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Disclaimer 

This document is disseminated under the sponsorship of the Idaho Transportation Department and the 
United States Department of Transportation in the interest of information exchange. The State of Idaho 
and the United States Government assume no liability of its contents or use thereof. 

The contents of this report reflect the view of the authors, who are responsible for the facts and 
accuracy of the data presented herein. The contents do not necessarily reflect the official policies of the 
Idaho Transportation Department or the United States Department of Transportation. 

The State of Idaho and the United States Government do not endorse products or manufacturers. 
Trademarks or manufacturers’ names appear herein only because they are considered essential to the 
object of this document. 

This report does not constitute a standard, specification, or regulation.  
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Executive Summary 

Crashes involving motor vehicles and pedestrians or bicycles can vary in many ways. Each crash involves 

the specific movements and characteristics of the road users involved, the surrounding infrastructure, 

and a host of other factors including alcohol use and lighting. The ability to partition these crashes into 

similar groups can help to identify hotspots, identify rising problems, and deploy the most effective 

countermeasures. Crash typing describes this process of analyzing crash details to categorize crashes 

into a manageable number of groups.  

The research team conducted a literature review to explore crash typing methodologies and their use in 

selecting countermeasures to improve safety. Pedestrian and Bicycle Crash Analysis Tool, Version 2 

(PBCAT2) emerged as the preeminent methodology, though there is merit to clustering algorithms. 

PBCAT2 requires manual review of each crash narrative to extract the necessary data elements. Several 

tools powered by machine learning algorithms have been developed to facilitate this process.  

This research effort collected 10 years (2012-2021) of records pertaining to crashes involving motor 

vehicles and bicycles (N = 2,739) or pedestrians (N = 2,209). Crash narratives were submitted to a large 

language model to extract additional information. Crashes were then aligned to PBCAT2 crash groups 

and typed using a hierarchical clustering algorithm.  

The population in Idaho grew by 19.3% between 2012 and 2021, and vehicle miles traveled in Idaho 

increased by 23.3% over the same period. Results indicate that bicycle crashes of all types have declined 

over the ten-year period, while pedestrian crashes overall have held steady; however, fatalities have 

increased. Several crash types exhibit increasing trends: those occurring around parking lots, alleys, and 

driveways; and those involving motorists failing to signal at intersections, making improper left turns, 

speeding near turns and hills.  

Risk factors for fatal or serious injury include motorist speeding and impairment, midblock crossings (for 

bicyclists), and walking along the roadway (pedestrians). With the help of crash type models, high 

occurrence corridors were identified and mapped. Countermeasures, including expanding bicycle 

facilities, restricting curbside parking and loading, minimizing visual clutter, installing additional lighting, 

reducing curb radii, and enforcing laws intended to prevent distracted driving are suggested to improve 

safety for bicyclists and pedestrians in Idaho. Also included as a strategy is providing advanced medical 

training to improve the chance of survival in the event of a crash.  
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1. Introduction 

Crash typing is a method of categorizing crashes into a manageable number of groups. The term “crash 

type” is used liberally and carries different meanings in different contexts. For example, some sources 

use crash type and injury severity synonymously (Schnee et al., 2021), others use it as shorthand for the 

mode of the road users involved, and others use non-standardized typologies (Bhowmik et al., 2021; 

Intini et al., 2020; Li et al., 2020). More informative crash types describe events and maneuvers of the 

involved parties that led up to a crash (Thomas et al., 2018). These definitions aid in the selection of 

appropriate countermeasures and can provide valuable insight by producing homogeneous crash groups 

for researchers to drill down into when searching for factors that may influence injury severity.  

The National Highway Traffic Safety Administration (NHTSA) funded the development of the first crash 

typing methodology in the 1970s. Snyder et al. (1971) collected highly detailed data from interviews 

with victims, witnesses, and police officers on 2,157 pedestrian crashes occurring in 13 U.S. cities. They 

developed a typology of 27 crash types with corresponding countermeasures by classifying crashes 

based on precipitating events, predisposing factors, and target groups. In 1977, researchers collected 

data from 919 bicyclist/motorist crashes in cities in California, Colorado, Florida, and Michigan (Cross & 

Fisher, 1977). They identified 36 “problem types,” each one characterized by the traffic context in which 

the crash occurred, the operators' function failures, and the combination of factors causally related to 

the function failures. Smist (1982) introduced the first computer-assisted (pedestrian) crash typing 

procedure. These efforts culminated in the first official set of crash types endorsed by NHTSA, with 37 

pedestrian-motor-vehicle crash types and 45 bicycle-motor-vehicle crash types (NHTSA, 1983b, 1983a).  

This research report presents a review of crash typing methodologies and develops a methodology to 

assign crash types to crashes in Idaho involving bicycles and pedestrians. Trends and hot spots are 

identified, and appropriate countermeasures are recommended. 

2. Literature Review 

This review summarizes and evaluates the available methods and tools for pedestrian and bicycle 

(“pedbike”) crash typing, and how crash typing has been used to select countermeasures to improve 

safety. One tool directly facilitates crash typing, while others seek to replace or supplement the manual 

review of crash narratives with machine learning techniques. The following sections describe these 

methods and their corresponding typologies. 

The Pedestrian and Bicycle Crash Analysis Tool (PBCAT) 

The Pedestrian and Bicycle Crash Analysis Tool (PBCAT) encompasses a methodology, typology, and tool; 

the tool guides users through the methodology to produce a particular typology by asking analysts to 

answer questions about the events leading up to the crash. Responses are recorded with user-provided 

crash IDs and resulting crash types, and a text file is produced for further analysis. Version 1 (PBCAT1), 
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released in 1999 was developed to simplify the process and enable States to perform their own crash 

typing.  

Ragland et al. (2003) used PBCAT1 to develop a pedestrian countermeasures plan for San Francisco. 

Authors also outline the steps to implement appropriate countermeasures: select the crash problem 

(crash type), map crashes and develop candidate zones, calculate injury densities, select final zones, 

then select countermeasures (based on cost, presumed safety effectiveness, ease of implementation, 

and other criteria) and evaluate. 

Early users called for a reduction in the number of crash types and a better connection to 

countermeasures (Harkey & Blomberg, 2001). PBCAT2 was released in 2006 to address these criticisms. 

This version introduced crash type groups (16 groups to describe 56 pedestrian crash types, 21 groups to 

describe 79 bicyclist crash types) that closely correspond to popular countermeasure guides PEDSAFE 

(Harkey & Zegeer, 2004) and BIKESAFE (Hunter et al., 2006). Table 1 lists the PBCAT2 pedestrian and 

bicyclist crash type groups, and indicates which groups are included in these guides.  

Table 1. PBCAT2 crash type groups, by mode. 

Pedestrian Bicycle 

Backing Vehicle* 
Bus-Related* 
Crossing Driveway or Alley 
Crossing Expressway* 
Crossing Roadway, Vehicle Not Turning* 
Crossing Roadway, Vehicle Turning* 
Dash/Dart-Out* 
Multiple Threat/Trapped* 
Off Roadway* 
Other/Unknown, Insufficient Details 
Pedestrian in Roadway, Circumstances Unknown 
Unique Midblock* 
Unusual Circumstances 
Waiting to Cross 
Walking Along Roadway* 
Working or Playing in Roadway* 

Backing Vehicle 
Bicyclist Failed to Yield, Midblock* 
Bicyclist Failed to Yield, Signalized Intersection* 
Bicyclist Failed to Yield, Sign-Controlled Intersection* 
Bicyclist Left Turn/Merge* 
Bicyclist Overtaking Motorist* 
Bicyclist Right Turn/Merge* 
Crossing Paths, Other Circumstances 
Head-On 
Loss of Control/Turning Error 
Motorist Failed to Yield, Midblock* 
Motorist Failed to Yield, Signalized Intersection* 
Motorist Failed to Yield, Sign-Controlled Intersection* 
Motorist Left Turn/Merge* 
Motorist Overtaking Bicyclist* 
Motorist Right Turn/Merge* 
Nonroadway 
Other/Unknown, Insufficient Details 
Other/Unusual Circumstances 
Parallel Paths, Other Circumstances 
Parking/Bus-Related 

Note: crash type groups denoted with an asterisk (*) appear in PEDSAFE (D. L. Harkey & Zegeer, 2004) or BIKESAFE (Hunter et 

al., 2006) 

PBCAT2 is the current standard in crash typing in the United States. This typology has appeared in the 

Fatality Analysis Reporting System (FARS), National Automotive Sampling System (NASS), and General 

Estimates System (GES) since 2010 (National Highway Traffic Safety Administration, 2022). Its use is 



 

Bicycle and Pedestrian Safety Research Project  12 

recommended as part of systematic pedestrian safety analysis (Thomas et al., 2018) and in the selection 

of safety improvement projects (Natarajan et al., 2008). 

Carter and Council (2006) applied PBCAT2 to the analysis of rural pedbike crashes in Florida and 

proposed countermeasures using PEDSAFE and BIKESAFE. Spainhour et al. (2006) also applied the 

PBCAT2 methodology to Florida crashes, focusing on fatal pedestrian crashes. Researchers found that 

pedestrian behaviors were the primary contributing factors in most cases. Zegeer et al. (2008) present 

the full lifecycle of a pedestrian safety improvement program in Miami, Florida, from crash typing using 

PBCAT2 to countermeasure selection, implementation, and evaluation. Researchers deployed problem-

specific countermeasures and conducted a thorough before-after analysis to document significant 

improvements in key pedestrian groups including school-aged children. 

Thomas et al. (2019) used PBCAT2 to compare data from FARS, the state of North Carolina, and the city 

of Boulder, Colorado. Vavrova et al. (2021) describe the process of applying the PBCAT2 

methodology/tool to more than 10,000 pedbike crash reports in Texas and prescribe countermeasures 

specific to each crash type. Other applications in Arizona, Colorado, and Pennsylvania have also been 

documented (Chavis et al., 2018; Do & Harkey, 2006). 

Version 3 was released in 2022 with several changes compared to prior versions (Thomas et al., 2022). It 

is a web application (available at https://www.pbcat3.org/), whereas prior versions required software 

installation and some technical expertise. More importantly, crash types are no longer determined 

separately for pedestrians and bicyclists, and “the precrash maneuvers of the motorist and non-motorist 

are the only two variables that influence the Crash Type" (Thomas et al., 2022, p. 22). Table 2 shows the 

resulting combinations that yield 79 detailed crash types involving a motor vehicle colliding with a 

pedestrian or bicyclist. Some non-motorist maneuvers are combined to produce 32 basic crash types. 

The relation between PBCAT2 and PBCAT3 is unclear due to “substantial” changes to the logic and 

variable definitions (Thomas et al., 2022, p. 77). Because both versions require information typically only 

captured in crash narratives, this may impose a large burden for States conducting ongoing crash typing 

efforts. 

PBCAT3 has been used to compare e-scooter and bicycle crashes in Tennessee (Shah et al., 2021), and to 

determine which types of vehicles were associated with various pedestrian crash types in North Carolina 

(Hu & Cicchino, 2022). 

 



 

Table 2. PBCAT3 Detailed Crash Type Matrix. Source: (Thomas et al., 2022) 

 CR: 

Crossing 

path 

from 

motorist’

s right 

CL: 

Crossing 

path 

from 

motorist’

s left 

CU: 

Crossing 

path, 

unknown 

direction 

PS: 

Parallel 

path, 

same 

direction 

PO: 

Parallel 

path, 

opposite 

direction 

PU: 

Parallel 

path, 

unknown 

direction 

MU: 

Moving 

in 

unknown 

path/dire

ction 

ST: 

Stationar

y 

OU: 

Other/ 

unusual 

UN: 

Unknown 

FC: Non-

motorist 

fall or 

crash 

S: Going straight S-CR S-CL S-CU S-PS S-PO S-PU S-MU S-ST S-OU S-UN S-FC 

R: Turning right R-CR R-CL R-CU R-PS R-PO R-PU R-MU R-ST R-OU R-UN R-FC 

L: Turning left L-CR L-CL L-CU L-PS L-PO L-PU L-MU L-ST L-OU L-UN L-FC 

P: Parked P-CR P-CL P-CU P-PS P-PO P-PU P-MU P-ST P-OU P-UN P-FC 

E: Entering traffic lane E-CR E-CL E-CU E-PS E-PO E-PU E-MU E-ST E-OU E-UN E-FC 

B: Backing B-CR B-CL B-CU B-PS B-PO B-PU B-MU B-ST B-OU B-UN B-FC 

O: Other maneuver O-CR O-CL O-CU O-PS O-PO O-PU O-MU O-ST O-OU O-UN O-FC 

U: Unknown maneuver U-CR U-CL U-CU U-PS U-PO U-PU U-MU U-ST U-OU U-UN U-FC 

N: Non-collision NA NA NA NA NA NA NA NA NA NA N-FC 



 

The Location-Movement Classification Method (LMCM) 

In 2016, a novel methodology and typology, the Location-Movement Classification Method (LMCM), 

expanded on PBCAT2 by explicitly considering, “(a) the location of the crash relative to an intersection or 

roadway segment and (b) the direction of pedestrian or bicyclist movement relative to the motor vehicle 

movement" (Schneider & Stefanich, 2016, p. 72). Note that PBCAT2 requests this information but does 

not use it to determine crash type. The LMCM typology includes 57 distinct crash types for both 

pedestrians and bicyclists (114 in total). Error! Not a valid bookmark self-reference. presents the LMCM 

coding scheme. For example, crash type N_RRD_X corresponds to a non-intersection crash on the right 

side of the roadway with no or unknown pedbike movement. 

 



 

Table 3. Location-Movement Classification Method coding scheme (Schneider & Stefanich, 2016). 

Main Crash 

Category 
First Part of Code Second Part of Code Third Part of Code Fourth Part of Code 

Roadway 
intersection 

General location 
I = roadway 

intersection 

Side of intersection 
NS = nearside, or where motorist 

enters intersection 
FS = farside, or where the motorist 

exits intersection 

Motorist movement 
ST = straight 
LT = left turn 
RT = right turn 

Pedestrian or bicyclist movement relative 
to motorist’s preturn direction 

R = approaching from motorist’s right 
L = approaching from motorist’s left 
S = same direction as motorist 
O = opposite direction as motorist 
X = no or unknown direction 

Roadway 
nonintersection 

General location 
N = roadway 

nonintersection 

Location on the roadway 
RRD = right-side roadway lane 
LRD = left-side roadway lane 
RSH = right-side shoulder or bike lane 
LSH = left-side shoulder or bike lane 
RSW = right-side sidewalk 
LSW = left-side sidewalk 

Pedestrian or bicyclist movement a 
R = approaching from motorist’s right 
L = approaching from motorist’s left 
S = same direction as motorist 
O = opposite direction as motorist 
X = no or unknown direction 

None 

Parking lot or 
private property 

General location 
P = parking lot 
D = driveway 

Motorist movement 
F = forward 
B = backward 

None None 

Other b All crashes have 
single code OTH 

None None None 

a R and L movements are not used for shoulder or sidewalk crashes. 

b Other crashes include situations that do not fit into the categories, including driverless vehicle crashes or multiunit crashes where a pedestrian 

or bicyclist was struck by a vehicle that had already been struck by another vehicle. 



 

Comparison of PBCAT2 and LMCM 

The literature provides a limited comparison of the PBCAT2 and LMCM typologies. Table 4 compares the 

three most common crash types identified by two studies using both methodologies. Schneider and 

Stefanich (2016) applied both methodologies to 234 pedestrian and 155 bicycle fatal/severe injury 

crashes in Wisconsin. Authors cross-tabulate crashes to demonstrate the many-to-many relationships 

between the two typologies. For example, the most common pedestrian crash was 741 (Dash, PBCAT2) 

or N_RRD_X (non-intersection, right side of roadway, no or unknown pedbike direction, LMCM). This 

PBCAT2 crash type maps to five other LMCM types, and this LMCM type maps to five other PBCAT2 

types. 

Chavis et al. (2018) typed pedbike crashes in Washington, DC, using PBCAT2, the LMCM, and decision 

trees. The two methods provide very different types of information about the crash. Decision trees also 

identified traffic control type, crash time, alcohol, speeding, light condition, road type, city quadrant, 

and fault as contributing factors in more severe pedestrian crashes, and construction zones as factors in 

more severe bicycle crashes. PEDSAFE and BIKESAFE are used to recommend countermeasures. 

Amsden and Huber (2006) also typed crashes in Wisconsin, though only bicyclist-motor vehicle crashes 

and only using the PBCAT2 methodology. Researchers typed over 1,000 crashes and found the following 

most common crash types: 141 (motorist drive-out, sign-controlled intersection), 144 (bicyclist ride-

through, sign-controlled intersection), and 212 (motorist left turn, opposite direction). Several of these 

crash types were also identified in Schneider and Stefanich (2016) and Chavis et al. (2018). 

Table 4. Comparison of most common crash types identified using PBCAT2 and LMCM methodologies 
(continued next page). 

Location 

(Source) 
Road User Most Common PBCAT2 Crash Types Most Common LMCM Crash Types 

Wisconsin 
(Schneider & 
Stefanich, 2016) 

Pedestrian 741 – Dash  N_RRD_X – non-intersection, right side of 
roadway, no or unknown pedbike 
direction 

Wisconsin 
(Schneider & 
Stefanich, 2016 

Pedestrian 770 – Motorist failed to yield I_FS_ST_L – intersection, farside, motorist 
travelling straight, pedbike 
approaching from motorist’s left 

Wisconsin 
(Schneider & 
Stefanich, 2016 

Pedestrian 742 – Dart out N_RRD_R – non-intersection, right side of 
roadway pedbike approaching 
from motorist’s right 

Wisconsin 
(Schneider & 
Stefanich, 2016 

Bicyclist 231 – Motorist overtaking, undetected 
bicyclist 

N_RRD_X – non-intersection, right side of 
roadway, no or unknown pedbike 
direction 

Wisconsin 
(Schneider & 
Stefanich, 2016 

Bicyclist 212 – Motorist left turn, opposite 
direction 

I_NS_ST_L – intersection, nearside, motorist 
travelling straight, pedbike 
approaching from motorist’s left 

Wisconsin 
(Schneider & 
Stefanich, 2016 

Bicyclist 141 – Motorist drive-out, sign-
controlled intersection 

I_FS_ST_R – intersection, farside, motorist 
travelling straight, pedbike 
approaching from motorist’s right 
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Location 

(Source) 
Road User Most Common PBCAT2 Crash Types Most Common LMCM Crash Types 

Washington, DC 
(Chavis et al., 
2018) 

Pedestrian 781 – Motorist left turn, parallel paths 
 

I_NS_ST_X - Intersection, nearside, motorist 
travelling straight, no or unknown 
pedbike direction  

Washington, DC 
(Chavis et al., 

2018) 

Pedestrian 770 – Motorist failed to yield 
 

N_RRD_X – non-intersection, right side of 
roadway, no or unknown pedbike 
direction 

Washington, DC 
(Chavis et al., 

2018) 

Pedestrian 760 – Pedestrian failed to yield I_FS_LT_O – intersection, farside, motorist left 
turn, pedbike moving in opposite 
direction 

Washington, DC 
(Chavis et al., 

2018) 

Bicyclist 244 – Bicyclist overtaking, extended 
door 

 

N_RRD_S – non-intersection, right side of 
roadway, pedbike moving in 
opposite direction as motorist 

Washington, DC 
(Chavis et al., 

2018) 

Bicyclist 212 – Motorist left turn, opposite 
direction 

I_NS_ST_S – intersection, nearside, motorist 
travelling straight, pedbike moving 
in same direction 

Washington, DC 
(Chavis et al., 

2018) 

Bicyclist 213 – Motorist right turn, same 
direction 

I_FS_LT_O – intersection, farside, motorist left 
turn, pedbike moving in opposite 
direction 

 

Clustering Algorithms 

Both PBCAT2 and LMCM require crash narratives, which are often difficult to attain, require manual 

review, and are subject to judgment and error. These methods also ignore other potentially relevant 

factors such as lighting conditions, alcohol involvement, age, and dozens of other variables typically 

captured in State and nationwide crash databases. A variety of machine learning methods have been 

applied to deal with the lack of narratives and wealth of other data.  

Sun et al. (2019) applied a k-means clustering algorithm to 14,236 pedestrian crashes in Louisiana, then 

examined each cluster individually for factors associated with increased injury severity. Researchers 

noted differences between generally predictive factors and cluster-specific factors. For example, 

pedestrians crossing or entering the roadway was not predictive of fatal/severe injury overall, but it was 

in the cluster of nighttime crashes involving alcohol or drugs. Depaire et al. (2008) conducted a similar 

analysis on 4,028 pedbike crashes in Belgium, producing seven clusters with similar conclusions. Another 

study identified seven clusters in New York City and five in Montreal, concluding that clustering should 

be used “not only for descriptive analysis, but also as a preliminary segmentation tool for a more 

detailed, standard statistical analysis” (Mohamed et al., 2013, p. 35). 

Song et al. (2021) presents an exemplary analysis of crash types with countermeasure 

recommendations. Researchers used PBCAT2 crash type groups in part of a larger clustering effort 

aimed at identifying upward trending hotspots of fatal pedestrian and bicyclist crashes and provided 

results to planners and the public in an interactive web application. The application incorporates 

secondary data – including exposure metrics – maps crashes, assesses corridors, and recommends 

appropriate countermeasures. 
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One approach applied a clustering algorithm to questionnaire responses to develop a unique typology of 

bicyclist crash types. Billot-Grasset et al. (2014) collected information from 1,078 French bicyclists 

involved in crashes with motor vehicles, including: crash date and place, injury severity, age, gender, trip 

purpose, traffic environment, infrastructure, road surface conditions, objects avoided or hit, road users’ 

trajectories, weather and light conditions, and bicyclist equipment. The analysis produced 17 clusters. 

Authors note important differences between their findings and the early work of Cross et al. (1977) such 

as the absence of a nighttime factor despite its emergence as a key variable in the clustering process. 

Chavis et al. (2018) typed pedbike crashes in Washington, DC, using PBCAT2, the LMCM, and decision 

trees. PBCAT2 and LMCM results are discussed in the previous section of this review. The decision trees 

identified traffic control type, crash time, alcohol, speeding, light condition, road type, city quadrant, 

and fault as contributing factors in more severe pedestrian crashes, and construction zones as factors in 

more severe bicycle crashes. These factors are not considered in PBCAT2 or LMCM methodologies. 

These techniques can leverage a wealth of information but can also produce unique typologies. This may 

be advantageous within a single State’s analysis, as States vary in terms of crash environments, 

infrastructure, and other factors. However, a non-standardized typology makes inter-State comparisons 

difficult or impossible.  

Other Machine Learning Applications 

More recently, machine learning (ML) techniques have been applied to the crash narratives themselves. 

The review identified two tools that seek to facilitate this process.  

The Utility for Active Learning with Instances and Semantic Terms (DUALIST) was released in 2012 as a 

resource to help researchers train models to classify texts into custom groups (Settles, 2012). Users read 

through texts (crash reports) and select which terms and phrases are indicative of each group (crash 

type). The model can then be applied to new texts to categorize them accordingly. This tool has been 

used to significantly reduce the time to classify the narrative text of traumatic brain injuries (Chen et al., 

2016). 

DUALIST was released prior to recent advances in natural language processing, (Radford et al., 2019), 

pre-training and fine-tuning (Howard & Ruder, 2018), and transfer learning (Pan & Yang, 2010). Sayed et 

al. (2022) developed a publicly available tool specifically to read and classify crash narratives with less 

manual labor. The Crash Information Extraction Analysis and Classification Tool (CIEACT) accepts CSV 

files of crash narratives and allows users to apply pre-existing models or train new ones. Current models 

are limited to identifying crashes involving work zones and driver distraction. This tool represents a 

remarkable step forward in the typing of crashes from crash narratives.  

Such techniques have been applied to motorcycle crashes (Das et al., 2021) and heavy vehicle crashes in 

Australia (Arteaga et al., 2020) and workers’ compensation claims (Bertke et al., 2016; Marucci-Wellman 

et al., 2017). Das et al. (2020) applied three ML algorithms to read crash narratives and determine fault; 

the best algorithm accurately determined fault with 77% accuracy in a sample of roughly 150 pedestrian 

crashes (trained on 265 crashes). Montella et al. (2011) used classification trees and association rules to 
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explore the severity of pedestrian crashes in Italy. Other machine learning and language processing 

algorithms can be implemented in popular programming languages such as Python and R (Mesevage, 

2020; Wolff, 2020). 

3. Methodology 

This research effort sought to improve safety for bicyclists and pedestrians by aggregating relevant data 

into a georeferenced database, implementing crash typing methodologies, and conducting systematic 

analysis to identify safety hotspots and trends. Findings were used to make targeted countermeasure 

recommendations. This section provides further detail on the methodologies used. 

The Idaho Transportation Department (ITD) stores and analyzes crashes in a non-public database known 

as WebCars. The research team worked with ITD staff to gain access to WebCars and extract 10 years of 

records pertaining to crashes involving motor vehicles and bicycles or pedestrians. This data includes 

123 unique data elements covering 2,739 bicycle crashes and 2,209 pedestrian crashes between 2012 

and 2021. These elements exclude identifying information such as names and officer badge numbers but 

include the full text of the officer-generated crash narrative. All data manipulation and analysis were 

conducted using the R language for statistical computing (R Core Team, 2023).  

Crash data stored in WebCars is organized in three different data tables pertaining to the crash, the 

vehicles involved, and the people involved. The research team conducted standard data validation and 

cleaning steps, then aggregated the three tables into one “flat” table. The “flat” table uses indicator 

variables to organize all information pertaining to one crash onto one row. For example, a crash 

involving a 45-year-old driver and 20-year-old bicyclist would appear as driver.age_41_60=1 and 

pedbike.age_25_under=1, with other variables capturing additional details. This manipulation was 

necessary to cluster the crashes without losing information about the people and vehicles involved. Only 

data describing vehicle drivers, bicyclists, and pedestrians was considered; data for non-driving 

passengers was discarded. A georeferenced database including all collected data and crash type labels, 

as well as documentation, was delivered to ITD.  

Two crash typing methodologies were implemented: PBCAT2 and clustering.  

Table 5 provides the PBCAT2 crash group definitions. Note that this report uses the term “crash type” to 

refer to what the PBCAT2 technique calls “crash groups.” Most crash group definitions were successfully 

implemented by using a combination of data from crash records and narratives. Some crash groups 

(bicyclist 220, 225, 240; pedestrian 800) were omitted due to a lack of data, while others (bicyclist 190, 

290, 850; pedestrian 600, 990) were omitted for lack of specificity.  



 

Bicycle and Pedestrian Safety Research Project  20 

Table 5. PBCAT2 crash group definitions (continued next page). Source: (D. Harkey et al., 2006) 

Mode Crash 
Group 
Number 

Crash Group  
Label  

Definition  Source 

Bicycle 110  Loss of 
Control/Turning 
Error  

Either the motorist or the bicyclist lost control of their vehicle 
or made a turning error and inadvertently moved into the path 
of the other operator. Note:  Includes loss of control due to 
mechanical problems or operator error or turning errors such 
as traveling into the opposing lane.  

Narratives 

Bicycle 140  Motorist Failed to 
Yield,  
Sign-Controlled  
Intersection  

The motorist drove into the crosswalk area or intersection and 
collided with the bicyclist.  The motorist either violated the sign 
or did not properly yield right-of-way to the bicyclist.   
Note:  Crashes at traffic circles or roundabouts with yield 
control are included here.  

Crash records, 
narratives 

Bicycle 145  Bicyclist Failed to 
Yield,  
Sign-Controlled  
Intersection  

The bicyclist rode into the intersection and collided with the 
motorist. The bicyclist either violated the sign or did not 
properly yield right-of-way to the motorist.  
Note:  Crashes at traffic circles or roundabouts with yield 
control are included here.  

Crash records, 
narratives 

Bicycle 150  Motorist Failed to 
Yield, Signalized 
Intersection  

The motorist drove into the crosswalk area or intersection and 
collided with the bicyclist.  The motorist either violated the 
signal or did not properly yield right-of-way to the bicyclist.   

Crash records, 
narratives 

Bicycle 158  Bicyclist Failed to 
Yield, Signalized 
Intersection  

The bicyclist rode into the intersection and collided with the 
motorist. The bicyclist either violated the signal or did not 
properly yield right-of-way to the motorist.  

Crash records, 
narratives 

Bicycle 190  Crossing Paths, 
Other 
Circumstances  

The bicyclist and motorist were on initial crossing paths, but 
the crash cannot be further classified.  

Omitted 

Bicycle 210  Motorist Left 
Turn/Merge  

The motorist made a left turn or merge into the path of a 
bicyclist traveling in the same or opposite direction.  

Crash records, 
narratives 

Bicycle 215  Motorist Right 
Turn/Merge  

The motorist made a right turn or merge into the path of a 
bicyclist traveling in the same or opposite direction.  

Crash records, 
narratives 

Bicycle 219  Parking/Bus-
Related  

The bicyclist was struck by a motorist entering or exiting a 
parking space or by a bus or delivery vehicle pulling into or 
away from the curb.  

Crash records 

Bicycle 220  Bicyclist Left 
Turn/Merge  

The bicyclist made a left turn or merge into the path of a motor 
vehicle traveling in the same or opposite direction.  

Omitted 

Bicycle 225  Bicyclist Right 
Turn/Merge  

The bicyclist made a right turn or merge into the path of a 
motor vehicle traveling in the same or opposite direction.  

Omitted 

Bicycle 230  Motorist 
Overtaking Bicyclist  

The motorist was overtaking the bicyclist at the time of the 
crash.  

Crash records 

Bicycle 240  Bicyclist Overtaking 
Motorist  

The bicyclist was overtaking the motorist at the time of the 
crash. Note:  This group includes crashes involving bicyclists 
striking parked cars or extended doors.  

Omitted 

Bicycle 258  Head-On  Either operator was going the wrong way and the two parties 
collided head-on.  

Crash records, 
narratives 

Bicycle 290  Parallel Paths, 
Other 
Circumstances  

The bicyclist and motorist were on initial parallel paths, but the 
crash cannot be further classified.  

Omitted 

Bicycle 310  Bicyclist Failed to 
Yield, Midblock  

The bicyclist rode into the street from a nonintersection 
location (including residential or commercial driveway or other 
midblock location) without yielding to the motorist.  

Crash records, 
narratives 

Bicycle 320  Motorist Failed to 
Yield, Midblock  

The motorist drove across the sidewalk or into the street from 
a nonintersection location (including residential or commercial 

Crash records, 
narratives 
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Mode Crash 
Group 
Number 

Crash Group  
Label  

Definition  Source 

driveway or other midblock location) without yielding to the 
bicyclist.  

Bicycle 600  Backing Vehicle  The motorist was backing up at the time the crash occurred.  Crash records, 
narratives 

Bicycle 850  Other/Unusual  
Circumstances  

There were unusual circumstances surrounding the crash, but 
the crash cannot be further classified.  

Omitted 

Bicycle 910  Nonroadway  The crash occurred off the road network such as in a parking 
lot, driveway, on a multi-use path separated from the road 
right-of-way, in an open grassy area or yard, etc.  

Crash records, 
narratives 

Pedestrian 100  Unusual 
Circumstances  

The crash involved a disabled vehicle, emergency vehicle or 
vehicle in pursuit, play vehicle, driverless vehicle, or the 
pedestrian was struck intentionally, was clinging to a vehicle, or 
was struck as a result of other unusual circumstances.  

Crash records, 
narratives 

Pedestrian 200  Backing Vehicle  The pedestrian was struck by a vehicle that was backing at the 
time.  

Crash records 

Pedestrian 310  Working or Playing 
in Roadway  

The pedestrian was working or playing in the roadway.  Crash records 

Pedestrian 340  Bus-Related  The pedestrian was struck while crossing/walking to a bus or 
bus stop or while waiting at a bus stop.  

Crash records, 
narratives 

Pedestrian 350  Unique Midblock  The crash was associated with a vendor truck, mailbox, or other 
roadside 'destination' that was not a bus, or the pedestrian was 
struck while entering or exiting a parked vehicle.  

Crash records 

Pedestrian 400  Walking Along 
Roadway  

The pedestrian was standing or walking along the roadway on 
the edge of a travel lane, or on a shoulder or sidewalk.  

Crash records, 
narratives 

Pedestrian 460  Crossing Driveway 
or Alley  

The pedestrian was crossing a driveway on a sidewalk crossing, 
shared-use path, shoulder, or edge of the travel lane.  

Crash records, 
narratives 

Pedestrian 500  Waiting to Cross  The pedestrian was standing on the curb or near the roadway 
edge waiting to cross the roadway when struck.  

Narratives 

Pedestrian 600  Pedestrian in 
Roadway,  
Circumstances 
Unknown  

The pedestrian was standing, walking, or lying in the road right-
of-way at an intersection or midblock location but the 
circumstances do not otherwise fit any previously described or 
are unknown.  

Omitted 

Pedestrian 720  Multiple 
Threat/Trapped  

The pedestrian entered the roadway on a green signal or in 
front of standing or slowing traffic and was trapped when the 
signal changed, and traffic started moving or was struck by a 
vehicle traveling in the same direction as the stopped traffic. 
Note: Multiple threat may occur at nonsignalized locations.  

Narratives 

Pedestrian 740  Dash/Dart-Out  The pedestrian either ran into the roadway in front of a 
motorist whose view of the pedestrian was not obstructed or 
walked or ran into the road and was struck by a motorist 
whose view of the pedestrian was blocked until an instant 
before impact.  

Narratives 

Pedestrian 750  Crossing Roadway, 
Vehicle Not Turning  

The pedestrian was struck while crossing the roadway (not an 
expressway) by a vehicle that was traveling straight through.  

Crash records 

Pedestrian 790  Crossing Roadway,  
Vehicle Turning  

The pedestrian was struck while crossing a non-expressway 
road by a vehicle that was turning or about to turn.  

Crash records 

Pedestrian 800  Off Roadway  The pedestrian was struck in a parking lot, driveway, open area 
or other or unknown, nonroadway area (vehicle not backing).  

Omitted 

Pedestrian 910  Crossing 
Expressway  

The pedestrian was on an expressway or expressway ramp 
when struck by a motor vehicle.  

Crash records 

Pedestrian 990  Other/Unknown,  
Insufficient Details  

The circumstances do not clearly fit any of the situations 
described or are unknown.  

Omitted 
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PBCAT2 has specific information requirements (e.g., did the bicyclist lose control or make a turning 

error) that are not consistently captured in standard crash reports. The research team used a large 

language model (GPT-3) to extract additional information from the crash narratives. Narratives were 

first sanitized by randomly changing all detected names. For example, “John was travelling east on 

Marshall Avenue…John did not see the bicyclist” might be changed to “Tabatha was travelling east on 

Arnold Avenue…Tabatha did not see the bicyclist.” Note that names were changed consistently within 

each narrative so that the large language model could persistently identify all individuals involved. As 

PBCAT2 generates mode-specific crash types, different questions were posed depending on the mode 

involved (bicycle or pedestrian). To further facilitate the dialogue, possible responses were enumerated. 

Questions and responses by mode are presented in Table 6. 

Table 6. Questions and possible responses submitted to large language model. 

Mode Question Possible responses 
Bicycle Did the bicyclist lose control or make a turning error?  Yes, no 

Bicycle Did the driver of the vehicle lose control or make a turning error? Yes, no 

Bicycle Did the bicyclist fail to yield? Yes, no 

Bicycle Did the driver fail to yield Yes, no 

Bicycle Were the bicyclist and driver travelling in the same, opposite, or 
intersecting directions?  

Same, opposite, intersecting 

Bicycle Did the driver contribute to the crash by opening their door? Yes, no 

Pedestrian Did this crash involve any of the following: a disabled vehicle, an 
emergency vehicle, a police vehicle in pursuit, a driverless vehicle? If so, 
which one? 

Disabled vehicle, emergency 
vehicle, police vehicle in pursuit, 
driverless vehicle 

Pedestrian Did the driver hit the pedestrian intentionally? Yes, no 

Pedestrian Was the pedestrian hit while walking to a bus stop? Yes, no 

Pedestrian Was the pedestrian hit while waiting at a bus stop? Yes, no 

Pedestrian Was the pedestrian hit while exiting a parked vehicle? Yes, no 

Pedestrian Was the pedestrian hit while walking along the roadway on the edge of 
a travel lane, or on a shoulder or sidewalk? If so, which one? 

Pedestrian was not hit while 
walking along the roadway, 
travel lane, shoulder, sidewalk 

Pedestrian Was the pedestrian hit while crossing a driveway? Yes, no 

Pedestrian Was the pedestrian hit while waiting to cross the road? Yes, no 

Pedestrian Was the pedestrian trapped at a median? Yes, no 

Pedestrian Was the pedestrian hit by a vehicle traveling in the same direction as 
the stopped traffic? 

Yes, no 

Pedestrian Did the pedestrian run into the roadway in front of a motorist whose 
view of the pedestrian was not obstructed? 

Yes, no 

Pedestrian Did the pedestrian run into the roadway in front of a motorist whose 
view of the pedestrian was obstructed? 

Yes, no 

Pedestrian Did the driver see the pedestrian? Yes, no 
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The research team assessed the performance of the large language model by manually reviewing 100 

crashes involving each mode; overall, it was considered accurate in 83% of bicycle questions and 93% of 

pedestrian questions. Table 7 provides further details on the accuracy of the model on each set of 

questions tied to an individual crash: approximately 80% of crashes included 1 error or less. Although 

this technique does not produce perfect responses, it is comparable to a human effort while requiring a 

fraction of the time and resources. 

Table 7. Large language model performance details 

Number of inaccurate responses per crash Bicycles Pedestrians 

0 45% 38% 

1 34% 47% 

2 13% 9% 

3 or more 8% 6% 

 

Whereas PBCAT2 uses a predetermined set of crash types, clustering methods allow crash types to 

emerge from the available data. The hierarchical clustering algorithm (with a binary distance metric and 

Ward’s agglomeration method) used hundreds of indicator variables to identify ten unique crash types 

for each mode. Most indicator variables were created from categorical variables. For example, the 

roadway functional class variable was converted to four separate indicators: 

functional_class_Local, functional_class_Major_Collector, 

functional_class_Minor_Arterial, and functional_class_Principal_Arterial. Others 

binned numeric variables into relevant groups (e.g., driver.age_41_60, pedbike.age_25_under). 

The resulting clusters were labelled based on the relative prevalence of variables. For example, if 90% of 

crashes in Hypothetical Cluster A occurred on major collector roads, compared to less than 5% in other 

clusters, Cluster A may be labelled as “major collector roads.”  

The research team documented crash trends overall and by crash type. Those with worsening trends 

were further examined to recommend appropriate countermeasures.  

4. Results 

This section visualizes and describes trends in bicycle and pedestrian crashes overall, then presents the 

crash typing results by mode and method.  

Overall Trends 

Figure 1 shows annual bicycle and pedestrian crashes, fatalities, and injuries. Bicycle crashes and injuries 

show a strong downward trend, while fatalities remain very low and relatively flat. On the contrary, 

pedestrian crashes and injuries are flat, while fatalities show a strong increasing trend.  
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Figure 1. Annual bicycle and pedestrian crashes, fatalities, and injuries (2012-2021). 

Figure 2 shows the temporal aspects of crashes. Both bicycle and pedestrian crashes spike during the 

morning and evening commute times, with the former outnumbering the latter between rush hours. 

Crashes involving both modes are higher during the week, likely coinciding with traditional commute 

patterns. There is significant variation throughout the year: bicycle crashes increase during the warmer 

months while pedestrian crashes increase slightly during the colder months. 

 
Figure 2. Bicycle and pedestrian crashes (2012-2021) by time of day, day of week, and month 

 

Figure 3. Annual bicyclist and pedestrian injuries by severity. 

 shows annual bicycle and pedestrian injuries by severity. Fatalities were consistently higher among 

pedestrians than bicyclists. Suspected serious injuries show a notable difference between the two road 

users: serious injuries among bicyclists have decreased since 2012, but similar injuries among 

pedestrians show a large increase around 2016. Both minor and possible injuries appear to be 

significantly lower in 2020 and 2021, likely due to changes brought on by the COVID-19 pandemic. Non-

injury crashes were consistently low over the ten-year period.  
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Figure 3. Annual bicyclist and pedestrian injuries by severity. 

Figure 4 shows the ages of individuals involved in these crashes, separately for crashes involving bicycles 

and those involving pedestrians. The median age for drivers was 40 years in bicycle crashes and 39 years 

in pedestrian crashes. Bicyclists tended to be slightly younger than pedestrians, with a median age of 24 

years versus 28 years.  

 
Figure 4. Ages of drivers, bicyclists, and pedestrians involved in crashes (2012-2021). 

 

Figure 5 further explores the ages of individuals involved in crashes involving bicycles and pedestrians. 

Despite some short-term increases, all age groups are generally trending downward. By 2021, the most 

common age group was 21-30 for drivers, and 11-20 for both bicyclists and pedestrians. 
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Figure 5. Annual number of crashes involving road users of various age ranges. 

 

The research team further investigated the concept of age by identifying crashes that may be related to 

traveling to school. School addresses and grades served were collected from the Idaho State 

Department of Education. Each grade corresponded to an age range, with Kindergarten at 5  1 years, 

first grade at 6  1 years, etc. Excluding weekend crashes, each crash was then matched to its closest 

age-appropriate school. Crashes occurring within a one-mile radius of an age-appropriate school were 

considered related to school travel. For example, a crash involving a 9-year-old child 0.5 miles from an 

elementary school would be considered school-travel-related, but a child of the same age and distance 

from a high school would not. Figure 6 shows the annual number of bicycle and pedestrian crashes 

related to school travel. Over the 10-year period, these crashes trend downward. However, an upward 

trend (with a COVID-induced downward shift in 2020) can be seen starting in 2017. 
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Figure 6. Annual bicycle and pedestrian crashes (2012-2021) related to school travel. 

 

Figure 7 shows crash urbanicity. Note that the “rural/urban” data element included in crash records was 

often missing, prompting the use of a related variable indicating whether or not the crash occurred 

within city limits; those that did were considered urban while those that did not were considered rural. 

The vast majority (93%) of bicycle and pedestrian crashes occurred in urban areas. Annual bicycle 

crashes exhibit a decline while pedestrian crashes hold relatively flat. Crashes involving both road user 

types fell significantly in 2020 and began to rise again the following year. 

 
Figure 7. Annual bicycle and pedestrian crashes (2012-2021) in urban and rural areas. 

Figure 8 shows how post-crash care differs in urban and rural areas. Over the 10-year period, average 

response time (the time between notification and arrival) in rural areas (M = 10.7 minutes, SD = 5.7, N = 
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281 crashes) exceeded that of urban areas (M = 6.3 minutes, SD =4.0, N = 3,346 crashes). Response time 

exhibits a slight upward trend in both urban and rural areas. 

 
Figure 8. Annual mean ( 1 SD) ambulance response time (minutes) in urban and rural areas. 

 

Helmet use also differs in urban and rural areas. Figure 9 shows annual helmet use among bicyclists 

involved in crashes in urban and rural areas. Helmet use is lower within city limits (approximately 25%) 

but increasing, whereas helmet use in rural areas shows a sharp decline. 

 
Figure 9. Annual helmet use (%) among bicyclists involved in crashes in urban and rural areas. 
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Figure 10 describes the lighting conditions. Daytime is the most common setting for both bicycle and 

pedestrian crashes. Both are similarly represented in dawn/dusk conditions as well, but pedestrian 

crashes largely outnumber bicycle crashes in the dark, both with and without street lights activated. 

 
Figure 10. Annual bicycle and pedestrian crashes by lighting condition. 

 

Figure 11 shows annual bicycle and pedestrian crashes by the traffic control device(s) present at the 

time of the crash. Notably, intersections with stop signs on the cross streets only represent a safety 

challenge for bicyclists. Throughout the 10-year period, bicycle crashes at these intersections far 

outnumber similar pedestrian crashes.  

 
Figure 11. Annual bicycle and pedestrian crashes by traffic control device(s) present. 

 

Figure 12 shows the types of motorized vehicles often involved in crashes with bicycles and pedestrians. 

Trends are similar for cars, pickup trucks, SUVs and vans, with a notable increase in crashes involving 

pickups in 2021. 
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Figure 12. Annual bicycle and pedestrian crashes by type of motor vehicle involved. 

Bicycle Crash Types 

Figure 13 shows annual bicycle crashes by PBCAT2 crash type. All 14 crash types exhibit a downward 

trend. Crashes involving a loss of control or turning error are the most common over the ten-year period 

and continue to be so in 2021 (PBCAT2 110: N = 1,046, 24%). Nonroadway crashes (those occurring in 

parking lots, driveways, etc.) are the second most common (910: 631, 15%). Crashes involving a failure 

to yield at stop signs are the next most common type, with motorists (140: 497, 12%) and bicyclists (145: 

482, 11%) roughly equally at fault. Midblock crashes are next, with motorists (320: 482, 11%) failing to 

yield more often than bicyclists (310: 337, 8%); followed by bicyclists (158: 298, 7%) and motorists (150: 

278, 6%) failing to yield at signalized intersections. The remaining crash types account for less than 5% of 

bicycle crashes. 

 
Figure 13. Annual bicycle crashes by PBCAT2 crash type. 
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The PBCAT2 methodology can apply multiple crash types to a single crash. As implemented here, 1,025 

(37%) of bicycle crashes were characterized by a single PBCAT2 crash type, 886 (32%) were 

characterized by two, and 470 (17%) were characterized by three or more. The remaining 358 (13%) did 

not align to any PBCAT2 crash type using the available data.  

Figure 14 shows annual bicycle crash types identified via clustering. As with PBCAT2 bicycle crash types, 

all of these crash types exhibit a visible downward trend. There is significant overlap between the both 

methods’ crash types, but the clustering approach identified three novel types. Clusters 3 – 9 are similar 

to PBCAT2 bicycle crash types 158, 600, 140, 150, 145, 258, and 310, respectively. Three cluster crash 

types do not closely correspond to any PBCAT2 types: Cluster 1 includes sideswipes at intersections, 

Cluster 2 includes crashes involving drivers speeding and fleeing the scene, and Cluster 10 includes 

motorist errors and impairments such as improperly changing lanes or overtaking other road users, and 

driving while drowsy or under the influence of alcohol.  

 
Figure 14. Annual bicycle crashes by clustering crash type. 

Unlike PBCAT2, the clustering technique assigns one crash type to each crash. Cluster sizes are also more 

uniform in size, ranging from 161 crashes (Cluster 10) to 493 (Cluster 5) over the 10-year period. 

Figure 15 shows the prevalence of injury severity among bicycle crash types (determined via clustering). 

Clusters 2, 9, and 10 have the highest portion of fatal injuries; clusters 9 and 10 also have the highest 

portion of suspected serious injuries. These crashes involve speeding, midblock crossings, and motorist 

impairment – key risk factors for fatal and severe bicycle crashes. 
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Figure 15. Prevalence of injury severity levels in bicycle crash types. 

 

The maps on the following pages represent static snapshots of the georeferenced database provided by 

the research team to ITD. Each of these cities (Boise, Coeur d’Alene, Nampa, Meridian, Idaho Falls, and 

Pocatello) reported at least 100 bicycle crashes during the 10-year period, representing 68% of all 

bicycle crashes during the same period. The maps can be used to identify locations and corridors with 

high incidences of particular crash types. Table 8 lists High occurrence corridors for bicycle crashes in 

each location. Crashes of various types tend to occur along these corridors. Implementing 

countermeasures along these corridors could eliminate a substantial portion of bicycle crashes in Idaho.  

Table 8. Highest occurrence corridors for bicycle crashes. 

Location Corridors 
Boise West Fairview Avenue 

North Orchard Street 
South Vista Avenue 
West Overland Road 
South Broadway Road 
North 9th Street 

Coeur d’Alene West Appleway Avenue 
North Government Way 

Nampa 12th Avenue Road* 
12th Avenue South* 
Caldwell Boulevard* 

Meridian West Cherry Lane/Fairview Avenue 
North Eagle Road 

Idaho Falls West Broadway Street 
East Sunnyside Road 
East 17th Street* 

Pocatello Pole Line Road 
Yellowstone Avenue* 
4th Avenue* 

*Also a corridor with highest occurrence for pedestrian crashes  
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Map 1. Bicycle crashes in Boise (1 of 3). 
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Map 2. Bicycle crashes in Boise (2 of 3). 
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Map 3. Bicycle crashes in Boise (3 of 3). 

 

  



 

Bicycle and Pedestrian Safety Research Project  36 

 

Map 4. Bicycle crashes in Coeur d’Alene. 
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Map 5. Bicycle crashes in Nampa. 
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Map 6. Bicycle crashes in Meridian. 
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Map 7. Bicycle crashes in Idaho Falls. 
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Map 8. Bicycle crashes in Pocatello. 
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Pedestrian Crash Types 

Figure 16 shows annual pedestrian crashes by PBCAT2 crash type. The two most common crash types 

involve pedestrians crossing a roadway, with those involving a vehicle going straight (PBCAT2 750: N = 

766, 22%) decreasing over time and those involving a turning vehicle increasing (790: 637, 18%). The 

next three most common crash types involve midblock crossings (350: 424, 12%) and pedestrians 

walking (400: 411, 12%) or working/playing (310: 298, 8%) along the roadway. Crashes involving 

pedestrians crossing driveways or alleys (460: 260, 7%) have increased over time, while those involving 

dash/dart-outs (740: 251, 7%) or waiting to cross (500: 224, 6%) have decreased. Multiple threat crashes 

(involving a pedestrian getting trapped on a median while crossing) have also increased (720: 93, 3%). 

The remaining crash types account for less than 5% of pedestrian crashes. 

Five crash types show increasing trends to various degrees. Crash types 100 (unusual circumstances), 

340 (bus-related) and 720 (multiple threat/trapped) are increasing but represent a small fraction of all 

pedestrian crashes. On the contrary, crash types 460 (crossing driveway or alley) and 790 (crossing 

roadway, vehicle turning) are more common and increasing. Notably, both of these crash types involve a 

pedestrian crossing the path of a motor vehicle when the driver’s vision may be blocked or focused 

elsewhere. 

 
Figure 16. Annual pedestrian crashes by PBCAT2 crash type. 

As with bicycles, the PBCAT2 methodology applied multiple crash types to many pedestrian crashes: 991 

(45%) of pedestrian crashes were characterized by a single PBCAT2 crash type, 739 (33%) were 

characterized by two, and 332 (15%) were characterized by three or more. The remaining 151 (7%) did 

not align to any PBCAT2 crash type using the available data.   
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Figure 17 shows annual pedestrian crashes by clustering crash type. Some of these crash types are 

similar or related to PBCAT2 crash types. Clusters 1 and 9 involve different causes (different road users 

failing to obey a traffic control device) but may correspond to PBCAT2 750 (crossing roadway, vehicle 

not turning). Clusters 3 and 4 involve a motorist making an improper turn and may correspond to 

PBCAT2 790 (crossing roadway, vehicle turning). Cluster 5 involves midblock crossings and may 

correspond to PBCAT2 350 (unique midblock) or 740 (dash/dart out). Clusters 2 (crossing parking lot, 

alley, driveway), 6 (backing), and 7 (pedestrian walking along roadway) are directly correlated with 

PBCAT2 types 460, 200, and 400, respectively. Two novel crash types emerged from the clustering 

process: cluster 8 involves motorists speeding near horizontal or vertical curves, and cluster 10 includes 

hit-and-run pedestrian crashes.  

Five crash types exhibit increasing trends. Cluster 4 crashes (improper left turn) are the most numerous 

and exhibit a slight annual increase. Crashes in clusters 2 (parking lot, alley, driveway), 3 (failed to signal 

at intersection), and 8 (speeding near turns and hills) occur at similar rates, with those in cluster 2 

increasing the fastest. Hit-and-run crashes (cluster 10) are the rarest but are also increasing. All other 

crash types show an overall decreasing trend over the ten-year period.  

 
Figure 17. Annual pedestrian crashes by clustering crash type. 

 

Figure  shows the prevalence of injury severity among pedestrian crash types (determined via 

clustering). Clusters 7 and 8 have the highest proportion of fatal and suspected serious injuries. These 

crashes involve walking along the roadway and speeding around turns and hills. Clusters 1 and 5 also 

have high rates of suspected serious injuries; these crashes are also likely to involve higher speeds as 

they involve failing to yield to traffic control devices and midblock crossings.  
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Figure 18. Prevalence of injury severity levels in pedestrian crash types. 

The maps on the following pages represent static snapshots of the georeferenced database provided by 

the research team to ITD. Each of these cities (Boise, Nampa, Pocatello, Idaho Falls, Coeur d’Alene, Twin 

Falls, and Meridian) reported at least 100 pedestrian crashes during the 10-year period, representing 

62% of all pedestrian crashes during the same period. The maps can be used to identify locations and 

corridors with high incidences of particular crash types. Table 9 lists high occurrence corridors for 

pedestrian crashes in each location. Implementing countermeasures along these corridors could 

eliminate a substantial proportion of pedestrian crashes in Idaho.  

Table 9. Highest occurrence corridors for pedestrian crashes. 

Location Corridors 

Boise West Fairview Avenue 
North Cole Road 
West State Street 
West Main Street 
9th Street 

Nampa 12th Avenue Road* 
12th Avenue South* 
Caldwell Boulevard* 

Pocatello North Arthur Avenue 
Yellowstone Avenue* 
4th Avenue* 
5th Avenue 

Idaho Falls East 17th Street* 
South Woodruff Avenue 

Coeur d’Alene Sherman Avenue 

Twin Falls Blue Lakes Boulevard North 
Addison Avenue 
Washington Street 

Meridian Meridian Road 

      *Also a corridor with highest occurrence for bicycle crashes  
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Map 9. Pedestrian crashes in Boise (1 of 3). 
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Map 10. Pedestrian crashes in Boise (2 of 3). 
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Map 11. Pedestrian crashes in Boise (3 of 3). 
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Map 12. Pedestrian crashes in Nampa. 
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Map 13. Pedestrian crashes in Pocatello. 
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Map 14. Pedestrian crashes in Idaho Falls. 
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Map 15. Pedestrian crashes in Coeur d’Alene. 
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Map 16. Pedestrian crashes in Twin Falls. 
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Map 17. Pedestrian crashes in Meridian. 
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5. Countermeasure Recommendations 

This section provides countermeasure recommendations to mitigate worsening trends, target high 

occurrence corridors, and address the ten crash clusters for each mode described in the previous 

section. 

All bicycle crash types have decreased between 2012 and 2021. As active transportation increases in 

popularity, expanding bicycle facilities can encourage further safety improvements. Spikes in crashes 

occur during rush hour and tend to be on arterials, major collectors, and at intersections. Focusing 

efforts on the corridors identified in Table 8 can yield the largest improvements.  

Two PBCAT2 crash types increased over the 10-year period and account for 25% of pedestrian crashes: 

crossing driveway or alley (PBCAT2 460) and crossing roadway while vehicle turning (PBCAT2 790). 

These PBCAT2 crash types correspond to clusters 2, 3, and 4, which account for 37% of all pedestrian 

crashes. To prevent pedestrian crashes and reduce the severity of the outcomes when a crash does 

occur, drivers must see the pedestrian sooner. Countermeasures for driveways, alleys, and intersections 

include: 

▪ Implement parking restrictions around driveways and alleys (see: Section 2B.39 Parking, 

Standing, and Stopping Signs of the MUTCD), and ensure stringent enforcement of these 

regulations; 

▪ Restrict loading and unloading in those same areas, and install clear signage (see: Section 2B.39 

Parking, Standing, and Stopping Signs of the MUTCD);  

▪ Reduce visual clutter (e.g., roadside advertising, unnecessary regulatory signs, etc.); 

▪ Add lighting to further enhance pedestrian conspicuity. 

Crashes involving pedestrians crossing the roadway and turning vehicles can benefit most from reducing 

turning speeds. Doing so can increase the time that drivers have to spot pedestrians, as well as reduce 

the severity of crashes that are not prevented. Turning speeds can be reduced without affecting through 

speed in adjacent lanes by reducing curb corner radii, however consideration should be given to vehicle 

size and off-tracking. Larger curb radii allow drivers to take turns at higher speeds; smaller radii require 

motorists to reduce speed to make a relatively sharp turn. They can also shorten crossing distances 

while providing larger pedestrian waiting areas at corners and improving sight distance.  

These countermeasures can increase pedestrian conspicuity and sight distance, but they cannot mitigate 

the effects of distractions. According to the crash records, driver distraction was involved in just 1% 

(N=25) of bicycle crashes and 3% (63) of pedestrian crashes. These rates are likely to underestimate the 

role of distraction as drivers are reluctant to admit to being distracted. In 2021, Idaho implemented the 

Hands-Free Device law, requiring all electronic devices to be in hands-free mode while driving, including 

when stopped at a red light or stop sign1 . Enforcement may be difficult as it requires officers to see 

 
1 Idaho State Legislature House Bill No. 5, I.C. § 49-1401A, 2021. 

https://legislature.idaho.gov/wp-content/uploads/sessioninfo/2021/legislation/H0005.pdf
https://legislature.idaho.gov/statutesrules/idstat/title49/t49ch14/sect49-1401a/
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drivers in the act, but the law’s penalties may serve as effective deterrents. Educating the public about 

this law, why it is important to drive without distractions, and the consequences for not doing so may 

reduce pedestrian crashes of various types.  
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Table 10 and Table 11 present crash counts and countermeasures for bicycle and pedestrian crash type 

clusters. Some countermeasures can mitigate a large variety of crash types, while others have been 

developed to address the unique challenges posed by certain scenarios. The recurring emphasis on 

education and enforcement as countermeasures across multiple crash clusters signifies their 

foundational role in traffic safety. Education, which is about imparting knowledge and cultivating 

awareness, is a proactive approach. It seeks to equip road users with the information they need to 

navigate traffic situations safely, thereby preventing crashes from occurring in the first place. On the 

other hand, enforcement, which involves the application of laws and regulations, acts as a reactive 

measure. It serves as a deterrent, ensuring that road users adhere to safe practices, with the knowledge 

that deviations might lead to penalties. Infrastructure-related countermeasures, such as traffic calming 

roadway configurations, raised medians, and protected intersections emphasize the role of urban 

planning and infrastructure design in influencing road user behavior. Well-designed infrastructure can 

naturally guide users towards safer practices, reducing the reliance on active enforcement or continuous 

education. Countermeasures such as back-up warning devices in vehicles and legislation to prohibit 

sidewalk riding underscore the complexity of traffic safety. Each crash cluster presents its own set of 

challenges, and while broad-based measures can address overarching issues, there's a clear need for 

specialized solutions to tackle unique problems. Together, these broad and specific countermeasures 

form a comprehensive toolkit that, when applied judiciously, can significantly improve road safety for all 

users. 

  



 

Bicycle and Pedestrian Safety Research Project  56 

Table 10. Bicycle crash counts and countermeasures by cluster. 

Cluster  Statewide 

Crashes 

(2012-2021) 

Countermeasures 

1. Sideswipes at intersections 275 Wider and more retroreflective pavement markings, bike 
lanes, bike boxes, education, safe passing laws 

2. Speeding, hit and run 286 Reduced corner radii, protected bike lanes, traffic 
calming roadway configuration 

3. Bicyclist failed to yield at 
signalized intersection 

237 Education, enforcement, signage (directed at bicyclists) 

4. Backing from alley/driveway 389 Back-up warning devices in vehicles, education, parking 
restrictions to improve visibility 

5. Young motorist failed to yield at 
stop-controlled intersection 

493 Education, enforcement, signage (larger, double, or 
retroreflective stop signs) 

6. Motorist failed to yield at 
signalized intersection with 
crosswalk 

216 Facilities intended to increase conspicuity (high visibility 
crosswalks, rectangular rapid-flashing beacons, etc.) 

7. Bicyclist failed to yield at stop-
controlled intersection 

236 Education, enforcement, signage (directed at bicyclists) 

8. Roadside or sidewalk, head-on 226 Education, enforcement, signage (directed at bicyclists), 
legislation to prohibit sidewalk riding 

9. Bicyclist crossed at midblock 214 Education, raised medians, signage (directed at 
bicyclists) 

10. Motorist error or impairment 167 Education, enforcement 

 

Table 11. Pedestrian crash counts and countermeasures by cluster (continued next page). 

Cluster  Statewide 

Crashes 

(2012-2021) 

Countermeasures 

1. Pedestrian failed to obey stop sign 
or signal 

346 Education, enforcement, signage (directed at 
pedestrians), facilities intended to accommodate 
pedestrians (leading pedestrian intervals, protected 
intersections, etc.) 

2. Pedestrian crossing parking lot, 
alley, driveway 

224 Signage to increase awareness of potential conflict 
points, clearly marked pedestrian walkways, speed 
humps, raised crossings, lighting 

3. Motorist failed to signal at 
intersection 

178 Education, enforcement, facilities intended to 
accommodate pedestrians (leading pedestrian intervals, 
protected intersections, etc.) 
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Cluster  Statewide 

Crashes 

(2012-2021) 

Countermeasures 

4. Motorist performed improper left 
turn 

421 Education, enforcement, facilities intended to 
accommodate pedestrians (leading pedestrian intervals, 
protected intersections, etc.) 

5. Pedestrian failed to yield while 
crossing at midblock 

368 Facilities that encourage proper crossing (offset 
crossings, raised crosswalks, refuge islands, etc.)  

6. Motorist backing 164 Back-up warning devices in vehicles, education, parking 
restrictions to improve visibility 

7. Pedestrian walking along roadway 100 Grade-separated paths, enforcement 

8. Motorist speeding, turns and hills 238 Reduced corner radii, traffic calming roadway 
configuration, advance warning signs at crosswalks 

9. Motorist failed to obey stop sign 128 Education, enforcement, signage (larger, double, or 
retroreflective stop signs) 

10. Hit and run 47 Traffic calming roadway configuration, advance warning 
signs at crosswalks, signage to increase awareness of 
potential conflict points 

 

6. Discussion 

Crashes entail many distinct circumstances, causes, and nuances that can make safety improvement 

efforts difficult. Crash typing attempts to reduce these details to a manageable number of groups to 

inform countermeasure selection and implementation. This process, however, can be time-consuming, 

resource-intensive, and error-prone. The methods described in this report seek to streamline the crash 

typing process but is not without its limitations. 

PBCAT2 crash types require information that is not readily available from crash records derived from 

police crash reports. A large language model was used to extract the additional required details. Large 

language models are a relatively new innovation in the field of artificial intelligence, capable of 

interpreting substantial amounts of text, but they are (currently) unable to decipher images such as 

crash diagrams. Proper question phrasing and response enumeration can help these tools produce the 

desired output, but they still require human validation. As this technology matures, researchers can fine 

tune transportation-specific models to potentially improve the data extraction process.  

Clustering is a powerful technique that has been applied in many domains to group similar observations 

when the volume of detail exceeds human capabilities. It is, however, a stochastic process that can 

produce non-unique results. This may be beneficial when analyzing geographically diverse areas but may 

also pose challenges to planning organizations. The process of labelling individual clusters is also 

challenging as it involves a degree of subjectivity and domain expertise. The number of clusters to 
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generate is another decision that must be made. Clustering algorithms can determine an “optimal” 

number based on minimum size requirements and similarity statistics. The research team chose to 

generate ten clusters for practicality purposes; fewer may have hidden the increasing trend among 

some crash types, while more may yield very small groups. 

This analysis relies on information recorded by law enforcement officers and is therefore subject to 

incompleteness and subjectivity. Several data elements were often missing, including posted speed 

limits, roadway function class and geometry, and point of impact. Speed of travel would also be helpful 

in determining crash types and modelling injury severity, but it was not present in the data. In addition, 

the KABCO injury severity scale is useful for crash analysis, but researchers have identified significant 

inaccuracies (Burdett et al., 2015; Farmer, 2003; Tsui et al., 2009).  

This analysis was also limited by a lack of exposure data (level of travel among motorists, bicyclists and 

pedestrians). While crash counts are important, highly populated areas often experience more crashes 

simply because there are more people driving, biking and walking. Incorporating exposure metrics could 

help to identify areas with elevated crash rates. Many agencies collect data on vehicle travel, but few 

collect long-term data for active modes of transportation. Commercial entities can provide estimates, 

though often at a high cost. Future research may produce further insight into crash rates by acquiring 

and integrating such data.  
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7. Conclusions 

This research collected data on bicycle and pedestrian crashes in Idaho and applied crash typing 

methodologies to identify safety hotspots and trends, and support data-driven planning decisions that 

prioritize safety and minimize risk to vulnerable road users. A large language model extracted details 

from crash narratives to supplement readily available crash records. The research team used this 

collection of information to apply the PBCAT2 crash typing methodology and hierarchical clustering to 

further analyze crash groups and recommend appropriate countermeasures. The clustering technique 

produced crash types similar to those established in PBCAT2, as well as several novel types.  

Bicycle crashes decreased over the ten-year period (2012-2021), both overall and within each crash 

type. Speeding, midblock crossings, and motorist impairment were determined to be the key risk factors 

for fatal and severe bicycle crashes. Continuing to support active transportation by expanding bicycle 

facilities can prolong the positive trends into the future. 

Overall, pedestrian crashes did not appear to be increasing, despite an upward trend in fatalities. Crash 

typing, however, identified several groups of crashes that did increase over the ten-year period: those 

occurring around parking lots, alleys, and driveways; and those involving motorists failing to signal at 

intersections, making improper left turns, and speeding near turns and hills. There was also an increase 

in the number of incidents where someone fled the scene. The crash types with the highest proportion 

of fatal and serious injuries involve walking along the roadway and motorists travelling at high speeds. 

Countermeasures that reduce motorist speeds, increase pedestrian visibility, increase driver education 

and awareness, and reduce distractions could help to mitigate these crashes and reverse the increasing 

trends among some crash types. 

Review of bicycle and pedestrian crashes in Idaho from 2012 through 2021 showed that the vast 

majority of these crashes (93%) occurred in urban areas (defined as within the city limits of an Idaho 

community).  Many of these crashes occurred in a small number of Idaho’s largest cities.  From 2012-

2021, 68% of all bicycle crashes occurred in six cities (Boise, Coeur d’Alene, Nampa, Meridian, Idaho 

Falls, and Pocatello).  Similarly, 62% of all pedestrian crashes during the same period occurred in Boise, 

Nampa, Pocatello, Idaho Falls, Coeur d’Alene, Twin Falls, and Meridian. The research team developed 

maps to identify high occurrence corridors in highly populated areas throughout Idaho. Most corridors 

exhibited a high propensity of crashes for either bicyclists or pedestrians, but several appeared to be 

problematic for both. All underlying data was submitted to ITD for further analysis and collaboration 

with local agencies to develop safety action plans.   
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