4.7 18429
Fremont 1980 10.9 5.8 4.4 13525
Fremont 1990 10.9 5.9 4.3 12944
Fremont 2000 11.8 6.3 4.9 13922
Gooding 1980 11.9 16.3 5.4 14125
Gooding 1990 11.7 16.0 5.7 15117
Gooding 2000 14.2 19.4 7.8 15689

Idaho 1980 14.8 1.7 6.1 14623
Idaho 1990 13.8 1.6 6.7 18408
Idaho 2000 15.5 1.8 7.9 20198

Jefferson 1980 15.4 14.1 5.7 12393
Jefferson 1990 16.6 15.2 6.1 16536
Jefferson 2000 19.2 17.5 8.1 17282
Kootenai 1980 60.0 48.2 23.6 15800
Kootenai 1990 70.4 56.5 35.7 14887
Kootenai 2000 109.5 88.0 60.6 17049

Latah 1980 28.8 26.8 14.0 15143
Latah 1990 30.7 28.5 16.8 18700
Latah 2000 35.0 32.5 20.2 21678
Lemhi 1980 7.5 1.7 3.5 14572
Lemhi 1990 6.9 1.5 3.6 17209
Lemhi 2000 7.8 1.7 4.4 19662
Lewis 1980 4.1 8.6 1.8 14572
Lewis 1990 3.5 7.3 1.8 15368
Lewis 2000 3.7 7.8 2.1 19081

Lincoln 1980 3.5 2.9 1.9 15327
Lincoln 1990 3.3 2.8 1.8 19847
Lincoln 2000 4.0 3.4 2.0 20646

Madison 1980 19.7 41.7 8.4 14942
Madison 1990 23.8 50.4 10.7 17274
Madison 2000 27.5 58.4 14.8 17553

Nez Perce 1980 33.2 39.1 19.9 11993
Nez Perce 1990 33.8 39.9 21.6 11158
Nez Perce 2000 37.5 44.1 27.0 13156

Oneida 1980 3.3 2.7 1.4 17482
Oneida 1990 3.5 2.9 1.4 19930
Oneida 2000 4.1 3.4 1.9 23779
Owyhee 1980 8.4 1.1 3.5 13495
Owyhee 1990 8.4 1.1 3.2 13703
Owyhee 2000 10.6 1.4 3.9 15350
Power 1980 6.9 4.9 4.5 12518
Power 1990 7.1 5.0 4.6 14828
Power 2000 7.5 5.4 5.4 15313

Twin Falls 1980 53.1 27.6 28.0 17676
Twin Falls 1990 53.8 27.9 31.6 21066
Twin Falls 2000 64.5 33.5 41.1 20740

Valley 1980 5.7 1.5 3.1 16153
Valley 1990 6.1 1.7 4.1 17930
Valley 2000 7.6 2.1 5.7 20225

Washington 1980 8.8 6.1 3.8 18126
Washington 1990 8.6 5.9 3.9 20767
Washington 2000 10.0 6.8 5.1 24830



 

 

Appendix C ––S-Plus Code 
S-Plus code was required for the classification and regression tree implementation. The code and the output are 

shown. 

 

 

S-Plus CART Code: 
  
tree(formula = AADT.GF ~ Funct + AADT90 + PopTh90 + Pop.GF, data = DS5,  
 na.action = na.exclude, mincut = 5, minsize = 10, mindev = 0.005) 
 
 
 
 
Output from each Verification Data Set: 
 
Sample l: 
Variables actually used in tree construction: 
[1] "Pop.GF" "Funct" "AADT90" 
Number of terminal nodes: 7  
Residual mean deviance: 0.0001251 = 0.004378 / 35  
Distribution of residuals: 
   Min.  1st Qu.  Median    Mean 3rd Qu.  Max.  
 -0.02625 -0.007252 0.0009352 5.782e-019 0.005674 0.02616 
node), split, n, deviance, yval 
   * denotes terminal node 
 
 1) root 42 0.00981300 0.02917  
  2) Pop.GF<0.00687839 25 0.00333500 0.02148  
   4) Funct:2,6,7 20 0.00200300 0.01834  
    8) AADT90<1125 5 0.00049620 0.01013 * 
    9) AADT90>1125 15 0.00105800 0.02107  
    18) Pop.GF<-0.00512501 5 0.00007003 0.01660 * 
    19) Pop.GF>-0.00512501 10 0.00083750 0.02331  
     38) AADT90<2341.5 5 0.00020170 0.02218 * 
     39) AADT90>2341.5 5 0.00062290 0.02444 * 
   5) Funct:1 5 0.00034440 0.03405 * 
  3) Pop.GF>0.00687839 17 0.00282800 0.04047  
   6) Funct:1,2 9 0.00094480 0.03736 * 
   7) Funct:6,7 8 0.00169800 0.04397 * 
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Sample 2: 
Variables actually used in tree construction: 
[1] "Pop.GF" "Funct" "AADT90" 
Number of terminal nodes: 6  
Residual mean deviance: 0.00009463 = 0.003407 / 36  
Distribution of residuals: 
   Min.  1st Qu.   Median    Mean 3rd Qu.  Max.  
 -0.01593 -0.007365 -0.0006057 3.304e-019 0.006372 0.01812 
node), split, n, deviance, yval 
   * denotes terminal node 
 
 1) root 42 0.0073620 0.02715  
  2) Pop.GF<0.00663673 24 0.0028430 0.02108  
   4) Funct:2,6,7 18 0.0013040 0.01704  
    8) Pop.GF<-0.0110589 8 0.0005583 0.01330 * 
    9) Pop.GF>-0.0110589 10 0.0005443 0.02003  
    18) AADT90<1538 5 0.0001567 0.01547 * 
    19) AADT90>1538 5 0.0001797 0.02459 * 
   5) Funct:1 6 0.0003670 0.03318 * 
  3) Pop.GF>0.00663673 18 0.0024510 0.03526  
   6) AADT90<2581.5 9 0.0010370 0.03114 * 
   7) AADT90>2581.5 9 0.0011080 0.03938 * 
 
Sample 3: 
Variables actually used in tree construction: 
[1] "Pop.GF" "Funct" "AADT90" 
Number of terminal nodes: 6  
Residual mean deviance: 0.0001021 = 0.003677 / 36  
Distribution of residuals: 
   Min.  1st Qu.  Median    Mean 3rd Qu.  Max.  
 -0.01584 -0.006093 0.0001657 -3.304e-019 0.006926 0.02602 
node), split, n, deviance, yval 
   * denotes terminal node 
 
 1) root 42 0.0092650 0.02835  
  2) Pop.GF<-0.00771277 9 0.0007691 0.01140 * 
  3) Pop.GF>-0.00771277 33 0.0052030 0.03298  
   6) Pop.GF<0.00663673 17 0.0016110 0.02684  
   12) Funct:2,6,7 12 0.0008754 0.02355  
    24) AADT90<1797.5 5 0.0001150 0.02024 * 
    25) AADT90>1797.5 7 0.0006664 0.02591 * 
   13) Funct:1 5 0.0002935 0.03474 * 
   7) Pop.GF>0.00663673 16 0.0022710 0.03950  
   14) Funct:1,6 7 0.0004911 0.03356 * 
   15) Funct:2,7 9 0.0013420 0.04411 * 
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Sample 4: 
Variables actually used in tree construction: 
[1] "Pop.GF" "AADT90" 
Number of terminal nodes: 6  
Residual mean deviance: 0.0001202 = 0.004327 / 36  
Distribution of residuals: 
   Min.  1st Qu.   Median    Mean 3rd Qu.  Max.  
 -0.01864 -0.006888 7.506e-006 1.652e-019 0.006674 0.02587 
node), split, n, deviance, yval 
   * denotes terminal node 
 
 1) root 42 0.0089670 0.02823  
  2) Pop.GF<0.00663673 22 0.0029190 0.02055  
   4) AADT90<2250.5 13 0.0008904 0.01535  
    8) AADT90<1538 8 0.0006280 0.01312 * 
    9) AADT90>1538 5 0.0001583 0.01893 * 
   5) AADT90>2250.5 9 0.0011710 0.02805 * 
  3) Pop.GF>0.00663673 20 0.0033250 0.03667  
   6) AADT90<1216 5 0.0007505 0.02925 * 
   7) AADT90>1216 15 0.0022070 0.03915  
   14) Pop.GF<0.00938642 6 0.0002460 0.03148 * 
   15) Pop.GF>0.00938642 9 0.0013740 0.04426 * 
 
 
Sample 5: 
Variables actually used in tree construction: 
[1] "Pop.GF" "AADT90" "Funct"  
Number of terminal nodes: 7  
Residual mean deviance: 0.000118 = 0.004131 / 35  
Distribution of residuals: 
   Min.  1st Qu.   Median    Mean 3rd Qu.  Max.  
 -0.01657 -0.007358 -0.0008131 4.956e-019 0.006398 0.02368 
node), split, n, deviance, yval 
   * denotes terminal node 
 
 1) root 42 0.0099160 0.02770  
  2) Pop.GF<-0.00479597 12 0.0010870 0.01387  
   4) AADT90<1520 6 0.0007093 0.01031 * 
   5) AADT90>1520 6 0.0002263 0.01743 * 
  3) Pop.GF>-0.00479597 30 0.0056150 0.03323  
   6) Pop.GF<0.00663673 13 0.0018380 0.02668  
   12) Funct:2,6,7 8 0.0010160 0.02164 * 
   13) Funct:1 5 0.0002935 0.03474 * 
   7) Pop.GF>0.00663673 17 0.0027930 0.03824  
   14) AADT90<1216 5 0.0007505 0.02925 * 
   15) AADT90>1216 12 0.0014700 0.04199  
    30) Pop.GF<0.00861409 5 0.0001844 0.03574 * 
    31) Pop.GF>0.00861409 7 0.0009511 0.04645 * 
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Sample 6: 
Number of terminal nodes: 7  
Residual mean deviance: 0.0001018 = 0.003564 / 35  
Distribution of residuals: 
   Min.  1st Qu.  Median    Mean 3rd Qu.  Max.  
 -0.01585 -0.008212 0.0007899 -1.652e-019 0.006663 0.01914 
node), split, n, deviance, yval 
   * denotes terminal node 
 
 1) root 42 0.00762800 0.02882  
  2) Pop.GF<0.00663673 22 0.00311300 0.02233  
   4) AADT90<2088.5 11 0.00089840 0.01554  
    8) PopTh90<4.8035 5 0.00006299 0.01894 * 
    9) PopTh90>4.8035 6 0.00072930 0.01270 * 
   5) AADT90>2088.5 11 0.00119900 0.02912  
   10) Pop.GF<0.000543431 5 0.00026880 0.03480 * 
   11) Pop.GF>0.000543431 6 0.00063500 0.02439 * 
  3) Pop.GF>0.00663673 20 0.00256800 0.03596  
   6) AADT90<2581.5 9 0.00103700 0.03114 * 
   7) AADT90>2581.5 11 0.00114900 0.03991  
   14) Funct:1,7 5 0.00032990 0.03402 * 
   15) Funct:2,6 6 0.00050140 0.04482 * 
 
Sample 7: 
Variables actually used in tree construction: 
[1] "Pop.GF" "Funct" "AADT90" 
Number of terminal nodes: 7  
Residual mean deviance: 0.0001134 = 0.003968 / 35  
Distribution of residuals: 
   Min.  1st Qu.   Median Mean 3rd Qu.  Max.  
 -0.02309 -0.007109 -3.689e-006  0 0.005591 0.02253 
node), split, n, deviance, yval 
   * denotes terminal node 
 
 1) root 42 0.0097070 0.02713  
  2) Pop.GF<0.00663673 23 0.0028210 0.01877  
   4) Funct:6 6 0.0007225 0.00847 * 
   5) Funct:1,2,7 17 0.0012370 0.02241  
   10) AADT90<7942 12 0.0004722 0.01971  
    20) Pop.GF<-0.00479597 7 0.0001088 0.01799 * 
    21) Pop.GF>-0.00479597 5 0.0003133 0.02213 * 
   11) AADT90>7942 5 0.0004690 0.02887 * 
  3) Pop.GF>0.00663673 19 0.0033360 0.03724  
   6) AADT90<1503 5 0.0008223 0.03021 * 
   7) AADT90>1503 14 0.0021790 0.03975  
   14) Funct:1,2 8 0.0003542 0.03386 * 
   15) Funct:6,7 6 0.0011780 0.04760 * 
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The cluster analysis was implemented using S-Plus code. The code and the output are shown. 
 
 *** Agglomerative Hierarchical Clustering *** 

Call: 

agnes(x = menuModelFrame(data = SDF13, variables = "AADT90,pop90,PopGR",  

 subset = NULL, na.rm = T), diss = F, metric = "euclidean", stand = T,  

 method = "average", save.x = T, save.diss = T) 

Merge: 

   [,1] [,2]  

 [1,]  -5 -15 

 [2,]  -7 -28 

 [3,] -13 -23 

 [4,] -12 -14 

 [5,] -26 -45 

 [6,]  2 -40 

 [7,] -30 -39 

 [8,] -20 -33 

 [9,]  6  5 

[10,] -27 -29 

[11,]  -9  7 

[12,]  9  4 

[13,] -10 -17 

[14,] -25  10 

[15,] -11 -19 

[16,] -31 -32 

[17,]  -8 -24 

[18,] -34 -49 

[19,] -37 -44 

[20,]  13  14 

[21,]  3 -35 

[22,]  11 -46 

[23,]  19 -42 

[24,] -41 -50 

[25,]  -3 -52 

[26,]  15 -36 

[27,]  20 -43 

[28,]  17  8 

[29,]  12  22 

[30,] -16  18 

[31,]  23 -47 

[32,]  -4  24 

[33,]  27  21 
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[34,]  -1  -2 

[35,]  25  32 

[36,]  33  30 

[37,]  28  16 

[38,]  36  26 

[39,]  29 -48 

[40,]  35 -38 

[41,]  -6  37 

[42,]  41 -22 

[43,] -21  31 

[44,]  1 -18 

[45,]  34  44 

[46,]  39  38 

[47,]  45  40 

[48,]  46  43 

[49,]  47  42 

[50,]  49  48 

[51,]  50 -51 

Order of objects: 

 [1] 1 2 5 15 18 3 52 4 41 50 38 6 8 24 20 33 31 32 22 7 28 40 26 45 12 

[26] 14 9 30 39 46 48 10 17 25 27 29 43 13 23 35 16 34 49 11 19 36 21 37 44 42 

[51] 47 51 

Height: 

 [1] 1.12309968 1.78761713 0.03380825 1.77698106 2.59419163 0.71395153 

 [7] 1.16526691 1.07076311 0.71164390 1.59417309 3.08786946 1.64010527 

[13] 0.52421785 0.79147125 0.22868054 1.28975077 0.51851983 1.71539966 

[19] 3.45445723 0.06837624 0.19790969 0.29057116 0.16902693 0.39015625 

[25] 0.15118978 0.82222018 0.38256820 0.22032344 0.66086095 1.48874851 

[31] 1.85736291 0.44126165 0.61410470 0.47574606 0.30888267 0.75221004 

[37] 1.08948611 0.08433070 0.65874168 1.22203318 0.91713196 0.59082044 

[43] 1.32611431 0.48653484 0.71822632 2.72392880 1.77436542 0.60755315 

[49] 0.67625240 0.95145495 4.24689916 

Agglomerative coefficient: 

[1] 0.8385112 

 

Available arguments: 

[1] "order"   "height"  "ac"    "merge"   "order.lab" "diss"    

[7] "data"   "call"    
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Appendix D ––ATR Stations by Terminal Node 
 

 

 TN # ATR TN # ATR
1 27 5 9
1 28 5 12
1 31 5 22
1 46 5 25
1 55 5 43

2/3 11 5 51
2/3 23 5 61
2/3 34 6/7 3
2/3 35 6/7 4
2/3 36 6/7 6
2/3 38 6/7 7
2/3 45 6/7 14
2/3 50 6/7 15
2/3 54 6/7 29
2/3 56 6/7 30
2/3 58 6/7 32
4 13 6/7 44
4 17 6/7 67
4 18 6/7 71
4 19 8 8
4 39 8 21
4 49 8 26
4 60 8 40

8 41
8 42
8 47
8 53
8 59
8 68
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