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Disclaimer 

This document is disseminated under the sponsorship of the Idaho Transportation Department and the 
United States Department of Transportation in the interest of information exchange. The State of Idaho 
and the United States Government assume no liability of its contents or use thereof. 

The contents of this report reflect the view of the authors, who are responsible for the facts and 
accuracy of the data presented herein. The contents do not necessarily reflect the official policies of the 
Idaho Transportation Department or the United States Department of Transportation. 

The State of Idaho and the United States Government do not endorse products or manufacturers. 
Trademarks or manufacturers’ names appear herein only because they are considered essential to the 
object of this document. 

This report does not constitute a standard, specification or regulation. 
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Executive Summary 

Introduction 

Current Idaho Transportation Department (ITD) approach to predict asphalt pavement performance 

over-simplifies the dynamic and nonlinear nature of pavement deterioration and fails to account for 

complexities in the pavement condition. Therefore, more accurate and reliable models are needed to 

predict the damage of ITD asphalt pavements at the project level and enable more accurate and robust 

optimization of pavement preservation and maintenance and rehabilitation (M&R) decisions at the 

network level. The overarching goal of this project is to develop reliable and realistic and enhanced 

performance curves for ITD asphalt pavements by mining the historical data. To this end, the project 

identifies the appropriate model types, model parameters and additional criteria to use in the enhanced 

asphalt performance curves. Besides, the project develops, calibrates and validates distress-specific 

models for forecasting future pavement conditions and compare with current models. 

Methodology 

First, the research team conducted a thorough and targeted reviews of literature on asphalt pavement 

deterioration models. The focus was placed on promising approaches to modeling the performance of 

asphalt pavements that can be leveraged by this specific study. Meanwhile, a practitioner survey was 

also conducted to identify performance deterioration models used by various highway agencies for 

asphalt pavements and to capture the insights and experiences of users on the existing models. 

Second, the research team assessed the effectiveness and identify issues with the current ITD pavement 

performance curves, which helps shape the scope of subsequent tasks. 

Third, the research team processed data to screen, reduce, and transform the existing condition and 

road inventory data in the AASHTOWare Pavement ME Design™ (PMED) and ITD pavement 

management system (PMS), for both new and rehabilitated asphalt pavements. Potential input (or 

output) variables were gathered and processed for different model types. Some statistical analyses were 

conducted to identify significant input factors and their significant interactions for pavement condition, 

such that these factors were included for further data mining. 

Fourth, the research team applied different predictive models on the processed data and entailed the 

comparison between the actual ITD data against the predictions by the enhanced performance curves of 

ITD asphalt pavements. Other model properties such as stability, sensitivity, etc. were examined as well 

to ensure the applicability of applied models. 

In general, the data mining and modelling procedures in this project can be summarized as in the 

following flow. 
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Main Findings 

• Predictive models for field asphalt pavement should consider the characteristics of applied data 

and have basic accuracy, rationality and simplicity. Characteristics of mechanical, numerical, 

empirical and machine learning models can be leveraged for higher prediction performance. 

• Neural networks (NNs) calibrated with particle swarm optimization have desirable prediction 

performance for the asphalt pavement rutting in Idaho using the PMED data. Model with proper 

variable selection and number of hidden neurons can achieve a balance between accuracy, 

reproducibility and rationality. 

• Gene expression programming models have better prediction performance than linear 

regression and mechanistic-empirical models for four typical distresses – rutting, longitudinal 

cracking, thermal cracking and roughness of asphalt pavements in Idaho using PMED data. 

• Deep learning models achieved better prediction performance than statistical models for short-

term rutting development of a field asphalt pavement with ITD PMS data and than piece-wise 

regression models for overall condition index of sampled field asphalt pavements. Increasing 

data quantity and dimensionality and model complexity can further improve prediction 

performance. They can be utilized for data with limited quantity, lacking pavement condition 

and maintenance effect. 
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Recommendations 

• Characteristics of data should be investigated before applying predictive models. As for 

pavement performance, the focuses can be put on the availability of material, structure, traffic 

and environment conditions as well as maintenance effect. Different model types have different 

applicability and performance for different data. 

• Artificial intelligence model (both ML and DL models) and algorithm are promising in predicting 

pavement performance for the accuracy, efficiency and automation. AI can be applied in model 

form selection, model calibration, etc. in different ways and to different degrees. 

• To avoid overfitting and ensure basic rationality of predictive models, statistical methods are 

necessary to check the stability, robustness, sensitivity, etc. of constructed models before 

application. 

• Models introduced in this project can extend the application in terms of the distress type, 

pavement type and areas of interest, with associated codes and instructions provided as 

deliverables. 
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1. Introduction 

1.1 Problem Statement 

The Idaho Transportation Department (ITD) is committed to enhancing its Pavement Management 

System (PMS) for better management of the state pavement assets. While ITD has implemented the 

AgileAssets Pavement Analyst software since 2011 (ITD 2019), ITD has recently identified an urgent need 

to refine the performance curves (i.e., pavement deterioration models). This is because the current 

practices in the ITD PMS predicts the pavement performance based on fitting piecewise linear function 

to historic data. Such a time-series forecasting approach often fails to account for the highly nonlinear, 

dynamic nature of pavement deterioration mechanisms (Prozzi and Madanat 2002, Prozzi and Madanat 

2003, Khraibani, Lorino et al. 2012), with the viscoelastic multi-layer pavement materials change with 

age, temperature, moisture, and traffic loadings. In addition, sometimes multiple mechanisms are at 

work (Khraibani, Lorino et al. 2012, Xue and Liu 2013, Xue, Liu et al. 2013).  

The ITD Asset Management office has found that the current ITD approach over-simplifies the reality 

and fails to account for complexities in the design, materials selection, construction features, 

maintenance and rehabilitation (M&R) history, etc. More mechanistic and reliable models are needed to 

predict the damage of ITD asphalt pavements at the project level and enable more accurate and robust 

optimization of pavement preservation and M&R decisions at the network level.  

ITD has been negatively impacted by the problem of inaccurate performance curves, which has 

prevented ITD pavement engineers from better understanding the current and future pavement 

conditions and how to quantify the progression of each distress mechanism (and the remaining 

pavement life) as a function of design, materials selection, construction, M&R, etc. at the project level. 

This, in turn, has compromised their ability to identify best practices in these stages of the pavements 

and to optimize the asset management at the network level. 

1.2 Research Background 

ITD has collected an abundance of historical data related to the condition of asphalt pavements (a.k.a., 

flexible pavements), which presents a golden opportunity for data mining and development of enhanced 

performance curves.  Approximately 20 years of pavement condition data is available, with 

approximately 125,000 records per year for the state PMS. Such datasets have been collected on 1/10-

mile segments (both directions), and then aggregated to about 3,500 segments (with length ranging 

from 0.1 to 3 miles). ITD has reported the pavement condition by common distresses, e.g., rutting, 

longitudinal roughness, cracking, and raveling (KEI 2015). 

PMS is of great importance in meeting the challenges of maintaining a state’s pavement network at 

serviceable condition (Hill, Cheetham et al. 1991, Gulen, Zhu et al. 2001, Lea and Harvey 2002, Yuan and 

Mooney 2003, Abaza, Khatib et al. 2004, Li, Cheetham et al. 2006, Hong, Perrone et al. 2017). It 



 

Developing Enhanced Performance Curves of ITD Asphalt Pavements by Mining the Historical Data 17 

embraces the asset management approach and emphasizes the timely preservation, maintenance, and 

upgrading of pavement assets through structured planning and cost-effective resource allocation.  

When properly implemented, PMS provides an objective and systematic approach to predict the future 

condition of the pavement network or a specific section, to illustrate the long-term consequences of 

different funding levels and M&R policies/activities, and to assist daily decision-making and selecting the 

optimum M&R strategies.  

Pavements deteriorate over time upon construction, due to their exposure to harsh environment and 

destructive forces. A modeling study of long-term pavement performance (Turtschy and Sweere 1999) 

indicated that the four common types of distresses causing pavement damage (cracking, rutting, 

raveling, and longitudinal unevenness) exhibited a gradual increase in the level of distress with time.  

Such progression of distresses over time coincides with the generic pavement performance curve 

(Figure 1.1), in which pavement conditions follow a pattern of deterioration exhibiting minimal 

deterioration at first, and as it ages and experiences increased loading and environmental factors, 

deterioration continues at an increased rate until pavement reconstruction becomes necessary. As 

shown in Figure 1.1, various rehabilitation strategies are preferred for different levels of pavement 

deterioration. Proactive maintenance, in the form of preventive maintenance and minor rehabilitation, 

is performed during the initiation and early propagation stages of distresses. Reactive maintenance, in 

the form of major rehabilitation and reconstruction, is often performed on a failing pavement where the 

distresses have greatly propagated. As a stopgap measure to keep the roadway at an acceptable 

serviceability, reactive maintenance is seldom cost-effective. Studies (Abaza 2002, Mandapaka, Basheer 

et al. 2012) have indicated that if the M&R activities took place while the pavement was still in the slow 

deterioration phase instead of deferring them until the sharp deterioration phase, life-cycle cost might 

be greatly reduced. 

 

 

Figure 1.1 A generic pavement deterioration curve illustrating timing for rehabilitation efforts 
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To optimize pavement M&R plans in terms of life-cycle cost, pavement performance curves should be 

established to permit the appropriate intervention occur at the right time. As an essential part of PMS, 

these curves (i.e., deterioration models) predict future pavement conditions based on present condition 

under a user-defined range of future traffic loading and maintenance scenarios. Figure 1.2 illustrates 

how performance curves are used to predict future deterioration of an existing pavement, with or 

without rehabilitation actions. The actual shape of the pavement deterioration curve is a function of 

many factors including quality of construction, pavement type (rigid, flexible, or composite), pavement 

material (bituminous or concrete), base course, subgrade soil, deterioration factors (traffic, climate and 

environmental effects), and M&R history. The forecasted information of life expectancy and benefit, 

along unit cost of rehabilitation actions, can be further used to perform life-cycle cost analysis, by which 

the optimum rehabilitation alternative can be identified. 

 

 

Figure 1.2 Illustration of how performance curves are used to predict future deterioration of an 
existing pavement, with or without rehabilitation actions 

Albeit the great progress made in developing pavement performance curves, current practices still leave 

ample room for further improvement (Haas 1998, Ningyuan, Kazmierowski et al. 2001, Abaza 2004, 

Gupta, Kumar et al. 2014). At the network level, many pavement deterioration models attempt to 

predict the overall performance of pavement sections merely based on their ages, where all sections are 

grouped into pavement families by pavement type and rehabilitation history, by geographical region and 

roadway system type, or by more family factors (Kim and Kim 2006). Such models risk over-simplifying 

the reality and have limitations in accuracy, and thus are not applicable for robust pavement 

management at the project level. At the project level, most pavement deterioration models focus on 

specific modes of pavement damage and are developed based on an empirical interpretation of 
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performance data, a mechanistic theory (Collop and Cebon 1995), or a combination of both (Queiroz 

1983, Doré, Konrad et al. 1999, Ullidtz 1999, Prozzi 2001, Park and Kim 2003, Li, Pierce et al. 2009). 

Among them, the mechanistic-empirical (M-E) modeling approach (Bigl and Berg 1996, Timm, Birgisson 

et al. 1998, Shoukry and William 1999, Li, Pierce et al. 2009) has gained favor as it pools together the 

advantages of both the mechanistic and empirical modeling, i.e., incorporating the structural response 

models relating pavement responses (stress, strain, and deflection) to environmental loading conditions 

and distress models relating actual pavement performance to pavement responses (Bigl and Berg 1996, 

Timm, Birgisson et al. 1998, Shoukry and William 1999, El-Badawy, Awed et al. 2011, El-Badawy, Bayomy 

et al. 2012, Seitllari, Lanotte et al. 2019). For instance, El-Badawy et al. (El-Badawy, Bayomy et al. 2012) 

conducted the local calibration of the mechanistic-empirical pavement design guide (MEPDG) models 

for dynamic modulus (E*) predictions of asphalt pavements, using 27 HMA mixtures commonly used in 

the State of Idaho. 

Pavement performance can be characterized by individual indicators or aggregate indicators. The most 

common individual indicators include cracking, roughness, rutting, and skid resistance. Among them, 

cracking gauges the pavement serviceability from a structural point of view, roughness signals the 

pavement serviceability in terms of riding quality, whereas rutting and skid resistance implicate safety 

(Prozzi 2001). As an aggregate indicator, the pavement condition rating (PCR) takes into account both 

severity and extent ratings of distresses and thus is expected to provide a strong basis for selection and 

timing of M&R actions and decision-making both at the network level and at the project level. 

1.3 Project Goal and Objectives 

The overarching goal of this project is to develop reliable and realistic and enhanced performance 

curves for ITD asphalt pavements by mining the historical data. To this end, the project has the following 

objectives: 

1. identify the appropriate model types to use in the enhanced asphalt performance curves 

according to the historical data types; 

2. identify the appropriate parameters and additional criteria to use in the enhanced asphalt 

performance curves; 

3. develop and calibrate distress-specific models for forecasting future pavement conditions, for 

both new and rehabilitated asphalt pavements; 

4. validate existing and enhanced curves using historical performance data. 

1.4 Work Plan 

This research project consists of five sequential tasks. 

Task 1: Literature review and survey of current practices 
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This task started with the review of literature relevant to asphalt pavement deterioration models (i.e., 

performance curves), either for specific distress or for overall condition rating, with the focus on their 

limitations and input factors. The research team performed a thorough and targeted reviews of 

literature to identify sources available to gather information pertinent to this study. The focus was 

placed on promising approaches to modeling the performance of asphalt pavements that can be 

leveraged by this specific study.  

A practitioner survey was also conducted to identify performance deterioration models used by various 

highway agencies for asphalt pavements and to capture the insights and experiences of users on the 

existing models, in terms of reliability, precision, input and output parameters, consideration of M&R 

history, implementation considerations, etc.  

This task also includes the review of historical condition data collected by ITD on asphalt pavements, via 

individual distress indices (IDIs) such as fatigue cracking, transverse cracking, rutting, and International 

Roughness Index (IRI). Historical data of other variables that may affect pavement performance, i.e., 

model input factors, was also reviewed, such as the pavement age, design parameters (e.g., pavement 

thickness), construction features, material properties, climate zone (e.g., temperature and moisture), 

traffic exposure, maintenance district, and treatment and repair history. 

Task 2: Assessing existing curves using historical performance data 

In light of the findings from Task 1, the research team assessed the effectiveness and identify issues with 

the current ITD pavement performance curves (for new and rehabilitated asphalt pavements, 

respectively), which helps shape the scope of subsequent tasks (e.g., additional criteria needed for the 

performance curves). 

While ITD has implemented the AgileAssets Pavement Analyst software since 2011 (ITD 2019), ITD has 

recently identified an urgent need to refine the performance curves. This is because the current 

practices in the ITD PMS predicts the pavement performance based on fitting piecewise linear function 

to historic data. Such a time-series forecasting approach often fails to account for the highly nonlinear, 

dynamic nature of pavement deterioration mechanisms (Prozzi and Madanat 2002, Prozzi and Madanat 

2003, Khraibani, Lorino et al. 2012); even though the underlying assumption is to learn and model the 

dynamics of distress evolution using the time-series data of condition ratings (or IDIs). 

The ITD Asset Management office has found that the current ITD approach over-simplifies the reality 

and fails to account for complexities in the design, materials selection, construction features, 

maintenance and rehabilitation (M&R) history, etc. Nonetheless, in this task, the research team 

examined the effectiveness and weaknesses of the current ITD performance curves (of asphalt 

pavements) more comprehensively. 

Meanwhile, the AASHTOWare Pavement ME Design™ (PMED), as a comprehensive tool for the analysis 

and design of new and rehabilitated flexible and rigid pavement structures based on mechanistic-

empirical (ME) principles, is applied by most national and local transportation agencies, including ITD 
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(Bayomy, Muftah et al. 2018). Pavement information considered in PMED include materials, structures, 

traffic and environment conditions, which is not coupled with corresponding pavement sections in the 

AgileAssets Pavement Analyst software. Therefore, this task also sought for appropriate model types 

taking advantages of sufficient pavement information as PMED and improved current ITD performance 

curves.  

Task 3: Data processing and data mining for enhanced performance curves 

This task started with a data processing procedure to screen, reduce, and transform the existing 

condition and road inventory data in the PMED and ITD PMS, for both new and rehabilitated asphalt 

pavements. Potential input (or output) variables were gathered and processed for different model 

types. Some statistical analyses were conducted to identify significant input factors and their significant 

interactions for pavement condition, such that these factors were included for further data mining. 

In light of the findings from Task 2, the existing ITD records relevant to the performance of asphalt 

pavements were sorted by each individual IDI along with the aforementioned model input factors. 

Depending on the completeness and quality of road inventory and condition data, a sample dataset of 

ITD asphalt pavement sections were identified for further analyses in this task. Subsequently, statistical 

techniques were applied to extract useful information from the dataset and to test relevant hypotheses. 

To utilize the limited historical data effectively, the research team investigated all the explanatory 

factors, qualitatively evaluated the significance of each explanatory factor, and identified those 

influencing pavement performance most significantly.  The interactions between various explanatory 

factors were also evaluated. These efforts aimed to better understand and organize the historical 

performance data and to determine the right type of data for inclusion for further analyses. 

The basic requirements for any pavement deterioration model include the following: 

o an adequate data base; 

o inclusion of significant variables affecting deterioration; 

o careful selection of the functional form of the model to represent the physical, real-world 

relationship; 

o careful selection of the calibration algorithm of the model to ensure the model accuracy and 

construction efficiency; 

o criteria to assess the accuracy, stability and rationality of the model. 

Based on the inventory and condition data available in PMED and ITD PMS and the findings from the 

data processing procedure, the research team developed pavement IDI forecast models (i.e., 

performance curves) of different types. Cutting-edge techniques such as artificial intelligence (AI) 

algorithms, machine learning (ML) and deep learning (DL) models were utilized in the model 

development. 
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Task 4: Validating enhanced curves using historical performance data 

This task entailed the comparison between the actual ITD data against the predictions by the enhanced 

performance curves of ITD asphalt pavements. Once the predictive models were trained and tested (in 

Task 3), these models were then validated before they can be employed to predict the evolution of IDIs 

of a specific pavement class in future years (under a given set of input variables). This validation step is 

needed to ensure that the developed performance curves are reliable and consistent. Specifically, 

residuals and their distributions were examined via series of performance indicators and hypothesis 

testing. 

Furthermore, a sensitivity analysis was conducted to check how robust the models are to variabilities or 

errors in the input factor(s). Sensitivity analysis is used to determine how sensitive a model is to changes 

in the value of the parameters of the model and to changes in the structure of the model (Iooss and 

Saltelli 2017). In this task, the objective of sensitivity analysis is to find the subset of input variables that 

are most responsible for variation in each model output and explore their influence trends, etc. 

Task 5: Final report, final presentation and training materials 

The research team prepared Draft Final Report (DFR) and draft final presentation to the ITD project 

panel. The DRF documents the entire research effort, results and discussion, key findings/conclusions, 

and recommendations for further research or implementation. The DFR incorporated findings from 

Tasks 1 to 4 and was prepared in accordance with ITD guidelines in a format conducive to distribution 

and adoption (e.g., being Section 503-compliant).  

A TriDurLE-sponsored webinar was prepared upon project completion and project panel review, in the 

effort to facilitate the implementation of the final deliverables of this research.  The webinar also serves 

to engage the stakeholder community (particularly ITD pavement professionals) and benefit the training 

activities (e.g., how ITD asphalt pavements deteriorate by common modes of distress and how various 

data mining and modelling techniques can be utilized in their performance curves). 

1.5 Report Organization 

This report presents the research work completed for developing enhanced performance models of ITD 

asphalt pavements by mining the historical data. The report is organized into five chapters as described 

below: 

Chapter 1: provides the introduction of this research project, presents the problem statement, research 

background, project goal and objectives, work plan and report organization; 

Chapter 2: presents a literature review of the current pavement performance prediction models for 

flexible pavements, and summarizes the results of a practitioner survey; 
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Chapter 3: presents artificial neural network (ANN) models for PMED data, from data collection and 

processing, model construction and validation, to model comparison with current applied models;      

Chapter 4: presents gene expression programming (GEP) models for PMED data, from data collection 

and processing, model construction and validation, to model comparison with current applied models;   

Chapter 5: presents DL models for ITD PMS data, from data collection and processing, model 

construction and validation, to model comparison with current applied models; 

Chapter 6: summarizes the key findings from this project and presents recommendations for future 

work for ITD consideration. 
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2. Predictive Models for Asphalt Pavement Performance: State 

of the Knowledge 

2.1 Introduction 

Asphalt pavement, or flexible pavement has been widely applied since the 1920s. It is named for its 

surface layer, which is mainly constructed with aggregates and liquid asphalt. Currently, over 90 percent 

of pavements in the US are flexible pavements considering their durability, resilience, cost efficiency and 

eco-friendliness (Huang 2004). Compared with the rigid pavement, the viscous nature of contained 

asphalt provides the asphalt pavement with more flexibility. Partial energy from the traffic load can be 

dissipated in the deformation to resist fatigue damage to the pavement (Lytton 2000). A properly 

designed and constructed flexible pavement can typically last 15-20 years without total replacement. 

Besides, the construction time and raw material cost of the flexible pavement are lower than the rigid 

pavement. Moreover, the flexible pavement can be largely recycled and has become an emerging 

additive to improve the stiffness of the virgin pavement (Luo, Gu et al. 2018). 

The current situation is that more than 1/3 of the annual highway budget is spent on the preventative 

maintenance and rehabilitation of national pavement networks (Juang and Amirkhanian 1992). For 

longer service time and cost-effective decisions, the performance evaluation and prediction of the 

flexible pavement should be focused on (Deng, Luo et al. 2019). Additionally, the safety and riding 

quality of drivers and technicians can benefit significantly from a pavement in good condition. The 

flexible pavement suffers from synthetic effects of the environment and traffic load (Deng, Luo et al. 

2020). Besides, as a multilayer structure made of composite materials, the distress mode and degree 

can vary with the material composition, structural configuration, and absolutely the environmental 

and loading conditions, as shown in Table 2.1(a). All these factors make the deterioration of the 

flexible pavement a complex and highly dynamic process (Khraibani, Lorino et al. 2012). 

Continuous efforts have been made on characterizing deteriorations in flexible pavement materials 

and structures. Accordingly, various models have been proposed for the deterioration evaluation and 

prediction in terms of individual distress modes or comprehensive performance of the flexible 

pavement. Table 2.1(b) lists representative national highway research programs in the US, in which 

performance models of the flexible pavement were proposed, modified, calibrated and/or validated. 

These major projects are either funded by the Federal Highway Administration (FHWA) or belong to 

the National Cooperative Highway Research Program (NCHRP) and the Strategic Highway Research 

Program (SHRP). These projects typically include comprehensive information such as fundamental 

mechanisms of flexible pavement distress modes, laboratory characterizations from the deterioration 

initiation, propagation to material failure, field calibrations of deterioration development models and 

recommendations for the pavement design, maintenance and rehabilitation. Meanwhile, 

methodologies and models recorded in reports by the local DOTs, papers and standards are also 

showing ideas, experience and concerns of people in the academia and industry on this topic. 
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Table 2.1 Representative Distresses and National Projects on Flexible Pavement Performance Models 

(a) Representative Distresses 

Distress Description Causes 

rutting 
permanent deformation at pavement 

surface in the wheelpath 

repeated traffic load/intermediate and 

high temperatures/insufficient 

compaction of asphalt mixtures/shear 

flow and crack propagation in asphalt 

mixtures 

alligator cracking (bottom-up fatigue 

cracking) 

interconnected cracks at pavement 

surface 

load-induced fatigue damage of asphalt 

mixtures/weak supporting layers  

longitudinal cracking (surface-down 

fatigue cracking) 

cracks parallel to the pavement’s 

centerline or laydown direction at 

pavement surface 

load-induced tensile stresses and strains 

at layer surface/ load-induced shearing 

of asphalt mixtures/aging of asphalt 

mixtures 

transverse cracking (thermal cracking) 
cracks perpendicular to the pavement’s 

centerline or laydown direction 
low temperatures/temperature cycling 

roughness* irregularities at the pavement surface - 

*roughness is not typically treated as an individual distress and depends on rutting, surface-down and bottom-up cracking, and 

thermal cracking of asphalt pavement.  

(b) Representative National Projects 

Program Year Project Number Distress Mode 

FHWA 1984 FHWA RD-84-018 fatigue damage/rutting 

FHWA 1998 FHWA RD-98-132 Roughness 

FHWA 2012 FHWA HRT-11-045 rutting/fatigue cracking 

NCHRP 1986 NCHRP 01-10 rutting/fatigue cracking 

NCHRP 1989 NCHRP 10-26 roughness/rutting/cracking 

NCHRP 1996 NCHRP 01-31 Roughness 

NCHRP 1998 NCHRP 01-36 fatigue damage 

NCHRP 2000 NCHRP 09-20 
roughness/rutting/fatigue 

cracking 

NCHRP 2000 NCHRP 10-48 fatigue damage 
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NCHRP 2003 NCHRP 09-17 Rutting 

NCHRP 2004 NCHRP 01-37 

bottom-up fatigue (or 

alligator) cracking/surface-

down fatigue (or 

longitudinal) 

cracking/rutting/thermal 

cracking 

NCHRP 2005 NCHRP 04-19(2) 
rutting/cracking (no model 

was built) 

NCHRP 2006 NCHRP 09-19 Rutting 

NCHRP 2007 NCHRP 09-34 

moisture damage (rutting 

and fatigue cracking served 

as indirect indicators) 

NCHRP 2009 NCHRP 01-42 top-down fatigue cracking 

NCHRP 2009 NCHRP 09-38 fatigue cracking 

NCHRP 2010 NCHRP 01-41 reflection cracking 

NCHRP 2011 NCHRP 09-22 
rutting/fatigue 

cracking/thermal cracking 

NCHRP 2011 NCHRP 09-33A 
rutting/fatigue 

cracking/thermal cracking 

NCHRP 2012 NCHRP 09-30A Rutting 

NCHRP 2013 NCHRP 09-44A fatigue damage 

NCHRP 2016 NCHRP 09-49A 

transverse 

cracking/longitudinal 

cracking/rutting 

NCHRP 2018 NCHRP 01-52 top-down cracking 

SHRP 1993 SHRP A-357 

fatigue 

cracking/rutting/thermal 

cracking 

SHRP 1994 SHRP A-404 fatigue damage 

SHRP 1994 SHRP A-415 rutting 
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The main contents of this review include the descriptions of current models for the flexible pavement 

deterioration evaluation and prediction. Their applications, advantages and limitations are mentioned as 

well. 

2.2 Methodology 

The research team conducted a review of several databases to gather relevant information, including: 

TRID, Google Scholar, ISI Web of Science, etc. In light of the available literature, any gaps in current 

approaches and potential solutions were identified. The information gathered in this task was used 

directly as the foundation of the other tasks in the project. For instance, the Mechanistic-Empirical 

Pavement Design Guide (MEPDG) has continually incorporated the up-to-date understanding by the 

pavement industry in terms of how each common mode of pavement distress (cracking, rutting, 

raveling, etc.) initiates and propagates in both new and rehabilitated asphalt pavements, as a function of 

a wide variety of factors.  

Pertinent published literature to each of these topics was searched in the following: 

• Publications and ongoing studies in the Transportation Research Integrated Database (TRID), or 

by the Transportation Research Board (TRB)/National Cooperative Highway Research Program 

(NCHRP); 

• Publications, standards, technical reports, guides, handbooks, and manuals by ITD, Federal 

Highway Administration (FHWA), and American Association of State Highway and 

Transportation Officials (AASHTO); 

• Publications by academic institutions, such as the University Transportation Centers (UTCs) and 

National Center for Asphalt Technology (NCAT); 

• A review of documents and research in Canada, Europe and other international sources (e.g., 

World Road Association, i.e., PIARC); 

• Other scholarly journal articles, proceedings, technical reports, etc. 

A practitioner survey was also conducted to identify performance deterioration models used by various 

highway agencies for asphalt pavements and to capture the insights and experiences of users on the 

existing models, in terms of reliability, precision, input and output parameters, consideration of M&R 

history, implementation considerations, etc. The survey instrument was distributed to list serves such as 

Pav_Net and TriDurLE_Communications as well as selected state departments of transportation (DOTs). 

To ensure that the survey instrument receives a sufficient response rate in a timely manner, a user-

friendly online survey questionnaire was made and send via email. Along with the information gathered 

in literature search, the results of the survey helped modify the details of subsequent tasks. 

2.3 Mechanical Models and Numerical Models 
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Mechanical models treat asphalt mixture – the material of flexible pavement surface as a time- and rate-

dependent material. It displays responses within four fundamental categories under external excitations 

– viscoelasticity, viscoplasticity, viscodamage and micro-damage healing (Al-Rub and Darabi 2012). All 

distress modes are representations of damages in the macro scale, which initiate from micro damages 

within the material (Lytton 2000). Evidences are the tertiary creep in the rutting test and post-peak 

behavior of the stress–strain response in the compressive strength test (Lytton 2000, Al-Rub and Darabi 

2012, Zhang, Gu et al. 2017). Test results can be better matched by introducing viscodamage models, 

which take actions from the initiation and propagation of micro-cracks in the previous stages. 

Mechanical models mainly require material properties and model coefficient values measured and 

calibrated from laboratory tests, respectively. Calibrated mechanical models can have desirable 

predictions over new sets of experimental data if applied theories are generalized and advanced enough 

(Al-Rub and Darabi 2012, Darabi, Al‐Rub et al. 2012, Zhang, Gu et al. 2017). 

The major disadvantage of mechanical models is the complexity. The stress state and environmental 

condition of a field pavement vary with time and location, which results in dynamic analysis and process. 

Timely decision-making in the pavement maintenance and rehabilitation can hardly be achieved with 

such a time-consuming method. Currently, pure mechanical models are mainly applied in laboratory 

tests on asphalt mixture samples in which the environmental and loading conditions are simple and 

uniform. 

Numerical models play an important role in mechanical models and mechanistic-empirical models. For 

example, finite element (FE) model is a numerical model using the FE method. The FE method provides 

numerical solutions of partial differential equations, which can describe most engineering problems. The 

FE method solves the engineering problem of a complex system by dividing the system into finite 

elements. By solving the equation system assembled by all element equations to the original problem, 

the solutions at all element points can be obtained. For mechanical models, the FE model is typically 

built and analyzed in commercial packages such as ABAQUS, ANSYS and COMSOL (Darabi, Al‐Rub et al. 

2012, Zhang, Gu et al. 2017). These packages provide a platform to couple multiple material models and 

solve complex equation systems. Obtained numerical solutions are compared with test measurements 

to validate mechanical models. Currently, mechanical models are rarely implemented into pavement FE 

models to predict long-term performance of asphalt pavement considering the computational time and 

storage space. 

For mechanistic-empirical models, the pavement FE model can be built in packages introduced above 

and those aimed for pavement analysis such as ELLIPAVE, MICHPAVE and EverStressFE. First, pavement 

responses required in mechanistic-empirical models are elastic or viscoelastic responses. Second, 

packages such as ELLIPAVE and MICHPAVE simplify the pavement FE model in terms of the structure 

dimension and/or load configuration. In general, representative pavement responses rather than true 

pavement responses are applied in mechanistic-empirical models. Other numerical models such as the 

discrete element model (DEM) are currently limited to simulating laboratory and field tests on small-

scale asphalt mixture specimens due to the model assumption, computational time and storage space 

(Peng 2014, Ma, Zhang et al. 2016, Ma, Zhang et al. 2016, Zhang, Ma et al. 2018). 
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2.4 Empirical Models and Mechanistic-Empirical Models 

Empirical models are typically built without any material or structural responses. Pavement 

performance is associated with a given set of environmental, material, and loading conditions via 

regression analysis (Huang 2004). The advantages of empirical models, as opposed to mechanical 

models, are their simplicity of the model construction and implicit relations between pavement 

performance and these external factors. For example, Archilla and Madanat (Archilla and Madanat 

2000) first identified several factors affecting the rutting development in flexible pavements from 

extensive literatures, which can be summarized as material properties, vehicle axles, thawing index and 

load numbers. Then they selected the exponential function from researches on the rutting development 

in pavements, unbound granular materials and natural soils. The exponential function can characterize 

the rutting development in the field road tests they studied. Finally, they specified values for model 

coefficients by performing statistical analysis. Recently, with the development of regression analysis, 

advanced model forms and regression approaches have been proposed. For example, a nonlinear 

mixed-effects model was applied in the evaluation and prediction of cracking progression in pavements 

(Khraibani, Lorino et al. 2012). 

The major disadvantage of empirical models is the over-reliance of model coefficient values on the 

database for model calibration. The constructed empirical models can hardly characterize or predict 

performance of pavements of which any condition has changed. Therefore, empirical models have 

extremely limited applications, especially considering the global climate change. 

Mechanistic-empirical models are the fast developing and widely applied models for pavement 

performance evaluation and prediction. They take advantages of mechanical models and empirical 

models - rationality and simplicity. Pavement responses, mechanical theories, external factors and 

statistical analysis are involved in mechanistic-empirical models at different degrees. The idea of the 

mechanistic-empirical approach can date back to the 1950s where the vertical compressive strain on the 

subgrade surface was used as an indicator for the pavement rutting (Kerkhoven and Dormon 1954, 

Huang 2004). This example presents the concept of “critical pavement response” which considers the 

failure criterion of a distress mode and are related to material properties, structural configuration and 

environmental and loading conditions of the pavement. 

Current progress in mechanistic-empirical models are mainly recorded and implemented in the 

Mechanistic-Empirical Pavement Design Guide and the software AASHTOWare Pavement ME Design 

(ARA-ERES 2004). The procedures of using mechanistic-empirical models to evaluate and predict 

pavement performance are presented in Figure 2.1. Accordingly, required information to calibrate a 

mechanistic-empirical model are shown in Figure 2.1 as well. Inputs and outputs can be found in the 

laboratory and field test results and databases such as the Long-Term Pavement Performance (LTPP) 

Database. A pavement distress model typically includes three parts - the mathematical form 

characterizing the development of a distress mode; model parameters representing pavement 

responses, material properties, environmental and loading conditions; and model coefficients to be 

calibrated. As for pavement responses, either a layered elastic solution (JULEA) or the finite element (FE) 
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approach can be used according to the design guide (ARA-ERES 2004). The previous one is a closed-form 

analytical solution predicting pavement responses at arbitrary locations. The other one is a numerical 

approach which is introduced in the previous section. 

 

Figure 2.1 Flow of Pavement Performance Evaluation and Prediction Using Mechanistic-Empirical 
Models Revised from Reference (Lytton, Luo et al. 2018) 

2.5 Machine Learning Models and Probabilistic Models 

Compared with other model types, machine learning (ML) models are innovative models for pavement 

performance evaluation and prediction. They are constructed (or trained) by ML algorithms which can 

improve automatically through experience (Mitchell, Carbonell et al. 2012). ML models with different 

structures and operations are applied according to types of the problem and data for model training. 

One of the most applied ML models - artificial neural networks (ANNs) are shown in Figure 2.2. They 

capture the relationships between inputs and outputs as the biological nervous system. Figure 2.3 

illustrates a feedforward NN model for predicting International Roughness Index (IRI) from climatic and 

traffic data (Hossain, Gopisetti et al. 2017). It is a three-layered architecture including the input layer, 

hidden layer and output layer. Each block or circle simulates a neuron in the human brain and each line 

represents the connection between neurons. The number of neurons in the input layer and output layer 

is determined by the specific problem. The neuron number in the hidden layer and the transfer function 

connecting neurons should be selected by users. The ANN model automatically adjusts the weight factor 

of each connection and the bias to the neuron in the model training and validation until the difference 

between the actual and predicted outputs drops below the threshold or the iteration number goes 
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beyond the threshold. ANNs with different structures and learning algorithms and other ML models such 

as tree-based models are introduced in the following chapters. 

 

Figure 2.2 Structures of typical NN models (Do, Taherifar et al. 2019). RNN = recurrent neural network, 
DBN = deep belief network, and FNN = fuzzy neural network 

 

Figure 2.3 Schematic representation of an ANN model (Hossain, Gopisetti et al. 2017) 
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The main difficulties and limitations of ANN models can be summarized as follows (Ceylan, Bayrak et al. 

2014, Hossain, Gopisetti et al. 2017): 

• the design of an ANN model includes selections of the hidden layer number, the neuron number 

in hidden layer(s), the transfer function type, the number and type of inputs, etc. which vary 

with specific problems; 

• ANN models cannot provide explicit relations between inputs and outputs as conventional 

models; 

• the selection of datasets for model training and validation is random. Therefore, the constructed 

ANN model cannot guarantee the best one; 

• as empirical models, a constructed ANN model has limited applications in predicting pavement 

performance with very different conditions; 

• ANN models have possibilities of overfitting. 

Models mentioned above can be categorized as deterministic models except that some ML models 

introduce the probabilistic framework to represent and manipulate uncertainty about models and 

predictions (Ghahramani 2015). As a comparison, probabilistic models provide a sequence of outputs 

with corresponding probabilities. The dynamic nature of pavements in terms of the deterioration, 

environmental and loading conditions and maintenance and rehabilitation (M&R) histories (Alimoradi, 

Golroo et al. 2020) is considered in such models. Therefore, they are widely applied in predicting 

comprehensive indices for the pavement condition such as the International Roughness Index (IRI). A 

representative probabilistic model in the pavement performance modelling is Markov Chain Process 

(MCP). 

In MCP, the time history of the condition index is first divided into multiple condition states. The term 

transiting the condition index between condition states is called Transition Probability Matrix (TPM) 

expressed as the following equation, 
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Where: 

𝑝𝑖𝑗
𝑡,𝑡+1 = the probability that the condition from i at state t to j at state t+1 which is defined and 

calculated by users from collected pavement performance data (Yang, Lu et al. 2006) 
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In MCP, the transition probabilities are assumed constant and the current condition is only relied on the 

previous one. For example, the IRI at state t can be expressed in terms of its initial value as the following 

equation (Alimoradi, Golroo et al. 2020). 

1 0

t

t t−=  = = IRI P IRI P IRI  

MCP requires users to have clear perceptions of the data and pavement condition to deal with tasks 

such as defining condition indices and partitioning condition time histories. The major limitations of 

probabilistic models are that they cannot provide explicit forms predicting continuous pavement 

condition with associated model parameters and time; and those stationary transition probabilities 

oversimplify the problem and cause systematic error. Such error accumulates in the state transition and 

reduce the prediction accuracy progressively. 

2.6 Comparison of Different Model Types 

To better illustrate application and comparison of different model types in predicting pavement 

performance, rutting is utilized as an example in this section. Rutting or permanent deformation in 

flexible pavements occurs in both surface and supporting layers. This section introduces rutting in 

surface layers which are made of asphalt mixtures. Rutting typically accumulates at intermediate and 

high temperatures and under repetitive traffic loads (Tseng and Lytton 1989). Major laboratory test 

equipment characterizing rutting development in asphalt mixture samples (cylinders or slabs) include 

Asphalt Mixture Performance Tester (AMPT) (Dongré, D'Angelo et al. 2009), Hamburg Wheel Tracking 

Device (HWTD) (Lu and Harvey 2006), Asphalt Pavement Analyzer (APA) (Kandhal and Cooley 2003), 

Superpave Shear Tester (SST) (Shenoy and Romero 2001), French Pavement Rutting Tester (Romero and 

Stuart 1998), Georgia Loaded Wheel Tester (Shami, Lai et al. 1997), Vertically Loaded Wheel Tester 

(VLWT) (Hou, Shi et al. 2018), etc. In these tests, samples are under either repetitive wheel loads or 

continuous haversine compressive loads. Temperature and load speed/cycle are constant during each 

test. Test results show the rutting development in asphalt mixtures share a typical shape as shown in 

Figure 2.4. It can be divided into three distinctive stages based on the acceleration rate. Shape functions 

capturing the whole or partial curve were utilized in constructing empirical and mechanistic-empirical 

models. Physical interpretations or hypothesis on the mechanisms of three stages contributed to the 

theoretical model and parameter selections of mechanical, mechanistic-empirical and machine learning 

models. 
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Figure 2.4 Permanent strain and strain rate versus the number of loading cycles (Zhang, Pei et al. 
2012) 

2.6.1 Mechanical Models and Numerical Models 

According to mechanical models, the main contributor to the rutting development in asphalt mixtures is 

viscoplastic strain. Fundamental components determining the initiation and development of viscoplastic 

strain are the yield surface function, potential function and constitutive model (Al-Rub and Darabi 2012). 

The yield surface function, which is the same as potential function in associated viscoplastic models, 

determines the initiation, rate and direction of viscoplastic strain (Zienkiewicz, Humpheson et al. 1975). 

It is related to material inherent properties such as the strength and behaviors such as the work-

hardening (Lytton 2000). Typical yield surface models for asphalt mixtures include von Mises (Khan and 

Huang 1995), Mohr–Coulomb (Fwa, Tan et al. 2004), Drucker–Prager (Tan, Low et al. 1994) and their 

modified versions (Zhang 2012). The constitutive model is responsible for predicting material responses 

under various environmental and loading conditions based on fundamental mechanics and theories 

such as thermodynamics (Schapery 1997, Al-Rub and Darabi 2012, Darabi, Al‐Rub et al. 2012), energy 

balance (Zhang 2012, Zhang, Luo et al. 2013), arbitrary Lagrangian-Eulerian (Behnke, Wollny et al. 2019), 

etc. 

As described before, current applications of mechanical models are limited to asphalt mixture samples. 

As for numerical models of flexible pavements which are implemented with mechanical models of 

asphalt mixtures, mechanical models are typically simplified. presents examples of flexible pavement 

numerical models. It can be seen that 

• applied mechanical models of viscoplasticity include creep model which is included in the 

material library of ABAQUS and generalized Kelvin model which typically characterizes 

viscoelastic materials. Initiation and accumulation of permanent strain rely more on time rather 
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than stress state of the material and exist in the entire service life of the pavement. 

Characterizations of viscoplasticity as a damage mode of the material are not reflected in these 

models; 

• type, weight and speed variations of traffic vehicles were not considered, which proved to 

significantly affect the stress/strain state and rutting development (Deng, Luo et al. 2019, Deng, 

Zhang et al. 2022); 

• applications of proposed numerical models in rutting development prediction at a network level 

are not practical due to their current performance and expenses of ABAQUS. 

However, these numerical models proposed techniques in the pavement geometry simplification (Fang, 

Haddock et al. 2004), load equivalency (Huang, Mohammad et al. 2001, Ali, Sadek et al. 2009) and 

analysis acceleration (Wu, Chen et al. 2011), which improved the efficiency of computation and analysis, 

and provides references for related studies. Currently, comprehensive mechanical models described in 

Section 2.2 have been implemented into FE models of a slab in the wheel tracking test to compare 

different loading modes (Abu Al-Rub, Darabi et al. 2012) and a pavement structure to conduct the 

sensitivity analysis (Luo, Li et al. 2020). 

Table 2.2 Representative Numerical Models for Rutting Development in Asphalt Pavements 

Author 
Numerical Models of Pavement and 

Mechanical Models of Material 

Environmental and Loading 

Conditions 
Results 

Fang et 

al. (Fang, 

Haddock 

et al. 

2004) 

and 

Huang et 

al. 

(Huang, 

Mohamm

ad et al. 

2001)  

• A 2D plane strain FE model (Fang, 

Haddock et al. 2004) and a 3D FE 

model (Huang, Mohammad et al. 

2001) were built in ABAQUS for 

pavements; 

• The creep strain rate was defined as 
n mA t =  

where σ is uniaxial equivalent 

deviatoric stress; t is loading time; 

and A, m and n are parameters 

obtained from creep tests. 

• The load was modelled as 

quasi-static load with a 

transverse distribution. Non-

uniform contact stress and 

transverse wheel wander 

were considered (Fang, 

Haddock et al. 2004); 

• A step load was applied 

which lasted total time of the 

test loads (Huang, 

Mohammad et al. 2001). 

• A failure criterion was 

proposed based on the 

(deformed) pavement 

surface profile. 

Predicted failure mode 

of pavements matched 

field observations 

(Fang, Haddock et al. 

2004); 

• Predicted rutting 

development had a 

reasonable degree of 

accuracy with 

measurements in an 

accelerated loading 

facility (ALF) test 

(Huang, Mohammad 

et al. 2001). 

Ali et al. 

(Ali, 

Sadek et 

al. 2009) 

• A 2D axisymmetric FE model was 

built in ABAQUS for the pavement; 

• The viscoplastic strain rate 

considering the time-temperature 

principle is 

m

n

vp T

T

t
A

a
 

 
=  

 
 

where σ is deviatoric stress; aT is 

temperature shift factor for the 

viscoplastic effect; t is loading time; 

and AT, m and n are constitutive 

• The time interval of a 

vehicular load was calculated 

by 
p

h

a b
T

v

+
=  

where a is the size of mesh 

element; b is the tire 

footprint; and vh is the 

vehicle speed; 

• The temperature was 

measured in the test. 

Predicted rutting 

development matched well 

with tests, in which the 

temperature and vehicle 

speed were constant. 



 

Developing Enhanced Performance Curves of ITD Asphalt Pavements by Mining the Historical Data 36 

parameters obtained from full-scale 

tests. 

Wu et al. 

(Wu, 

Chen et 

al. 2011) 

• A 2D axisymmetric FE model was 

built in ABAQUS for the pavement;  

• The material was modelled as 

elastoplastic in the first load cycle 

and linear elastic in the rest load 

cycles. The accumulated permanent 

strain at n-th cycle is 

1

1
( )

n
y n

p

n n L

d
N

h d E

  


−

−  −
= +  

 
  

where σ is cyclic deviatoric stress; σy 

is von Mises yield strength; h is 

hardening constant; EL is loading 

modulus; and dn is ratio of unloading 

modulus to loading modulus at n-th 

cycle. 

• Constant tire pressures were 

used for different load levels. 

The field loading condition 

was modelled by an 

accelerated analysis. The 

permanent deformation after 

N load cycles is 

( ) ( )

B

r

r

N
PD N PD N

N

 
=  

 

 

where B is slope of the curve 

of permanent deformation 

(PD) against number of 

cycles in a log–log scale, 

which is obtained from 

laboratory tests; and Nr is the 

reference number of load 

cycles; 

• The average temperature was 

utilized for the asphalt layer 

to calibrate layer modulus. It 

was measured in the field 

and adjusted every 25,000 

load cycles. 

Predicted rutting 

development needed to be 

shifted to match field 

measurements. Shift factors 

ranged from 0.8 to 1.6. 

Li et al. 

(Li, 

Huang et 

al. 2015) 

• A 3D FE model was built in 

ABAQUS for the pavement; 

• A generalized Kelvin model was 

utilized for the asphalt mixture as 

0

1 0 0

1 1
( ) 1 exp

20

n

i i i

P t t
t

E E


 =

   
= − − + +     

   


 

where ε(t) is total strain at time t; P0 

is load magnitude; and η0, E0, τi and 

Ei are model parameters determined 

from uniaxial cyclic compression test. 

• The contact stress between 

the tire and pavement surface 

was decomposed into 

vertical and tangential 

stresses; and the movement 

of vehicular loads was 

simulated; 

• The temperature was 

measured in the field.   

FE model provided an 

acceptable prediction of 

rutting depth in long and 

steep section of 

mountainous highway. 

 

2.6.2 Empirical Models and Mechanistic-Empirical Models 

Both empirical and mechanistic-empirical (ME) models include shape functions characterizing entire 

(Stage I+II+III) or partial (Stage I+II) curve of the rutting development such as polynomial, exponential 

and multi-staged functions. Compared with mechanical and numerical models, realistic and precise 

environmental and loading conditions are more convenient to be considered and implemented into 

empirical and ME models. 

Table 2.3 introduces empirical and ME models with either representative forms, parameters or 

procedures to process field conditions. The fundamental discrepancy between empirical and ME models 

is that empirical models ignore the role of pavement structure as a system to respond and deteriorate 

according to external environmental and loading conditions. Asphalt layers of flexible pavements do not 

deteriorate as asphalt mixture samples in the laboratory. Therefore, material properties utilized for the 

empirical model calibration (Shell International Petroleum Company 1978, Khedr and Mikhail 1996, 
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Ricardo Archilla and Madanat 2001, Epps 2002, Witczak 2007, Ji, Zheng et al. 2013) may have different 

effects on different pavement structures. Some structural parameters were considered in empirical 

models such as the layer thickness (Archilla and Madanat 2000), layer depth (Ji, Zheng et al. 2013) and 

stress state (Korkiala-Tanttu and Dawson 2007, Ji, Zheng et al. 2013). The first two are too general and 

the last one proved to be more affected by the loading condition (Deng, Zhang et al. 2022). 

Pavement responses included in ME models were either measured (Kenis 1978) or calculated (Deacon, 

Harvey et al. 2002, Epps 2002, ARA-ERES 2004, Deng, Zhang et al. 2022). In fact, the introduction of the 

‘mechanistic’ part contributes to the ‘empirical’ part as well. A recent study (Deng, Zhang et al. 2022) 

pointed out the introduction of pavement responses reduced the dependency of rest regression 

parameters since pavement responses changed accordingly with environmental and loading conditions. 

Therefore, a highly nondeterministic regression analysis for traditional empirical models can be 

simplified. 

As for the dynamic nature of field temperature and traffic load, the service time of the pavement was 

partitioned. Temperatures were averaged (Ji, Zheng et al. 2013) or represented by extreme ones 

(Archilla and Madanat 2000); and traffic load was categorized (Kenis 1978, Archilla and Madanat 2000) 

or converted to the standard one (Khedr and Mikhail 1996, Epps 2002, Witczak 2007). Moreover, a 

statistical model for the wheel wander was considered for a more representative loading condition as 

the field (ARA-ERES 2004). Accumulated rut depth required transfer to the current time period, which is 

also a method considering the dynamic nature of field conditions (ARA-ERES 2004, Ji, Zheng et al. 2013). 

Improvements for empirical and ME models can be made on modelling the variation of traffic load 

speed for the increasing consideration of viscoelastic models for the asphalt layer (ARA-ERES 2004, 

Deng, Zhang et al. 2022). Besides, deteriorating pavement models can be implemented into ME models 

for more representative pavement responses. 

Table 2.3 Representative Empirical and Mechanistic-Empirical Models 

Model 

Type 
Shape Author Model Form 

Loading and Environmental 

Conditions 

Empirica

l 

Two-

Stage 

Shell Method 

(Shell 

International 

Petroleum 

Company 

1978) 

0

,mix v

RD kh
S


=

 

where k is the product of a dynamic factor 

and a configuration factor; h is the layer 

thickness; σ0 is the constant stress of the 

standard wheel; and Smix,v is the mixture 

stiffness under rutting condition. 

The mixture stiffness depends on the 

stiffness of its contained binder, 

0
,

3
bit v

eq w

S
W t


=

 

where η0 is the binder viscosity at the 

average paving temperature during 

pavement service life; Weq is the 

number of standard wheel passes 

from the traffic spectrum; tw is the 

wheel loading time related to the 

traffic speed. 
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Empirica

l 

Two-

Stage 

Khedr and 

Mikhail 

(Khedr and 

Mikhail 

1996) 

m

p AN −=
 

where εp is the permanent strain; A and m 

are model parameters. 

• Environmental condition is 

reflected on the model parameter 

A,  
S

A J
E

 
=  

 

 

where σ is deviator stress; J and 

S are material constants; E is 

resilient modulus of asphalt 

mixture; 

• Traffic load was represented by 

the equivalent single axle load 

(ESAL) in the study. 

Empirica

l 

Two-

Stage 

Archilla and 

Madanat 

(Archilla and 

Madanat 2000, 

Archilla 2006) 

9
10 8 9 1

1

exp
1000

t
s is

it i i

s is

TI N
RD a

N

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−

=

   
 +   

  


 

where RDit is rut depth for section i at time 

t; Nis is the variable representing the 

cumulative number of load repetitions 

applied to pavement section i up to time 

period s; βi10 is rut depth immediately after 

construction for pavement section i; TIs is 

the thawing index during time period s; β8 

and β9 are the thawing index factor and Nis 

exponent; ai is a correction factor. 

• TIt is related to mean minimum 

and maximum temperatures of 

the period; 

• ∆Nis is related to the loads in 

front axle of the vehicle, in 

single load axle(s) of the vehicle 

and in tandem load axle(s) of the 

vehicle, number of load axles 

and standard axle load； 

• This model was modified for the 

WesTrack Road Test in another 

study by the authors (Ricardo 

Archilla and Madanat 2001). 

Predicted rut depth accumulated 

with respect to the exponential 

of load repetitions. Material 

properties such as voids filled 

with asphalt (VFA) were 

involved in the model as well. 

Empirica

l 

Two-

Stage 

Epps (Epps 

2002) 

2

2

200

ln( ) 6.1651 0.30991ln( ) 0.00294305

0.0688276 0.0657803 0.600498( )

1.59167( ) 2.35276( )

0.21327 ln( )( ) 0.140386ln( )( )

air

asp asp

rd ESAL V

P P P fine plus

coarse replace

ESAL coarse ESAL replace

= − + +

+ − + −

− +

+ −

 

where rd is rut depth; ESAL is equivalent 

single axle load; Vair is air void content; 

Pasp is asphalt content; P200 is percent 

aggregate finer than No. 200 sieve; fine-

plus, coarse and replace are variables 

which take the value of unity in the fine 

plus, coarse, or replacement mixes. 

The regression model derived from 

the WesTrack test and served as 

Level-1 model. The rut depth was 

related to the load repetition and 

material properties obtained from 

laboratory tests. 

Empirica

l 

Two-

Stage 

Witczak 

(Witczak 2007) 

The field rut depth Rut was associated with 

the flow number Fn from the repeated load 

test and the permanent strain εp from the 

repeated load permanent deformation test: 

( ) ( ) ( )( )

( )( )

2

1,000,000log log 0.002 log

0.2815 log 1.6079

Rut Rut ESAL

ESAL

= −

+ −

 

where ESAL is equivalent single axle load; 

Rut1,000,000 is the rut depth at 1 million 

ESALs. 

• The flow number Fn from the 

laboratory repeated load test 

should be converted to the 

temperature and traffic level in 

the field; 

• Materials and test results from 

FHWA-ALF and WesTrack tests 

were utilized to derive this 

regression model (Sullivan 

2002). 
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Empirica

l 

Two-

Stage 

Ji et al. (Ji, 

Zheng et al. 

2013) 

( ) ( ) ( )

 ( ) ( )
( )

0.6274 5.2702 0.554211

1.9279 1

6.714 10

/ / 20
m

d

RD N T d

v 

−

− +

=  

 

where RD is the rut depth after N number 

of load repetitions; T is pavement 

temperature; d is pavement depth; τ and [τ] 

are the maximum shear stress of asphalt 

layers and shear strength of asphalt 

mixtures; vd is vehicle speed; m is the creep 

coefficient of asphalt mixtures obtained 

from laboratory tests. 

• This regression model derived 

from an ALF test. The rut depth 

was calculated each month and 

the monthly load repetitions 

should be first adjusted 

according to the average 

monthly pavement temperature 

and added to the previous ones; 

• A similar model was proposed 

and calibrated in a previous 

study (Kim, Lee et al. 2017). In 

this study, the rut depth 

accumulation followed the 

method proposed by Deacon et 

al. (Deacon, Harvey et al. 2002) 

and was validated with 

independent field rutting 

performance data. 

Empirica

l 

Three-

Stage 

Zhou et al. 

(Zhou, Scullion 

et al. 2004) 

A three-stage model was proposed for 

similar rutting development observed in 

(accelerated load facility) ALF tests: 

( )

,
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( 1),ST

b
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f N N

p ST ST

aN N N

c N N N N N

d e N N
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 

  −

 = 
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= + −  


= + − 

 

where εp is permanent strain; εPS and NPS 

are the permanent strain and number of 

load repetitions corresponding to the 

initiation of the secondary stage; εST and 

NST are the permanent strain and number of 

load repetitions corresponding to the 

initiation of the tertiary stage; a, b, c, d and 

f are model coefficients. 

• ALF tests indicated possible 

occurrence of the third stage of 

rutting development in the field; 

• This proposed model was 

utilized in a laboratory repeated 

load test on field samples, in 

which the environmental and 

loading conditions were 

constant. 

Empirica

l 

Three-

Stage 

Korkiala-Tanttu 

and Dawson 

(Korkiala-

Tanttu and 

Dawson 2007) 

( )( )/1000
1

1000

B

D Nb

p

N
aN A C e

 
= + − − 
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where εp is permanent strain; N is the 

number of load repetitions; a, b, A, B, C 

and D are regression parameters. 

This model was utilized in a heavy 

vehicle simulator (HVS) test on a 

full-scale pavement. The 

environmental and loading conditions 

were kept constant. 

Mechani

stic-

Empirica

l 

Two-

Stage 

Kenis (Kenis 

1978) 

4( ) ( / 2) sys

p sysR N R d N



−

=
 

where Rp(N) is the permanent deformation 

at load repetition N; R4(d/2) is the general 

deflection response of pavement surface as 

a function of load duration and 

temperature; µsys is a system rutting 

characteristic representing the fractional 

part of the general response that becomes 

permanent; αsys is a system rutting 

According to an application of 

VESYS model (Zhou and Scullion 

2002), the rut depth in the asphalt 

layer can be calculated by 

( )
2

1
1

( ) sys

Nn

p i i sys

i N

R N U U N dN



−+ −

=

= − 
 

where Ui
+ and Ui

- are deflections at 

top and bottom of i-th finite layer due 

to axle group. 
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characteristic representing the rate of 

change of permanent deformation. 

Mechani

stic-

Empirica

l 

Two-

Stage 

Deacon et al. 

(Deacon, 

Harvey et al. 

2002) 

i

jRD K=
 

where K is the model parameter; γj
i is the 

plastic strain at the j-th hour of trafficking. 

• The accumulation of plastic 

strain is 
1/

1

c
c

i

ji

j j j

j

a n
a




−
  
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exp( ) e

j ja a b =
 

 1 1 1

ci a n = 
 

where γj
e is elastic shear strain at 

the j-th hour; ∆n1 and ∆nj are 

numbers of axle load repetitions 

applied during the first and j-th 

hour, respectively; a, b and c are 

model coefficients; 

• This model served as Level-2 

model for rutting development 

in the WesTrack test. In the test, 

traffic loads were uniformly 

distributed throughout a 24-hr 

period and the yearly 

temperature environment was 

assumed to be the same for each 

year of the 10-year period (Epps 

2002). 

Mechani

stic-

Empirica

l 

Two-

Stage 

ARA-ERES 

(ARA-ERES 

2004) 

• The relation between the permanent 

strain and resilient strain derived from 

the laboratory test and was modified 

for the field: 

32 0.399371.7343.15552

110 rr
p

r

r

T N
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




−=

  
where εp is the permanent strain; εr is 

the resilient strain; T is the temperature; 

N is the number of load repetitions; βr1, 

βr2, and βr3 are calibration factors; 

• The total rut depth is the sum of ones 

in divided sublayers:   

1
i

N

p i

i

RD h
=
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where εpi is the permanent strain at i-th 

sublayer; ∆hi is the thickness of i-th 

sublayer. 

• The resilient strain is calculated 

from the layered elastic solution: 

( )
*

1
r z x y

E
   = − −

 
where |E*| is the dynamic 

modulus magnitude of asphalt 

mixtures; µ is Poisson’s ratio; σz, 

σx and σy are stresses at vertical 

and other two directions at a 

given depth; 

• Rutting development has 

different curves according to the 

temperature and stress/strain 

state of the evaluation period. 

Accumulated rut depth 

(permanent strain) should be 

transferred to the curve for the 

current period first.   

Mechani

stic-

Empirica

l 

Two-

Stage 

Deng et al. 

(Deng, Zhang 

et al. 2022) 

The relation between the permanent strain 

and resilient strain was proposed for 

unbound granular materials (Lytton, Luo et 

al. 2019) and extended to asphalt mixtures: 

0
( ) 2 1( )

( ) ( )
p m nN N

r

N J I K
e

Pa Pa
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
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−
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where εp(N) is the permanent strain at load 

repetition N; εr is the resilient strain; I1 and 

J2 are the first invariant of the stress tensor 

and the second invariant of the deviatoric 

This model was utilized in a VLWT 

test on multi-layered asphalt mixture 

structures, in which the 

environmental and loading conditions 

were constant. 
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stress tensor; Pa is atmosphere pressure; γ∞, 

ρ, β, m, n, K and N0 are model parameters. 

Mechani

stic-

Empirica

l 

Three-

Stage 

Deng et al. 

(Deng, Zhang 

et al. 2022) 

The relation between the permanent strain 

and resilient strain derived from a three-

stage empirical model for the HWTT test 

(Yin, Arambula et al. 2014) and was 

modified by introducing the structural 

response εr: 

-1/
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( )
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r

N N

N N






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where εp(N) is the permanent strain at load 

repetition N; εr is the resilient strain; T is 

the temperature; ρ, β, N0 and N∞ are model 

parameters. 

This model was utilized in a VLWT 

test on multi-layered asphalt mixture 

structures, in which the 

environmental and loading conditions 

were constant. 

 

2.6.3 Machine Learning Models 

Construction of a ML model for rutting development includes collection and organization of material, 

structure and pavement performance data for representative model inputs and outputs. Meanwhile, the 

selection of ML algorithms according to the requirements and characteristics of the problem and data is 

important. 

Alharbi (Alharbi 2018) applied an ANN model with one hidden layer to predict rutting index from 

pavement age, thickness, average temperatures, etc. Compared with linear regression models, trained 

ANN improved the prediction accuracy (R2) by 75.61%. Gong et al. (Gong, Sun et al. 2018) applied two 

ANN models to compare predicted total rut depth with the transfer function in the Pavement ME Design 

Guide (ARA-ERES 2004). The first ANN model applied one hidden layer and individual rut depth in the AC 

layer, base layer and subgrade as inputs. The second ANN model applied two hidden layers and 

additional 18 material, structural, environmental, traffic and time parameters as inputs. As a 

comparison, two linear regression models were built with identical inputs as ANN models to represent 

the transfer function in the Pavement ME Design Guide. Results showed two ANN models improved the 

prediction accuracy (R2) by 22% and 88%. Moreover, by using the random forest algorithm, the 

relevancy of each input to the total rut depth was measured and ranked. Amin and Ajakaiye (Amin and 

Ajakaiye 2020) applied an ANN model with two hidden layers to predict maximum rut depth from the 

information of traffic, climate, time and pavement surface condition and profile. A total of 638 road 

segments were utilized and contributions of all inputs were evaluated by sensitivity analysis. 

Examples introduced above are the feedforward ANN. As a descendant of feedforward ANN, each 

neuron in the hidden layer(s) of a recurrent neural network (RNN) can send produced output to itself. In 

the time scale, a neuron at each time step is triggered by the output from the previous step and the 

input for this step (Géron 2019). Obviously, RNN models are suitable for modeling time series data since 
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they can remember and pass information through time (Okuda, Suzuki et al. 2018). Okuda et al. (Okuda, 

Suzuki et al. 2018), Choi and Do (Choi and Do 2020) trained RNN models to predict rut depth from time-

series data of traffic, climate and inspection history. Good agreements were achieved between 

predicted and measured rut depths. 

2.7 Practitioner Survey  

This project designed a practitioner survey to identify performance deterioration models used by 

various highway agencies in the United States for asphalt pavements and to capture the insights and 

experiences of users on the existing models, in terms of reliability, precision, input and output 

parameters, consideration of M&R history, implementation considerations, etc. Approved by the project 

panel, the survey instrument was distributed to list serves such as Pav_Net and 

TriDurLE_Communications as well as selected state departments of transportation (DOTs). The complete 

version of the survey is posed in Appendix A. Table 2.4 presents a summary of the technical questions 

asked in the survey. The survey was delivered online via the platform Qualtrics® since March, 2021. As 

of the date of this report, a total of 43 effective responses were collected from 23 states of the United 

States. 

Table 2.4 Summary of Technical Questions in the Survey 

Questionnaire topics 

• Specific distresses concerned in the applied models. (Q1) 

• Resources of applied models. (Q2) 

• Limitations of applied models. (Q3) 

• Inputs of applied models including the name, difficulties in the usage, etc. (Q4-Q10) 

• Purposes of the applied models. (Q11-Q13) 

• Performance of the applied models. (Q14-Q19) 

• Management of the applied models including the quality check, improvements, etc. (Q20-Q21) 

• Expectations of applied models. (Q22-Q23) 

• Opinions on the artificial intelligence models (Q24-Q25) 

 

It was reported that rutting (15.66%), roughness (15.66%), transverse cracking (14.46%), longitudinal 

cracking (13.86%) and alligator cracking (13.86%) were the five distresses concerned most by the 

researchers and technicians in DOTs, according to a total of 166 choice counts. Therefore, data of these 

distresses and associated variables are focused and collected for the predictive models in this project. 
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Currently, the tools developed or purchased by individual agencies are the most popular choices for the 

pavement distress development prediction and management. Those tools include professional statistical 

packages such as R, business analytics services such as Power BI, and basic data visualization and 

analysis tools such as Excel spreadsheet, etc. The software built upon the AASHTO mechanistic-empirical 

(ME) pavement design guide - AASHTOWare Pavement ME Design ranked second in the survey. 

Considering the variety of applied tools, their limitations provided by the participants are quite 

scattered, from data quality to software update. 

This survey paid attention to the data especially the model inputs and made corresponding questions. 

Following the mainstream predictive models such as the ME models, the model inputs were divided into 

four categories - traffic, climate, material and structure. Figure 2.5 shows their necessities in the 

predictive models and difficulties to be obtained according to the user experience of the participants. It 

was found that the traffic information was more difficult to be obtained than the climatic information 

resulting from the lack of the traffic monitoring system (TMS) in certain areas. As a comparison, climate 

data are more accessible from national weather databases and services. It was interesting to notice that 

the information on pavement structures and materials was believed to be important and necessary in 

the predictive models. However, a portion of the participants reported that variables of these two 

categorizes were not considered in the models or systems they currently applied. For those variables 

which are difficult to be obtained, the typical solutions include referring to recommended values in the 

systems, papers and reports, and using models without them. 

 

Figure 2.5 Information of four major model inputs 

According to the survey responses, the main purpose of using these predictive models was to obtain 

distress indices for the pavement management. Therefore, the applied predictive models were expected 

with high qualities. Figure 2.6 shows the top five qualities of a good predictive model voted by the 

participants. It can be summarized that the accuracy, complexity and applicability are concerned most 

by those model users. Specifically, 80 percent of the participants expected the predictive models with 
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the accuracy (R2) over 0.80. Nearly 50 percent of the participants believed that the main factor causing 

the poor predictions was the limited data for the model calibration. The solutions they can think of 

include increasing data amount for the mode construction and the frequency of the model validation, 

performing outlier reviews, etc. As for the model reliability and ruggedness, they were proposed based 

on the experience of the participants in obtaining very different predictions in pavements with similar 

conditions. 

 

Figure 2.6 Top 5 model qualities 

As the models to be developed in this project, questions on the artificial intelligence (AI) models were 

made in the survey. Responses of the participants on the knowledge of and attitude towards the AI 

models are presented in Figure 2.7. It was found that over 90 percent of the participants did not use AI 

models as the predictive models and half of the participants had no idea what the AI models were. 

However, it is promising that 32 percent of the participants showed their interests in using AI models as 

their predictive models and 64 percent the participants was willing to try after the comparison with 

traditional models. Therefore, it is worthwhile to develop and promote AI models in this project as the 

predictive models for pavement distresses. 
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(a) 

 

(b) 

Figure 2.7 Responses of the participants on the AI models (a) knowledge; and (b) attitude 

2.8 Conclusions  

In Chapter 2, a literature review on current predictive models of asphalt pavement performance was 

conducted. Specifically, rutting development was utilized as an example to compare different model 

types. A practitioner survey on the insights and experiences of users on the existing models by various 

highway agencies in the United States was analyzed. The major findings in this study can be summarized 

as follows. 

• Mechanical model can have desirable predictions with applied theories generalized and 

advanced enough. However, for its complexity and time consumption, applications on field 

pavement sections for long time performance are limited; 

• Empirical model has the advantages such as simplicity of the model construction and implicit 

relations between pavement performance and influencing factors. However, the over-reliance 

of model coefficient values on the applied training data restricts its applications for cases 

outside the database for model calibration;  

• Mechanistic-empirical model takes advantages of mechanical model and empirical model with 

basic accuracy, rationality and simplicity. Pavement conditions and responses are involved in a 

mechanistic way; 

• Machine learning model takes advantages of artificial intelligence and has sophisticated model 

structures and operations. Relations between pavement performance and influencing factors 

can be efficiently and automatically captured from data iteratively. However, it has potential 

problems of overfitting and limited applications with very different data as empirical model.  
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3. Developing Neural Network Models for Asphalt Pavement 

Performance in Idaho 

3.1 Introduction 

As described in Chapter 2, current popular predictive models include ME models and ML models, each 

having unique advantages and limitations. With the improving analyses of pavement deterioration 

mechanisms and computer-aided techniques in data mining, the construction and calibration of 

predictive models have gained continuous development. ME models take advantage of solid 

foundations of mechanical models and concise expressions of empirical models (Deng, Zhang et al. 

2022). Mechanistic aspects are reflected on the involvement of material failure criteria and pavement 

responses. Meanwhile, the historical performance of the pavement is utilized in the selection of model 

forms and the calibration of model parameters as traditional empirical models. ME models have wide 

applications in the pavement evaluation and design, especially in the industry for their explicit model 

forms which feature ease of use and implementation. A representative example is the software 

AASHTOWare Pavement ME Design built upon the pavement ME design guide (ARA-ERES 2004). Table 

2.3 shows the rutting model in the pavement ME design guide with brief descriptions of model forms 

and parameters. The main limitations of ME models (as shown in Table 2.3) are the difficulty to obtain 

the pavement responses from a comprehensive pavement system and the need for calibration of model 

parameters. The latter one is common in the application of ME models in local areas. Parameters 

provided in the guide were calibrated from records of nation-wide pavements. The model accuracy is 

supposed to weaken in individual states, and the typical solution is local calibration (Bayomy, Muftah et 

al. 2018). 

The major advantage of ML models is their high accuracy. Thanks to the advances in ML algorithms and 

model structures, the pattern and trend of data can be accurately and efficiently captured and predicted 

(Murphy 2012), which cannot be achieved by traditional models such as regression model. For 

predictive models of pavement performance, current research focused on ML models enhances the 

model accuracy by optimizing the model structure (Gong, Sun et al. 2021) and comparing different 

algorithms (Mazari and Rodriguez 2016). However, the implicit or overly complicated model expressions 

limit the application of constructed models in those studies. For example, NNs with multiple hidden 

layers and decision trees can hardly be applied directly in practice. For better usability of the predictive 

models by practicing engineers, it is highly desirable to develop NN models with explicit forms, and 

these often feature a single hidden layer (Stathakis 2009). Another main limitation of ML models lies in 

the need to have a relatively large dataset, especially when there are a large number of parameters that 

could be used as input factors for model construction (Lee, Dernoncourt et al. 2017). 

While NNs have been employed to establish pavement performance models, past studies have mainly 

focused on achieving high model accuracy and generally failed to examine other model properties such 

as reproducibility and robustness (Mazari and Rodriguez 2016, Gong, Sun et al. 2021). As a result, the 
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relations between the number of hidden neurons and model reproducibility or between the number of 

hidden neurons and model robustness are poorly understood. This has presented a question whether 

the constructed models are robust enough and led to a potential issue that they provide unreliable 

predictions with new datasets. We hypothesize that the constructed models can be systematically and 

comprehensively evaluated via a series of statistical methods to prove their applicability. 

Considering the ME models and associated tools are still applied by ITD for asphalt pavement 

performance prediction (Bayomy, Muftah et al. 2018), work in this section aims to take the advantages 

of both ME and ML models. Predictive models of pavement with concise formula were constructed and 

calibrated using ML algorithm. Moreover, this works aims to strike the right balance between the model 

performance and time expenses. Analyses of models with different structures, accuracy and 

computation time were conducted. Section 3.2 describes the preliminary work including the data 

collection and variable selection for the model construction; Section 3.3 introduces the applied model 

and algorithm and procedures of the model construction; Section 3.4 presents the performance of 

constructed models including the accuracy, reproducibility and robustness; Section 3.5 summarizes the 

conclusions from this study. 

3.2 Data Processing 

Most data for the model construction in this study was retrieved from a project on the local calibration 

of ME models for asphalt pavement in Idaho (Bayomy, Muftah et al. 2018). This project provided 

material properties, structural parameters and traffic condition of pavement, which were partially 

applied as model inputs in this study. Additionally, we extracted the environmental data recorded in the 

Long-term Pavement Performance (LTPP) database for a comprehensive description of the pavement 

system. Environmental data from the weather station closest to the pavement section was used as the 

indicators of the pavement’s environmental condition. This study utilized a total of 117 data points of 

rut depth measured from 27 road segments in 6 districts of Idaho in 2010s. All candidate model inputs 

are listed and described in Table 3.1. Before model construction, they were further selected via 

statistical analyses to ensure model conciseness. 

Table 3.1 Candidate Model Inputs 

Category Inputs 

Material Properties 

• Binder content (%) 

• Vbe (%) – volume of effective binder  

• Gb (1) – specific gravity of asphalt 

• Gse (1) – effective specific gravity of asphalt 

mixture 

• Gsb (1) – bulk specific gravity of aggregate 
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• Gmb (1) – bulk specific gravity of asphalt mixture 

Structural Parameters 

• Thickness of asphalt layer (mm) 

• Thickness of base layer (mm) 

Traffic Condition 
• AADTT – average annual daily truck traffic 

Environmental Condition 

• Precipitation (mm) – water equivalent of total 

surface precipitation over year time period 

• Evaporation (mm) – surface evaporation over year 

time period 

• Average temperature (°C) – average of the daily air 

temperatures based on average hourly temperatures 

• Mean temperature (°C) – average of the daily mean 

air temperatures based on the daily maximum and 

minimum hourly air temperatures 

• Freeze index (°C) – summation of difference 

between 0 °C and mean daily air temperature, when 

mean daily air temperature is less than 0 °C 

• Freeze-thaw days – number of days in the year when 

the maximum air temperature is greater than 0 °C 

and minimum air temperature is less than 0 °C on 

the same day 

• Average wind velocity (m/s) – time averaged 

magnitude of hourly wind velocity for the year 

• Average relative humidity (%) – average daily 

average relative humidity for the year 

• Average cloud cover (%) – average hourly fraction 

of cloud cover 

• Shortwave surface average (W/s2) – average surface 

incident shortwave radiation for time period 

 

3.2.1 Correlation Analysis of Model Inputs 

The first analysis is to assess the correlation between input factors so as to potentially reduce the 

redundant input factors (Saidi, Bouaguel et al. 2019). Figure 3.1 shows the scatter plot of matrices 

(SPLOM) of inputs in “Material Properties” and “Environmental Condition”. The histogram is on the 

diagonal showing the value and frequency of each input. The bivariate scatter plot is below the diagonal 

with a locally weighted scatterplot smoothing (LOWESS) line (Cleveland and Devlin 1988) and an ellipse 

showing the correlation between two inputs qualitatively. The flatter the ellipse is, the more related the 

two inputs are. The Pearson correlation coefficient is above the diagonal showing the correlation 
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between two inputs quantitatively. It can be calculated from the following equation (Saidi, Bouaguel et 

al. 2019), 

( )( )

( ) ( )
2 2

i i

i i

x x y y
r

x x y y

− −
=

− −



 
 

Where: 

r = Pearson correlation coefficient 

xi, yi = i-th values of two inputs 

𝑥̅, 𝑦̅= mean values of two inputs 
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(b) 

Figure 3.1 Scatter plot matrices of candidate model inputs including (a) inputs of Material Properties 
and (b) inputs of Environmental Condition 

The inputs of material properties came from 28 asphalt mixtures in the project and the inputs of the 

environmental condition came from 12 weather stations in the LTPP database. To consider time effects 

on the environment, the average value during 2000-2020 was used for the inputs of the environmental 

condition in this step. From Figure 3.1, some obvious correlations can be observed, e.g., “Gse” and 

“Gsb”, and “Average temperature” and “Mean temperature”. The use of SPLOM simplified the 

correlation analysis of inputs since the exploration of their physical meanings was eliminated. 

3.2.2 Principal Component Analysis of Model Inputs 

The second analysis is the principal component analysis (PCA) of inputs. It is a common strategy to 

reduce the dimension of exploratory variables for making predictive models. The meaningful properties 

of original variables are retained and represented by the principal components, which are mutually 

orthogonal vectors constructed as linear combinations of original variables (Wold, Esbensen et al. 1987). 

To effectively compress the information expressed by original variables, the variance of original data is 

maximized in the directions of principal components. The contribution of each principal component to 

the total variance and its correlation with original variables can be used as indicators for the variable 

selection. Similar to the correlation analysis, PCA does not directly deal with physical meanings and 

mathematical forms of inputs, which are however reflected on the data. 
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Figure 3.2 shows the obtained principal components in both categories and their individual and 

accumulative explained variances. It can be seen from the plots that the number of required principal 

components to explain most of the total variance is fewer than the number of original variables. 

Absolute values of the loading value that indicates correlations between principal components and 

original variables are presented in Figure 3.3. Only the first six principal components are provided for a 

clearer presentation. These loading values were directly used in the variable selection described in the 

next section. 

 

(a) 

 

(b) 

Figure 3.2 The properties of principal components including (a) inputs of Material Properties and (b) 
inputs of Environmental Condition 
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(a) 

 

(b) 

Figure 3.3 Correlations between principal components and original variables including (a) inputs of 
Material Properties and (b) inputs of Environmental Condition 
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3.2.3 Selection and Processing of Model Inputs 

In the previous two sections, correlations of one input with others and the whole domain are generally 

clarified. Accordingly, this study developed a three-step variable selection method based on the 

correlation analysis and PCA, which is described in Figure 3.4. The first step is to select principal 

components with high explained variances in an inverse order. The second step is to select original 

variables with high correlations with those selected principal components in an inverse order. The last 

step is to eliminate some selected variables with high correlations with other selected variables in a 

reverse order. Specific values of the variance and correlation are mentioned in Figure 3.4. This novel 

method takes full advantage of the correlation analysis and PCA to reduce the model input 

dimensionality to as few variables as possible. Finally, “Binder content”, “Gb” and “Gsb” were selected 

to represent the material properties and “Evaporation”, “Freeze index”, “Freeze-thaw days” and 

“Shortwave surface average” were selected to represent the environmental condition. In the model 

construction described in the next section, all selected variables were transferred to the “accumulated” 

ones according to the date of rut depth measurement. 

 

Figure 3.4 Pseudo-code of variable selection 

Input:  n: total number of principal components 

             m: total number of original variables 

             p: total number of selected variable for Round 1 

            {PC(1), PC(2) ,…, PC(n)}: vector of principal components 

            {MS(1), MS(2) ,…, MS(n)}: vector of maximum score of principal components 

            {OV(1), OV(2) ,…, OV(m)}: vector of original variables 

1. Generate vectors for selected variables Selected_Variable and principal components  

    Selected_PC  

2. Select eligible principle components  

    for i = 1 to n do 

          if accumulated explained variance of PC(i) < 0.95 

              Selected_PC(end+1) = PC(i) 

3. Select eligible variables for Round 1 

              for j = 1 to m do 

                    if score of OV(j) >= 0.95* MS(i) 

                        Selected_Variable(end+1) = OV(j)   

                    end if 

              end do   

          end if  

end do 

4. Eliminate variables for Round 2 

for k = p to 1 do 

      for l = k-1 to 1 do 

            if Pearson correlation coefficient of Selected_Variable(k) and  

                Selected_Variable(l) > 0.90  

                 Selected_Variable(k) = [ ] 

            end if 

      end do  

end do     

Output: Selected_Variable   
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3.3 Proposed Predictive Models 

Models proposed in this study aim to take advantage of the applicability of ME models and the accuracy 

of ML models. Accordingly, neural networks with one hidden layer calibrated with particle swarm 

optimization algorithm were utilized. The usability is reflected on their explicit expressions (in terms of 

connection weight and bias values), and the accuracy is reflected on the artificial intelligence-based 

model calibration. 

3.3.1 Neural Networks 

Neural network (NN), inspired by the biological nervous system, is widely applied in image recognition, 

language processing and predictive analysis, etc. to gain superior performance over conventional 

methods (Wang 2003, Shi, Schillings et al. 2004). The information reception, conversion and 

transmission are simulated in the artificial NN as in the real brain. Different types of NNs are suitable for 

addressing different problems and can be distinguished by the connection between neurons, complexity 

of the network and propagation mode of the information. The NN used in this study is a feed-forward 

NN, which was the first and simplest devised NN (Schmidhuber 2015). As its name implies, the 

information propagates in one direction from input layer, hidden layer to output layer as shown in 

Figure 3.5. In pavement engineering, it can serve as predictive models for material property 

characterization (Saha, Gu et al. 2018), structure condition evaluation (Gong, Sun et al. 2021), etc. 

Figure 3.5 shows a typical three-layered feed-forward NN structure with one hidden layer and one 

output neuron. Neuron numbers in the input and output layers are determined by the numbers of 

inputs and outputs of the problem. The numbers of hidden layers and contained neurons can be 

adjusted based on the problem complexity and the NN performance. As shown in Figure 3.5, the 

information first propagates from the input layer to the hidden layer which is expressed by the following 

equations, 

( )j jy f net =  

1

N

j ij i j

i

net w x b
=

= +  

Where: 

y’j = the value predicted by the j-th hidden neuron 

f = transfer function, e.g., hyperbolic tangent function 

wij = the weight of the i-th input neuron to the j-th hidden neuron 

xi = the value of the i-th input neuron 

bj = the bias added to the j-th hidden neuron 

N = the number of input neurons 
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Subsequently, the information propagates to the output layer and is expressed by the output neuron as 

follows, 

1

M

k jk k k

j

y w y b
=

  = +  

Where: 

yk = the value predicted by the k-th output neuron 

w’jk = the weight of the j-th hidden neuron to the k-th output neuron 

b’k = the bias added to the k-th output neuron 

M = the number of hidden neurons 

For a NN with one hidden layer, the total number of weights and biases can be calculated as follows, 

2N m n n o=  +  +  

Where: 

N = the number of parameters to be calibrated 

m = the number of inputs 

n = the number of hidden neurons 

o = the number of outputs 

It should be noted that values of the input and output neurons are typically normalized values of original 

input and output variables. Benefiting from close neuron connections and nonlinear transfer functions 

illustrated in Figure 3.5, complex or fuzzy relations between inputs and outputs can be effectively 

captured. The major part of NN construction is basically the calibration of those weights and biases. 

 

Figure 3.5 Architecture of a feed-forward neural network 

Another reason underlying the popularity of NNs is that they are accessible in multiple programming 

platforms such as MATLAB and Python. For example, a feedforward NN with one hidden layer can be 
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constructed using a built-in function “nftool” in MATLAB. Users only need to select the number of 

hidden neurons, proportions of data for model training, validation and testing, and training algorithm 

(e.g., Levenberg-Marquardt (Yu and Wilamowski 2018)). However, this study aimed to shed light on the 

relation between the numbers of hidden neurons and datasets and its effects on the accuracy, 

reproducibility and robustness of the constructed NN. Therefore, we applied an artificial intelligence (AI) 

algorithm to construct NNs to allow better comparisons. 

3.3.2 Particle Swarm Optimization 

Particle swarm optimization (PSO) algorithm, inspired by the social behavior of a swarm of organisms 

(Kennedy and Eberhart 1995), belongs to another branch – evolutionary algorithms of AI approaches. It 

commonly serves as a solution finder in engineering problems such as structure optimization (Cao, Qian 

et al. 2017), model equivalency (Deng, Luo et al. 2021) and parameter backcalculation (Deng, Luo et al. 

2020, Deng, Luo et al. 2021). As shown in Figure 3.6, each potential solution holds a specific location as 

an individual organism carries information. The location is iteratively updated according to the current 

and historical locations of all solutions as the individuals exchange information with each other. The 

mathematical expressions of solution updating are presented in the following equations (Shabbir and 

Omenzetter 2015): 

1 1k k k

i i i

+ += +x x v  

1

1 1, 2 2,( ) ( )k k k k k k k k

i i i i i i i iw c r c r+ = + − + −v v p x g x  

Where: 

xi
k, vi

k = the position vector and velocity vector of the i-th solution in the k-th iteration 

pi
k = the best position of the i-th solution in the past k iterations 

gi
k = the best position of all solutions in the past k iterations 

w = the inertial weight 

c1, c2 = the cognition and social coefficients 

rk
1,i, rk

2,i = random numbers in the interval [0,1] for the i-th solution in the k-th iteration 

In this study, the position vector of each solution contains the weights and biases of a NN. It is evaluated 

by the accuracy of the NN with the training group, which is introduced in the next section. 
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Figure 3.6 Mechanism of particle swarm optimization 

3.4 Results and Discussion 

This section presents the results and associated analyses of PSO-NN introduced in Section 3.3. Different 

from most applications of NNs which concern the model accuracy, the focuses of this study are the 

relations between the numbers of calibrated parameters and iterations and the updating efficiency, 

reproducibility and robustness of models. A total of 117 datasets were randomly separated into 80 

percent for model training and 20 percent for model validation. Corresponding accuracies were named 

as training accuracy and validation accuracy. Considering the limited amount of datasets and the high 

complexity of applied model structures, the hyperparameters of PSO were not optimized in this study; 

instead, they followed previous research (Heris 2015, Deng, Zhang et al. 2022). 

3.4.1 Updating Efficiency and Reproducibility 

The updating performance of PSO can be validated from Figure 3.7(a), which shows the decreasing 

normalized mean square error (NMSE) of predicted outputs in the training group with increasing 

number of iterations. NMSE was utilized to evaluate the model accuracy in the model calibration. It has 

the calculation method as the following equation and the relation with the coefficient of determination 

as follows (Yu, Lai et al. 2007), 
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Where: 

yi = the i-th component of the actual value vector 

𝑦̂𝑖  = the i-th component of the predicted value vector 

𝑦̅= the mean of all actual values 

R2 = the coefficient of determination 

Figure 3.7(a) illustrates the 95% confidence band from six repetitive runs of model calibration of four 

NNs. It can be seen that the updating patterns of PSO in NNs with different numbers of hidden neurons 

were similar. Besides, the model accuracy converged with the increase of hidden neurons even though 

their initial accuracies were different. Figure 3.7(b) illustrates the boxplot of the results after 10000 

iterations, from which similar findings were observed in the variation of model accuracy. It should be 

noted that even with small numbers of hidden neurons (e.g., 3 & 5), PSO-ANN finally reached a desirable 

level of model accuracy with a certain level of computation time (e.g., 10000 iterations), which is much 

higher than those of nationally and locally calibrated ME models (Bayomy, Muftah et al. 2018). 

A t-test was conducted to verify these findings statistically. It is a common strategy to determine the 

significance of differences between groups (Luo, Luo et al. 2013). Based on the assumption made above 

that the variance of model accuracy changed with the number of hidden neurons, the Welch's t-test 

(Welch 1947) was applied, which deals with groups with unequal variances. The main procedure is to 

calculate t-value as the following equation, 
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Where: 

𝑋̅1, 𝑋̅2 = means of two groups 

s1, s2 = sample standard deviations of two groups 

n1, n2 = sample sizes of two groups 

The t-value is the ratio of differences between and within groups. It compares the condition of applied 

groups to the null hypothesis that there is no significant difference between their means. For each 

degree of freedom calculated as the following equation, t-value follows a specific normal distribution 

which indicates the probability of the null hypothesis being accepted or rejected. 
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(a) 
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(b) 

Figure 3.7 The Updating efficiency of PSO-NN including (a) NMSE with iterations and (b) Boxplot of 
model accuracy after 10,000 iterations 

Table 3.2 reveals that the computation time and number of hidden neurons have interaction effects on 

the model accuracy. Table 3.2 shows the differences between the model accuracy (R2) of NNs with 

different numbers of hidden neurons and iterations. NNs with small numbers of hidden neurons (e.g., 3 

and 5) had similar accuracy only when the computation time (iteration number) was small (e.g., 1000). 

However, NNs with large numbers of hidden neurons (e.g., 10 and 20) had similar accuracy at any level 

of computation time. Although increasing the hidden neurons can mitigate the effect of limited 

computation time on the model accuracy, it leads to an increase of calibrated parameters and a 

potential unstable system, which is reflected on the decrease in the model reproducibility. 

Table 3.2 Results of t-test 

Iteration 

Number 

Compared 

Groups (Hidden 

Neuron 

Numbers) 

Degree of 

Freedom 

t-value of 

Compared 

Groups 

t-value at 95% 

Confidence Level 
Result 

1000 3 & 5 10.00 -2.21 [-2.23, 2.23] Accept 

1000 5 & 10 6.28 -2.98 [-2.42, 2.42] Reject 

1000 10 & 20 8.37 0.21 [-2.29, 2.29] Accept 



 

Developing Enhanced Performance Curves of ITD Asphalt Pavements by Mining the Historical Data 61 

5000 3 & 5 8.63 -3.90 [-2.28, 2.28] Reject 

5000 5 & 10 5.77 -4.57 [-2.47, 2.47] Reject 

5000 10 & 20 8.42 -1.31 [-2.29, 2.29] Accept 

10000 3 & 5 8.02 -4.19 [-2.30, 2.30] Reject 

10000 5 & 10 5.45 -5.08 [-2.51, 2.51] Reject 

10000 10 & 20 8.64 -2.05 [-2.28, 2.28] Accept 

 

Model reproducibility can be examined via multiple runs of the model construction. Similar predicted 

outputs are expected from a stable model. The cosine similarity was utilized to compare two vectors as 

shown in the following equation, 

( )Similarity ,
i j

i j

i j =
A A

A A
 

Where: 

Similarity(i,j) = the similarity between the i-th and j-th predicted output vectors Ai and Aj, which 

individually contain 94 elements 

For each NN,10 repetitive runs were conducted and a total of 45 similarity values were calculated 

accordingly. In this study, three different hidden neurons (5, 10 & 20) and two different model 

accuracies (0.90 & 0.95) were selected to investigate their relations with the model reproducibility. To 

eliminate the effect of initial values of calibrated parameters, each 10 repetitive runs shared the initial 

values of weights and biases of the NN. 

As shown in Figure 3.8, cosine similarities of the selected six cases are similar and close to 1, which 

indicates good reproducibility of these calibrated NNs. However, two general trends can still be 

observed from the boxplot. First, with a fixed number of hidden neurons, the mean and variation of 

cosine similarity increases and decreases with the increase of training accuracy of the model, 

respectively. It results from the fact that more potential solutions exist at poorer training accuracy of the 

model. Second, with a fixed model accuracy, the mean of cosine similarity increases and then decreases 

with the increase of hidden neurons while the variation behaves oppositely. It can be explained by the 

weakness of increasing hidden neurons mentioned above that, an unstable system can be created with 

excessive calibrated parameters. More importantly, it reminds us an optimum number of hidden 

neurons may exist to balance the tradeoff between model accuracy and reproducibility with limited 

computation time. 
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Figure 3.8 The boxplot of model reproducibility 

3.4.2 Model Robustness 

Robustness is an important quality widely applied in the post-analysis of statistical models. It requires 

constructed models not to be unduly sensitive to outliers. Model robustness can have different 

definitions in corresponding models. For example, Su et al. (Su, Zhang et al. 2018) treated the attack 

success rate, distortion, attack-agnostic robustness score and transferability as the indicators for the 

robustness of ImageNet models. Ringwood et al. (Ringwood, Mérigaud et al. 2019) treated the 

sensitivity of wave energy control systems to modelling errors as the robustness. Nisbet et al. (Nisbet, 

Elder et al. 2009) summarized several checking techniques for the post-analysis of ML models, in which 

two were selected for the model robustness in this study. The first one is the accuracy check of trained 

models using the validation group, i.e., examination of the performance of trained models to predict 

new data. The second one is the sensitivity check of model inputs, i.e., examination of the effects of 

random errors in model inputs on the model predictions. 

The accuracy check in this study included evaluations of the variability by R2 and the residual distribution 

by the Shapiro-Wilk test. The validation accuracy of models at different levels of training accuracy and 

with different numbers of hidden neurons is presented in a boxplot Figure 3.9. It can be seen from the 

plot that model accuracy with new datasets is not significantly affected by the two controlled conditions 

– training accuracy and hidden neuron number. Besides, compared with the training accuracy (in the 

range of 0.90 to 0.95), the level of validation accuracy is lower but tolerable (mostly in the range of 0.80 

to 0.85), and this suggests that the overall accuracy of the PSO-NN models can be sufficiently high given 
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a high training accuracy. Therefore, the focus can be put on the updating efficiency and reproducibility 

as described in Section 3.4.1 in the design of PSO-NN. 

 

Figure 3.9 The boxplot of validation accuracy vs. training accuracy and number of hidden neurons 

Shapiro-Wilk test is a typical test of normality in statistics (Shapiro and Wilk 1965). It tests the null 

hypothesis that samples follow a normal distribution using the statistic as the following equation, 
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Where: 

x(i) = the i-th ordered sample values 

ai = the i-th constant generated from the mean, variance and covariance of N order statistics 

from a normal distribution 

xi = the i-th sample value 

𝑥̅ = the sample mean 

N = the sample size 

Similar to Welch's t-test described in Section 4.1, the null hypothesis can be accepted if the statistic   of 

samples falls in the accepted range at a certain confidence level. Table 3.3 presents the Shapiro-Wilk 

test results of residuals from trained NNs with the validation group. While Table 3.3 does not list all the 
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W values of all 60 individual cases, the analysis revealed that the difference between predicted and 

measured rut depths in most cases follow a normal distribution, which indicates the model output was 

well explained by the selected model inputs. Combined with the accuracy presented in Figure 3.9, the 

residual distribution can be described by a standard normal distribution. 

Table 3.3 Results of Shapiro-Wilk Test 

Accuracy (R2) Number of Hidden Neurons 
Proportion of Accepting the 

Hypothesis in 10 Repetitive Tests 

0.90 5 80% 

0.90 10 100% 

0.90 20 80% 

0.95 5 100% 

0.95 10 80% 

0.95 20 90% 

Test Information Sample Size: 23 
Accepted range of the statistic W at a 

95% confidence level: [0.9142, 1.0000] 

 

The sensitivity check is to quantify the relative change in the response of model output corresponding to 

a small change in the model input (Chen, Ren et al. 2020). The typical method is the Morris method in 

which only one input variable is adjusted in each run (Morris 1991). In addition to showing the relative 

importance of model inputs in the constructed model (Shojaeefard, Akbari et al. 2013), the sensitivity of 

model inputs can be used to further reduce the original input dimensionality (Ye, Shi et al. 2009, Chen, 

Ren et al. 2020). Ye et al. (Ye, Shi et al. 2009) presented the step-by-step procedures of the Morris 

method for NNs as described in Figure 3.10, in which the model inputs and outputs were normalized to 

be equally compared. 
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Figure 3.10 Pseudo-code of sensitivity analysis (revised from (Ye, Shi et al. 2009)) 

The sensitivity of model inputs from the PSO-NN with 10 hidden neurons and the accuracy (R2) 0.95 is 

presented in Figure 3.11. It can be seen that the variation of sensitivity in 10 repetitive runs is greater 

than the variations seen in the model accuracy (Figure 3.7(a)) or reproducibility (Figure 3.8), likely due to 

the fact that the inputs and outputs were normalized before the sensitivity analysis. Besides, the 

sensitivity of input variables is comparable with each other. No variables can be eliminated from the 

model for excessively low sensitivity. Considering that the sensitivity is significantly affected by the 

collected data and the various inputs were collected from different sources in this study, the calculated 

sensitivity data was not analyzed quantitatively. 

Other model checks using a variable-by-variable method can be conducted on the development of 

predicted outputs. Trend and value change of the developed curve can be evaluated in the perspective 

of the dealt engineering problem. For example, Figure 3.12 shows the development of rut depth with 

95% confidence bands corresponding to two major factors - AADTT and Freeze-thaw days respectively. 

Input:  n: total number of data for the model training 

             m: total number of model inputs 

             x={
1 1 1 2 2 2

1 2 1 2 1 2,  ,  ...,  ;  ,  ,  ...,  ;  ...;  ,  ,  ...,  n n n

m m mx x x x x x x x x }: vector of model inputs 

             y: vector of model output 

1. Normalize each model input and output; and calculate the mean ( X ) and standard  

    deviation ( ) of each normalized input 

2. Train the NN of interest using normalized input and output vectors X and Y  

3. Calculate the sensitivity of each model input  

    for i  = 1 to m do 

          create input vector 
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          obtain the predicted output vector ˆ
iY  from the trained NN with the created input vector   

          for j  = 2 to 201 do 
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          end do 
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end do 

4. Normalize the averaged sensitivity for all model inputs  

for k  = 1 to m do 
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
 

end do     

Output: final sensitivity vector { 1 2  ˆ ˆ ˆ, , ..  ., mS S S  }   
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The PSO-NN with 10 hidden neurons and the accuracy (R2) 0.95 was applied as in the sensitivity analysis. 

In each curve, the examined variable varies and the rest remain at their average values. It can be seen 

that the predicted rut depth increases with AADTT which is generally acknowledged. The predicted rut 

depth  decreases with the number of freeze-thaw days per year, it can be explained by that the 

increasing temperature cycles fasten the aging of asphalt pavement materials, which leads to the 

stiffening of the asphalt layer and the decrease of the rutting accumulation (Stephens 1990, Deng, Luo 

et al. 2020). 

 

Figure 3.11 The sensitivity of model inputs 

 

Figure 3.12 The predicted rutting development with AADTT and Freeze-thaw Days 
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3.5 Conclusions 

In Chapter 3, a modeling approach was developed to predict the rutting of asphalt pavement rutting in 

Idaho using PMED data, from its pre-processing to post-analysis. The case study examined a total of 117 

datapoints of rut depth measured from 27 road segments in 6 districts of Idaho in 2010s. Neuron 

networks with one hidden layer were calibrated using particle swarm optimization algorithm. 

Performance of models with different calibrated parameters, accuracy and calibration time was 

evaluated and compared. The major findings in this study can be summarized as follows. 

• A three-step variable selection method with PCA and correlation analysis can effectively reduce 

the input dimensionality (from 19 to 10 inputs in this study), and this helps to mitigate the need 

for a relatively large dataset for ML models; 

• Proper increase of hidden neurons (from 3 to 10) improves the model accuracy (R2 from 0.90 to 

0.98) while continuous increase of hidden neurons (from 10 to 20) has insignificant effects on 

the model accuracy (R2 from 0.981 to 0.984); 

• With a fixed number of hidden neurons (in the range of 5 to 20), the model reproducibility 

increases as the model accuracy (R2) increases from 0.90 to 0.95. With a fixed model accuracy 

(R2 in the range of 0.90 to 0.95), the model reproducibility shows a parabolic trend as the 

number of hidden neurons increases from 5 to 20. This finding strongly suggests that during the 

design of NN models one should consider an optimum number of hidden neurons to balance the 

model accuracy and reproducibility; 

• When the training accuracy is sufficiently high (e.g., R2 above 0.90), it as well as the number of 

hidden neurons have limited effects on the validation accuracy and normality of residuals; 

• With proper variable selection, the sensitivity of model inputs is relatively comparable. 
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4. Developing Gene Expression Programming Models for 

Asphalt Pavement Performance in Idaho 

4.1 Introduction 

Chapter 3 presents the application of AI in constructing predictive models for asphalt pavement 

performance, specifically in the model structure and model calibration. The relationship between 

pavement distresses and influencing factors were described with weighted neurons and transfer 

function in NN. Meanwhile, it was pointed out that the accuracy can be improved with the increase of 

model complexity (i.e., number of hidden layers and neurons) and at the sacrifice of model stability. In 

this section, the advantage of AI algorithms in model calibration was kept and extended to the operation 

selection and combination. Explicit model form with ensured accuracy will benefit its practice in 

pavement performance prediction. The remainder of this chapter are organized as follows: Section 4.2 

introduces the predictive model, including its background and mechanism; Section 4.3 describes the 

model construction from preparation to assessment; Section 4.4 presents the model performance for 

the four applied distresses, including comparisons with ME and regression models; Section 4.5 

summarizes the conclusions from this study.   

4.2 Proposed Predictive Models 

The predictive pavement distress models were developed by the use of gene expression programming 

(GEP) in this study. GEP was proposed by Ferreira on the basis of the genetic algorithm (GA) and genetic 

programming (GP) (Ferreira 2001). In summary, linear strings of fixed length (characteristic of GA) are 

encoded to express nonlinear entities of different sizes and shapes (characteristic of GP) in GEP (Ferreira 

2001). Variables and constants as well as arithmetic and logic operators can be included in the entity as 

elements of the gene. As a descendance of GA, GEP updates entities via mutation, crossover and 

selection, similar to what genes experience in the process of natural selection. 

Unlike most applications of GA in optimization problems that numerical values were dealt with (Deng, 

Zhang et al. 2022), GEP was applied in this study for its capability of updating the predictive model on its 

function form. Explicit form of the predictive model can be guaranteed. Meanwhile, accuracy of the 

predictive model can be improved with the use of ML algorithm. K-expressions are applied in GEP to 

encode expression trees (e.g., Figure 4.1). They both represent the algebraic expression “√𝑎 × (𝑏 + 𝑐)”. 

For the convenience of genetic operations and valid programs, the length of the gene is determined by 

the length of the head which is set by users and the number of arguments of the function with the most 

arguments (e.g., 1 for “√” and 2 for “+”) (Deng, Zhang et al. 2022). It indicates the genes may contain 

elements which are not expressed but enables the genes to express trees of different sizes and shapes. 
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Figure 4.1 An example of expression tree 

The procedure of solution (gene) updating in GEP is presented in Figure 4.2, in which the sizes of genes 

and chromosomes, fitness function, rates of genetic operations etc. affect the updating efficiency and 

performance. Details can be found in the follow-up research conducted by Ferreira (Ferreira 2006) and 

some of them will be discussed in the following sections. GEP has been applied in the areas of pavement 

materials and structures for property characterization (Aslam, Farooq et al. 2020) and performance 

prediction (Yao, Leng et al. 2021). However, currently there is the lack of a systematic application of GEP 

in constructing predictive models for individual distresses of field asphalt pavements as ME models, 

which is the motivation of conducting this section. 



 

Developing Enhanced Performance Curves of ITD Asphalt Pavements by Mining the Historical Data 70 

 

Figure 4.2 Flow chart of GEP 

4.3 Model Construction 

This section describes the complete process of model construction from the selection of model 

hyperparameters to the model performance evaluation and final form determination. As in Chapter 3, 

the rutting development of asphalt pavement segments in Idaho was utilized as an example and the 

input variables were selected by the method proposed in Section 3.2. 

4.3.1 Hyperparameter Selection 

For stable model construction and result analysis, the software GeneXproTools 5.0 (GEPSOFT 2014) was 

applied in this study to conduct the GEP. Three hyperparameters of GEP - the head size and numbers of 

chromosomes and genes were first selected based on a sensitivity analysis. These parameters determine 

the model complexity and calibration efficiency, which are essential for the application of the GEP in 

practice. 

Since the effects of hyperparameters on the model construction were characterized, only the training 

dataset was utilized in this section. Basic settings of GEP are provided in Error! Reference source not f

ound. and others such as the rates of mutation and transposition were set at values recommended in 
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the software. In each case, one of the three hyperparameters was adjusted and others were set at their 

minimum values. As a general indicator for the model accuracy, the coefficient of determination (R2) 

was used for the rest of this section. 

Table 4.1 GEP Parameter Setting 

GEP Parameter Setting 

Head Size 10, 15, 20 

Chromosome Number 100, 300, 500 

Gene Number 4, 5, 6 

Function Set +, −, ×, /, sqrt, exp, Inv, X2 

Fitness Function mean squared error (MSE) 

Linking Function addition 

 

Figure 4.3 illustrates the evolution of model accuracy with generation number in three cases. Although 

the values of hyperparameters are different, a common plateau occurs when the generation number 

approaches to 100,000. Therefore, the 100,000-th generation was taken as the stop criterion in the 

model construction to balance the computation time and model accuracy. The model accuracy after 

100,000 generations of six repetitive runs is presented in Figure 4.4. According to the mean and variance 

of R2 values shown in the figure, the head size and numbers of chromosomes and genes were chosen to 

be 20, 500 and 4 in this section. 

 

Figure 4.3 Model accuracy as a function of generation number 
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(a) 

 

(b) 

 

(c) 

Figure 4.4 Model accuracy of cases with different (a) head sizes; (b) chromosome numbers; and (c) 
gene numbers 
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4.3.2 Model Evaluation 

In addition to the model accuracy from the training dataset, several other properties should be paid 

equal attention for the model evaluation and final model determination. Especially in ML models, the 

obtained model forms and coefficients are likely to change during the repetitive model construction 

(Deng and Shi 2022). The first property is the model accuracy for the validation and test datasets. These 

two datasets were utilized in the total 42 models (seven cases X six repetitive runs) constructed in the 

previous section. As shown in the histograms on the diagonal of Figure 4.5, the training accuracy using 

R2 as the indicator of all cases achieves the level 0.60-0.85. However, the corresponding validation and 

test accuracies dispersedly distribute across the range of 0 to 1. Furthermore, there is no significant 

correlation between model accuracies of the three datasets, which can be proven by the Pearson 

correlation coefficient (r), shown above the diagonal of Figure 4.5 (Saidi, Bouaguel et al. 2019). These 

two findings indicate that the training accuracy cannot guarantee the same performance on new 

datasets; and validation and test datasets are indispensable for a comprehensive evaluation of model 

accuracy. Accordingly, an overall accuracy considering the three datasets was applied in this study to 

select the final model form in repetitive runs. 

 

Figure 4.5 Scatter plot matrix of model accuracy 

The second property is the normality of residuals. Model residual or error, is the difference between the 

actual and predicted values of model outputs. In a good model, the outputs are well described by the 

applied predictors (input variables) and constant terms. The remainder (i.e., residual) is supposed to be 

random and centered on zero (Cox and Snell 1968). In this study, the model residual (ε) was first 

controlled by the fitness function as shown in Table 4.1 and the following equation, 

( )
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Where: 

N = the total number of data points 

yi, 𝑦̂𝑖  = the actual and predicted values of the i-th data point 
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In the model evaluation, the residual distribution serves as a supplement to the overall accuracy. Two 

methods were utilized to examine the normality of residuals. The first one is the Shapiro-Wilk test as 

used in Section 3.4.2. The second one is the quantile-quantile (Q-Q) plot, which compares two 

probability distributions by plotting their quantiles (Gnanadesikan and Wilk 1968). Quantiles of two 

similar distributions are supposed to lie on the equality line. In this section, quantiles of the model 

residual distribution were plotted against ones of a standard normal distribution for the models failing 

the Shapiro-Wilk test. 

The third property is the model sensitivity. Different from the one used in Section 3.4.2, the relative 

sensitivity of input variables was obtained using the following equation proposed in a previous study 

(Gandomi, Yun et al. 2013) for GEP models, 
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( ) ( )max mini i iN f x f x= −  

Where:  

fmax(xi), fmin(xi) = the maximum and minimum values of the predicted output over the i-th input 

domain while other inputs are taken their mean values 

As mentioned previously, the relative sensitivity shows the contribution of model inputs (pavement 

properties) to outputs (pavement distresses) and is instructive to the pavement design and 

management. Meanwhile, the continuous changing pattern of the model output with individual inputs is 

a potential tool to an optimum pavement design (Deng, Shi et al. 2021). 

4.4 Results and Discussion 

This section presents the models constructed using the hyperparameters determined from Section 4.3.1 

and the evaluation of their performance based on the properties introduced in Section 4.3.2. Results of 

all four distresses of asphalt pavement in Idaho are included, in which the roughness is represented by 

the international roughness index (IRI). 

4.4.1 Model Accuracy 

Starting from the model accuracy, Table 4.2 lists the three accuracies of all 24 models (4 distresses X 6 

repetitive runs) constructed in this section using R2 as the indicator. Considering the data of longitudinal 

cracking, thermal cracking and IRI is limited, the whole data in these three categories was divided into 

“Training” and “Validation & Test” datasets, of which the latter one contains the maximum and 

minimum values of input variables as the test dataset of rutting. The proportions of data in these two 

datasets are around 80% and 20% respectively. Similar to the finding from Figure 4.5, Table 4.2 indicates 
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the limited relevancy of validation and test accuracies to the training accuracy. Therefore, as 

recommended in Section 4.3.2, the overall accuracy served as the indicator to select the final model 

form from repetitive model construction. The selected cases and their accuracies are marked in bold in 

Table 4.2. Equations of final models are presented in Appendix B. 

Table 4.2 Accuracy of constructed models 

Distress & Data 

Amount 
Model No. Training Accuracy 

Validation & Test 

Accuracy 
Overall Accuracy 

Rutting 1 0.82 0.61 0.68 

Rutting 2 0.76 0.20 0.10 

Rutting 3 0.85 6.63E-04 5.94E-04 

Rutting 4 0.83 0.21 0.58 

Rutting 5 0.82 0.01 0.01 

Rutting 6 0.81 0.17 0.43 

Longitudinal Cracking 1 0.94 0.69 0.89 

Longitudinal Cracking 2 0.96 0.03 0.70 

Longitudinal Cracking 3 0.88 0.26 0.40 

Longitudinal Cracking 4 0.91 0.64 0.78 

Longitudinal Cracking 5 0.93 0.46 0.81 

Longitudinal Cracking 6 0.93 0.20 0.57 

Thermal Cracking 1 0.93 0.83 0.56 

Thermal Cracking 2 0.95 0.25 0.60 

Thermal Cracking 3 0.93 0.25 0.15 

Thermal Cracking 4 0.98 0.48 0.83 

Thermal Cracking 5 0.97 0.30 0.12 

Thermal Cracking 6 0.95 0.30 0.69 

IRI 1 0.84 0.58 0.79 

IRI 2 0.92 0.50 0.85 

IRI 3 0.82 0.55 0.70 

IRI 4 0.89 0.80 0.84 

IRI 5 0.90 0.93 0.91 

IRI 6 0.86 0.66 0.81 
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For a clear idea of the accuracy achieved by the models constructed by GEP, Figure 4.6 shows the model 

accuracy of different models, including the linear regression (LR) model and local calibrated ME model 

(ME-Local). It can be seen from the plot that models constructed by GEP have higher accuracy, which 

results from the applied ML algorithm and the complexity of the model form. Compared with LR models 

shown as the following equation, models constructed by GEP have more optional functions and 

combinations to capture the relations between model inputs and outputs. However, they are not 

restricted by the specific models of material and structural responses and failures as ME models (Deng, 

Zhang et al. 2022). 
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i j ij i
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=

= + +  

Where: 

yi = the i-th model output 

xij = the i-th observation on the j-th model input 

β0, βj = the model coefficients 

εi = the i-th error term 

 

 

Figure 4.6 Comparison of model accuracy as a function of modeling approach and pavement distress 
type 

4.4.2 Residual Normality 

As described in Section 4.3.2, the distribution of model residuals was examined in addition to their 

values. Similar to the overall accuracy, both “Training” and “Validation and Test” datasets were 

considered in this section to check if residuals of constructed models with training and new data follow 

the normal distribution. 
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Table 4.3 shows the basic information of model residuals including the Shapiro-Wilk test results. 

Although the mean of residuals is near zero in all four models, which stems from the applied fitness 

function of GEP, the residuals of rutting and thermal cracking models do not follow a normal distribution 

as indicated by the Shapiro-Wilk test statistics and corresponding accepted ranges. By plotting the 

model residuals as Figure 4.7, it can be observed that outliers exist in these two models, especially in the 

“Validation and Test” dataset. Therefore, the revised group of model residuals which excludes the 

outliers was analyzed. As indicated in Table 4.3, the revised groups passed the Shapiro-Wilk test. Similar 

findings are illustrated in the Q-Q plot as Figure 4.8, in which quantiles of model residuals without 

outliers lie linearly with those of a standard normal distribution. In comparison, typical heavy-tailed Q-Q 

plot describes the original model residuals of rutting and thermal cracking models (Croarkin and Tobias 

2012). 

Considering the definition of outliers which indicates significant differences between observations and 

predictions (Grubbs 1969), the non-normal distribution of model residuals in this study was ultimately 

caused by the limited model accuracy on the new data. It reminds us that model accuracy on the 

validation and test datasets should be examined separately and focused as well as the training dataset 

in the model form selection. 

Table 4.3 Information of Model Residuals 

Distress Rutting Rutting 
Thermal 

Cracking 

Thermal 

Cracking 

Longitudinal 

Cracking 
IRI 

Model Original Revised Original Revised Original Original 

Mean -0.0160 -0.0015 -0.0110 -0.0089 -0.02882 0.0073 

Standard 

deviation 
0.2701 0.1455 0.1997 0.0867 0.1636 0.1267 

Test statistic 0.828 0.992 0.664 0.982 0.956 0.9770 

Accepted 

range at 95% 

confidence 

level 

[0.978, 1] [0.976, 1] [0.958, 1] [0.956, 1] [0.946, 1] [0.970, 1] 

Result Reject Accept Reject Accept Accept Accept 
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(a) 

 

(b) 

Figure 4.7 Residual plot of (a) rutting model; and (b) thermal cracking model 
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(a) 

 

Figure 4.8 Q-Q plot of residuals of (a) rutting model; and (b) thermal cracking model 

4.4.3 Model Sensitivity 

Regarding the superior accuracy of models constructed by GEP mentioned in Section 4.4.1, it was 

achieved at the expense of less simplicity than LR models and less rationality than ME models. The 

model quality was greatly affected by the provided data for the model construction. For predictive 

models of pavement distresses that aim to explore the coupled effects of factors from various sources, 

model evaluation in terms of rationality is especially necessary. 
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Figure 4.9 shows the relative sensitivity of input variables. Several general conclusions can be drawn 

from the figure. First of all, the value and rank of relative sensitivity vary with models. Variables of 

pavement condition have different contributions to different pavement distresses. Second, compared 

with neuron networks calibrated with artificial intelligence algorithms, the variation of relative 

sensitivity is much more obvious in models constructed by GEP (Deng and Shi 2022). The most extreme 

case is that BC was eliminated from the final form of longitudinal cracking model as shown in Figure 

4.9(b). It indicates that the effect of the proposed variable selection method introduced in Section 3.2 

on the final model form is limited. An independent variable selection was conducted by GEP according 

to the relations between model inputs and outputs, which were expressed by the data for the model 

construction. This characteristic was utilized in a previous study to calculate the variable appearance 

frequency, which showed  the importance and contribution of each input variable to the model output 

(Yao, Leng et al. 2021). 

Additionally, Figure 4.9 reveals that to a very significant extent the model rationality can be expressed 

by the relative sensitivity of input variables. For instance, it precisely captures the major contributions of 

traffic (AADTT) to longitudinal cracking and environment (FT and AVE_SW_SUR) to thermal cracking as 

shown in Figure 4.9(b) and Figure 4.9(c). Referring to mechanics, these two distresses are mainly 

induced by repetitive traffic loads and temperature cycles (ARA-ERES 2004). However, the relative 

sensitivity underestimates the effects of some variables on specific distresses, such as the effect of 

binder content on the rutting development since the asphalt layer of the pavement suffers a lot from 

permanent deformation under traffic loads at intermediate and high temperatures (Deng, Shi et al. 

2021). Overall, the relative sensitivity is worthwhile to be applied in future models as a key indicator for 

the model rationality and model form selection. 

 

(a) 
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(b) 

 

(c) 
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(d) 

Figure 4.9 Relative sensitivity of input variables of (a) rutting model; (b) longitudinal cracking model; 
(c) thermal cracking model; and (d) IRI model 

Figure 4.10 depicts the changing pattern of the four distresses with their major contributors. Similar to 

the relative sensitivity, the pattern was calculated with one input variable over its domain and others 

fixed at their mean values. However, the changing pattern can show the complex and continuous effect 

of the variable on the model output which is not indicated by the relative sensitivity. In this study, most 

of these effects were captured well by the selected models, such as the increases of longitudinal 

cracking with traffic loads, thermal cracking with radiation and IRI with surface evaporation. 

Figure 4.10 also illustrates several defects of the model. The most obvious one is that it provides 

abnormal predictions as marked in Figure 4.10(a) and Figure 4.10(c). The rut depth and thermal cracking 

amount were supposed to monotonically increase with binder content (Zhou, Hu et al. 2006) and 

average radiation (Ling, Chen et al. 2019). Another one is that it overcomplicates the effects of certain 

variables, which is typically called overfitting (Anderson and Burnham 2002) as marked in Figure 4.10(b). 

The discontinuity in the longitudinal cracking development with traffic loads cannot be mechanistically 

interpreted. The former problem primarily stemmed from the outliers in the data for the model 

construction which reduced the model accuracy, while the latter one resulted from the over pursuit of 

model accuracy at the expenses of other model properties in the model construction (Anderson and 

Burnham 2002). 

Results in this section present the tradeoff between accuracy and rationality of models constructed by 

GEP. As indicated by Section 4.1, the balance between the accuracy, complexity and applicability should 

be focused on for the future predictive models. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4.10 Changing pattern of output with major input in (a) rutting model; (b) longitudinal cracking 
model; (c) thermal cracking model; and (d) IRI model 

4.5 Conclusions 

In Chapter 4, predictive models for four typical distresses of asphalt pavements which were generated 

by GEP were introduced for PMED data. The complete process of model construction and evaluation are 

described and detailed results and analyses are presented. The major findings from this work are 

summarized as follows. 

• Compared with LR models (R2 = 0.33 ~ 0.76) and ME models (R2 = 0.02 ~ 0.60), models 

generated by GEP have higher and more stable accuracy (R2 = 0.68 ~ 0.97) for all four distresses; 
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• Model accuracy on the training dataset cannot guarantee a similar accuracy on the new data. 

Besides, accuracy reduction and variation on the new data are the main reasons for the non-

normal distribution of model residuals; 

• Relative sensitivity indicates the major factors causing rutting, longitudinal cracking, thermal 

cracking and roughness are AADTT (29.5%), surface evaporation (30.8%) and freeze-thaw days 

(39.7% and 29.0%), respectively; 

• Continuous effects of input variables on model outputs can be expressed by the changing 

pattern of model outputs. Meanwhile, the changing pattern can be utilized to evaluate the 

model rationality and overfitting. 
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5. Development of Deep Learning Models for Asphalt 

Pavement Performance in Idaho 

5.1 Introduction 

There are two major differences between PMED data and ITD PMS data. The first one is the collection of 

pavement condition data including material properties, structure configuration, traffic and 

environmental conditions. They are required as model inputs in ME models as mentioned in Section 2.3. 

The second one is the existence of maintenance. A maintenance strategy causes an instant change in 

pavement behaviors and affects subsequent development of distresses. Laboratory experiments with 

stable and adjustable conditions contribute to comprehensive modeling of pavement materials and 

structures from construction to failure (Deng, Zhang et al. 2022). Meanwhile, fast developing data 

mining and processing techniques contribute to accurate prediction of individual distresses and overall 

condition of pavement from its properties and surrounding environment (Deng and Shi 2022, Deng and 

Shi 2022). However, models built upon natural deterioration can hardly capture the effects of 

maintenance actions, of which the time and type are decided by pavement managers and technicians. 

As shown in Figure 1.2, natural deterioration described by the “Past Deterioration” and “Predicted 

Deterioration” curves can be modeled by most current models, such as mechanistic-empirical (ME) 

model (ARA-ERES 2004) and machine learning (ML) model (Deng and Shi 2022). Yet, it is difficult to 

quantitatively model the effects of maintenance time (e.g., recovered values after “Rehab. A” and 

“Rehab. D”) and type (e.g., recovered values after “Rehab. A” and “Rehab. B”) on the performance 

curve. Moreover, material properties and structure configuration of the pavement have changed after 

maintenance, which makes it difficult to conduct subsequent predictions from historical records. 

In general, the occurrence of maintenance action partitions the life-cycle performance of the pavement 

and results in multiple performance curves with limited relevancy. Accordingly, this study treats them as 

multiple short-term time series and aims to provide accurate and stable predictions. 

The simplest models for time series are polynomials, including univariate ones with specific pavement 

performance indicators and multivariate ones with additional predictors (Archilla and Madanat 2000). 

For data of small amounts, desirable fitting accuracy can be easily achieved by various alternative 

polynomials with basic regression analysis. However, a random selection of polynomials may lead to 

inaccurate predictions for the follow-up development, because it is difficult to identify which part of the 

performance curve the modeled data belongs to. To address this issue, the deterioration rate (curve 

slope) and sensitivity (derivative with respect to predictor) were calculated from previous, especially 

adjacent datapoints (Abaza 2004, Rogoza 2019). These methods take the advantage of the temporal 

correlation of data in time series to improve the prediction accuracy and reliability (Rogoza 2019). A 

similar idea is applied in the Markov chain in which the transition matrix contains deterioration 

probabilities calculated from adjacent states (Abaza 2016, Wang, Lee et al. 2022). 
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Another two well-known models with as simple forms as polynomials are exponential smoothing (ES) 

model and autoregressive integrated moving average (ARIMA) model. Their major difference with the 

models mentioned above is that the complete historical records can be used in the model construction 

(Kotu and Deshpande 2018). Exponential smoothing model utilizes the exponentially decaying factors 

with more weights on the recent data (Brown and Meyer 1961). In the development of ES model, more 

characteristics of data such as the trend and seasonality can be captured as the number of smoothing 

parameters increases (Kotu and Deshpande 2018). Autoregressive integrated moving average  model 

combines the autoregressive (AR) model and moving average (MA) model (Box and Jenkins 1970). In 

addition to the weighted historical data, weighted errors of historical predictions and white noise are 

introduced in ARIMA model (Hyndman and Athanasopoulos 2018). It can predict time series with trend 

or seasonality as well by adding additional seasonal terms. It is worth noting that in a previous research 

(Makridakis, Spiliotis et al. 2018), ES model and ARIMA model outperformed sophisticated machine 

learning (ML) models in predicting series from the business and economic domains. 

With the rapidly-developing artificial intelligence (AI), ML models in predicting pavement performance 

have gained dramatically increasing applications (Justo-Silva, Ferreira et al. 2021, Marcelino, de Lurdes 

Antunes et al. 2021). The model output (i.e., pavement performance) can generally achieve desirable 

prediction accuracy through complex model structures and sophisticated learning algorithms (Murphy 

2012). The development of pavement performance was not necessarily treated as time series in current 

ML models. Using neural networks (NNs) as an example, time effects were reflected on the time as an 

independent variable (Gong, Sun et al. 2018) or the accumulated/averaged traffic/environmental 

condition factors (Marcelino, de Lurdes Antunes et al. 2021). Connections were directly built between 

pavement performance and pavement condition, which were simulated as artificial neurons. As 

mentioned earlier, these NNs are not suitable for pavements with maintenance. First, the occurrence of 

maintenance weakens the continuity of time. The variable “time” before and after maintenance have 

different reference origins and effects on the distress development. Second, pavement after 

maintenance have different material properties and/or structural configuration with the original one; 

and the follow-up distresses are developed on the basis of residual damages. It is improper to contain 

pavement performance before and after maintenance in the same database to train the model. 

As with the ES model and ARIMA model, ML models for time series are supposed to learn and capture 

the characteristics of the series from historical records and make corresponding predictions. This ability 

is reflected on the architectural ideas of corresponding ML models (LeCun and Bengio 1995). For 

example, convolutional neural networks (CNNs) can extract image features for recognition and 

classification problems (Géron 2019). They can also deal with time series to identify, extract and 

distillate series features for prediction (Brownlee 2018). Recurrent neural networks (RNNs) contain 

recurrent neurons receiving outputs from the previous time step (Géron 2019). The temporal order and 

dependencies of the series can be inherently addressed (Hewamalage, Bergmeir et al. 2021). 

Accordingly, recent cases using these two models and their descendances to predict the development of 

pavement performance are increasing (Dong, Shao et al. 2019, Bukharin, Yang et al. 2021, Xin, Akiyama 

et al. 2022). 
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For a typical distress of asphalt pavement in this study, these two ML models or deep learning (DL) 

models – CNN and LSTM – were selected to investigate their feasibility in predicting the distress 

development. The spatial correlation analysis was conducted to transfer raw data to model inputs. The 

model performance was compared with two statistical models – ES and ARIMA – and improved with 

three strategies. The rest of this paper is organized as follows: Section 5.2 describes the studied distress 

and the processing of raw data; Section 5.3 introduces all applied models including their detailed 

schematics and mathematical equations; Section 5.4 presents the results and analyses from the model 

construction and comparison; Section 5.5 summarizes the conclusions from this study. 

5.2 Data Processing 

This section uses rutting as an example. It is directly measured as the permanent deformation from the 

pavement surface. Previous studies have shown it reflects the material densification, shear flow and 

failure, and cracking initiation and propagation of layers under traffic loads and at intermediate and high 

temperatures (Tutumluer and Pan 2008, Deng, Zhang et al. 2022, Zhang, Chen et al. 2022). The field 

rutting data was collected from the state highway 41 (SH-41) in the state of Idaho and retrieved from 

the AgileAssets Pavement Analyst software adopted by the Idaho Transportation Department (ITD). 

State Highway-41, as shown in Figure 5.1, is a state highway running from Interstate 90 in Post Falls to 

U.S. Route 2 on the Idaho-Washington state line with the total length of 39.06 miles (62.86 km). 

 

Figure 5.1 Illustration of SH-41 (adapted from Google Map and ITD OpenData) 

 



 

Developing Enhanced Performance Curves of ITD Asphalt Pavements by Mining the Historical Data 89 

Figure 5.2 presents three series of rutting development measured within one mile (1.61 kilometers) in 

the longitudinal (driving) direction as examples. As in Figure 1.2, Figure 5.2 illustrates the effects of 

natural deterioration and maintenance on the rutting development of the pavement. The sudden drops 

marked by circles in the rut depth indicate the rehabilitation the pavement experiences between 

current and previous dates of measurement. Otherwise, the rut depth is supposed to continuously 

increase with pavement service time as marked by rectangles. It can be seen from Figure 5.2 that from 

2007 to 2020, this pavement experienced at least three occurrences of rehabilitation. Accordingly, the 

complete history of rut depth is partitioned into several stages, of which the longest deterioration stage 

contains 6 datapoints. Therefore, the length of time series in this study is smaller than the ones in 

previous studies introduced in Section 5.1. It is necessary to comprehensively evaluate and compare the 

traditional statistical and the DL models in terms of their prediction accuracy and stability. 

Figure 5.2 also illustrates the variation of pavement performance in the longitudinal direction as 

indicated by the differences between these three series starting from 2012. It may result from the 

variations of construction quality and measuring location, of which the latter reason can also lead to the 

slightly inconsistent rutting development in the deterioration stage. The combination of series within a 

certain length in the longitudinal direction can reduce such variations and computational time 

consumption in this study. Accordingly, the spatial correlation of pavement rutting performance was 

first investigated to determine the characteristic longitudinal length to process the raw data. 

 

Figure 5.2 Example rutting measurements at different service times 

The cosine similarity of vectors defined as the following equation was applied in this section, 
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‖Ai‖, ‖Aj‖ = the magnitudes of two vectors Ai and Aj 

Specifically, the average similarity of the length k was calculated using the following equation, 
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k iji j
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S S
C

=   

Where: 

i, j  = values from 1 to N and satisfies i ≠ j 

C2
N = the number of two-element combinations of N objects 

N = the total number of vectors in the length k 

Figure 5.3 illustrates two cases of the average similarity with the distance to the start point in one lane. 

Three distinct stages can be observed from the figure in which the average similarity oscillates in the 

first stage but remains at a high level. As the data collected far from the start point are involved, the 

average similarity experiences a continuous drop, which shows the increase of the data variation. In the 

final stage, the average similarity bounces back and approaches to a steady state, which represents the 

average similarity of the data of the entire pavement. Therefore, one mile (1.61 kilometers) was 

selected as the characteristic length in which the measurements at the same time were averaged for the 

following model construction. As for the transverse direction, the series from ascending and descending 

lanes were utilized separately considering the variation of the traffic condition (traffic volume, vehicle 

speed, etc.) in two driving directions. 

 

Figure 5.3 Spatial correlation of pavement rutting performance in the longitudinal direction 

Table 5.1 presents the summary of organized data from the first 20 miles of two lanes. The shortest 

series contains four datapoints that can merely construct a model with one two-step training series (the 

first two steps as the training input, the third one as the training output and the fourth one as the model 

validation). The longest series contains six datapoints, which is the longest period without major 
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rehabilitation for this pavement. It can be transformed into three types of training series with 

corresponding number of time steps in one training series and number of training series. Figure 5.4 

illustrates the case of N6,3. The rutting data collected in a constant interval (one year) as shown in Figure 

5.2 were directly applied in the normalization and then model construction. Otherwise, the missing data 

were filled via interpolation (Xin, Akiyama et al. 2022). For a better comparison between different input 

types, five series were selected for each datatype (N4, N5 and N6). 

Table 5.1 Information of Collected Data 

Series Length Number of Sections 

Number of Time 

Steps in One 

Training Series 

Number of Training 

Series 
Notation 

4 17 2 1 N4,2 

5 11 2 2 N5,2 

5 11 3 1 N5,3 

6 14 2 3 N6,2 

6 14 3 2 N6,3 

6 14 4 1 N6,4 

 

 

Figure 5.4 Conceptual Diagram of N6,3 

5.3 Model Description 

5.3.1 ETS and ARIMA 

The simplest ES model for time series with no trend or seasonality has the mathematical expression as 

the following equation (Hyndman and Athanasopoulos 2018), 
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Where: 

yt+1׀t = prediction for the time t+1 based on the observation at time t  

yi = the observation at time i 

α = the smoothing parameter 

For time series with additional trend, Holt’s linear trend model (Holt 2004) can be used as the following 

equations, in which the prediction for h steps ahead of the time t is the combination of level estimate 

(Lt) and trend estimate (Tt) at time t, 

|t h t t ty L hT+ = +  

( )( )1 11t t t tL y L T  − −= + − +  

( ) ( )1 11t t t tT L L T − −= − + −  

Where: 

β = the smoothing parameter 

A similar approach is applied for the additional seasonality in the Holt-Winters method (Winters 1960). 

The ARIMA model can be mathematically expressed as the following equation (Hyndman and 

Athanasopoulos 2018), 

( ) ( )

1 1

p q
d d

t i t i j t j t
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= + + +   

Where: 

yt-i
(d) = the (t-i)-th observation yt-i after d times of differencing 

εt-j = the prediction error of yt-j  

εt = the white noise for the prediction of yt 

c = constant 

φi, θj = model coefficients 

The equation above contains the basic formula of AR model and MA model and differencing of 

observations, in which differencing is typically applied to process time series with trend or seasonality. 

Non-stationary time series should be transferred to the stationary ones for the construction of ARIMA 

model (Hyndman and Athanasopoulos 2018). It can be denoted with backshift notation as the following 

equation. 
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Accordingly, the ARIMA model can be rewritten as the following equation, in which the number of AR 

parts p, the degree of differencing d and the number of MA parts q are three fundamental elements of 

ARIMA(p, d, q) model. 
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In the model descriptions above, trend refers to the long-term developing direction of the data and 

seasonality refers to the seasonal pattern of the data (Hyndman and Athanasopoulos 2018). Time series 

with either characteristic have time-dependent statistical properties such as mean and variance and are 

called non-stationary. The complete rutting development in field pavement from construction to failure 

does follow a typical pattern (Deng, Zhang et al. 2022). Although the occurrence of maintenance 

partitions such pattern as shown in Figure 5.2, it is weakly reflected on some residual properties of the 

applied data such as an increasing trend. Therefore, trend component and differencing were applied in 

the corresponding ES and ARIMA models in this section. 

5.3.2 CNN 

The CNN applied in this study is one-dimensional (1D) CNN targeted for 1D signals with lower 

computational complexity, easier training and implementation than two-dimensional (2D) CNN 

(Kiranyaz, Avci et al. 2021). Time series can also be seen as images with observations and time 

distributed on two axes. Characteristics (trend, pattern, etc.) of series can be captured by CNN as 

features (curve, edge, etc.) of images (Han, Zhao et al. 2019). 

Figure 5.5 illustrates the structure of applied 1D CNN with one convolutional layer. As shown in the 

figure, the raw data as model input are first transformed into an 1D vector as the input layer. It then 

passes through a convolutional layer in which the input vector is convolved with filters (or kernels) to a 

set of feature maps. The dot product of one filter containing weights and its overlapped input 

components is successively calculated to form one feature map in the convolutional layer. Values in the 

feature map are then processed by an activation function such as Rectified Linear Unit (ReLU) 

(Fukushima 1969) before passing through the pooling layer, which was designed to reduce the 

dimension of feature maps. As processed in the convolutional layer, the average (average pooling) or 

maximum (max pooling) value of the overlapping portion between the filter and feature map is 

successively calculated. Those processed features are finally flattened to a 1D vector as the input for a 

fully connected NN. Accordingly, the key structural parameters of the CNN include the size and number 

of filters and the size of strides (sliding distance of filters) in the convolutional and pooling layers, and as 

well as the numbers of neurons and layers in the fully connected layer. The weights in the filters and the 

fully connected NN are learned during the model training. 
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Figure 5.5 Structure of applied 1D CNN (revised from (Chandra, Goyal et al. 2021)) 

5.3.3 LSTM 

Long short-term memory (LSTM) NN is a modified RNN that is capable of storing information in long-

term sequences (Hochreiter and Schmidhuber 1997). As shown in Figure 5.6, the current LSTM cell 

processes the observation X as well as the output vector h and cell state vector C from the previous one. 

The first step is to calculate the activation vector of the forget gate f as the following equation, 

( )1t g f t f t ff W X U h b −= + +  

Where: 

σg = the gate activation function (e.g., sigmoid function) 

Wf, Uf = the weight matrices  

bf = the bias vector 

This step determines the degree of forgetting information of the previous cell state vector. Next, the 

state cell is updated as the following equation, 

1t t t t tC f C i C−=  +   

in which the activation vectors of the update gate it and cell input 𝐶𝑡̃ are calculated as the following 

equations, 

( )1t g i t i t ii W X U h b −= + +  

( )1tanht C t C t CC W X U h b−= + +  
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where tanh is the hyperbolic tangent function. This step transforms information from the input to the 

cell state. Finally, the output of the current step is calculated as the following equation, 

tanht t th o C=   

in which the activation vector of the output gate ot is calculated as the following equation. This step 

transforms information from the cell state to the output. 

( )1t g o t o t oo W X U h b −= + +  

 

Figure 5.6 LSTM NN Structure with One LSTM Layer (revised from (Pu, Liu et al. 2020)) 

Compared with traditional RNN in which the information transferred from the previous step to the 

current one is processed with simple function (e.g., hyperbolic tangent function), the modified structure 

of the LSTM cell can effectively reduce gradient exploding and vanishing in the model training 

(Hochreiter and Schmidhuber 1997). Accordingly, the parameters in those weight matrices and bias 

vectors need to be learned during the model training. 

5.3.4 CNN-LSTM and ConvLSTM 

In addition to serving as individual models, CNN and LSTM can be combined in hybrid models to predict 

time series. A typical combination method is that the original series is first processed by a CNN model. 

Features extracted by convolutional and pooling layers are then flattened to an 1D vector as the input of 

an LSTM model (Brownlee 2018). It is denoted as the CNN-LSTM model in this study. Considering the 

information can be lost during the flattening in the CNN-LSTM, convolutional operation is directly 

applied within the LSTM cell with inputs, cell outputs, cell states, and gates that are set as tensors of 

higher dimension (Shi, Chen et al. 2015). It was named as ConvLSTM model. Accordingly, the structural 
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and learning parameters of CNN-LSTM and ConvLSTM models are the same as the ones in CNN and 

LSTM models described in the previous two sections.  

It is likely that CNN-LSTM and ConvLSTM models are excessively complicated and unnecessary for 

problems with as limited data as in this study. Actually, even CNN and LSTM models with the simplest 

structure have much more coefficients to be calibrated than the data applied in the model training in 

this study. These models were applied herein to investigate their feasibility in predicting rutting 

development in field pavement and the effects of increasingly complex models on the model 

performance. Therefore, model stability and rationality were treated equally as model accuracy to be 

evaluated in the model evaluation. 

5.4 Results and Discussion 

Results in this section aim to serve as references for selecting suitable models and hyperparameters for 

different data types. Furthermore, potential strategies for improving the prediction performance are 

discussed for future model construction. 

5.4.1 Effects of Hyperparameters and Input Type 

Hyperparameters of DL models are typically determined first to ensure desirable model performance 

and provide convenience for a model comparison. Rather than a grid search (Dong, Shao et al. 2019), 

several typical values were taken for those adjusting hyperparameters to investigate their effects on the 

model performance. The major reason is that the data type was involved in this study, which has 

interactive effects with hyperparameters on the model construction and performance. It is explicitly 

reflected on the fact that the available values of hyperparameters are different in models with different 

input types. For example, the filter size in the convolutional layer of CNN is controlled by the size of 

model input (i.e., the number of time steps). The individual effects of the data type should be 

characterized with fixed values of hyperparameters. Second, it is unlikely that the most desirable 

hyperparameters determined via a grid search are the same with different model inputs. It is more 

practical to provide typical values for the corresponding data type in engineering problems. 

Type and hyperparameters of the training algorithm and type of the loss function were not adjusted in 

this study. The adaptive moment estimation (Adam) algorithm (Kingma and Ba 2014) was applied as the 

training algorithm with default coefficient values in the python DL library – Keras. The mean squared 

error (MSE) was applied as the loss function. 

Table 5.2 shows the hyperparameter values of the cases with the highest model accuracy using the last 

datapoint of series as the validation data and the root mean square error (RMSE) as the indicator. The 

epoch number is the number of times that the learning algorithm works through the training dataset 

(Brownlee 2018). Except for the filter number of CNN, which was valued from 32, 64 and 128, other 

hyperparameters were valued from 100, 250, and 500. The RMSE of each case with fixed input type and 

hyperparameters was calculated from 30 predictions (5 series x 6 repetitions). It can be seen from the 
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table that in both CNN and LSTM, there are no certain values of hyperparameters leading to the highest 

model accuracy. 

Table 5.2 Hyperparameters with Best Model Accuracy in (a) CNN and (b) LSTM 

(a) 

Input Type Filter Size Pool Size Filter Number 

Neuron 

Number in 

Fully 

Connected 

Layer 

Epoch 

Number 
RMSE 

N4,2 2 1 128 250 250 0.179 

N5,2 2 1 32 500 500 0.194 

N5,3 2 1 32 100 250 0.360 

N5,3 2 2 32 100 250 0.245 

N5,3 3 1 32 100 100 0.223 

N6,2 2 1 128 250 100 0.053 

N6,3 2 1 64 100 100 0.066 

N6,3 2 2 128 100 100 0.063 

N6,3 3 1 32 100 100 0.065 

N6,4 2 1 32 100 250 0.108 

N6,4 2 2 128 500 250 0.113 

N6,4 3 1 32 100 100 0.085 

N6,4 3 2 32 100 250 0.089 

N6,4 4 1 64 100 500 0.085 

(b) 

Input Type 
Hidden State 

Dimension 
Epoch Number RMSE 

N4,2 100 100 0.424 

N5,2 250 100 0.221 

N5,3 100 100 0.396 

N6,2 500 500 0.071 

N6,3 100 100 0.064 

N6,4 100 250 0.242 
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A clearer illustration of the hyperparameter effects on model accuracy is presented in Figure 5.7, in 

which the cases with different input types were combined. Accordingly, the RMSE of each set of 

hyperparameters in CNN and LSTM was calculated from 3780 and 540 predictions, respectively. A 

general increasing trend can be observed from the graph indicating that model accuracy decreases with 

the increases of filter, neuron, and epoch numbers and LSTM hidden state dimension. However, this 

trend is negatively affected by the input type and therefore is not clearly reflected on model accuracy in 

Table 5.2. 

As for the individual effect of input type, it can be similarly calculated by combining cases with different 

hyperparameters, as shown in Figure 5.8. Input type can be represented by its two properties – input 

length (“Number of Time Steps”) and input number (“Number of Inputs”) as indicated in Table 5.1. It is 

also indicated in Table 5.1 that the possible combinations of input length and input number for a certain 

series are fixed and determined by the length of the series. Model inputs with the input length of 2, 3, 

and 4 and the input number of 1 were extracted from data type N4,2, N5,3, and N6,4, respectively. Model 

inputs with the input number of 1, 2, and 3 and the input length of 2 were extracted from data type N4,2, 

N5,2, and N6,2, respectively. It can be seen from Figure 5.8 that the larger the input number or the input 

length, the higher the model accuracy. Finally, the balance was achieved in CNN and LSTM that model 

input with the input length and input number of 2 and 3 (or 3 and 2) resulted in the highest model 

accuracy as shown in Table 5.2. 

 

(a) 
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(b) 

Figure 5.7 Effect of hyperparameters in (a) CNN and (b) LSTM 

 

(a)  
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(b) 

Figure 5.8 Effect of input type: (a) input length and (b) input number  

5.4.2 Model Comparison 

In this section, the comparison of model accuracy between two applied DL models and two statistical 

models is presented. Five sample series were randomly selected from series of different lengths to be 

analyzed. As in the previous section, the validation accuracy was utilized, which was calculated using the 

last datapoint of each sample series and the model trained with all previous datapoints. To give a 

general idea of accuracy level, the relative difference between the predicted and measured data in 

percentage replaced RMSE as the indicator. Results of CNN and LSTM with different input lengths are 

presented by the boxplot in Figure 5.9. For each input length, the case with the lowest RMSE was 

selected as marked in bold in Table 5.2. They represent the highest average accuracy CNN and LSTM can 

achieve with these lengths of inputs. Two key findings can be drawn from Figure 5.9. First, CNN achieved 

better accuracy than LSTM in most cases, which is indicated by the mean and deviation of the relative 

difference, and second, model accuracy relied heavily on the shape of input. For example, all predictions 

from LSTM for Sample No.1, No. 3, and No. 4 of the input type N4 are higher than the measurements, 

while for the other two sample series the differences between predictions and measurements distribute 

across zero line. This indicates the risk of obtaining constantly overestimated or underestimated 

predictions for certain shapes of rutting development. In general, as input length increases, the relative 

difference can reach a desirable below 8%. 
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(a) 

 

(b) 
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(c) 

Figure 5.9 Comparison between CNN and LSTM with Input Type: (a) N4, (b) N5 and (c) N6 

For performance comparison with statistical models, the data in the series N6 was utilized to calibrate 

two smoothing parameters of ES model with trend (ETS) and construct ARIMA(2,1,0) model. Since the 

parameter values in these two models were optimized using all the training data (the first five) in the 

series, there is no deviation in repetitive predictions by ETS and ARIMA models, as shown in Figure 5.10. 

It can also be seen from Figure 5.10 that two statistical models have no superiority over CNN and LSTM 

in predicting the rutting development in this study. 

In addition to statistical models, we also conducted a comparison study of CNN models against piece-

wise linear regression models currently adopted by ITD for prediction of overall condition index (OCI) of 

selected ITD asphalt pavement sections, as detailed in Appendix C. CNN models achieved higher 

prediction accuracy than the piece-wise regression models, for the historical data in the series N5 and 

N6.  
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Figure 5.10 Comparison with statistical models 

5.4.3 Strategies for Improving the Model Performance 

Results in the previous two sections indicate that DL models are worthwhile to be utilized in predicting 

short-term rutting development. However, data quantity is a major issue limiting their performance. 

Accordingly, three potential strategies were adopted in this study to investigate their contributions to 

improving model accuracy and stability. 

The first strategy is increasing the input length and number by adding interpolations in the interval. One 

and two interpolations were separately added in the series N4 using the cubic spline interpolation 

method (Hall and Meyer 1976). Accordingly, the input length was increased to five and seven, 

respectively and the corresponding optimal hyperparameters and input types were set as in Table 5.2. 

Model performance with modified inputs is presented in Figure 5.11. It can be seen that model stability 

was improved most as the deviation of repetitive predictions decreased significantly. Model accuracy 

was improved significantly in some cases such as Series Nos. 3, 4, and 5 with LSTM, but was worsened 

slightly in some cases such as Series No.1 with LSTM. It can be explained by the fact that the model 

accuracy relies heavily on the shape of input, which cannot be further described by the added 

interpolations. Another reason is illustrated in Figure 5.11(a) that with interpolations, the final 

prediction is not necessarily the only prediction from the model. Perquisite predictions with the equal 

number of interpolations in the interval are produced first and then serve as the inputs for the final 

prediction, as “Prediction No. 1” and “Prediction No. 2” in Figure 5.11(a). Errors of these perquisite 

predictions can accumulate and be reflected on the final prediction. 
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(a) 

 

(b) 
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Figure 5.11 Comparison with interpolated inputs: (a) example of original data with two interpolations 
in the interval, (b) CNN and (c) LSTM 

The second strategy is increasing the input dimensionality by adding parallel series of pavement 

exposure conditions as model input. Two factors – average annual daily traffic (AADT) and freeze-thaw 

days – were selected as examples to represent traffic and environmental conditions of the pavement for 

their high impacts on the rutting development (Deng and Shi 2022). They were separately retrieved 

from ITD Opendata and Long-term Pavement Performance (LTPP) database (Luo, Wang et al. 2022) from 

the location nearest to the one from which Sample No.1 of N4 was collected. In this study, multiple input 

series were processed by individual CNN models and their outputs were then combined for the final 

prediction. While in LSTM, the multiple input series were directly treated as separate variables 

(Brownlee 2018). Figure 5.12 shows that with enriched model input, the model’s prediction accuracy 

and stability achieved visible improvement. As fully connected NNs, the contributions of various 

pavement exposure factors to the rutting development are considered. However, the time effect is 

dispersedly reflected on the development of individual factors rather than serving as an independent 

factor. Another advantage of this method is that compared with rutting development, the 

characterization and prediction of individual pavement exposure conditions (e.g., traffic volume and 

freeze-thaw days) are more established (George and Santra 2020, Deng, Shi et al. 2021). Accurate and 

reliable prediction of pavement exposure conditions can contribute to better prediction of rutting 

development. 
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Figure 5.12 Comparison with multiple inputs 

The third strategy is increasing the model complexity by applying two hybrid models - CNN-LSTM and 

ConvLSTM - as introduced in Section 5.3.4. As shown in Figure 5.13, similar to the strategy of adding 

interpolations, the major improvement was achieved in model stability. The accuracy level of CNN-LSTM 

is close to that of CNN. Data quantity may be the reason limiting the superiority of hybrid models. 

 

Figure 5.13 Comparison with hybrid models 

5.5 Conclusions 

In Chapter 5, two DL models: CNN and LSTM in predicting short-term rutting development of a field 

asphalt pavement were utilized for ITD PMS data. Effects of model hyperparameters and inputs were 
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characterized for an optimal setting for the corresponding data. Model performance was evaluated and 

compared within DL models and with the statistical models ETS and ARIMA. Three potential strategies 

were utilized to improve prediction performance. The major findings from this work are summarized as 

follows. 

• The average cosine similarity of rutting development in the longitudinal direction of the 

pavement has three distinct stages. It indicates the spatial correlation of pavement performance 

and can capture the characteristic length of pavement to process collected data. One mile (1.61 

meters) was selected as the characteristic length of averaging the collected data for the highway 

pavement in this study. Integration of the raw data effectively mitigated the data inconsistency 

caused by measuring errors and simplified the model construction; 

• Three types of series were collected from the pavement, which were further converted to one, 

two, and three types of model inputs with the corresponding input lengths and numbers ; 

• In CNN and LSTM, the model accuracy decreases with the increases of filter, neuron, and epoch 

numbers and LSTM hidden state dimension. This trend is negatively affected by the effects of 

model input, in which model accuracy increases with the increases of input length and input 

number; 

• CNN outperformed LSTM in most cases in which the average relative difference between 

predicted and measured rut depths was within the range (-18.8% to +16.3%), (-1.5% to +33.9%) 

and (-8.1% to +3.8%) for the series with four, five, and six datapoints, respectively. In LSTM, 

these three ranges were (+5.2% to +42.3%), (-1.5% to +34.4%) and (-6.3% to +6.2%), 

respectively. The statistical models ETS and ARIMA showed no superiority over these two DL 

models, and their range was (-11.2% to +46.0%) for the series with six datapoints; 

• Increasing the data quantity by adding interpolations and increasing the model complexity (by 

using hybrid models) mainly improved the model’s stability. As for model accuracy, the only case 

of improvement is that the average relative difference range shrank to (-2.5% to +25.1%) for the 

series with four datapoints by ConvLSTM. In comparison, both model accuracy and stability 

were improved by the addition of parallel series of pavement condition as model inputs. One 

single series was tried and the average relative difference range reduced from (-18.8% to 

+18.6%) to (-14.9% to -13.5%) by adding the AADT and the number of freeze-thaw days. 
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6. Summary, Conclusions and Recommendations 

6.1 Summary 

The project is to develop reliable and realistic and enhanced performance curves for ITD asphalt 

pavements by mining the historical data. To this end, the project reviewed currently applied predictive 

models in terms of their forms, applications, advantages and limitations. According to characteristics of 

historical data collected by ITD, models of different types were utilized and compared with traditional 

models. The flow of major work in this project can be expressed as Figure 6.1. Model introduction, 

construction, evaluation and comparison were recorded with texts, figures and tables in individual 

chapters. 

 

Figure 6.1 Flow of work in this project 

6.2 Conclusions 

Details of findings and conclusions from each task are presented in the last section of each chapter. In 

this section, a summary of conclusions from this study is presented.    

In Chapter 2, a literature review on current predictive models of asphalt pavement performance and a 

practitioner survey on the insights and experiences of users on the existing models indicate the basic 

qualities of a predictive model should have to be applied in practice. The reason why ME model is widely 
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applied is that it takes advantages of mechanical model and empirical model with basic accuracy, 

rationality and simplicity. Meanwhile, numerical model plays an important part in providing pavement 

responses. Machine learning model, as a product of cutting-edge technology, takes advantages of the 

development of artificial intelligence and computing power. It has both promising applications and 

potential problems to be considered and solved. 

In Chapter 3, NNs calibrated with particle swarm optimization was utilized to predict the asphalt 

pavement rutting in Idaho using PMED data. Performance of models with different calibrated 

parameters, accuracy and calibration time was evaluated and compared. Meanwhile, a three-step 

variable selection method with PCA and correlation analysis was utilized to reduce the input 

dimensionality. It serves as an example of using machine learning model and algorithm to construct 

predictive model with sufficient data. It indicates that during the design of NN models, one should 

consider the number of hidden neurons to balance the model accuracy and reproducibility, which are 

both important for model application.   

In Chapter 4, GEP was utilized to construct predictive models for four typical distresses of asphalt 

pavements in Idaho using PMED data. Compared with neural networks, less coefficients and more 

operations were applied in the GEP models. As another example of artificial intelligence algorithm in 

selecting model form and calibrating model coefficient, GEP models gained higher accuracy than linear 

regression and ME models. This study also indicates the importance of checking the overall model 

accuracy with both the training and validation datasets. 

In Chapter 5, deep learning models - CNN and LSTM were utilized in predicting short-term rutting 

development of a field asphalt pavement with ITD PMS data. Potential strategies such as increasing data 

quantity and dimensionality and model complexity were utilized to improve prediction performance as 

well. This study points out the necessity of considering spatial correlation of pavement performance to 

mitigate measuring error. When an agency has data with limited quantity, lacking pavement condition 

and maintenance effect, deep learning models are worth applying in light of their higher prediction 

accuracy and stability than statistical models.     

6.3 Recommendations for Implementation 

• Characteristics of data should be investigated before applying predictive models. As for 

pavement performance, the focuses can be put on the availability of material, structure, traffic 

and environment conditions as well as maintenance effect. Different model types have different 

applicability and performance for different data. 

• Artificial intelligence model and algorithm are promising in predict pavement performance for 

the accuracy, efficiency and automation. AI can be applied in model form selection, model 

calibration, etc. in different ways and to different degrees. 
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• To avoid overfitting and ensure basic rationality of predictive models, statistical methods are 

necessary to check the stability, robustness, sensitivity, etc. of constructed models before 

application. 

• Models introduced in this project can extend the application in terms of the distress type, 

pavement type and areas of interest, as the research team will provide the associated codes and 

instructions as deliverables in addition to this project final report.  

• While outside the scope of this project, a follow-up project could develop an interactive toolkit 

with user-friendly interface, to facilitate the implementation of the models developed in this 

project. 
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Appendix A. Complete Version of the Practitioner Survey 

This survey, as part of a research project entitled “Developing Enhanced Performance Curves of ITD 

Asphalt Pavements by Mining the Historical Data”, is designed to gather information about pavement 

performance management from managers and engineers in roadway agencies. The project is funded by 

the Idaho Transportation Department (ITD) and the National Center for Transportation Infrastructure 

Durability & Life-Extension (TriDurLE). The survey aims to capture your insights and experiences (as 

users) on the existing performance deterioration models for asphalt pavements, in terms of model 

performance, input and output parameters, consideration of maintenance and rehabilitation (M&R) 

history, implementation considerations, etc. Thank you for supporting research and rest assured that 

your feedback will be anonymized or aggregated to protect your privacy. 

Please provide your Name, Title, Agency and Email. 

• Name _______________________________________________ 

• Title ________________________________________________ 

• Agency ______________________________________________ 

• Email _______________________________________________ 

1. Which distress modes of asphalt pavements are you primarily interested in your work? (select 

all that apply) 

a. rutting  

b. transverse cracking  

c. longitudinal cracking  

d. alligator cracking  

e. edge cracking  

f. block cracking  

g. pothole  

h. patch  

i. raveling  

j. roughness  

k. others (please specify) ________________________________________________ 
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2. Which resources do you have to obtain/develop models of distress modes, and how many years 

has your agency used it? (select all that apply and provide information about the resources you 

use as needed) 

a. AASHTOWare Pavement ME Design 

________________________________________________ 

b. software developed or purchased by your agency (please specify) 

________________________________________________ 

c. EXCEL sheets with programmed models (please specify the references) 

________________________________________________ 

d. other (please specify) ________________________________________________ 

3. What limitations do you think the models you use have? (select all that apply) 

a. too many/too complicated inputs  

b. poor prediction  

c. unfriendly user interface  

d. other (please specify) ________________________________________________ 

4. Which inputs are required in the models you use? (select all that apply) 

a. traffic data  

b. climatic data  

c. material properties data  

d. pavement structure data  

e. other (please specify) ________________________________________________ 

5. Which inputs are difficult to obtain when you use the models? (select all that apply) 

a. traffic data  

b. climatic data  

c. material properties data  

d. pavement structure data  

e. other (please specify) ________________________________________________ 
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6. Please specify the specific factors of Traffic which are difficult to obtain as model input (select all 

that apply) 

a. traffic volume  

b. load magnitude & distribution  

c. load speed  

d. load spectrum  

e. other (please specify) ________________________________________________ 

7. Please specify the specific factors of Climate which are difficult to obtain as model input (select 

all that apply) 

a. temperature  

b. precipitation  

c. wind speed  

d. relative humidity  

e. other (please specify) ________________________________________________ 

8. Please specify the specific factors of Pavement Material which are difficult to obtain as model 

input (select all that apply) 

a. asphalt mixture properties 

b. asphalt binder properties  

c. base and subgrade properties  

d. other (please specify) ________________________________________________ 

9. Please specify the specific factors of Pavement Structure which are difficult to obtain as model 

input (select all that apply) 

a. layer thickness  

b. overlays information  

c. construction information  

d. other (please specify) ________________________________________________ 

10. For the inputs that are not available, what approaches do you usually take in order to use the 

models? (select all that apply) 
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a. use default or recommended values in the software/EXCEL sheet  

b. use values recorded in the database (LTPP, NSRDB, etc.) for your pavement section 

(please specify the names of databases) 

________________________________________________ 

c. use typical values in the references (papers, reports, slides, etc.)  

d. other (please specify) ________________________________________________ 

11. What are your purposes of using the models? (select all that apply) 

a. to obtain distress indices for pavement management (PMS, PMIS, etc.)  

b. to obtain distress indices for innovative materials/structural designs  

c. to validate the models you use  

d. to calibrate the models you use  

e. other (please specify) ________________________________________________ 

12. Do you use historical data to validate or refine your asphalt pavement performance models? 

a. No  

b. Yes 

13. After repairs, the structural and material conditions of your pavement may be different. How do 

you consider such inconsistency when you use models? In other words, do your pavement 

performance models consider the M&R (maintenance and rehabilitation) history of the asphalt 

pavement? Please comment: 

________________________________________________________________ 

14. How do you rate the models you use if you have compared model predictions with field 

measurements? 

a. 7-10: most of them are accurate  

b. 4-6: some of them are accurate  

c. 0-3: few of them are accurate  

d. I didn’t do such comparisons 

15. Have you ever faced any of the following problems when using your asphalt pavement 

performance models? (select all that apply) Please specify the model name and comment. 
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a. you can get very different predictions in multiple runs of your model 

________________________________________________ 

b. you can get very different predictions in pavements with similar conditions 

________________________________________________ 

c. your model is too sensitive or insensitive to certain model inputs 

________________________________________________ 

d. other (please specify) ________________________________________________ 

16. For a pavement performance model, what values of R-squared (R2) do you think are tolerable, if 

fitting the predicted indices vs. actual performance data? 

a. above 0.60  

b. above 0.80  

c. above 0.90  

d. above 0.95 

17. Which distresses do the models you use gave better prediction? (up to three selections) 

a. rutting  

b. transverse cracking  

c. longitudinal cracking  

d. alligator cracking  

e. edge cracking  

f. block cracking  

g. pothole  

h. patch  

i. raveling  

j. roughness 

k. other (please specify) ________________________________________________ 

18. Which distresses do the models you use gave poorer prediction? (up to three selections) 

a. rutting  
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b. transverse cracking  

c. longitudinal cracking  

d. alligator cracking  

e. edge cracking  

f. block cracking  

g. pothole  

h. patch  

i. raveling  

j. roughness 

k. other (please specify) ________________________________________________ 

19. In your opinion, which factors caused the poor prediction? (select all that apply) 

a. oversimplification of model inputs (please specify which inputs, e.g., traffic speed) 

________________________________________________ 

b. inappropriate model forms (please specify which distress modes and model types, e.g., 

linear) ________________________________________________ 

c. insufficient or inappropriate data for model calibration  

d. other (please specify) ________________________________________________ 

20. How often does your agency check the prediction accuracy and update the database of the 

pavement performance models? 

a. 0-2 years  

b. 3-5 years  

c. over 5 years  

d. never 

21. What strategies have your agency adopted to improve the accuracy of the pavement 

performance models? (select all that apply) 

a. do the local calibration using the data in your state  

b. add or reduce the number of model parameters based on the conditions of your state  
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c. other (please specify) ________________________________________________ 

22. Please rank the following factors according to your priorities (first is the most important) when 

considering pavement performance models. (you can drag these factors) 

______ accurate prediction  

______ ease of use  

______ reliability and ruggedness (e.g., get consistent results in multiple runs)  

______ clear form  

______ solid foundation on mechanistic theory (vs. empirical model)  

______ other (please specify the name) 

23. Please provide your opinion on HOW current performance deterioration models (for asphalt 

pavements) can be improved. 

________________________________________________________________ 

24. How much are artificial intelligence (AI) models (e.g., neural networks) involved in your work? 

a. I use such models in my work (please specify the model names if possible) 

________________________________________________ 

b. I know and am willing to use such models but haven’t found a chance yet  

c. I know such models but don’t think they are appropriate to be used in my work  

d. I don’t know such models 

25. If now you have a chance to try the artificial intelligence models as the performance 

deterioration models for asphalt pavements. 

a. I would use the artificial intelligence models to replace the ones I currently use  

b. I would try both the artificial intelligence models and the models I currently use, and 

pick the better one  

c. I would rather use and improve traditional empirical/mechanistic-empirical models  

d. other (please specify) ________________________________________________ 

Other relevant information, comments or suggestions you would like to provide: 

________________________________________________________________ 
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Appendix B. Supplement Information of GEP Models 

The contents included in this appendix are listed as follows. 

• Variable normalization function 

• Maximum and minimum values of model inputs and outputs for variable normalization 

• Equations of final models 

( )min

max min

2
1X x x

x x
= − −

−
 

Where: 

x, X = original and normalized values 

xmax, xmin = the maximum and minimum values of the variable 

Table B.1 Maximum and Minimum Values of Model Inputs and Outputs 

Distress Rutting Rutting 
Longitudinal 

Cracking 

Longitudinal 

Cracking 

Thermal 

Cracking 

Thermal 

Cracking 
IRI IRI 

- Max Min Max Min Max Min Max Min 

AADTT, 1 10426 308 10426 707 10426 493 10426 493 

Hac, mm 304.00 60.96 228.60 60.96 228.60 60.96 304.00 60.96 

Hb, mm 777.24 152.40 777.24 170.69 765.05 170.69 777.24 152.40 

BC, % 6.04 4.40 6.04 4.86 6.04 4.40 6.04 4.40 

Gb, 1 1.035 1.020 1.035 1.023 1.035 1.023 1.035 1.020 

Gsb, 1 2.941 2.554 2.941 2.561 2.941 2.554 2.941 2.554 

EVAPOR, mm 8499.6 530.0 8508.3 811.1 8508.3 811.1 8508.3 811.1 

FI, °C 4805 215 5277 433 5277 433 4805 433 

FT, day 1734 112 1734 231 1734 251 1734 230 

AVE_SW_SUR, 

W/s2 
151404 119798 151014 119798 151014 119798 150968 119798 

Output* 9.418 1.016 69.419 0.104 164.557 0.896 3074.016 891.728 

* Units of outputs of rutting, longitudinal cracking, thermal cracking and IRI models are mm, m/km, m/km and mm/km, 

respectively 
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Table B.2 Equation of Final Models of Four Distresses 

Distress Equation 
Coefficien

ts 

Rutting 

y = (d(2)+(((((G1C5*G1C4)+(d(9)/d(1)))+exp(exp(d(8))))+(d(5)+(G1C4-

d(6))))*((d(9)+(d(2)*G1C3))/((G1C8^2)-d(6)))))+(d(7)+(1.0/(((((d(5)+d(2))+((G2C6*G2C2)-

G2C1))-((G2C9-G2C2)*(d(1)*d(7))))-(((d(10)/d(6))-(d(1)*G2C6))-

(d(4)^2))))))+(d(10)*((d(7)*(exp(d(3))-(d(5)/((((G3C2*G3C0)*d(4))/exp(d(6)))-(G3C5+(d(3)-

d(8)))))))*d(8)))+((d(2)-((d(6)*(((G4C6/G4C0)-d(3))+((d(10)+d(4))-d(7))))/(((realsqrt(G4C8)-

(G4C7*d(6)))+(G4C1*G4C2))^2)))*d(6)) 

G1C4 = -

5.72; 

G1C3 = 

0.32; 

G1C8 = -

3.69; 

G1C5 = 

1.13; 

G2C1 = 

8.18; 

G2C9 = -

4.14; 

G2C2 = 

0.69; 

G2C6 = -

7.93; 

G3C5 = -

1.83; 

G3C2 = 

4.49; 

G3C0 = -

2.45; 

G4C1 = 

6.56; 

G4C2 = -

1.27; 

G4C6 = -

8.04; 

G4C0 = -

6.65; 

G4C8 = 

5.09; 

G4C7 = -

6.89 

Longitudin

al 

Cracking 

y = ((((d(8)+d(10))-(d(10)*(d(7)+d(3))))-

((d(5)*d(10))+d(1)))*(d(9)/(((d(9)+G1C5)+d(6))+(d(5)^2))))+((d(1)+d(7))+((d(6)-

(d(6)+realsqrt((((d(10)*exp(d(2)))*(d(10)+d(10)))*(G2C4*G2C4)))))-d(8)))+((d(10)-

((1.0/((((((d(3)-G3C8)-d(6))/(1.0/(d(3))))+((d(1)-G3C9)-(d(1)*d(1))))-(1.0/(((G3C3*d(1))-

d(1)))))))^2))/(1.0/(d(7))))+(((exp(d(1))+d(10))*((d(5)-

((exp(d(10))/(G4C8*d(5)))*((G4C2*d(5))^2)))/(((d(8)*d(8))+(d(9)+G4C2))+G4C3)))^2) 

G1C5 = -

2.28; 

G2C4 = -

0.29; 

G3C9 = 

4.03; 

G3C3 = -

4.27; 

G3C8 = 

2.62; 
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G4C3 = 

2.66; 

G4C2 = 

3.98; 

G4C8 = -

5.97 

Thermal 

Cracking 

y = (((d(4)*(d(3)*(d(5)*((((d(10)+d(1))/(d(6)+d(6)))+d(3))-

(((G1C1+d(8))+(d(6)/G1C7))^2)))))+G1C4)+d(2))+exp((d(10)-((((1.0/(G2C1))+((d(6)-(d(5)-

d(1)))+((1.0/(d(5)))*d(9))))*exp(((G2C9-G2C2)-(d(10)+G2C4))))/d(10))))+((d(4)+(((G3C4-

(((d(5)/d(2))*(d(5)-G3C1))*(G3C8*d(8))))/(((d(3)/d(1))^2)-((G3C9*G3C5)-

(d(9)+d(5)))))+d(8)))*d(2))+ 

(1.0/((1.0/(((d(10)+(((((d(1)+d(1))*(d(7)*d(10)))*((d(7)*d(7))*d(6)))/(((G4C3+G4C9)+(G4C5/d(

2)))+(G4C0-d(10))))^2))*d(1)))))) 

G1C4 = -

1.99; 

G1C1 = 

0.95; 

G1C7 = 

0.95; 

G2C1 = 

0.69; 

G2C9 = 

3.62; 

G2C2 = 

2.87; 

G2C4 = 

4.15; 

G3C4 = -

0.45; 

G3C8 = 

0.21; 

G3C9 = 

0.54; 

G3C5 = -

3.93; 

G3C1 = 

3.64; 

G4C0 = -

0.98; 

G4C3 = 

8.13; 

G4C9 = -

4.91; 

G4C5 = 

0.11 

IRI 

  
y = (1.0/((((((d(6)/((G1C3*d(5))+d(3)))*((G1C6+d(5))-d(6)))*(exp(G1C9)^2))-

(G1C0*exp(d(4))))^2)))+(exp((((((d(2)^2)-d(6))-(d(6)-d(1)))+G2C0)-(((G2C8-d(10))-(d(5)-

G2C8))+((d(2)*d(1))/d(3)))))-(d(9)-d(10)))+((((d(10)*(d(7)*G3C4))+(1.0/(G3C8)))*d(10))-

exp(((((d(8)+d(2))+d(7))+G3C5)+(G3C0-(G3C7+d(9))))))+(d(7)-((((((d(5)-d(10))*(d(7)/d(1)))-

((G4C0*d(10))-(d(8)+G4C8)))-(((d(3)-d(8))-d(9))-d(5)))*((d(3)/(d(2)-G4C3))^2))^2)) 

G1C0 = 

9.08; 

G1C9 = -

0.58; 

G1C6 = -

8.30; 

G1C3 = -

0.81; 
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G2C0 = 

6.74; 

G2C8 = 

5.54; 

G3C8 = -

1.20; 

G3C5 = 

1.70; 

G3C0 = -

4.29; 

G3C4 = 

0.92; 

G3C7 = -

1.40; 

G4C3 = -

3.72; 

G4C0 = 

5.75; 

G4C8 = -

2.44 

*d(1)~d(10) represent ten input variables in Table B.1 
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Appendix C. Comparison of Different Predictive Models for 

OCI of Asphalt Pavements 

The contents included the comparison of two modelling methods – piecewise linear regression curves 

adopted by ITD currently and DL models applied in this project. 

The first method is using piecewise linear functions to predict the development of Overall Condition 

Index (OCI) in asphalt pavements with different treatments. OCI is an index reflecting the general health 

condition of the pavement section which was defined from the combination of individual distresses such 

as cracking and raveling. Figure C.1 shows the four development curves of OCI with the duration (in 

year) to the treatment. The first step of using this method is to select the curve according to the most 

recent treatment to the pavement section. Next, shift the curve to the location of the latest record of 

OCI as shown in Figure C.2. Finally, predict the OCI value at the future time of interest using the shifted 

development curve. 

The four models (curves) of OCI development in Figure C.1 were constructed by ITD using historical 

records of OCI in asphalt pavement sections with different treatment types. They can be categorized as 

empirical models introduced in Chapter 2. This method assumes that the variation in the OCI 

development in different pavement sections entirely results from the treatment type. Effects of the 

variations in the material properties, structure configuration, traffic and environmental conditions as 

described in Chapter 5 are ignored. Although the causing factors to the variation in OCI development are 

simplified, the advantages of this method are obvious, including simplicity, ease of implementation and 

application, etc.    

 

Figure C.1 Four Piecewise Linear Regression Curves of OCI Development in Asphalt Pavements 
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Figure C.2 Curve Shift for Predicting OCI in Different Asphalt Pavements 

The second method is using DL models introduced in Chapter 5 of this final report, which are able to 

predict pavement performance in terms of individual distresses such as rutting as well as comprehensive 

condition indices such as OCI in this appendix. Compared with the first method, no specific functions 

should be pre-defined. The pattern of OCI development can be captured from historical records by 

complicated model structures as CNN and LSTM. However, DL models typically require more historical 

records (i.e., series with more than three datapoints) than the first method for the model training. 

Besides, it has been proved in Chapter 5 that the more historical data the model includes, the more 

precise the prediction will be. 

In this appendix, OCI was utilized in the comparison between piecewise linear regression model and 

CNN model to show the potential application of DL models in predicting pavement performance. 

Historical records of OCI between 2013-2020 in four routes (Route ID: IN 015 A M, IN 084 A M, US 012 A 

M and US 020 A M) in the state of Idaho were collected and organized. Finally, series with three 

different lengths as defined in Table 5.1 (i.e., N4, N5 and N6) were obtained to be utilized in the model 

comparison. The (sample) numbers of three series are 568, 143 and 21, respectively. For CNN models, 

hyperparameter values were directly taken as in Table 5.2(a) which led to the highest accuracy for the 

rutting development. Therefore, results in this appendix can be also seen as the validation of 

constructed CNN models in Chapter 5 to new data. 

Two indicators – absolute relative difference and RMSE were utilized to show model accuracy as in the 

following equations. As in Chapter 5, the last datapoint of each series was treated as the validation data, 

which is y in the following equations.  

ˆ
Absolute Relative Difference 100%

y y

y

−
=   
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( )
2

1

ˆ
N

i

y y

RMSE
N

=

−

=


 

Where: 

y, 𝑦̂ = actual and predicted OCI values 

N = the total number of predictions 

Figure C.3 shows the boxplots of absolute relative difference of predictions in three series types. 

Descriptions of boxplot can be found in Figure 3.7(b) of this final report. It can be seen from the plots 

that for the OCI development with very limited historical records (i.e., three years of available data), 

piecewise regression models have slightly higher prediction accuracy, indicated by the medium value of 

absolute relative difference in Figure C.3(a). But with the increase of series length, CNN models have 

higher prediction accuracy than any of four piecewise regression models, as shown in Figures C.3(b) and 

C.3(c). Besides, CNN models and piecewise linear regression models have similar prediction levels for 

the outliers, which cannot be captured by neither the trend of OCI development in previous years 

(captured by CNN models) nor the pattern of OCI development in other pavement sections (captured by 

piecewise regression models).         

 

(a) 
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(b) 

 

(c) 

Figure C.3 Boxplot of Absolute Relative Difference of Predictions in Series (a) N4, (b) N5 and (c) N6   

Table C.1 shows RMSE values of OCI predictions in three series types. Similar to Figure C.3, the finding 

that CNN models have higher prediction accuracy than any of four piecewise regression models when 
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the length of historical records for the model training is greater than three, indicated by the lowest 

value of RMSE.  

Table C.1 RMSE of OCI Predictions in Different Series Types 

Series Type CNN Resurfacing Restoration Rehabilitation Reconstruction 

N4 6.42 5.71 5.93 6.13 6.78 

N5 6.75 8.30 8.76 9.06 9.89 

N6 12.96 13.15 14.94 15.27 15.48 

 

As a supplement of results in Chapter 5, example in this appendix shows promising applications of DL 

models in predicting asphalt pavement performance in light of higher prediction accuracy than the 

existing method. Besides, implementation of DL models is of a similar level of complexity to piecewise 

linear regression models considering that data processing, modelling and hyperparameter value 

determination were finished and provided in this project. Moreover, DL models have more space to 

improve prediction accuracy and stability by adopting strategies provided in Chapter 5 such as 

increasing data quantity and dimensionality and model complexity. 
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