THE OTHER SIDE OF SANDPOINT: EARLY HISTORY AND ARCHAEOLOGY BESIDE THE TRACKS
THE SANDPOINT ARCHAEOLOGY PROJECT 2006-2013

VOLUME 3: THE ETHNOGRAPHY AND PREHISTORY OF SANDPOINT
The Sand Creek Byway, illustrated on the cover of this report, parallels the Burlington Northern Santa Fe tracks as it passes along the eastern edge of Sandpoint, Idaho. What looks like a ribbon of asphalt and steel today was once Sandpoint’s town center and a thriving lumber mill. The lives and material culture of the people who lived and worked here are the subjects of this four volume report. The organization of this document is not typical of most archaeological data recovery reports. For example, if you are interested in the archeological methods used or data produced, go to Volume 4, Summary of Methods and Data. Ethnography and prehistory of Sandpoint are presented in Volume 3, and Volume 2, Material Culture of Everyday Life, focuses on specific historical artifact classes. Volume 1, Sandpoint Stories, provides a brief history of the byway and the reasons for the archaeological project, as well as a select number of “stories” gleaned from analyzing the historical artifacts recovered and their cultural context.

The Sandpoint Archaeology Project field work began in 2006 with approval of a research design that addressed adverse effects to historic properties identified as part of the Sand Creek Byway project (US 95 Sandpoint, North & South) and ended in 2013 with above referenced report. In between, nearly 500 units were excavated by 36 archaeologists, 566,674 precontact and historical artifacts were recovered, processed, and analyzed, grade school teaching kits were developed, a museum exhibit was installed, and a book on local history was published. All of this was funded through the Federal Highways Administration and District 1 of the Idaho Transportation Department (ITD) and managed on the agency level by Randy Hirst of District 1 and Marc Münch, ITD Archaeologist. SWCA Environmental Consultants became involved with the project in 2009. James C. Bard served as SWCA’s project manager, as well as one of three project principal investigators (PI) and was lead specialist in prehistory. Robert M. Weaver of the Environmental History Company and Mark Warner of the University of Idaho were the other two PIs specializing in historical archaeology. All three were also primary authors and editors of the report.
**PROLOGUE**

Cultural resources compliance reports are often organized into convenient, and sometimes arbitrary, culture chronologies. Reports begin with descriptive environmental background information and other pertinent context and setting. Depending on investigator preferences, either the Prehistoric period or the Ethnographic period is described next. If the project yielded archaeological materials associated with the Historic period of Euro-American settlement, a Historic period context is provided.

The biggest surprise of the Sandpoint Archaeology Project was the miniscule recovery of prehistoric artifacts in comparison to historical artifacts. After two years of testing and data recovery excavations conducted across four archaeological sites, only 119 prehistoric artifacts were recovered out of a total 568,447 artifacts. The investigators determined that the best approach to reporting was to have Volumes 1 and 2 devoted to historical archaeology. Volume 3 is devoted to the ethnographic record and the recovered prehistoric archaeology. The goal of Volume 3 is to explore the ethnographic data for Sandpoint and provide an interpretive context for the prehistoric artifacts. Volume 4 and the appendices provide basic descriptive and analytical information for all of the sites, features, and artifacts for the project.

The authors recognize that the prehistoric past and the Contact period cannot be easily split apart. The timing of when Indian peoples encountered non-Indians varies from group to group and place to place, it is best to view the contact period as a time beginning when early explorers and fur trappers entered the region and continuing into the mid- to late nineteenth century. In Sandpoint, by the time the Northern Pacific Railroad (NPRR) construction crews crossed Lake Pend Oreille in 1881–1882, Indians had become more familiar with the European and Euro-American traders and early settlers. During the Contact period, aboriginal cultures were already changing, and the adoption of the horse some decades earlier allowed long distance travel to the buffalo hunting grounds of present-day Montana and beyond.

Sandpoint was quickly settled once the NPRR was completed. The Indians continued to practice many aspects of their traditional culture. Various locations within and adjacent to the Sand Creek Byway Project corridor were used by the Indians to hold large gatherings (powwows) well into the mid-twentieth century; it was and remains an important place to the Kalispel, Coeur d'Alene, and Kootenai Indian peoples. We use the ethnographic context where possible to understand the nature of the archaeological remains recovered and help shed light on the importance of the Sandpoint vicinity both in the recent past and the more distant past.

Today, the tribes are working hard to protect natural and cultural resources and play an active role in their ancestral territories by advocating for archaeological site preservation, restoration of natural habitats, the advancement of Indian economic well-being, and preservation and restoration of aspects of their traditional culture and language. In the recent past, informants from the Kalispel and other Indian tribes worked with ethnologists to record aspects of their traditional culture. In the more distant past, the archaeological record indicates Indian groups used and occupied the Sandpoint vicinity for at least 6,000 years ago or longer.

Sandpoint was a major meeting place, a way-point on east-west trails connecting Prehistoric and Contact period groups with resources from what is now Washington to Montana and the Great Plains. Important north-south trails connected with groups in British Columbia to the north and the Plateau to the south. The detailed ethnographic record correlates with the archaeological record and indicates that the lifeways recorded by ethnographers and their informants can be projected back into time.
ACKNOWLEDGEMENTS

Over 100 people over 10 years contributed their valuable time and skills to tell the tales of early Sandpoint. The authors wish to thank each and every one of them wholeheartedly. First and foremost, we want to acknowledge the Idaho Transportation Department staff. Mr. Randy Hirst provided leadership and project management on behalf of District 1 and the Sandpoint Byway project and coordinated with Byway Project Manager, Ken Sorenson. He was assisted by highway archaeologists Marc Münch and Dan Guard in integrating the engineering needs with the archaeological requirements including taking bureaucratic and administrative aspects off the shoulders of the Principal Investigators. During data recovery, David Suhr and Craig Lewis not only provided day to day coordination, but also became honorary archaeologists assisting both project managers and crew in numerous ways. Additional much welcomed support came from Susan Kiebert and Julie Bishop in the Sandpoint Transportation Information Office, along with ITD Public Information Specialist, Barb Babic. All three helped in arranging the several open house displays given in the town during field work, which drew over 300 people on the first opening.

A number of local and regional people provided enthusiasm and assistance throughout the project. In particular, members of the Bonner County Historical Society, Ann Ferguson, Dale Selle, Vern Eskridge, and Olivia Luther made major contributions in terms of documents, photos, and their longstanding knowledge of local history, which allowed us to focus on key areas of the site(s) and interpret the findings. Additional assistance came from local collector and historian, Gary Weitz, who provided his own observations as well as his summaries from years of visiting both historical and prehistoric sites. We also appreciate the contributions of Cliff Silohn of the Coeur d’Alene Tribe, Nancy Renk, Marti Betts, and members of the Farmin family who also provided detailed information and assistance that furthered our understanding of the Sand Creek/Sandpoint area. Terry Abraham and Priscilla Wegers from the Asian American Comparative Collection at the University of Idaho provided much needed education of the field workers about Chinese material culture as well as assisted in public presentation and display of artifacts.

The project was governed by a Memorandum of Agreement that involved the lead federal agency, the State Historic Preservation Office, the U.S. Army Corps of Engineers, and the Kalispel Tribe. In addition, the Kootenai and Coeur d’Alene tribes were consulted. The MOA parties provided guidance and assistance that helped keep the project moving forward. In addition, they waded through the report volumes and provided numerous and appreciated comments. Mary Anne Davis, Suzie Neitzel and Ken Reid represented the SHPO; Lawr Salo and Kara Kanaby lead Corps of Engineers contributions; and Kevin Lyons and Kendra Philmon contributed for the Kalispel Tribe.

During site excavations, we were assisted by Kiebert Natural Resources, Northwest Tree Service, and Glahe and Associates. In particular, Adam Long, one of the best backhoe archaeologists we’ve seen, moved and managed the overburden with amazing precision and Kermit Kiebert assisted with the mechanical equipment efforts that opened up areas for study.

Senior managers from the various contractual companies included Ron Borkan and Elizabeth Perry (SWCA), Kevin Cooley and Art Jenkins (CH2M Hill), and David Butzier and Tracy Olson (URS). Chris Miss (NWAA/SWCA) provided not only support, but also the insight of many years working on the archaeological history and prehistory of the region. Their participation facilitated project objectives as well as explanation of the Byway design and areas of effect.

This report would not have been possible without the help of the people putting it together at SWCA: editing and formatting voluminous text and graphics. Lorelea Hudson directed the final assembly; Malini
Roberts edited the hundreds of pages; Johonna Shea brought exceptional skills to not only producing the archaeological drawings but also ensured the best quality for all graphics; and Rhiannon Held slaved away at final layout and formatting of the documents.

We would especially like to thank John Mihelich and the Department of Sociology and Anthropology at the University of Idaho. His approval and assistance not only provided facilities for artifact analysis and reporting, but also fostered our atypical integration of academic and private consulting perspective. The arrangement gave us the opportunity to provide a much more robust product, let alone allow students the experience of a large mitigation project.

Finally, we would like to thank and acknowledge all of the professionals that participated in the fieldwork, cataloging, analysis, and reporting. The sheer numbers of people involved prohibits singling out individuals and any omissions are sincerely regretted. Hopefully they all took away good memories of an interesting and exceptional opportunity.

**Participants in the Sandpoint Archaeological Project**

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Robert Betts</td>
<td>Field Forman</td>
</tr>
<tr>
<td>Raena Ballantyne</td>
<td>Lab Director</td>
</tr>
<tr>
<td>Amanda Haught-Bielmann</td>
<td>Lab Director</td>
</tr>
<tr>
<td>Jamelon Emmick Brown</td>
<td>Assistant Lab Director</td>
</tr>
<tr>
<td>Molly Swords</td>
<td>Collections Manager</td>
</tr>
<tr>
<td>Marc Krekos</td>
<td>Health &amp; Safety Officer</td>
</tr>
<tr>
<td>Jeffrey Freitag</td>
<td>Health &amp; Safety Officer</td>
</tr>
<tr>
<td>William Griffin</td>
<td>Health &amp; Safety Officer</td>
</tr>
<tr>
<td>Chris Christensen</td>
<td>Health &amp; Safety Officer</td>
</tr>
<tr>
<td>Brenda Pittman</td>
<td>Hazmat Technical Manager</td>
</tr>
</tbody>
</table>

**Crew Members**

<table>
<thead>
<tr>
<th>Name</th>
<th>Role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaila Akina</td>
<td>Alicia Freeman</td>
</tr>
<tr>
<td>John Armstrong Bard</td>
<td>Mary Garrison</td>
</tr>
<tr>
<td>David Betts</td>
<td>Eric Gleason</td>
</tr>
<tr>
<td>Oliver Bielmann</td>
<td>Jessica Goodwin</td>
</tr>
<tr>
<td>William Borkan</td>
<td>Robert Harmon</td>
</tr>
<tr>
<td>Carmen Bradbury</td>
<td>Erin Heinz</td>
</tr>
<tr>
<td>Tiffany Brunson</td>
<td>Dylan Henderson</td>
</tr>
<tr>
<td>Humphrey Calicher</td>
<td>Shea Henry</td>
</tr>
<tr>
<td>Stacey Camp</td>
<td>Robert Hernandez</td>
</tr>
<tr>
<td>Jamie Capawana</td>
<td>Amy Strong Johnson</td>
</tr>
<tr>
<td>Bailey Cavender</td>
<td>Katina Kapantas</td>
</tr>
<tr>
<td>Curtis Cawley</td>
<td>Mary Kienholz</td>
</tr>
<tr>
<td>Ted Charles</td>
<td>Breanne Kisling</td>
</tr>
<tr>
<td>Jacqui Cheung</td>
<td>Adeline Lustig</td>
</tr>
<tr>
<td>Margaret Clark</td>
<td>Patricia Lyttle</td>
</tr>
<tr>
<td>Paige Davies</td>
<td>Timothy Mace</td>
</tr>
<tr>
<td>Sara Davis</td>
<td>Daniel Martin</td>
</tr>
<tr>
<td>Robin McClintock</td>
<td>Caren Mitchell</td>
</tr>
<tr>
<td>J. Kyle Parker-McGlynn</td>
<td>Erik Peters</td>
</tr>
<tr>
<td>Mary Petrich-Guy</td>
<td>Robert Pietz</td>
</tr>
<tr>
<td>Ross Potter</td>
<td>Colleen Reynolds</td>
</tr>
<tr>
<td>Rob Rodland</td>
<td>Ryan Rolston</td>
</tr>
<tr>
<td>Kristin Rugroden</td>
<td>Katherine Rowden</td>
</tr>
<tr>
<td>Heather Sargent</td>
<td></td>
</tr>
<tr>
<td>Rachel Schiell</td>
<td></td>
</tr>
<tr>
<td>Jamieson-Lee Scott</td>
<td></td>
</tr>
<tr>
<td>James Sharpe</td>
<td></td>
</tr>
<tr>
<td>Randy Sharpe</td>
<td></td>
</tr>
<tr>
<td>Derek Shaw</td>
<td></td>
</tr>
<tr>
<td>David Sheldon</td>
<td></td>
</tr>
<tr>
<td>Sonia Sifuente</td>
<td></td>
</tr>
<tr>
<td>Michael Spinner</td>
<td></td>
</tr>
<tr>
<td>Sylvia Tarman</td>
<td></td>
</tr>
<tr>
<td>Jennifer Theis</td>
<td></td>
</tr>
<tr>
<td>Mallory Triplett</td>
<td></td>
</tr>
<tr>
<td>Ray von Wandruszka</td>
<td></td>
</tr>
<tr>
<td>Priscilla Wegars</td>
<td></td>
</tr>
</tbody>
</table>

Sandpoint Archaeology Project 2006-2013
# Table of Contents

**Preface** ......................................................................................................................... I
**Prologue** .............................................................................................................................. II
**Acknowledgements** ........................................................................................................... III
**List of Figures** ....................................................................................................................... IX
**List of Tables** ...................................................................................................................... XI

## Ethnography

**Introduction** ......................................................................................................................... 1

**Setting** ................................................................................................................................. 1

- Kalispel .................................................................................................................................. 1
- Coeur d'Alene......................................................................................................................... 2
- Kootenai ............................................................................................................................... 5

**External Relations** ............................................................................................................. 7

- Mutual Co-utilization of Economic Resources .................................................................. 7
- Trade ................................................................................................................................... 7
- Trails .................................................................................................................................... 9
- Intermarriage ....................................................................................................................... 9
- Warfare ................................................................................................................................. 9

**Culture** .................................................................................................................................. 10

- Subsistence .......................................................................................................................... 10
- Structures ............................................................................................................................. 16
- Transport .............................................................................................................................. 17
- Social Organization ............................................................................................................. 18

**The Kalispel Villages/Campsites of Sandpoint** ................................................................. 19

- James Alexander Teit ........................................................................................................... 19
- Verne F. Ray ........................................................................................................................ 21
- Allan H. Smith ....................................................................................................................... 22
- Stuart A. Chalfant .................................................................................................................. 26
- Carling I. Malouf .................................................................................................................. 27
- Archaeological Sites 10BR538 and 10BR1026 on Indian Island .......................................... 27
- Kalispel Tribe of Indians ..................................................................................................... 30
- Kevin J. Lyons ....................................................................................................................... 31

## Ethnohistory

**Nineteenth and Twentieth Century Observations** ............................................................. 35

**Discussion** ........................................................................................................................... 81
# Sandpoint Archaeology Project 2006-2013

## Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Archaeological Signatures</td>
<td>83</td>
</tr>
<tr>
<td>Concluding Thoughts</td>
<td>88</td>
</tr>
<tr>
<td><strong>PREHISTORIC ARCHAEOLOGY</strong></td>
<td>91</td>
</tr>
<tr>
<td>Previous Studies</td>
<td>94</td>
</tr>
<tr>
<td>Culture History and Regional Chronologies</td>
<td>96</td>
</tr>
<tr>
<td>Pend Oreille–Clark Fork River Basin</td>
<td>96</td>
</tr>
<tr>
<td>Pend Oreille River from Cabinet Gorge to Calispell Valley</td>
<td>97</td>
</tr>
<tr>
<td>Flathead Valley</td>
<td>99</td>
</tr>
<tr>
<td>Kootenai River Basin</td>
<td>99</td>
</tr>
<tr>
<td>Columbia River</td>
<td>101</td>
</tr>
<tr>
<td>Lower Snake River</td>
<td>102</td>
</tr>
<tr>
<td>Prehistoric Sandpoint</td>
<td>102</td>
</tr>
<tr>
<td>Research Design</td>
<td>103</td>
</tr>
<tr>
<td>Known or Suspected Resources</td>
<td>103</td>
</tr>
<tr>
<td>Key Parameters</td>
<td>104</td>
</tr>
<tr>
<td>Important Constraints</td>
<td>104</td>
</tr>
<tr>
<td>Basic Local Research Problems</td>
<td>105</td>
</tr>
<tr>
<td>Research Questions</td>
<td>111</td>
</tr>
<tr>
<td>Results of the Investigations</td>
<td>114</td>
</tr>
<tr>
<td>Methods</td>
<td>115</td>
</tr>
<tr>
<td><strong>RESULTS OF THE INVESTIGATIONS</strong></td>
<td>120</td>
</tr>
<tr>
<td>Overview of Data Recovery Excavation Results</td>
<td>121</td>
</tr>
<tr>
<td>Prehistoric Artifacts</td>
<td>121</td>
</tr>
<tr>
<td>Archaeological Investigations at Indian Island Sites 10BR538 and 10BR1026</td>
<td>179</td>
</tr>
<tr>
<td>Previously Recorded Sites on Indian Island</td>
<td>179</td>
</tr>
<tr>
<td>2006 Testing at Indian Island</td>
<td>181</td>
</tr>
<tr>
<td>2007 Testing at Indian Island</td>
<td>187</td>
</tr>
<tr>
<td><strong>CONCLUSIONS AND RECAPITULATION</strong></td>
<td>195</td>
</tr>
<tr>
<td>Research Questions Answered</td>
<td>195</td>
</tr>
<tr>
<td>Research Questions Unaddressed</td>
<td>196</td>
</tr>
<tr>
<td>Chronology</td>
<td>196</td>
</tr>
<tr>
<td>Lithic Technology</td>
<td>197</td>
</tr>
<tr>
<td>Settlement, Subsistence, and Seasonality</td>
<td>197</td>
</tr>
<tr>
<td>Trade and Exchange</td>
<td>197</td>
</tr>
<tr>
<td>Prehistoric Demography</td>
<td>197</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>199</td>
</tr>
<tr>
<td><strong>APPENDIX A: DISCUSSION OF KALISPELL SUMMER VILLAGE SITE DISCREPANCIES</strong></td>
<td>217</td>
</tr>
</tbody>
</table>
### LIST OF FIGURES

- **Figure 1.** Kalispel territory. ................................................................. 2
- **Figure 2.** Coeur d’Alene territory and drainages during the nineteenth century .................................................. 3
- **Figure 3.** Kootenai territory at contact in 1792 ........................................... 6
- **Figure 4.** Plateau culture area of North America ........................................ 8
- **Figure 5.** Indian fishing at Kettle Falls ca. 1900 ........................................... 12
- **Figure 6.** Historic photo, 1861, showing a Kalispel canoe and tule-mat tepee in the foreground across Hoodoo Creek at flood stage ................................................ 16
- **Figure 7.** Kalispel Chief John Big Smoke and son Baptiste fishing in a traditional Kalispel sturgeon-nosed canoe ........................................................................................................... 17
- **Figure 8.** Smith’s Kalispel villages 110 and 111 ........................................ 24
- **Figure 9.** Location of archaeological sites 10BR538 and 10BR1026 ................. 28
- **Figure 10.** Location of archaeological sites 10BR538 and 10BR1026 ................. 29
- **Figure 11.** KT1 A Kalispel Cultural Geography site map with a red dot denoting two summer village site locations in the vicinity of Sandpoint ......................................................................................... 30
- **Figure 12.** Detail from one of Thompson’s original maps showing his “Lake Indian Road” meeting Lake Pend Oreille at the mouth of Boyer Slough after crossing Pack River ............................................ 36
- **Figure 13.** Detail from David Thompson’s original 1814 map showing canoe routes he used on Lake Pend Oreille ............................................................................................................. 40
- **Figure 14.** Kuttespelm Lake, August 12, 1845. Watercolor looking east across Lake Pend Oreille by James Warre ............................................................................................................ 43
- **Figure 15.** Sinyakwateen Depot from near left bank of Clark Fork (Pend Oreille) looking up .......................................................... 55
- **Figure 16.** Kellispelm Lake from Yellow Bluff (probably Warren) Island .......... 55
- **Figure 17.** Charles Wilson’s 1861 sketch view of the Pend Oreille River from Seneacquoteen Depot .............................................................. 56
- **Figure 18.** Ethel Ashley on the wagon bridge over Pack River in 1907 ................................. 63
- **Figure 19.** NPRR map showing locations of Hangtown and Ventnor south of Sandpoint ............................................................................................................. 66
- **Figure 20.** Kalispel man at Hawkins Point at the mouth of the Park River about 1900 ...................................................................................... 69
- **Figure 21.** 1894 photograph of Indian teepee at the mouth of Sand Creek .......................................................................................... 71
- **Figure 22.** Indian camp at Denton Slough (Indian Meadows) at the mouth of the Clark Fork River taken 1898 .................................................................................. 73
- **Figure 23.** Indians camped at City Beach, Sandpoint, Idaho 1896–1897 ................ 73
- **Figure 24.** Kalispel Indians in the early 1900s. One unidentified woman on the left and five men .......................................................... 74
- **Figure 25.** Stick game at Sandpoint in 1931 ........................................................................... 76
- **Figure 26.** Indians arriving at Sandpoint on horseback (ca. 1900) ...................... 78
- **Figure 27.** Indians with horses setting up or packing up their camp located on the east terrace of Sand Creek at Sandpoint (ca. 1900) .......................................................................................... 78
- **Figure 28.** Hide-covered tipi at Denton Slough, ca. 1890. ........................................ 86
- **Figure 29.** Encampment at Denton Slough, early 1900s ........................................ 87
- **Figure 30.** Remains of a fish weir on Calispel Creek ca. 1936 ................................. 88
- **Figure 31.** Regional map showing major river drainages, Sandpoint, and historic settlements, travel routes, and important toolstone quarry sites ............................................................................ 92
- **Figure 32.** A redeposited groundstone pestle (LC# 40395) found in a vertical position in N150 E70 at the Blacksmith Shop excavation ........................................................................................................... 118
- **Figure 33.** Lithic debitage recovered from Sandpoint sites. A variety of lithic raw materials are represented .................................................................................................................. 122
- **Figure 34.** Chert corner-notched projectile point from 10BR978 OP-1, N157.5 E005, Level 1 ...................................................................................... 127
- **Figure 35.** Chert corner-notched projectile point from 10BR978 OP-1, S15 E55, Level 1 ...................................................................................... 128
- **Figure 36.** Chert side-notched projectile point from 10BR978 OP-2, N25 E60, Level 1 ...................................................................................... 129
- **Figure 37.** Chert corner-notched projectile point from 10BR978 OP-2, N75 E55, Level 1 ...................................................................................... 130
- **Figure 38.** Chert side/corner-notched projectile point from 10BR978 OP-2, N65 E40, Level 1 ...................................................................................... 131
- **Figure 39.** Chert lanceolate projectile point/knife from 10BR978 OP-2, N65 E45, Level 1 ...................................................................................... 132
- **Figure 40.** Kootenai Argillite lanceolate projectile point from 10BR978 OP-2, N105 E50, Level 1 ...................................................................................... 133
- **Figure 41.** Black argillite side-notched projectile point from 10BR978 OP-2, N100 E45, Level 1 ...................................................................................... 135
- **Figure 42.** Chert/chalcedony side-notched projectile point from 10BR978 OP-2, N100 E55, Level 1 ...................................................................................... 136
- **Figure 43.** Chert lanceolate projectile point base from 10BR978 OP-1, N30 E55, Level 1 ...................................................................................... 137
Figure 44. Black argillite corner-notched projectile point from 10BR978 OP-1, N30 E55, Level 1 ........ 137
Figure 45. Obsidian point base with channel flake scar from 10BR978 OP-1 at N175 E35, Level 1 ....... 139
Figure 46. Chert lanceolate projectile point from 10BR978 OP-3, TU-2006-2, Level 4/5, 63 to 64 cmbs .......................................................... 141
Figure 47. Black argillite corner-notched projectile point from 10BR978 OP-2, N80 E35, Level 1 ...... 142
Figure 48. Chert side-notched projectile point from 10BR978 OP-2, N85 E25, Level 1. LC# 45098 .... 143
Figure 49. Gray argillite corner-notched projectile point from 10BR978 OP-2, N105 E50, Level 1 ...... 144
Figure 50. Quartzite knife from 10BR978 OP-2, N50 E45, Level 6, Feature 3 ................................. 146
Figure 51. Argillite knife from 10BR978 OP-2, N45 E35, Level 5, Feature 3 ................................. 146
Figure 52. Quartzite knife from 10BR978 OP-2, N105 E50, Level 4 ................................. 146
Figure 53. Micaceous quartzite knife from 10BR978 OP-2, N70 E60, Level 2A, Feature 7 ........ 147
Figure 54. Quartzite knife from 10BR859 OP-1, N60 E45, Level 1 ............................................ 148
Figure 55. Quartzite cobble chopper from 10BR978 OP-1, N30 E65, Level 1 ........................ 149
Figure 56. Quartzite cobble chopper from 10BR978 OP-2, N70 E60, Level 2A, Feature 7 ......... 149
Figure 57. Metasediment cobble chopper from 10BR978 OP-2, N85 E60, Level 1 ................ 149
Figure 58. Metasediment cobble chopper from 10BR978 OP-2, N80 E30, Level 1 ................ 150
Figure 59. Quartzite multifunctional tool from 10BR978 OP-2, N45 E35, Level 5, Feature 3 .... 150
Figure 60. Red chert thumbnail scraper from 10BR978 OP-1, N30 E55, Level 1 ....................... 152
Figure 61. Quartzite side scraper from 10BR978 OP-2, N60 E30, Level 1 ................................ 152
Figure 62. Brown chert end scraper from 10BR978 OP-2, N75 E65, Level 1 ........................ 153
Figure 63. Brown chert side scraper from 10BR978 OP-2, N90 E55, Level 1 ........................ 153
Figure 64. Gray chert side spokeshave from 10BR978 OP-2, N55 E85, Level 2 ..................... 154
Figure 65. Gray argillite side scraper from 10BR1026, STU-2006-29, Stratum A ....................... 155
Figure 66. Quartzite cobble flake core from 10BR859 OP-2, N395.9 E50 ............................... 158
Figure 67. Igneous rock hammerstone from 10BR859 OP-5, N440 E45, Level 1 .................. 159
Figure 68. Igneous rock hammerstone from 10BR977 OP-1, N85 E75, Level 1 ..................... 160
Figure 69. Basalt unknown paddle-shaped object from 10BR978 OP-1, N25 E50, Level 1 ........ 161
Figure 70. Comparison of artifact LC# 45002 (right) with paddle-shaped artifact from the Sandpoint Water Treatment Plant area on the shore of Lake Pend Oreille. ......................... 162
Figure 71. Quartzite pestle from 10BR978 OP-2, N75 E70, Level 1 ........................................ 162
Figure 72. Ophiolite pestle from 10BR977 OP-2, N75 E70, Level 1 .................................... 163
Figure 73. Nephrite celt recovered from 10BR977 (OP-2) ...................................................... 164
Figure 74. Groundstone nephrite celt (adze) from 10BR977 OP-2, Trench D, Level 3, 1.5 feet below edge of bluff at north end of Blacksmith Shop ................................................................. 164
Figure 75. The Trestle Creek nephrite celt from the north end of Lake Pend Oreille ............... 170
Figure 76. The Memaloose Island nephrite celt in a private Bonner County collection .......... 170
Figure 77. Fire modified rock by site and operation area ....................................................... 175
Figure 78. Fire modified rock by site, operation area, and material type .............................. 176
Figure 79. Northwest Archaeological Associates plan view of the Dog Beach area at Indian Island showing site boundary for 10BR1026 as determined in 2003 ........................................ 180
Figure 80. Testing at Indian Island East (Dog Beach), June 19–23, 2006 ................................ 182
Figure 81. Plan view of 2007-TU-1, Level 3 at 50 cmbs showing swirled or marbled pattern of charcoal staining .............................................................................. 191
Figure 82. Archaeologists and ITD observer starting excavation at 2007-TU-1 on May 23, 2007 ... 189
Figure 83. Plan view of 2007-TU-1 and 2007-TU-2 showing horizontal pattern of charcoal-stained sediment in Level 3 ................................................................. 192

Cover photo by Idaho Airships Inc., Courtesy of URS Corp.

Sandpoint Archaeology Project 2006-2013
# List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Comparison of Analyses of Locations of Summer Villages 12 and 13</td>
<td>31</td>
</tr>
<tr>
<td>2</td>
<td>Summary of Annual Lower Kalispel Bands Subsistence Scheduling and Pattern</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>Suggested Taxonomy for Lower Kalispel Residential Configurations</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>Proposed Cultural Chronology for the Pend Oreille River Valley</td>
<td>96</td>
</tr>
<tr>
<td>5</td>
<td>Artifact Matrix of All Prehistoric Artifacts by Site and Operations Area</td>
<td>119</td>
</tr>
<tr>
<td>6</td>
<td>Classification and Temporal Range of 10BR978 Projectile Points</td>
<td>123</td>
</tr>
<tr>
<td>7</td>
<td>10BR978 Projectile Point Measurements</td>
<td>123</td>
</tr>
<tr>
<td>8</td>
<td>Flaked Stone Knives</td>
<td>145</td>
</tr>
<tr>
<td>9</td>
<td>Chopping Tools</td>
<td>148</td>
</tr>
<tr>
<td>10</td>
<td>Unifacial Tools</td>
<td>151</td>
</tr>
<tr>
<td>11</td>
<td>Modified and Unmodified Lithic Debitage and Related Artifacts by Site and Operation Area</td>
<td>156</td>
</tr>
<tr>
<td>12</td>
<td>Lithic Debitage from All Sites and Operation Areas by Raw Material</td>
<td>156</td>
</tr>
<tr>
<td>13</td>
<td>Lithic Workshop Artifacts</td>
<td>157</td>
</tr>
<tr>
<td>14</td>
<td>Groundstone Tools</td>
<td>160</td>
</tr>
<tr>
<td>15</td>
<td>Lithic Debitage from All Sites and Operation Areas by Manufacturing Stage</td>
<td>172</td>
</tr>
<tr>
<td>16</td>
<td>Fire Modified Rock by Site and Operation Area</td>
<td>174</td>
</tr>
<tr>
<td>17</td>
<td>Prehistoric Artifacts Recovered from Feature 3 at 10BR978 (OP-2) Chinatown</td>
<td>177</td>
</tr>
<tr>
<td>18</td>
<td>Generalized Stratigraphy of Indian Island Test Unit 2007-TU-1</td>
<td>190</td>
</tr>
</tbody>
</table>
ETHNOGRAPHY

Sylvester L. Lahren, Jr., and James C. Bard

INTRODUCTION

Sandpoint has always been an important place to the Kalispel and other tribes. This review focuses on Sandpoint and updates our understanding of how Indian groups used the project area in the recent past.

To interpret the archaeological materials recovered during the testing and data recovery programs and to place the available archaeological record of the Sandpoint vicinity into a larger context, this volume begins with selected abbreviated sections of Lahren’s (1998) chapter on the Kalispel, Palmer’s (1998) chapter on the Coeur d’Alene, and Brunton’s (1998) chapter on the Kootenai, all in the Handbook of North American Indians. Additional information posted on the Kalispel Tribe’s website, www.kalispeltribe.com, is incorporated as well.

SETTING

Kalispel

The Kalispel were located in the Plateau culture area of North America and spoke an Interior Salish language. According to Dr. Allan H. Smith, the Kalispel consisted of two divisions, the Upper and Lower Kalispel; each had a name, a specific geographical area, and a separate political structure. Neither division was considered a tribe in terms of sociopolitical organization (personal communication, A. H. Smith 1985). The Lower Kalispel occupied the territory along the Pend Oreille River below Lake Pend Oreille in Idaho to the confluence of the Salmo River in British Columbia (Figure 1).

It appears that the Upper Kalispel occupied the area around Lake Pend Oreille east to the confluence of the Clark Fork and Flathead rivers near Plains, Montana (Smith 1950:12–29). After the introduction of the horse, their territorial limits were extended eastward to the Mission Valley and Flathead Lake in Montana and south to include the Bitterroot Valley. A focal area of the Upper Kalispel at the time of contact with Euro-Americans was in the area of Plains, Montana (Chalfant 1974b:59–60; Lahren 1998:283; Malouf 1952:162, 1982:17). The lower Pend Oreille River was originally called the Clark Fork River, but it became known as the Pend Oreille River.

The eastern terminus of Kalispel territory was located east of Plains, Montana, near the confluence of the Clark Fork and Flathead rivers (Smith 1950:13). Because of the riverine orientation of the Kalispel, their territory followed the Clark Fork River northwest into Idaho to Lake Pend Oreille and then along today’s Pend Oreille River to Newport, Washington, where it turned north to Usk and Cusick, Washington. It continued on north and where it crossed the Canadian boundary where it joins the Columbia River near mouth of the Salmo River (see Figure 1).

The river-course length of their pre-horse territory was approximately 230 miles. The elevation at Plains is 2,500 feet; 2,080 at Sandpoint; 2,050 at Newport; and 1,722 at the Canadian border. The entire region is mountainous and characterized by a dendritic drainage geomorphologic pattern with the Pend Oreille River being the stem of the pattern. It is bisected with lateral streams and rivers flowing into the Pend Oreille River. Any directional movement by the Kalispel would have resulted in an elevation change. Flora and fauna would have been seasonally sensitive to these different elevations.
Ethnography

The area is heavily forested with interspersed meadows and abundant water. This abundance of water is underscored by the fact that the Kalispel did not name springs because there are so many. In contrast, their Spokane neighbors named springs. Located at 2,085 feet, Sandpoint has a four-season climate with average highs in the summers of 81.2 degrees and average lows in the winter at 21 degrees. Sandpoint receives an average of 33.3 inches of annual precipitation and an average snowfall of 87.8 inches (with variances for the higher elevations). The hottest month is July, coldest is January, wettest is December, and driest is July (http://sandpointchamber.org/lifestyle.html, 11/3/13).

Coeur d’Alene

The Coeur d’Alene spoke one of the seven mutually unintelligible languages of Interior Salish. Their closest linguistic neighbors were the Kalispel with whom they shared 55 percent of their vocabulary. The Coeur d’Alene occupied an area directly south of the Kalispel and their northern boundary formed most of the southern boundary of the Kalispel territory (Figure 2).
Coeur d’Alene territory included the headwaters and drainages of the Spokane River (Figure 2) (Palmer 1998:313). Prior to 1700 there were three main groups of permanent winter villages that represented the three major territorial divisions of the Coeur d’Alene: 1) St. Joe River division (nine villages, map no. 30-38), 2) Coeur d’Alene River division (11 villages, map no. 18-29) and 3) Spokane River–Coeur d’Alene Lake division (16 villages, map no. 1-17). Palmer originally plotted winter villages and summer camps together, but later differentiations were made based on the names.

The Spokane River–Coeur d’Alene Lake division’s village at Hayden Lake (number 13 in Figure 2) was the closest village location to the Kalispel territory. Because of its location at Hayden Lake and not along the Spokane River, it is assumed that this location was a summer camp. From this Hayden Lake village...
location to the southern tip of Lake Pend Oreille is only 14 miles, and from the outlet of Coeur d’Alene Lake to the southern tip of Lake Pend Oreille is 21 miles. Both distances could be walked in a day, and on horseback it would have been an easy day’s ride, assuming there was a good trail. From the outlet of Lake Coeur d’Alene to Sandpoint, Idaho is approximately 45 miles, an easy two day horseback ride.

Palmer (1998:313) states there is little doubt that villages and nearby resource sites were held by individual bands. The territories of bands may have overlapped in other areas, such as camas prairie on Hangman Creek, Rathdrum Prairie, and areas of the Clark Fork and Clearwater rivers, which were mutually used. During the month of June, the Coeur d’Alene camas prairie was shared with the Cayuse, Palouse, Nez Perce, Spokane, and Kalispel. This may have been the largest annual event where the Coeur d’Alene joined with other groups to engage in camas digging, gambling, and horse racing.

In September 1809, David Thompson arrived at a seasonal Indian camp at the mouth of the Clark Fork River at what is now known as Indian Meadows. Thompson counted “23 Pointed Hearts,” his term for the Coeur d’Alene, among the Kalispel and Kootenai men at the camp (Belyea 1994:108). Clearly, the Coeur d’Alene and other cultural groups had access to Kalispel territory.

During the later summer months, smaller Coeur d’Alene groups would exploit the upstream areas of the river drainages. After the fall hunt, these smaller groups would reassemble in their villages at the lower elevations along the main rivers to hunt and fish in the late fall and early winter. It is most likely that, during these late summer months when the small Coeur d’Alene groups were exploiting the higher elevations of the Coeur d’Alene River drainage, they would have come into contact with the Kalispel along their mutual border (see Figure 2).

The Upper Kalispel used to camp at Lake Pend Oreille during the winter, and Thompson identified one of these locations to be “at the foot of the lake” (Fritz 2010:51). He places the location of this winter camp close to Bayview (on the southern shore of Lake Pend Oreille south of Sandpoint). “Blackwell Point, the fertile peninsula between Scenic and Idlewilde bays, was an aboriginal winter village of the Upper Kalispel Indians. The Kalispel name Ncame’p meant ‘the head or gateway to the lake’” (Fritz 2010:51). Thompson’s informants stated that in the old days this was a good place to hunt deer. The Coeur d’Alene would conduct winter deer hunts northward until they reached the location of this Upper Kalispel winter camp. After a few drives, the Coeur d’Alene would move back south and did not winter in this area. On Figure 2, the foot of the lake falls with the border transition area between the Coeur d’Alene and Kalispel, an obvious area of mutual use.

After the Coeur d’Alene acquired the horse and started hunting bison, their subsistence focus changed from deer and elk to bison. They made annual trips across the mountains to the bison hunting grounds. Most families left in the early fall and returned in the late spring. When they returned they most likely rode directly to Spokane Falls or the summer camas grounds. For mutual protection when hunting bison, they had intertribal hunting parties with the Flathead, Spokane, Nez Perce, and Kalispel.

Palmer does not specify which trail was taken to go bison hunting. However, his statements that the Coeur d’Alene probably rode directly to Spokane Falls and that they were allied with the Spokane, Flathead, and Kalispel imply that they used the great east-west trade route that went through Kalispel territory. They would have followed the Indian trail located on the north side of Lake Pend Oreille into Montana. In order to get to the Indian trail they would have had to cross the Pend Oreille River below Lake Pend Oreille.

Ray’s Village 10 was located below the lake, and he translated the native term for this village to mean “ford.” This village was on both sides of the river at Laclede, Idaho, which is located on the north side of the river (Ray 1936:129). Seneacquoteen, Idaho, is located on the south side of the river, and Smith
Ethnography

(1950:41) identified it as his Village 12 (13 is handwritten in the margin) “crossing place,”/Seneaqooten (it is location number 103 in Smith 1985). Most likely, this is the ford that the Coeur d’Alene used to get to the north side of the river. Once on the other side, it was only 13 miles east, following the terraces above the river, to Sandpoint, which was identified as an Upper Kalispel band “headquarters” by Teit (1930:313). If the Coeur d’Alene used this Pend Oreille River crossing, there is no doubt that they visited the Sandpoint area, at least every fall and spring, when they were crossing the mountains to hunt bison.

Every fall the Coeur d’Alene would traverse this trail through Kalispel territory and at certain locations along the way they would meet with their allies. One of their most important allies seems to be the Upper Kalispel, who apparently engaged in more bison hunting than the Lower Kalispel. On their return trip in the spring, they would again traverse the Kalispel territory along this trail.

It seems likely that because the Coeur d’Alene were so close to the Kalispel linguistically and spatially, intermarriage among those groups engaged in bison hunting, like the Upper Kalispel, would have been common. The bison hunting forays of the Coeur d’Alene through Kalispel territory seem to be one of the most determinate factors in establishing Coeur d’Alene cultural affinity for the Sandpoint area, as well as other locations along the trail to the bison hunting grounds in Montana.

Kootenai

The classification of Kootenai language remains uncertain, and it appears to be a linguistic isolate. It consists of an Upper (upriver) dialect and Lower (downriver) dialect that differ mainly in lexicon. The Kootenai occupied an area directly north of the Kalispel and that their southern boundary was conterminous with the Kalispel’s northern boundary (see Figure 2). The Kootenai River drainage system defined Kootenai territory, and the Kootenai’s orientation to the river was basic to their culture. The river was the location of the more permanent camp and village sites (Figure 3) (Brunton 1998:223).

Similar to the Kalispel, there were two divisions of Kootenai, the Upper and Lower. Kootenai is the conventional spelling of this word in the United States; Kutenai and Kootenay are Canadian spellings. The dividing line between them was the Libby and Jennings communities in Montana. Based on previous research with Kootenai informants (Lahren 1981), Kootenai Falls, a significant cultural resource for the Kootenai, tended to be the dividing line between the two groups (see Figure 3).

The major differences in these two groups were a function of the difference in their environments. The Lower groups were more focused on fishing while the Upper groups were primarily hunters. The Upper group was located on the western flank of the Rockies, which supported a larger abundance of big-game animals that included the bison. During the pre-horse period, some Lower Kootenai went with the Upper group on their annual pedestrian bison-hunting trips.

Gambling was an important part of precontact Kootenai culture and was supported in much of their mythology. Kootenai gambling behavior remained unabated in the 1900s. They would only gamble with groups they considered friendly. After the reservations were established, they included more and more groups within the Kootenai domain of gambling relations (Brunton 1998:225).

Prior to the arrival of the horse, Kootenai relations with other cultural groups were distant to hostile, and they considered their Salish neighbors and the Blackfoot as enemies. During the pre-reservation period, the Kootenai mostly kept to themselves but they were friendly with the Plains Cree. After the arrival of the horse among the Kootenai, which occurred sometime before 1792, the differences between the Upper and Lower groups were intensified as the Upper Kootenai adopted a veneer of
Plains culture traits. The Upper Kootenai would engage in bison hunting around the middle of June and were often accompanied by the Coeur d’Alene and Spokane. They also had an autumn bison hunt.

Hostilities with the Blackfoot intensified when the Kootenai frequented the Plains to hunt bison. When the fur trade arrived on the Plains, the Blackfoot hostilities with the groups west of the Rockies were further intensified. As a result of these increased hostilities with the Blackfoot, there seems to have
been a seasonal reduction in hostilities between the Kootenai and other Plateau groups as they began to cooperate in Plains bison hunting expeditions for mutual protection.

According to Turney-High (1941:24), there was a group of the Kootenai who claimed the Lake Pend Oreille area. The Tobacco Plains Band said the southern edge of their territory extended to Coeur d'Alene, Idaho. Bonners Ferry Kootenai of Idaho deny this claim and said that they could go no further south than Sandpoint without expecting to fight the Pend d'Oreille. Allan Smith (1985) makes some interesting comments about a Kootenai presence in the Sandpoint area when he cites notes taken in 1826 by Hudson’s Bay Company (HBC) fur trader John Work:

Aug. 27.... reached Kootenay portage at the lower end of the lake in the evening, where we found Morton and the Kootany chief with 12 or 13 of his people.... Aug. 28. Commenced trading before sunrise ... Accordingly about 2 o'clock we ... took our departure and encamped ... a little below Cour de Alan Portage [i.e., Saneaguoteen]. (Smith 1985:129)

Smith (1985:129) thinks this location was Kootenay Landing (at the mouth of modern-day Boyer’s Slough, a few miles east of Sandpoint) on Lake Pend Oreille and that “it could not have been distant from the Sandpoint area.” He identified it as Site 112 on his map (see Figure 8 further below). Work’s meeting location with the Kootenai is said to have been at the southern end of a trail that went north along the Purcell Trench to the Kootenai River near Bonners Ferry, Idaho, and that this trail was well used during fur trade era. The trail mentioned by Work was the route David Thompson followed in 1809 from the Kootenai River to Lake Pend Oreille and initially called by him the “Great Road of the Flathead” and later the “Lake Indian Road.”

Smith notes that as far as the Kalispel were concerned; the trail north to Bonners Ferry left Lake Pend Oreille at Sandpoint and headed northward to the Pack River (it flows into Lake Pend Oreille between Sandpoint and Hope). Smith’s informant spoke of Sandpoint as the principal landmark for the general region in 1938. It would have also been possible for the Kalispel to have left the Sandpoint area and followed the west side of the Purcell Trench (glaciated valley that extended from BC into northern Idaho), which was away from the lake and would have avoided the Kootenai town district.

Smith noted the importance of these entries by John Work because they documented the fact that this location was used during post-contact times by a Kootenai party. He speculated that Kootenai visitors to the area may have introduced non-Kalispel artifacts into the site. More importantly, the information from Work and the ethnographic data place the southern end of the Kootenai trail at or near this locality, and that there may have been other unrecorded Kootenai visits to the Sandpoint area during the Protohistoric and Historic periods.

**EXTERNAL RELATIONS**

**Mutual Co-utilization of Economic Resources**

Kalispel interaction with other groups was predicated on the co-utilization of economic resources, trading, and bison hunting. It is well known that they allowed co-utilization of their camas fields near Cusick, Washington by neighboring groups (Figure 4). They went to the Spokane country to fish and collect flora not found in their own area and to Kettle Falls to fish and trade (Diomedi 1879; Ray 1942; Smith 1950).

**Trade**

Anastasio (1972:119) points out that there were ecological variables that influenced trading patterns in the Plateau and that “because of these differences, it was sometimes desirable or necessary to gather,
Figure 4. Plateau culture area of North America (Walker 1998:ix).

hunt, and fish in the territories of other groups and to exchange local raw materials and finished items with them.” Trading relationships within the Plateau and between the Plateau and Plains had important effects on the intergroup relations of the cultures who engaged in the trading process. It was especially important to the Kalispel who were located along an important east-west trade route.

The great trade route between east and west, both before and after the advent of horses, was by way of Pend Oreille River, which was the easiest and the most important gateway through the mountains toward the Columbia River region…. What may be called the ‘western gate’ of the
Pend Oreille route was at a point on the river around Newport and Usk, in the territory of the Lower Kalispel. Here easy travel by land and water following the river stopped, and trails led directly west to the centers of the Spokane and Colville through easy country. (Teit 1930:355)

Adjacent to the Kalispel (see Figure 4) were the Colville at Kettle Falls, who controlled one of the most important trade centers in the Plateau. “Large numbers of Lake, Okanagon, Sanpoil, Spokane, and Kalispel came there for trading and fishing” (Teit 1930:356). “The great trading center of Kettle Falls ... saw many persons from Kalispel, Coeur d’Alene, Spokane, smeka’lt, sqasi’lni, Sanpoil, Nespelem, Smeqaie’tk, Methow, Chelan and Okanogan…. Such a mixture of peoples was certain to result in a considerable interchange of goods” (Ray 1933:115–116).

The Kalispel’s contiguous western neighbors, the Spokane, also engaged in considerable trading with the Kalispel. Even though the Spokane trade center was not as important as Kettle Falls, it had certain characteristics that were important to Kalispel trading activities and intergroup relations. In addition to fishing and trading, it was a communication crossroads. While Kettle Falls groups consisted mainly of Salish speakers, the Spokane center included Sahaptins. Participating groups included the Coeur d’Alene, Sanpoil, Nespelem, Columbia, and the Sahaptin-speaking Nez Perce and Palus (Anastasio 1972:154–157). These trading relationships were intensified with the appearance of the horse in the Plateau:

By facilitating communication and transportation the horse increased the range, frequency, and speed of interaction among groups ... and part of the Kalispel were in an equally good environment for horses. In 1810 ... the Kalispel had ‘abundant numbers.’ A number of more western and northern groups were in environments which to one extent or another were less favorable for the horse ... and part of the Kalispel. All these groups used the horse for transportation, but the numbers were far fewer than those in the major herding areas of the Plateau. (Anastasio 1972:128–130)

Trails

The Clark Fork River Valley was a major east-west thoroughfare and functioned as a major trade route. Most of the groups mentioned above used the river valley trail to go to bison hunting areas. They marked their trails and used broken limbs to point the direction of their travel. Josephy (1965:27) states there were three routes over the mountains, but they were rugged and blocked by snow from November to June. A fourth and less difficult route followed the water course trail along the Clark Fork River. “This route was one of the busiest Indian trade highways in the Northwest and took the Nez Perces through country frequented by the Coeur d’Alenes, Spokanes, Kalispels, southern Kutenais, and Flatheads.” All of these different groups congregated in Montana’s Flathead Valley area and joined into a larger group for protection against their mutual enemy (Blackfoot) to hunt bison on the Plains.

Interrmarriage

Such co-utilization of resources, trading, and bison hunting often led to intermarriage between these groups. Intermarriage was most common among the contiguous Salish groups such as the Flathead, Coeur d’Alene, Spokane, and Colville and occasionally with the Sahaptin-speaking Nez Perce. These intermarriages solidified co-utilization of economic resources, promoted trading relations and facilitated mutual protection for bison hunting by task groups. Only the Blackfoot, enemy of the Kalispel and other Plateau groups, were repulsed from their valley (Anastasio 1972:128–130; Ray 1942:224–228).

Warfare

Warfare was almost nonexistent in pre-horse times, but it could have been caused by infringing on economic rights, murdering or injuring someone, itinerant raiding, or insulting a chief. War associated
with economic infringements could be avoided by compensation. Very brief encounters occurred with the Coeur d’Alene and Kutenai prior to the horse. With the arrival of the horse and the shift to Plains bison hunting, warfare took on a new dimension. The Kalispel allied themselves with the Flathead, Spokane, Coeur d’Alene, Columbia, Kutenai, Nez Perce, Bannock, Shoshoni, and Ute for mutual protection. Their contiguous and primary enemy was the Piegan Blackfoot, but they also had armed conflicts with the Crow. On occasion they did encounter the Cheyenne, Assiniboine, and Sioux. In 1858 the Spokane and Coeur d’Alene allied against the whites and fought Colonel Steptoe. About 20 Kalispel, related to the Spokane through descent and marriage, aligned with the Spokane in this engagement (Teit 1930:360–373).

**CULTURE**

The following cultural sketch is adopted from Lahren (1998). Lahren (1998:284) derived information from ethnographic fieldwork conducted early in the 1900s and again during the 1930s and 1940s to describe the Kalispel culture as of the mid-nineteenth century. These works were supplemented with ethnohistorical data gleaned from explorers, fur traders, missionaries, and government officials.

**Subsistence**

The annual migratory subsistence cycle of the Kalispel was based on seasonality (Smith 1950:60–62). The year began when the snows disappeared and spring arrived. The winter camps located along the Pend Oreille River would break up, and one or more families would move to specific areas to hunt and fish. They would remain in these localities until camas matured in June, at which time they would congregate at various camas fields located in their territory. The most important camas gathering areas were located in the vicinity of the present-day Kalispel Reservation, and even the Upper Kalispel were among the several tribes that came to these fields. Women harvested and prepared camas, and this subsistence activity was usually completed by mid-July. During this time men would hunt and fish.

After camas harvest, the Kalispel would fish, hunt, and gather until late fall. Specific camp selection depended on resource availability. If resources were particularly abundant in an area, larger groups might gather at that location. On the other hand, if resources were scarce, a larger group would split into family units and disperse throughout their territory. Decision making during this time period was retained by the family.

In late July and August, some families would go to Kettle Falls to fish for salmon. If salmon fishing was good additional families and sometimes an entire group would go to catch salmon. Those who did not go salmon fishing went to favorite hunting and berrying grounds along the rivers and in the mountains (Smith 1950:60–62). From the end of August until late fall they separated into smaller groups and concentrated on hunting. As the snows began to fall, various families or in some cases bands would migrate to their winter camps located along the Pend Oreille River where the snow fall would be lighter and temperatures milder. Economically, the Kalispel were “neither chiefly hunters, fishermen nor gatherers” and they lived “with a very well balanced diet” (Smith 1957:22).

The Jesuit missionary Father Pierre-Jean De Smet spent time among the Kalispel in 1841 and 1859. He documented that they were found along the river in winter camps that followed a “string pattern” (linear arrangement along the river) (Chittenden 1905:764–765). Father Diomedi in 1879 observed that the Kalispel were keeping to their seasonal subsistence pattern:

During the summer, these Indians [Kalispel] leave the mountains, where they have been hunting all through the spring, and collect in a large prairie which extends along both sides of the Calispelem River, where a plant called Camas grows profusely and propagates itself, without
Referring to this seasonal subsistence pattern, Teit (1930:348–349) noted that some Kalispel spent their time, from spring to fall, hunting, fishing, and gathering around lakes and in the nearby mountains. When winter came, they returned to their camps on the main river where the climate was milder and snowfall lighter. Malouf (1952:154) noted that “In very early times, and probably in prehistoric times, all these people were without permanent campsites or major centers from which they conducted their hunting and gathering journeys.” Due to the supply of fuel and for other reasons, the Kalispel could not occupy the same winter site year after year, and as a result winter camps along the river were shifted (Smith 1950:4).

The foregoing description of the subsistence cycle of the Kalispel conforms to the riverine or string pattern of settlement that was typical of the Plateau. As a result of this settlement pattern the Kalispel and “neighboring groups were linked by intermarriage, co-utilization of sites, co-residence in villages, trading and many other activities ... [and] shared fishing, hunting, and gathering sites” (Anastasio 1972:118, 148–150).

Property rights were held by the tribe and the individual. Tribal grounds could be used by neighboring groups with permission of the chief or when in the company of the Kalispel. Village territorial rights extended to hunting and fishing sites, including large weir sites where there was communal distribution of fish. Individual rights extended to fish traps, small weirs, spearing platforms, snares, and deadfalls. Other Kalispel were welcome to use these individual sites when they were not being used by the owner. Title to all fishing sites was held on the basis of use with the exception of large weir sites (Ray 1942:231).

The arrival of the horse among the Upper and Lower Kalispel in the mid-1700s altered the subsistence cycle described above. Those Kalispel who had horses began to hunt bison on the Plains. Entire villages engaged in this activity. Groups of hundreds of individuals from multiple tribes and villages and hundreds of horses would typically make the journey to the buffalo. They had two hunts, one in the summer and one in the fall. They left for the summer hunt about mid-July, and after their arrival on the Plains they would hunt for three to four weeks and return home. In November other Lower Kalispel families would leave for the Plains. These families would winter at St. Ignatius on their return trip because the snow was too deep for them to return to their winter camps along the Lower Pend Oreille River. Bison were only taken on horseback with the bow (Smith 1950:203–213).

Prior to their adoption of the horse, the Kalispel were more sedentary, and fishing was practiced to a considerable extent by certain bands (Teit 1930:348–349). Fishing was of greater importance to Kalispel before the horse, but it continued as a supplementary subsistence activity through the nineteenth century (Chalfant 1974a:223). Salmon were absent in the Pend Oreille and Clark Fork rivers, and this important resource was only available to the Kalispel if they traded for it or make the journey to the Columbia River themselves. Smith’s (1983) ethnographic maps show fish weirs at the mouth of just about every stream along the Pend Oreille River and the upper end of Lake Pend Oreille. Sandpoint was no exception.

Malouf also noted a change in the economy of the Upper and Lower Kalispel wrought by the horse. The Upper Kalispel adopted the horse and began to hunt bison on the Plains while the Lower group still used canoes and rafts and continued localized fishing, hunting, and gathering activities. Although fishing was very important to the Lower group, it was not as important as it was to the Indians who lived along the
Columbia River system. Fish were not as large or as plentiful in the streams of western Montana, and as a result hunting and gathering were more important to the local economy (Malouf 1982:18).

Historical records indicate that food supply in this area went through cyclical patterns of abundance and scarcity. During the first two years the missionaries were among the Lower Kalispel, they found it difficult to live because their main food items were camas and dried berries, which contained very little nourishment (De Smet 1859:282). Father Ravalli, one of the missionaries, said that even though they were “surrounded by water, they often had difficulty getting fish even for Friday dinner” (Evans 1981:56).

At another time, De Smet recorded that the deer in the territory of the Lower Kalispel were in plentiful supply. In 1854 Father Hoeken noted that during the preceding winter there was a great scarcity of food and that there was almost a famine among the Kalispels (Chittenden 1905:466–467). Even though fishing, hunting, and gathering were the primary means of subsistence for the Indians of the Colville District, the area appears to have been chronically short of food, and early fur traders were required to eat horses and dogs. This food shortage seems to have lasted until the late 1820s (Chance 1973:102).

**Fishing**

Fish were an important part in the diet of both the Upper and the Lower Kalispel. Native fish caught by them were char, chub, shiners, squawfish, suckers, trout, whitefish, and goldfish. Salmon were found only in the northwest part of their territory, and fishing for them occurred on the lower Salmo River and lower Pend Oreille River (below Metaline Falls). Occasionally, they would fish for salmon on the Little Spokane River with the Spokane, but mostly they would go to Kettle Falls in Colville territory (Figure 5).

Fish were eaten fresh, stone boiled, dried, and smoke dried. Fish were taken by the use of weirs, basket traps, spears, spear and torchlight, harpoons, hook and set line, hook, line and pole, hemp nets, seines, dip nets, conical falls traps, dams and impoundments, standing platforms, and, for salmon, stranding traps. Occasionally they were shot with a bow and caught with a noose. Fish were clubbed or killed by breaking their necks or biting them (Smith 1950:253–399).

![Figure 5. Indian fishing at Kettle Falls ca. 1900 (Courtesy of the Northwest Power and Conservation Council, Public Affairs Division, Portland, Oregon).](image-url)
Weirs were not used in the winter and accounted for about two-thirds of all fish caught. Two types of weirs were used. One was a barrier trap made of fir balsam boughs and erected primarily in sloughs for taking common fish such as suckers, squawfish, and chub. The second type was a stick weir used in the faster-flowing streams and rivers and was designed for trapping mainly whitefish (Smith 1950:253–399). Sand Creek would have been an ideal location for the placement of stick weirs in the non-winter months. Control of a specific weir, by either the family or the larger tribal group, was determined by its productivity. Any site that produced a catch beyond the needs of a family was tribal property. The larger weirs were group constructed, and at least one (and sometimes two) headman who possessed more spirit power supervised weir construction and operation (Smith 1950:253–399).

A hook and line was used throughout the year and mostly for catching fresh fish. Men, women, and children fished year-round with a pole, line, and hook; fishing was conducted from the bank, from a canoe, and through the ice in winter. Several types of hooks were made from wood and bone, baited with meat (e.g., fish; entrails of fish, particularly the gizzard of the trout; grubs; grasshoppers), and sunk with stone sinkers. The line’s usual length was 30 to 40 feet and consisted of hemp until the arrival of the horse, after which its tail hair was used for line. Set lines and hooks were also used to catch larger fish (Smith 1950:253–399).

Hunting

Kalispel hunting was principally done with deadfalls and bow and arrow. The common arrow, with a sharpened shaft, and the stone-tipped arrow were the two types of arrows used. The stone-tipped arrow was never used in rocks (e.g., for marmot hunting) or areas where the tip might be broken because tips were hard to replace. Bows were accurate up to 50 yards. In the river valleys the prevailing winds came down the stream in the evening and upstream in the morning. To face these winds while hunting gave them an advantage so they hunted upstream in the evening and downstream in the morning (Smith 1950:63–251). Other technology associated with hunting were stone knives and spear points, bone and stone hide scrapers, snares, ropes, waterfowl nets, and snowshoes (Ray 1942:148–151; Smith 1950:63–251).

Deadfalls were used to take marten, fisher, mink, weasel, ermine, fox, wolverine, cougar, lynx, black bear, mice, and all other small fur-bearing animals. Their construction was determined by the type of quarry to be dispatched. Fresh deer meat, dried fish, and slightly burned deer hooves were used as bait, and blood from previously trapped animals added to the lure of the deadfall. Deadfalls were used in fall and winter when the fur of these animals was prime. A young trapper could have had 100 traps scattered over a 15- to 30-mile area. An old man may have had only six to eight traps. A specific trapping area was held by the individual as long as he trapped it (Smith 1950:63–251).

Birds eaten by adults were swans, ducks, geese, grouse, partridge, prairie chicken (pin-tail grouse), fool hen, sandhill crane, and chicken hawks. Young boys ate chickadees and robins. Birds not eaten were magpies, meadowlarks, night hawks, owls, fish hawks, loons, and eagles. Large birds that were snared or shot with a bow were grouse, partridge, fool hen, and prairie chicken. Waterfowl were netted. Boys took small birds with a bow for sport, but they were not allowed to kill young songbirds. Birds taken only with a bow were sandhill cranes, ducks, geese, and swans. Sandhill crane feathers were used for veining arrows. Waterfowl eggs, particularly goose, mudhens, and ducks, were purposely sought and eaten in large numbers. The eggs of other birds were also eaten. Eggs were cooked or eaten raw (Smith 1950:63–251).

Bald and golden eagles were sought for their feathers. The young golden eagle feather was most prized because of its black tip. The tail feathers were secured from the young eaglets before they left the nest, approximately mid-July. In certain locations eagles were shot with the bow. If the feathers were secured
by climbing to a nest rather than shooting, the nest became the sole domain of the individual. The area in which eagles were shot was open to all hunters (Smith 1950:63–251).

Black bears were shot with the bow in bear drives, along trails, in berry patches, and when hibernating. They were also captured in deadfalls. A hibernating bear would be coaxed to appear at the entrance den where it was shot with a bow. If the hunters were not able to bring the bear to the entrance, a hunter would enter the den with his 2-foot bow and shoot the bear. Bear meat was equally divided among all families. Bears were called by imitating a cub (Smith 1950:63–251). Grizzlies were not specifically hunted by the Kalispel. They would take one if they encountered it while hunting, but they did not like grizzly meat and killed it only for prestige. Given a choice they would avoid this bear. Sometimes a grizzly would be taken when hibernating in the same manner as the black bear (Smith 1950:63–251).

Mule and whitetail deer were the most important game animals to the Kalispel. They were hunted throughout the year but most were killed in the winter. Deer were hunted all winter long on snowshoes and with bows. They herded deer in the winter and sometimes they used dogs to help with herding. Once in awhile they would run deer down on snowshoes and break their necks. Spears were periodically used during the winter hunt and only at that time (Smith 1950:63–251).

At other times of the year deer were driven into the water with dogs or by fire. Once in the water they were lanced with a steel knife that was attached to a pole, drowned by hand, or roped and pulled ashore and killed. If they were caught swimming, they were shot with bows from canoes. Fire was also used to drive deer on land. Once in a while they were driven over cliffs; the women helped with these drives. Deer were snared and killed at licks. Kalispel hunters would call does by imitating fawns and call bucks during the mating season. Deer were not driven into enclosures, caught with nets, or killed in deadfalls. The meat was dried, smoked, or eaten raw (Smith 1950:63–251).

Woodland caribou were once more plentiful in the Lower Kalispel country than that of the Upper Kalispel. Caribou were stalked or driven by fire, and there were winter drives. Elk seemed to be more numerous in aboriginal times than in early historic times and were more abundant in Upper Kalispel country. They were taken with a bow and sometimes a spear in winter. A calf elk call was use to lure them within bow range. Moose were rare in Kalispel country but were killed. Mountain sheep and goats were only found in the country of the Upper Kalispel. Sheep were stalked and hunted from blinds. Mountain sheep robes were considered very important. Goat meat was not well liked, which resulted in limited hunting of them, but the Kalispel did use goat skin for clothing (Smith 1950:63–251). Blood was carried in tripe, and it was used raw, boiled, dried, and stored. Marrow was extracted for orphan infants, used for hair oil, and applied as a cosmetic (Ray 1942:136).

Otter skins were used to make quivers. Rabbits were taken with deadfalls, bow, clubbed, and snared for food and bait. Muskrats were dug out of their holes and clubbed to death or shot with a bow for eating and for their fur. Skunks were shot with a bow or clubbed for food, and their skin was used for robes. Squirrels were primarily taken by boys for food, but the skin was not used. Marmots were shot only with common arrows because the rocks in which they lived shattered valuable stone-tipped arrows. They were eaten and the skins were used. Beavers were taken for food, and their skins were used for blankets. Bobcats were scarce, but they were eaten and the hide was used for clothes (Smith 1950:63–251).

Certain animals were not purposely hunted but would be taken if encountered, namely the wolverine, badger, wolf, cougar, and coyote. Wolverines were taken for food, and the fur was used for quivers. The Kalispel deliberately tried to exterminate this animal because it would destroy their deadfalls and eat the bait or captured animal. Periodically, a wolf or cougar was shot for food and fur. Badger was also
eaten once in awhile. Coyote was shot, but the meat not well liked and they were primarily taken for their fur (Smith 1950:63–251). Young bears, beaver, and deer were kept as pets.

The Kalispel were considered expert hunters by certain other tribes. Hunting was clearly important to the Kalispel because the main Kalispel territory did not include salmon-bearing waters. “The importance of hunting to the Kalispel is suggested by the remark that an Indian never left his lodge without his bow and arrow or his gun, for he might see some animal to kill” (Smith 1950:81). The Kalispel esteemed good hunters (Ray 1942:123).

Gathering

Various plants contributed from one-third to one-half of the Plateau diet, and root crops were the most disease, pest, and weather resistant and ostensibly never failed (Anastasio 1972:119). Two of the most important camas grounds were located

at Big Camas, or Camas Prairie, about 15 miles above Missoula, Mont., where many Pend d’Oreilles, Semte’use, and Flathead gathered for digging; and Camas Prairie near Calispell Lake, Wash., where Kalispel, Spokane, and Colville gathered.... The territory of the Kalispel especially was noted for richness in camas. (Teit 1930:341)

As noted by Smith (1950:407), “Camas was certainly the most important of the root foods and, no doubt, of all of the vegetable foods as well. It was highly regarded in native view for its nutritive value and for its properties of maintaining health.”

Other food items gathered were the Indian potato, moss (from the tamarack), cattail roots (eaten raw), pine cambium layer, wild garlic, wild celery, wild carrot, Easter lily, black pine sap (small amounts), and bitterroot (rare in lower Pend Oreille). Plants not found in Kalispel country and taken in Spokane country on an occasional basis were the wild onion, white camas, and wild parsnip (Smith 1950:400–477).

Berries were abundant in Kalispel territory, and they were eaten fresh and dried. Gathering berries was the exclusive domain of the women, and berry patches could be harvested by anyone. Berries taken were red willow, goose, kinnikinnick, thimbleberries, elderberries, huckleberries, serviceberries, foamberrries, strawberries, blackberries, dewberries, currants, thornberries, chokecherries, and Oregon grapes. Hazelnuts and pinenuts were the only nuts harvested. The hazelnut was more important than the pinenut, but neither was very significant to the Kalispel diet. Seeds and mushrooms of any type were not eaten. Cherry and hackberry leaves were used for tea. Gathered foods were stone boiled, steamed, dried, and eaten raw, or any combination thereof depending on the particular item gathered (Ray 1942:132; Smith 1950:400–477).

Material cultural items associated with gathering were side baskets, checker-woven cedar baskets, cedar bark bags, hip baskets, unwoven bark baskets, mortar and pestle, wooden shovel and digging sticks. Baskets were both of the coiled and twined type. Watertight coiled baskets and rawhide containers were used for stone boiling and carrying water (Ray 1942:136, 159–161; Smith 1950:400–477).

Kalispel fishing, hunting, and gathering were integrated subsistence activities that were engaged in depending on seasonality, and their most stable subsistence item was camas. Their economy was integrated and adaptable so that it could be shifted from resource to resource depending on local environmental fluctuations; if one resource failed others could be increased to compensate. The Kalispel integrated/mixed economy was a cultural adaptation to the local environment and its diversified resource base. The diversified subsistence economy significantly distinguishes them from the salmon-
dependent Plateau groups of the Columbia River. Hunting was intensified after the appearance of the horse and lessened Kalispel dependency on riverine resources.

**Structures**

Conical mat lodges were used in the summer and winter (Figure 6), and a lean-to was only used in the summer. The Plateau-type house was used as the winter lodge. Its floor was excavated approximately 1 foot and was covered with bark or mats. These excavated structures were elongated lodges 20 to 60 feet long, housing three to 12 families, or approximately 100 people in the longer lodges. They averaged 50 people per lodge. The round tipi, a second housing type, was 15 to 20 feet in diameter and housed three families, or approximately 20 people. Encampments varied in size from a few families to 900 people (Smith 1950). After the arrival of the horse and the subsequent pursuit of bison, the skin tipi replaced the mat tent. It was still used by some Kalispel when they were home (Ray 1939:174–176; Smith 1950:33–34; Teit 1930:331–333).

Sweat lodges consisted of a bent willow frame covered with mats and earth. Floors were excavated approximately 1 foot. The lodges were always located near fresh water. Three other structures were menstrual huts; dance houses, which were simply large living houses that were set up at the opening of a ceremony; and elevated storage platforms (Ray 1942:180–182, 193, 249).

Figure 6 is an 1861 photograph of a Kalispel mat lodge and canoe in the foreground across Hoodoo Creek at flood stage from a British Boundary Commission Survey camp at “Seneacquoteen Depot” on the Pend Oreille River. The British surveyors had a photographer while the Americans lacked one but did have artist James Aldan present. In 1861, by the time the British surveyors arrived at Seneacquoteen...
Depot (established by the Americans in 1860); the American survey parties had abandoned the Depot and moved one.

**Transport**

Prior to the horse, transportation was overland by pedestrian means with packs or by water. Water transportation consisted of dugout and bark canoes with a characteristic sturgeon nose (Figure 7). Rafts, paddles, poling rods, and stone anchors were used in conjunction with canoes. Occasionally tule mats were attached to bark canoes to keep them afloat (Ray 1939:140–144, 1942:154–158). According to Teit (1930) the Kalispel were well known for their canoes, and their canoes differed from all others in that the ends were squared off and sewn together. With the arrival of the horse and intensification of hunting, these earlier forms of transport were overshadowed by the horse (Teit 1930:349–350, 352).

In 2000, Kalispel tribal members J. R. Bluff and Francis Cullooyah assisted in the construction of a sturgeon-nosed canoe using traditional materials (Fritz 2010:193). J. R. Bluff spoke of how important the canoe is to tribal revival:

> Every time I think of Pend Oreille Lake, I think of Indian Meadows and the life of the camp. When I’m out there (on the water in a canoe), I’m always visualizing the families that came down and camped—this was a shared area. Even though times were tough and we had to gather meat to make it through the winter, the smiles on the faces of the kids running around, the women working hard, the men out fishing and hunting ... we were just a common people following nature, and basically sharing everything with everyone. We need to keep rekindling our connections with the Kalispel places off the reservation. Being on the water in a Kalispel canoe was a very special feeling. We were here and are still here today. Everything is still alive. It gives

![Figure 7. Kalispel Chief John Big Smoke and son Baptiste fishing in a traditional Kalispel sturgeon-nosed canoe. Photograph (colorized) ca. 1908 by Frank Palmer, taken at the mouth of Cee Cee Ah Creek on the Kalispel Reservation. Spokane Post Card Company, mailed 1912 (Courtesy of the Hudson Collection).](image-url)
Ethnography

you that extra energy to get back to your regular daily living and say “I’m going to do something better.” There are a lot of people who have paid the price for me to be here, and I have to be sure to keep their memories alive and our heritage and culture strong in the best way I can. (Fritz 2010:194)

Social Organization

Kinship was similar to that found among other groups in the Plateau: “bilateral with a stress on generation, a wide extension of sibling terms to include cousins, and at least potentially a still wider recognition of collateral relatives on both paternal and maternal sides” (Anastasio 1972:173). An understanding of Kalispel kinship and social organization is found in the nature of their riverine settlement pattern.

Neighboring groups were linked by intermarriage, co-utilization of sites, co-residence in villages, trading, and many other activities. [This resulted in] the absence of a structural relation between the kinship and political systems.... The group as a political entity had no necessary relation to the group as a kinship entity. (Anastasio 1972:150, 173–174)

The tribe as a political entity did not exist in a great part of the Columbia River basin. The political unit was the village (Ray 1936:111–112). The larger unit was ethnic or social in nature. Thus the names Nespelem and Kittitas, for example, which are now applied to ethnic groups, are derived from the political names of single villages; in native use they had no such wide application. Serious error results only when political unity is attributed to such groups (Ray 1936:115, 117).

The term band in the Plateau can be used in two different ways. One use refers to a grouping of villages, and the other is a small migratory group. The village grouping is “merely the embryonic tribe developing under indirect influence from the Plains” and has been observed among the Kalispel (Ray 1939:14). Anastasio concurred with Ray’s conclusion that the village and band were the basic social units in the Plateau, and that tribal development was a post-white and post-Plains contact phenomenon.

Smith recognized two divisions of the Kalispel, the Upper and Lower, and that they had “two foci.” He separated them for the following three reasons: 1) each had a division name, 2) there was a geographical distinction, and 3) each had a separate political structure. He also stated that the Kalispel were not considered a tribe in terms of sociopolitical structure (personal communication, A. H. Smith 1985).

Each division had its own male head chief and subchiefs. Even though they were separated politically, one division did not claim any specific territory as its own. Both groups could jointly occupy and use the same area. They felt that their entire aboriginal territory belonged to all of them and that any Kalispel could use these lands. Chiefs and subchiefs were not regarded as leaders of a specific group of people, because the people could migrate throughout the entire region and when they changed areas they would fall under the leadership of the chief in that area (Smith 1985:8–10). “There is no direct evidence to substantiate any claim for a single chieftainship over the whole tribe” (Chalfant 1974a:214–215). Chieftainship was not hereditary; chiefs led by persuasion rather than authority. Chiefs were recognized by title, insignia, and the presence of a spokesman. Women were included in the assembly, and there was a strong emphasis on equality among all members (Ray 1939:26, 1942:229–230; Teit 1930:374).

The terms Upper Kalispel and Lower Kalispel referred to geographical foci rather than political or tribal units. The string nature of Kalispel village distributions along the Pend Oreille River as well as the flow of people between these foci militate against the use of the term tribe when referring to the Kalispel and corresponds to Ray’s characterization of the village as the aboriginal political unit. Any reference to the Kalispel “tribe” and “chiefs” must pertain to the time after the arrival of the horse, which occasioned
their shift to Plains bison hunting and its concomitant influences (e.g., warfare and mutual protection) and subsequent continuous contact with Euro-Americans.

**The Kalispel Villages/Campsites of Sandpoint**

Below is a closer look at existing ethnographic and ethnohistorical records as may pertain to Sandpoint and vicinity. The importance of Sandpoint as the location of summer seasonal use is established; the possibility of it once being a winter (headquarters) village is explored. Some evidence suggests Sandpoint might have been used, at least temporarily, almost throughout the year. The location of Sandpoint along Prehistoric- and Contact-period trail systems is confirmed. Several ethnographers studied the Kalispel and documented the presence of camps and villages in the Sandpoint vicinity.

**James Alexander Teit**

James Alexander Teit (1864–1922) was one of the first ethnographers to work in the Plateau culture area. He married a Thompson Indian and became conversant with Thompson language and culture and the Shuswap and Lillooet languages. His ethnographic work was stimulated by Franz Boas, who he met in 1895, and they collaborated, periodically, for the rest of Teit’s life. Teit’s ethnographic legacy on the Plateau is significant, and his first publication was in 1896.

In 1930, eight years after his death, Teit was listed as the posthumous author of a document titled *The Salishan Tribes of the Western Plateaus*, which was edited by Franz Boas and published in the *45th Annual Report of the Bureau of American Ethnology for 1927–1928*. Teit included a section titled “The Flathead Group” in which he presented the ethnographic data he had collected on the Kalispel (Teit 1930:295–396). Unfortunately, Teit did not identify any of his informants in his 1930 publication nor did he specify the time when he collected his field data. Obviously, he conducted his fieldwork among the Kalispel prior to his death in 1922. His was the first major anthropological publication that discussed the location of Kalispel villages, and he identified one village located near Sandpoint, Idaho.

The following quotes are taken from Teit’s 1930 description of Kalispel campsites. They are included to shed light on his use of the terms *headquarters* and *winter camps*. He identified Tsu’kol as the headquarters for the Usk and Cusick Kalispel and then stated that there were other winter camps located within 9 miles of this winter camp he called the “headquarters.” Using these terms in this manner suggests that among the various winter camps there are some he distinguished as being headquarters winter camps.

> The Lower Kalispel country was also nearly all in the State of Washington, where they occupied the Lower Pend Oreille River from about Newport down. This division is said to have had their headquarters on the east side of the Pend Oreille River, near Usk and Cusick, at a little creek called Tsu’kol (said to be from the name of the little water ouzel or dipper, because these birds were plentiful at this place). There were other winter camps on the river, most of them on the east side, and all within a radius of about 9 miles of this place [headquarters]. (Teit 1930:313)

Teit further explained that winter camps may have shifted their location, but that headquarters winter camps were more permanent in location and time.

> The Upper Kalispel occupied all the tribal territory now within Idaho and Montana. Besides the band that formerly wintered at the outlet of Pend Oreille Lake, a band had headquarters at Shwe’ur’ (“portage”), on the east bank of the river, at Albany Falls, and another at Qappape’ (“sand”), near Sand Point; [emphasis added] and there are said to have been smaller bands at other places. In later times a band called ‘Camas Prairie’ Kalispel, numbering about fifteen lodges, had their headquarters near the confines of the Pend d’Oreilles. A few descendants of
this band are now on the Flathead Reserve. In later years the Pend Oreille Lake band often shifted their winter camps to various places within their territory, and occasionally many of them wintered with the Lower Kalispel. It is uncertain whether any band had regular headquarters at Newport, but people occasionally wintered there. (Teit 1930:313)

Teit used the term **headquarters** to identify a winter camp near Sandpoint. In this paragraph he also uses the term **regular headquarters** to suggest a more permanent temporal dimension to the term headquarters. Smith (1985:123–124) made use of the following comments about Teit’s 1930 discussion of a village at Sandpoint (see Smith 1936–1938 for a complete discussion of his Sandpoint villages):

(2) Teit (1930:313): One Upper Kalispel band had its winter headquarters “at Qapqape (“sand”), near Sand Point”

**Smith comments**: Teit does not specify the actual site or sites. Consequently his statement may apply alternatively to Site 111 or possibly for that matter to some third site not mentioned by my informants. (Smith 1985:123)

(4) Ray (1936: 129) quoted Teit’s (1930:313) information reported in the item (2) above and offered no additional data.

**Smith comments**: Since neither Ray nor I were told of a winter village in the Sandpoint area, it seems possible that Teit believed his informant to be speaking of a winter village when he was actually referring to camps at other seasons. (Smith 1985:124)

Note, however, that Smith and Ray used the same informant, Bob Sherwood, a Chewelah-Kalispel, making it likely that their data regarding a winter village at Sandpoint would agree. A careful contextual reading of Teit does not suggest that he was confused as Smith indicates. Unfortunately, we do not know who or how many informants Teit used, but it is entirely possible that his informant(s) possessed a different knowledge base than did Smith’s informant, Bob Sherwood.

Lyons (2010:17–19) discusses the problems inherent with a particular informant’s knowledge base with regard to knowing all of the cultural practices, resource management locations, and associated technology:

To the uninitiated, the oral traditions of the indigenous peoples often reside somewhere between polemic apocrypha and unassailable holy writ. Which end of the value laden spectrum one stands is ultimately the result of the biases the authors and readers of such data unconsciously negotiate through the decades. I, for one, having been both a vendor of other’s ethnographic research and author of my own can attest that the burdens and potential for miscommunication to our peers and those that follow us in the years that come are weighty. So significant is this yoke that we who are engaged in ethnography slavishly strive to prevent the introduction of error, often by being a little too clever in our verification methods. I am reminded of a series of interviews where a particular aspect of culture the Kalispel must have had a way of dealing with but was unable to solicit a rational answer other than, “I don’t know.” Many times and under various guises I would return to that as yet unanswered question, thinking myself quite clever as to the new way of getting at a truth and only to be frustrated yet again at the limits of new understanding. On my last occasion attempting to get to that elusive bit of information, perhaps too oblivious in my cleverness, my Kalispel mentor and friend admonished me, “I have told you many times I don’t know (rolling her eyes and shaking her head in exasperation) ... I could make something up, but it won’t be real.” The old ethnographic tradition of calling our friends “informants” to infer some objective distance between what we have learned and from who we have learned it is cleanly set aside by that experience. There’s always more than one person telling the ethnographic story, far too often only one of them gets a by line. (Lyons 2010:17)
Verne F. Ray

In Verne F. Ray's 1936 publication *Native Villages and Groupings of the Columbia Basin*, he documents 14 “Kalispel villages” (Ray 1936:128–129). These villages were identified by his principal and apparently only Kalispel informant, Bob Sherwood, who spoke Kalispel and English fluently and lived near Usk, Washington (Ray 1936:99). Based on his footnotes (Ray 1936:99–100), it appears that Ray conducted fieldwork for his 1936 article during the years 1930 to 1934. Regarding his field data, Ray makes some important, astute, and cautionary remarks that need to be considered when using his ethnographic material. He asserts that Indian villages, which were off the routes used by migrating whites, were relatively unmolested well into the lifetimes of many living natives (Ray 1936:100). This statement, however, is not applicable to any villages located at or near Sandpoint, Idaho. The Sandpoint area would have experienced considerable impact from the white migration because Sandpoint was located on a major east-west trail/trade route connecting the Plateau with the Plains culture areas and a north-south trail connecting the Lake Pend Oreille area with Bonners Ferry, Idaho and on into British Columbia (see Trails section).

Ray (1936:101) states that the “picture drawn” in his 1936 article referred specifically to conditions as they were about 1850. When information was provided for a later period, Ray felt safe assuming that little movement had occurred during the intervening period and reinforced this position when he said:

> It is of special importance that this date be emphasized with regard to the data here presented for the territorial distribution may have been very different a hundred years earlier [1750] due to native movements uninfluenced by direct contact with whites. (Ray 1936:101)

In contrast to Lyons’ (2010:17–19) caution about informant’s knowledge base, Ray (1936:101–103) comments that the most important reason for this temporally static limitation on his paper “is the notorious unreliability of native verbal traditions when they refer to history a few generations or more removed.” Ray expresses that such data, after considerable evaluation, may be important “for a theoretical discussion or hypothetical reconstruction but is of little worth for a purely factual paper.” Ray further cautions about the use of historical documents because they can also be unreliable and vague. Ray states that one of the greatest difficulties comes from the variations in recording native group names and place-names and that this distortion arose from the lack of adequate phonetic transcription methods.

Of the 14 Kalispel villages identified by Kalispel informant Bob Sherwood, only one was located near Sandpoint, Idaho: “11. *qapqa*’e (“sand”). A village near the present town of Sand Point. (T, p. 313)” (Ray 1936:129). Ray (1936:103, Figure 1) shows Village 11 located on the north side of what he labeled the “Clark Fork River” at the approximate location of Sandpoint. The area shown on Ray’s map is so large that an exact location of Village 11 is not possible to pinpoint. The parenthetical reference by Ray to T, p. 313 refers to page 313 of James A. Teit’s 1930 publication.

Ray’s recording of Bob Sherwood’s knowledge about Villages 10 and 12 consists of a variety of comments. For example, Village 10 (an Indian portage of the Pend Oreille River known as Seneaquotenceen Crossing) is described as being on both sides of the “Clark Fork River” [sic] at Laclede, Idaho and that it was a fishing and trapping center occupied by about 50 people throughout the year. Village 12 was located at the mouth of the Clark Fork River at Pend Oreille Lake and was a permanent village of 300 to 400 people; it was noted for its fishing grounds, and the nearby islands were used for burials. Village 11 located at Sandpoint has no additional descriptive information provided by Ray.
Allan H. Smith collected ethnographic field notes from a number of highly knowledgeable Kalispel informants from 1936 through 1938. As noted above, Bob Sherwood was a Chewelah-Kalispel who was familiar with old Kalispel culture and acted as Smith’s highly competent interpreter. Smith’s extensive unpublished field notes were the most comprehensive ethnographic description of the Kalispel at that time. Even though they were comprehensive in terms of Kalispel cultural description, Smith’s observations did not necessarily negate the observations of earlier ethnographers such as Teit. Smith incorporated the results of his work among the Kalispel into his Ph.D. dissertation (Smith 1941).


Portions of Smith’s 1936–1938 field notes appear in a number of his publications. For example, Smith’s work for the Indian Claims Commission (ICC) in 1950 incorporate a large part of his field notes. On pages 30 to 56 of his ICC document, Smith lists a number of Kalispel camping sites but makes no attempt to plot them on a map (Smith 1950:30–56).

Smith (1950:46) reports that the Upper Kalispel used to camp at Lake Pend Oreille during the winter, and he only mentions three winter villages. Sandpoint is located on Lake Pend Oreille and could easily have been one of the Upper Kalispel winter camps, as Teit (1930) pointed out.

Under the heading “Cusick Band” (Lower Kalispel), Smith (1950:49) comments on winter and summer groups. In the spring, the large winter groups broke into small units in search of food and during the summer they could be found all along the Pend Oreille River and literally everywhere on their food quest. These summer camps were relatively small when compared to the winter camps with the exception of those sites at important fishing locations and camas grounds that were temporarily occupied while they were exploiting a specific resource. At the end of his two-paragraph discussion under the heading “Cusick Band,” Smith (1950:49) starts a third paragraph as follows: “The following specific summer sites were mentioned.”

Smith (1950:50) begins listing summer villages with summer site number 1 located on the east bank of the Pend Oreille River on what was called the reservation. His listing ends on page 52 with summer site number 10, located at the town of Usk, Washington. Curiously, on the left-hand margin of pages 50 through 52, these 10 summer sites (numbers 1–10 are typewritten) carry handwritten numbers beginning with 2 and ending with 11 in the middle of page 52. The remainder of page 52 is blank. All 10 of these sites were located in the vicinity of Usk, Washington, and would have been Lower Kalispel summer camps.

On the top half of page 53, Smith (1950:53) discusses two additional Lower Kalispel sites located below Newport, Washington. Neither of these camps has typewritten or handwritten numbers. In the middle of page 53, Smith says that almost the entire population (of Lower Kalispel) went to Priest Lake for whitefish and camped on the east side of that lake. This site located on the east side of Priest Lake also

---

1 Kendra L. Philmon of the Kalispel Tribe (personal communication, 2013) cautions that this presupposes that the ethno-historic record as recovered by Smith and his Kalispel mentors was both comprehensive and conclusive for all antecedent generations prior to 1850. Post epidemic population formation reflects not only “cherry picked” catchments opportunistically reoccupied but also influenced by the exposure to additional economic attractors to the aboriginal system.
carries no typewritten or handwritten numbers. Additional information about the whitefish fishing camp on the east side of Priest Lake was provided by Lyons (2009) and is reviewed later.

On the lower third of page 53 and at the top of page 54, Smith (1950:53–54) discusses two sites located at Sandpoint, Idaho. Neither of these sites has a typewritten number, but they do have the handwritten numbers 12 and 13 in the left-hand margin. Regarding these two Sandpoint sites he states:

Sandpoint. There were two sites in the immediate neighborhood of the present town of Sandpoint.

One [handwritten 12] was in a patch of black-pine and cottonwoods close to the tip of the point (“Sandpoint”) and very near the end of the railroad trestle-bridge [this location is what we refer to as Indian Island in this volume]. When they camped on this point, drinking water was secured from the lake. Sometimes, however, they camped a short distance farther away from the lake near/Sandpoint/Creek; this site [handwritten 13] is now on the edge of the town [and may or may not have been located within or adjacent to the Sand Creek Byway corridor].

These localities were not much used before the appearance of the Whites. Nevertheless, they were occupied before the days of the traders when they were trapping beaver on both sides of this part of the Clark Fork: up toward Pack River, and south in the direction of Cocolalla Lake. They were also occupied, although somewhat less frequently, when they were fishing around Pend Oreille Lake and along the Cark Fork. (Smith 1950:53–54)

As shown by Smith (1985:127, Figure 22; reproduced here as Figure 8), Village Site 111(13) is the one located on the edge of the town of Sandpoint and 110 (12) is the one located on the tip of the point very near the end of the railroad trestle-bridge [Indian Island]. On the last page of Smith’s (1950:54) discussion of villages, there is a handwritten number 14 for the mouth of the Pack River. He says a few people camped there waiting for the return of the buffalo hunters. After his Pack River discussion, Smith (1950:54) makes a new heading titled “Upper Kalispel” and says “Some people always spent the summer at this site where the Clark Fork empties into Pend Oreille Lake.” This site carries a typed number 1 and handwritten number 15.

In light of this contextual information, we reasonably conclude that locations 110 and 111 at Sandpoint were, at least, summer camps of the Lower Kalispel. Smith’s interpreter was Bob Sherwood and all of his informants were Lower Kalispel. Since there were no Upper Kalispel living in the Lake Pend Oreille area or living in the Cusick area on or near the reservation, this suggests that Bob Sherwood’s ethnographic data were more representative of Lower Kalispel knowledge. The Upper Kalispel had departed the area long before Smith’s 1936–1938 fieldwork.

1983

In July 1983, Smith copyrighted a six-page unpublished paper titled Traditional Kalispel Fishing Localities. These localities were taken from field notes he made from 1936 to 1938. He used a number of knowledgeable elderly Kalispel informants, but for the most part, he relied on Bob Sherwood. Smith’s unpublished paper has three subsections: 1) Streams and Sloughs of the Pend Oreille System; 2) Lakes; and 3) The Clark Fork. There is no mention of Sandpoint or Sand Creek in this document.

1985

In this 1985 document, Smith asserts that the two Sandpoint sites discussed in his 1950 document were late spring and summer camp sites of the Upper Kalispel. The quoted discussion below sounds very similar to his 1950 discussion of these sites, but there is no direct statement about them being Upper Kalispel sites only. If the handwritten numbers are assumed to be Smith’s, it would seem that sites 12 and 13 were a continuation of his numbers 2 through 11 and were part of Lower Kalispel late spring and summer sites.

Smith (1950:46) states that the Upper Kalispel used to camp at Lake Pend Oreille during the winter and only mentioned three winter villages. Sandpoint is located on Lake Pend Oreille and easily could have been a winter camp for the Upper Kalispel as Teit (1930) points out. To reduce confusion, we reviewed Smith’s original field notes, as well as the original 1950 ICC document.

Smith’s 1985 discussion of sites 110 and 111 is directly quoted below:

Site 110. Village, Camp. Sec. 26, T57N, R2W.

Ethnographic data (Figure 8)

(1) Smith (1938): The Upper Kalispel had two late spring and summer camp sites where the present town of Sandpoint now stands. This area was called q̓ape, “sand,” referring to the great amount of sand on lake shore here (Smith 1938:Figure 22). This site, one of the two, was in a patch of black-pine and cottonwoods close to the tip of the sand point and very near the end of the railroad trestle bridge [Indian Island]. When the Kalispel camped on this point, they secured
their drinking water from the lake. In the late spring this served as the meeting place for the entire Upper Kalispel division, which had passed the winter in several separate groups. In summer the site was occupied primarily while they were trapping beaver on both sides of this section of the Pend Oreille River – up toward Pack River and south in the direction of Cocollala Lake – and less importantly while fishing around Pend Oreille Lake and along Pend Oreille River. This site, like Site [blank], was not as much used before the appearance of the whites as it later was.

(2) Teit (1930:313): One Upper Kalispel band had its winter headquarters “at Qapqape (“sand”), near Sand Point.”

Smith comments: Teit does not specify the actual site or sites. Consequently his statement may apply alternatively to Site 111 or possibly for that matter to some third site not mentioned by my informants.

(3) Teit (1930:364): “Once a war party of Blackfoot came to Sand Point … and attacked a camp of people there. The Kalispel drove them off…(Smith 1985:123) “…another time they came near to this place, but being discovered, retreated without fighting. This happened about 1820.”

Smith comments: The actual camp site is not located in either instance. Perhaps Site 111 instead of or in addition to this site is involved. But this reference, like the preceding one, gives independent testimony to the Kalispel use of this Sandpoint area.

(4) Ray (1936:129) quotes Teit’s (1930:313) information reported in the item (2) above and offers no additional data.

Smith comments: Since neither Ray nor I were told of a winter village in Sandpoint area, it seems possible that Teit believed his informant to be speaking of a winter village when he was actually referring to camps at other seasons. (Smith 1985:124)

Historical data

1858 (Summer). Owen (Dunbar and Phillips 1927, v. 2:184): “I reached Pen d’Oreille Bay safely … at which point I met a friendly band of lower Pen d’Oreilles.”

Smith comments: Owen crossed from Spokane River to Pend Oreille River and then ascended this river to Pend Oreille Lake. The “bay” is evidently the arm of the lake in the Sandpoint area from which Pend Oreille River takes its source. Here he encountered the Kalispel and hired four bark canoes, each with two men, to ferry him and his packs over the lake to the Clark Fork area, while his forces were driven there overland. Though Owen does not state that he found the Kalispel in camp, this is presumed to have been the case. And the camp is placed at Sandpoint because this is the only known camp locality in the entire area to (Smith 1985:125) which Owen’s description could possibly apply. Granting that the camp was in the Sandpoint area, it still remains that Site 111, instead of this site, may have been the one involved.

Archaeological data

2 Early references to “Pen d’Oreille Bay” relate to the area in the vicinity of Uusk/Cusick where the Pend Oreille River expands into a large “bay” when the river is at flood stage. Chalfant (1952:13) noted “numerous small camps of Indians stretching from the lake to the extensive prairie at the modern towns of Cusick and Uusk, in Washington.” It is this group that De Smet identified, in later writings, as the Kalispel of the Bay, distinguishing them from the Upper Kalispel or Pend d’Oreille. Elsewhere Chalfant (1952:22) stated “but Hoecken, like De Smet, describes the Lower Kalispel band as those ‘of the Bay.’” Finally Chalfant (1952:61) said, “The Lower Kalispel were recognized by De Smet and other early travelers as the Kalispel of the Bay and resided principally in Washington along the Pend d’Oreille River.”
Ethnography

(1) Malouf (1956:Pl. I): His map places an “occupation site” on Pend Oreille Lake at what is evidently the site of Sandpoint.

Smith comments: No mention is made of this site in the accompanying text. However, since the text distinguishes between archaeological sites, termed “occupation sites,” and sites located from ethnographic and historical sources, termed “campsites” (Malouf 1956:50), the author’s evidence for this site is presumably archaeological.

The map is not sufficiently detailed to be certain of the precise location of the site within the Sandpoint area. Perhaps it refers not to this Site 110 but to Site 111 or even to some other in the neighborhood otherwise unreported (Smith 1985:126).

Site 111. Village, Camp. Sec. 23, T57N, R2W.

Ethnographic data

(1) Smith (1938): Sometimes in the late spring and summer when the Upper Kalispel camped where Sandpoint is now located, they placed their camp a short distance farther from Pend Oreille Lake than the black-pine and cottonwood site (Site 110) [Indian Island]. In this case they set up their dwellings near Sandpoint Creek. The creek is now (1937) on the edge of the town of Sandpoint.

(2) See Site 110, Ethnographic data, items (2), (3), and (4).

Historical data

(1) See Site 110, Historical data, item (1).

Archaeological data

(1) See Site 110, Archaeological data, item (1) (Smith 1985:128).

Stuart A. Chalfant

In reviewing Teit’s (1930) work, Chalfant (1974b:39) says there seemed little doubt that from Indian Creek on the Pend d’Oreille River “to a point not far below Cusick, Washington was the nuclear area of habitation for the Lower Kalispel.” Referring to Teit’s work (1930:313), Chalfant states there were five or more Upper Kalispel bands and they occupied the tribal territory located in Idaho and Montana. “Three main [Upper Kalispel] bands are discerned by Teit: one at the outlet of Pend d’Oreille Lake, another near Albeni Falls, Idaho and another at Sand Point” (Chalfant 1974b:39–40). It is obvious from Chalfant’s interpretation of Teit’s work that Sandpoint was the location of one of the main bands of the Upper Kalispel.

Chalfant (1974a:216–217), using Ray’s 1936 village locations and adding data collected during his brief fieldwork in 1952, identifies what he called four village locations based on “nuclear areas of habitation.” Two of these were in Montana, and the dividing line between the other two was about at Indian Creek, which was where Teit’s line was between the Upper and Lower Kalispel. Chalfant’s second nuclear area includes Ray’s Village 11, which was located near the present town of Sandpoint.

Chalfant (1974b:44) goes on to say that his present-day informants confirmed the native place-names and locations of those sites listed by Ray in his 1936 article. It is important to note that Chalfant’s fieldwork was done in 1952 and his informants must have also been Lower Kalispel. Two of his informants stated that there were two divisions of the Kalispel and that each group made use of winter sites at Thompson Falls, Montana; the mouth of Prospect Creek on the opposite side of Thompson Falls;
and opposite Plains, Montana. The area near Plains was considered the boundary between the Kalispel and Flathead. Chalfant concludes by saying that that even though the geographic division between the Upper and Lower Kalispel is unknown, “the sites located around Pend d’Oreille Lake and in Montana are said to have been used by both” (Chalfant 1974b:44).

**Carling I. Malouf**

A review of Malouf’s 1956 article and his Plate I confirms Smith’s statement about the possibility of an “occupation site” (i.e., archaeological site) being located in the area of Sandpoint. Although Malouf does not discuss the Sandpoint site in his 1956 article, he does make some important statements about site types and where they might be found on this particular type of mountain-valley landscape:

*Occupation sites.* This is by far the most numerous type of archaeological site in the Montana Western Region. They are mostly located in the river valleys or around major lakes. The aborigines preferred to locate their habitations as the confluence of streams, or where they emerge from side canyons, or by springs.

*Campsites.* For classification purposes this term is applied to sites located originally through ethnological or historical sources. Specimens may or may not be found in them. (Malouf 1956:50)

Malouf also comments on the geomorphology of the river valleys of the Western Montana Region and its influence on prehistoric settlement patterns:

In several places along the upper tributaries of the Missouri and Columbia rivers, which have their sources near the divide, these valleys widen out into semi-arid park areas. In prehistoric times these parklands were the centers of human activity because they were camas bulb and bitterroot digging areas for the natives. Hundreds of plants of lesser importance were also available to them. Usually, they preferred to locate their campsites at the edges of these parks where springs and rivers emerged from the hills and mountains, and where timber provided an abundant fuel supply. (Malouf 1956:45–46)

**Archaeological Sites 10BR538 and 10BR1026 on Indian Island**

Archaeological sites 10BR538 and 10BR1026 are separated by US 95 (Figure 9). Site 10BR538 was recorded in 1985 by Christian Miss of Northwest Archaeological Associates (NWAA), and Site 10BR1026 was recorded in 2003 by S. Kincaid, Y. Carrilho, G. Bishop, and J. Edwards also of NWAA. We believe that these two sites represent a single larger site and that their separate recording results from two different clients (USACE and ITD) sponsoring surveys in different years and on different parcels.

Site 10BR538 is described as a historic/prehistoric occupation site. It is located “on the west side of the north end of US 95 long bridge across Lake Pend Oreille” on a “sand spit that extended south from the mouth of Sand Creek before bridge. East edge of the site has been impacted by highway construction” (Figure 10). Cultural materials observed consisted of “fire modified rock, dark olive green, aqua and purple glass fragments,” and its cultural affiliation was ascribed to Euro-Americans (Miss 1985:1).

Miss (1985:2) further notes that Smith’s 1985 draft manuscript on ethnographic site locations described site number 115 on this sand spit. Interestingly, Kincaid et al. (2003) make no mention of Smith’s (1985) draft manuscript on their site form for 10BR1026. Miss’s 10BR538 site map located the site on the east side of US 95 very close to Sandpoint (see Figure 9).
By comparing Figures 8 and 9, it is obvious that site number 115 referred to by Miss is located several miles east of Sandpoint at Sunnyside. Miss obviously meant to refer to site number 110 as discussed above. Smith (1985:124) describes 110 as being “in a patch of black-pine and cottonwoods close to the tip of the sand point and very near the end of the railroad trestle bridge” (Figure 10 shows the prominent sand spit at the mouth of Sand Creek and the NPRR trestle). Miss’s and Smith’s locations appear to be two different places. It is possible that there are two sites, but it is more likely that there is a large continuous site that covers the entire spit or point area and most likely includes the Sandpoint town area.
Figure 10. Location of archaeological sites 10BR538 and 10BR1026. 1934 U.S. Forest Service aerial photograph of Sandpoint showing sandbars at the mouth of Sand Creek (US Army Corps of Engineers, Seattle District).
Kalispel Tribe of Indians

In September 2000, the Kalispel Tribe of Indians (KTI) published a document titled *A Kalispel Cultural Geography* (Deaver 2000). Deaver catalogued 188 named Kalispel locations that had been derived from the literature and plotted them on USGS 7.5- (1:24,000) and 15-(1:250,000) minute maps (Figure 11). Of the 188 named locations, 172 (91 percent) of them were derived from A. H. Smith’s various publications.

KTI’s *A Kalispel Cultural Geography* (hereafter KCG) makes a conceptual distinction between an archaeological site and cultural locality. Sites were defined as usually having fixed boundaries while locations had flexible boundaries that may have responded to changes in the environment or in human behavior. The KCG uses the concept of cultural locality because it allowed for human flexibility and adaptation. Colored dots on the KCG cultural resources base map (see Figure 11) represent cultural localities that may or may not include archaeological sites (Deaver 2000:4–5).

Table 1 of the KCG shows Map Numbers 150 and 151 located at Sandpoint and marked with a single large red dot (symbolizing summer village location) covering the entire town of Sandpoint (Deaver 2000:21, 28). Map Numbers 150 and 151 are annotated with the following statement, which refers to a videotape but does not otherwise mention any of the previous authors discussed above:

> At Sandpoint, the Upper Kalispel had late spring and summer camps. Here, in addition to fishing, they trapped beaver in the historic period. In the 1940s, the Kalispel of Montana and Washington, along with the Kutenai, were still camping in Sandpoint and enjoying traditional stick games (Videotape on file at the Kalispel Natural Resources Department). (Deaver 2000:30)

Figure 11. KTI *A Kalispel Cultural Geography* site map with a red dot denoting two summer village site locations in the vicinity of Sandpoint (Deaver 2000).
Table 1 shows a portion of KCG Table 1 (Deaver 2000:21, Table 1), along with our analysis of that information using Teit’s (1930) data. Summer Village 12 was used for both of the KCG Map Numbers 150 and 151 and Smith’s locality 110/111. By joining the numbers 110/111 and Village 12, the KCG map suggests one site (Figure 11) when it is really two sites, as our interpretation of Teit’s data shows. (Appendix A presents further discussion of this discrepancy.)

Table 1. Comparison of Analyses of Locations of Summer Villages 12 and 13

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Analysis Following KCG (Deaver 2000: Table 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td>Sandpoint</td>
<td>Summer Village 12</td>
<td>110/111</td>
<td>Upper Kalispel late spring tribal camping place; summer beaver trapping and fishing</td>
<td>Malouf 1956:50; Ray 1936:129; Smith 1950:554, 1985a:123–127</td>
<td>Sandpoint near Sandpoint Creek (Deaver 2000:21)</td>
</tr>
<tr>
<td>151</td>
<td>Sandpoint</td>
<td>Summer Village 12</td>
<td>110/111</td>
<td>Upper Kalispel late spring and summer camp</td>
<td>Smith 1985a:128</td>
<td></td>
</tr>
</tbody>
</table>

| Alternative Analysis Following Teit (1930) |
| 150     | Sandpoint      | Summer Village 13                      | 111                        | Lower Kalispel late spring and summer camp. Upper Kalispel winter “headquarters” | Malouf 1956:50; Miss 1985:2; Ray 1936:129; Smith 1950:554, 1985:127–128; Teit 1930:313 | Edge of town, near Sandpoint Creek |
| 151     | Sandpoint      | Summer Village 12                      | 110                        | Lower Kalispel late spring tribal camping place; summer beaver trapping and fishing. Upper Kalispel winter “headquarters” | Smith 1985:123–127; Teit 1930:313 | Tip of the point very near the trestle bridge. |

Classification of Map Nos. 150 and 151 (Smith’s locality 110/111) solely as Upper Kalispel summer villages lacks consideration of Teit’s (1930) ethnographic information. Teit’s manuscript is not cited in the KCG Table 1 or elsewhere in the KCG document. Smith (1950) does not classify localities 110/111 as Upper Kalispel summer villages. KCG Table 1 relies only on Smith (1985) to designate localities 110/111 as a summer village.

Based on the ethnographic descriptions of the camps provided by Teit (1930), Ray (1936), Smith (1950, 1983, 1985), and Chalfant (1974a), we suggest the KCG descriptions of cultural use of the Sandpoint area as presented in Table 1 should be reconsidered. Based on this analysis, the two Sandpoint camps could be classified as temporary Lower Kalispel summer camps as well as a more permanent headquarters winter village for the Upper Kalispel as described by Teit (1930:313).

Kevin J. Lyons

Kevin J. Lyons of the KTI Natural Resources Department provides an ethnographic context statement for the Priest Lake area to the Idaho Panhandle National Forest (Lyons 2009). The primary goal of his ethnographic overview is to underscore the importance of the cultural landscape (e.g., the Priest Lake basin) for the Kalispel people so that more meaningful and insightful research can be conducted therein (Lyons 2009:1).

Lyons (2009:1) refers to the Priest Lake basin as a large and complex resource patch that was an essential asset for the family provisioning needs for two principal Lower Kalispel winter villages: a community located at CCA Creek at the confluence with the Pend Oreille River and a community located east and adjacent to the Priest River’s confluence with the Pend Oreille River. These ethnographic
Ethnography

Communities correspond to archaeological sites 45PO153 and 10BR94/95 respectively. Site 10BR94/95 lies within the Upper Pend Oreille River Archaeological District (Miss, et al 2002a:Figure 23) and is approximately 10 to 12 river miles downstream of Sandpoint.

Lyons (2009:4) argues that any discussion of traditional subsistence patterning on the Columbia Plateau needs to begin and end with a discussion of a community’s winter season. From November to as late as early March, the Lower Kalispel would reside in winter villages located on the margins of the Pend Oreille River on landforms sheltered from the prevailing winds and in close proximity to winter deer yards (Diomedi 1893-1894:31; Lyons 2008:4, 2009:4; Smith 1936–1938:213, 278, 292–293).

The prevailing winter winds come from the north (12.9 percent), the northeast (36.4 percent), the south (20.9 percent), and southwest (12.8 percent) (Bonner County Planning Department 2003:Table 9-9) depending on the arrival of weather fronts. In comparison to locations along the Pend Oreille River, the position of the Sandpoint vicinity appears to be relative more exposed. However, even today, there are areas that could have offered suitable shelter including areas at the base of the low terraces that flanked Sand Creek (while the creek was frozen and not yet subject to freshets from spring snow melt) and perhaps in the once wooded enclaves of Indian Island.

Table 2 is Lyons’ (2009:Table 1) summary of the yearly seasonal round of the Lower Kalispel. The household economy reflected a kindred group that habitually resided with one another and anticipated doing so for the majority of the year. The village economy consisted of all potential food providers that frequently encamped with other households during the winter (Lyons 2009:5). Roots, berries, doe-fawn pairs, and hook-and-line fisheries made up the dispersed resources that a household was able to harvest during those months of high mobility and overall population dispersal.

<table>
<thead>
<tr>
<th>Month</th>
<th>Resources (method)</th>
<th>Economic Group</th>
<th>Encampment</th>
</tr>
</thead>
<tbody>
<tr>
<td>April</td>
<td>Strawberries</td>
<td>Household</td>
<td>Short duration camps</td>
</tr>
<tr>
<td></td>
<td>Deer</td>
<td>Household</td>
<td></td>
</tr>
<tr>
<td>May</td>
<td>Early roots</td>
<td>Household</td>
<td>Short duration camps</td>
</tr>
<tr>
<td></td>
<td>Deer</td>
<td>Household</td>
<td></td>
</tr>
<tr>
<td>June</td>
<td>Service berries</td>
<td>Household</td>
<td>Field camps</td>
</tr>
<tr>
<td></td>
<td>Deer</td>
<td>Household</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Roots</td>
<td>Household</td>
<td></td>
</tr>
<tr>
<td>July</td>
<td>Roots</td>
<td>Household</td>
<td>Field camps</td>
</tr>
<tr>
<td></td>
<td>Huckleberry</td>
<td>Household</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(slough fish traps)</td>
<td>Village</td>
<td></td>
</tr>
<tr>
<td>August</td>
<td>Roots</td>
<td>Household</td>
<td>Field camps</td>
</tr>
<tr>
<td></td>
<td>Huckleberry</td>
<td>Household</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caribou</td>
<td>Task group</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bull trout</td>
<td>Village</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Deer (fire drives)</td>
<td>Village</td>
<td></td>
</tr>
<tr>
<td>September</td>
<td>Mountain whitefish</td>
<td>Village</td>
<td>Field camps</td>
</tr>
<tr>
<td></td>
<td>Deer (fire drives)</td>
<td>Village</td>
<td></td>
</tr>
<tr>
<td>October</td>
<td>Mountain whitefish</td>
<td>Village</td>
<td>Field camps</td>
</tr>
<tr>
<td>November</td>
<td>Stored foods</td>
<td>Village</td>
<td>Village</td>
</tr>
<tr>
<td>December</td>
<td>Stored foods</td>
<td>Village</td>
<td>Village</td>
</tr>
<tr>
<td>January</td>
<td>Stored foods</td>
<td>Village</td>
<td>Village</td>
</tr>
<tr>
<td>February</td>
<td>Deer (winter drive)</td>
<td>Village</td>
<td>Short duration camps</td>
</tr>
<tr>
<td>March</td>
<td>Stored foods</td>
<td>Village</td>
<td></td>
</tr>
</tbody>
</table>

Source: Lyons (2009:Table 1).

For the household economy, two types of small-scale encampments were indicated: short-duration camps, which had about four-day occupancy (Smith 1936–1938:220), and field camps, which would have been used for longer time periods (e.g., two weeks for bull trout or mountain whitefish). Communal
efforts required a larger labor pool to efficiently exploit resource abundance or take advantage of optimal periods of environmental conditions (e.g., low humidity for deer fire drives) (Lyons 2009:6). Applied to the Priest Lake basin, Lyons (2009:6) suggests that the periods of abundance of caribou, deer, mountain whitefish and bull trout fisheries and their relative positions from the winter villages are an indication that the Priest Lake basin’s cultural use and occupancy took place between late August and late November, the same time as frenetic communal winter provisioning activities.

Lyons (2009:8) identifies several creeks where stick weirs and camps were present (Lamb, Kalispel, Granite, Soldier, Hunt, Indian, Bear, Two-mouth, Reeder, and Caribou creeks). The majority of the fishing locations that specifically targeted mountain whitefish also happened to be locations where trout fishing was conducted and where whitefish managed to evade basket traps (Smith 1936–1938:364). In these locations, the Indians constructed an alternate pen trap or “stick weir”.

A woven stick pen with a plank platform, extending from the shoreline to the pen, was constructed so that the pen was centrally placed relative to two wattle wing walls erected in the stream channel (Smith 1936–1938:384). The enclosure size was designed based on stream width, but all pens opened on the downstream side wherein the fish would enter and a woven gate could be closed to prevent their escape. Enclosed fish were speared out onto the beach to be cleaned and air dried for winter storage. The fish were considered communal property and were equally redistributed to the community’s families (present or not) by the fishing chief who supervised the activity (Lyons 1999–2000:42). It is reasonable to believe that Sand Creek was also used in a similar fashion and may have hosted fish weirs at any number of suitable locations upstream from its confluence with Lake Pend Oreille.

Based on archaeological surveys of trout fisheries elsewhere in the Priest Lake watershed (Lyons 2000a, 2000b, 2001), the archaeological signatures of such weir structures should consist of multiple fire-modified rock (FMR; also referred to as fire-cracked rock) couplets located on either bank of a stream and up- and downstream of a tributary creek’s outlet. Lyons (2009:9) surmises that the precise location of a weir would change from year to year relative to standing elevations of the lake and its embayment, as well as the accessibility of building materials. Smudge fires were typically built to reduce mosquitoes and for cooking; these would be placed near the weir, which would be moved up- or downstream from year to year (and they account for the observed archaeological signature). As discussed in the chapter on prehistoric archaeology in this volume, FMR was observed and recovered in many places along the banks of Sand Creek and may reflect this archaeological signature.

The optimal productivity of these weir locations was confined to a relatively narrow two-week time frame that was contemporaneous throughout the Priest Lake basin (and presumably also in the Lake Pend Oreille basin). This would have required the Kalispel families to disburse into multiple fishing task groups for at least the weir construction period at each site (Lyons 2009:9). Smith (1936–1938:316) suggests that three such weirs would be operational at the same time. Subsequent weir maintenance and fish processing would likely require only a nominal labor pool; this would allow other activities (e.g., hunting) to take place in conjunction with occupancy of the fishing base camp. As discussed in the chapter on prehistoric archaeology in this volume, projectile point finds relatively close to Sand Creek could be attributed to hunting that took place in conjunction with the operation of a fishing base camp.

Lyons’ (2009:11) archaeological expectations for the Priest Lake basin are probably applicable to Sand Creek in the Lake Pend Oreille basin:

As the modes and seasonality of cultural uses of these landforms can be explained in the ethnographic record, the following expectations should be realized within its archaeological record. Within 100 m of a creek’s confluence with the lake, located on both the left and right banks, should be numerous small ($\leq 5\ m^2$) high density fire cracked rock scatter couplets. Given
the fishing orientation of these sites, we anticipate a high frequency of expedient tool forms such as edge battered cobbles, spall tools, and tabular knives. The duration of site occupancy according to the ethnographic materials was relatively brief, thus site assemblages should be modest in both quantity and variety. Chipped stone assemblages should be biased towards locally available materials (i.e., quartzite and metasedimentary stone).

As Lyon (2009:12) cautions, direct evidence for cultural use of fisheries may be elusive if specific effort is not undertaken to secure it (e.g., the consistent use of control volume sampling). Traditional fish curing methods left little residual evidence in the form of bone waste. When fish bone remains are recovered, it is typically through either fortuitous or specialized (flotation) recovery. Theoretically, blood proteins on commonly occurring tool types associated with fishing camps would correct this general omission in data recovery but paleo-DNA research is still in its infancy (Lyons 2009:13).
NINETEENTH AND TWENTIETH CENTURY OBSERVATIONS

Robert Betts (Vanguard Research) contributed the results of years of his ethnohistoric research on Sandpoint, Idaho. The following pages provide a selection of historical accounts pertinent to Indian use and occupation in the Sandpoint vicinity. Some of these accounts provide valuable descriptions of the precontact environmental setting that help us better understand the location of the prehistoric and ethnohistoric trails and why this network of trails converged on Sandpoint. Some later accounts support the concept that Indian use of Sandpoint as an important annual gathering place is evidence of cultural continuity from prehistoric times to the present. These accounts tend to corroborate some of the information Indian informants shared with anthropologists.

David Thompson, 1809–1812

The earliest historical information on the Indians, their trail systems, and the immediate project area comes from North West Company fur trader David Thompson. On September 8, 1809, he reached Lake Pend Oreille and became the first person to leave a written record of the area around the modern town of Sandpoint. Two French-Canadian voyageurs who accompanied David Thompson’s clerk, Finian MacDonald, down the Kootenai River in the winter of 1807–1808 were probably the first of the fur traders to reach Lake Pend Oreille by following the Indian trail south from the Kootenai River. They most likely visited the Sandpoint area, but they left no record of their journey (Meyers 1922:198).

Thompson made numerous trips, sometimes with Indian guides, along the Indian trail systems. These trails led east and west as well as north and south from the fur-trading post he established on today’s Hope Peninsula near the mouth of the Clark Fork River (Figure 12). His journals recorded three trips made in 1809, 1810, and 1811 by horse or canoe around the north end of Lake Pend Oreille that passed the mouth of Sand Creek.

On September 5, 1809 Thompson and his men, with horses provided by Indians, started south from a point just west of the modern town of Bonners Ferry to Lake Pend Oreille. Of the Indian trail south, which Thompson would first call “The Great Road of the Flatheads” but soon referred to as “The Lake Indian Road,” he wrote:

> We went S 15 E 3 Miles to the foot of a high bank, so steep that the Horses often rolled down, at length all got up; which took us four and a half hours; we then went five miles to a Brook, and put up; the Road and Country good, the former often too narrow for our loaded Horses, and we had to cut down many small trees. (Tyrrell 1916:409–410)

After camping for the night the party continued on and “crossed a large Brook three times from its windings, the Woods of several kinds of Firs and Pines with plenty of Cedar, the ground good and level.” Thompson traveled a little over 16 miles before camping again. After a third day of travel in which they crossed “a fine brook of fifteen yards in width; easy current and deep” [Pack River] and then 6 miles further on they encountered a “rill” [Boyer Slough] which they followed for 2 miles until they came to Lake Pend Oreille at the mouth of Boyer Slough just east of the modern town of Kootenai. Here, Thompson wrote:
Canoes met us, made of Pine Bark, and the Indians embarked twenty pieces of Goods and Baggage, they advance SE about five miles, when the wind obliged them to put ashore; and we also camped; today we have killed four geese and one crane, all good. (Tyrrell 1916:410)

The next day, September 9, 1809 Thompson arrived at a large Indian camp near the mouth of the Clark Fork River where he counted “fifty four Saleesh Indians, Twenty Skeetshoo and four Kootanae Indians, in all eighty men, and their families.” The next day he found a place on today’s Hope Peninsula to locate a fur-trading post and construction of Kullyspel House began on September 11.

Thompson traveled the Lake Indian Road again between the Kootenai River and Lake Pend Oreille in the fall of 1809 (going south) and in the spring of 1810 (going north) after transporting furs by canoe up the Pack River to the point the trail intersected the river but his journals provided no additional details of

---

3 Thompson titled this map “Map of North America from 84 Degrees West.” The date of this map is uncertain but it was completed after 1814. The black dot with the notation N.S. Co. “Obs” (for observation) is the location of Kullyspel House. Other sextant observation locations appear on the map as well. One of these “Obs” was located at Sandpoint—the “Obs” located just above the “U” in Kullyspel.

4 Probably Upper and Lower Pend Oreille.

5 Thompson’s term for the Coeur d’Alenes.

6 Thompson generally counted only Indian men so the entire camp probably numbered more than 200. This camp was almost certainly the seasonal gathering at the mouth of the Clark Fork River at a location that in the late 1800s would come to be called “Indian Meadows” by early white settlers.
the trail itself. One of Thompson’s early maps post-dating 1814 (see Figure 12) shows the route of the Lake Indian Road where it met the north shore of Lake Pend Oreille.

Chuck Peterson, a Forest Service employee and local Sandpoint historian, became the acknowledged expert on the early history of Sandpoint prior to his death in 1988. Peterson had extensively researched both Thompson’s Lake Indian Road and the Kalispel Road to the Buffalo. In a letter to Floyd Bennett dated September 9, 1979, Peterson wrote:

> When David Thompson came from Bonners Ferry to Lake Pend Oreille in 1809 he travelled the Indian trail which he called the Lake Indian Road. He had Kutenai Indian guides and their pack horses. This trail followed the east side of Boyer Slough about where your house now is. At that time the flat north of the lake was covered with large mature, park like, timber, white pine, cedar and larch. Because the Indians did not have iron tools to cut large trees the trail wandered and was changed each time a large windfall blocked it. When the white man arrived with iron axes and saws they could clear the trail of windfalls so its location did not change so often. (Peterson 1979)

On September 27, 1809, soon after starting construction of Kullyspel House, Thompson took one of his men (Beaulieu) and an Indian lad with him and started off west on horseback along the major east-west Indian trail around the north shore of Lake Pend Oreille to explore the Pend Oreille River as a possible route to the Columbia River.

The first historic description of the Sandpoint vicinity was provided by Thompson’s journal:

> Thursday, September 28, 1809
> A cold cloudy Morning, wind northerly. At 6:50 Am set off … We held on along the Lake “till 10½ Am having gone ab’ 12[M] to the Head of the River [probably the outlet of the Pend Oreille River] on a jog Trot all the way. The ground near the Lake is low & often muddy & wet, with high Hills a small distance within – plenty of water Fowl, but no shelter for the Sportsman. For these 5 days past the Leaves have been withering much on the Hills; half of them are already fallen off & those of Willows &c are in the same state – the Poplar, Aspin, Birch, Alder &c are getting part yellow, & a few falling off. At 10 1/2 Am we stopped to breakfast & refresh our Horses ¼ M down the River [Thompson would have been somewhere close to modern-day Dover just west of Sand Creek]. The River is here ab’ 350 to 400 yds wide, very easy Current & shoal near the Shore - & its sides are fine covered with Grass & Woods. (Belyea 1994:111,112)

By October 5, Thompson had failed to reach the Columbia due to narrow canyons below a Kalispel camp at present-day Usk. Thompson, still travelling along the north bank of the Pend Oreille River on his return to Kullyspel House, again reached the point just west of Sand Creek where he had stopped to “bait” his horses on September 28. Here heavy rain forced him to stop early to camp. Thompson wrote:

> Thursday, October 5, 1809
> We then went thro’ a point of Woods & to the wide part of the River … we were obliged to put up [camp] with heavy Rain at 4 ¾ Pm, hav[ing] lost full 20 minutes after a Chevreuil [deer] in the River which escaped us. The Ground is quite soaked with the late & continual Rains. Great Numbers of Cranes mostly all grey, a tolerable number of Swans, plenty of dwarf Geese & a few flocks of Ducks – Teal & Stock – but cannot be approached (Belyea 1994:116)

In April 1810, Thompson again passed the mouth of Sand Creek on his second exploration of the Pend Oreille River. On April 24, 1810, Thompson made the first known reference to the sandbars at the outlet of Lake Pend Oreille from which the modern town of Sandpoint takes its name. There was still spring snow on the ground when Thompson set out by pine bark canoe from Kullyspel House on the afternoon...
of April 24 headed west around the lake. He camped that night very close to the mouth of Sand Creek but unfortunately provided little descriptive detail of his camp location.

Tuesday, April 24, 1810
A very fine Day ... [at] 7 ½ PM when we turned a point of Sand & put up at 7-35 PM having passed the Lake in a fine Calm. Thank Heaven there is yet very much Snow on the Shores & even a little Ice on the Lake tho it was never even half froze over for 24 Hours during the whole winter ... the Snow appears deep in the woods. Very few wild Fowl, say none. (Elliott 1932:89)

On his return journey a week later, this time going east, Thompson still travelling by canoe and just west of Sand Creek, was forced by heavy waves to “put ashore in the Lake, at the beg[inning] of the Co[urse] that leads to the sandy Point of the River, here we put ashore & made kettle while the waves subsided” (Elliott 1932:92, 93).

Thompson’s third and final mention of the Sand Creek vicinity was in June 1811 when he was on his way to Kettle Falls to begin his trip to the mouth of the Columbia River. After traveling by canoe down the Clark Fork River and spending the night at the now-abandoned site of Kullyspel House, Thompson set off again by canoe on June 7 and stopped to dry out his gear and gum the canoe “at the Rock below the Sandy pt.” Elliott (1932:174, footnote 2) did not identify the location of this rock but it was likely about half way between the modern towns of Sandpoint and Dover at a point of land on the north side of the Pend Oreille River known today as Rocky Point. Thompson wrote:

Friday, June 7, 1811
A fine Morning & Day at 2 ½ AM set off dawn of day crossed the lake & at the Rock below the Sandy pt put ashore at 7 AM here we dried our things, much wetted & spoiling & gummed the Canoe which from the Ho [Kullyspel House] has been so leaky as to keep a man continually bailing out water ... at 11 ½ AM set off held on against a slight head wind at 4 PM at the Falls [Albeni Falls]. (Elliott 1932:174)

**Ross Cox, 1812**

In 1812, after leaving employment with the Pacific Fur Company, North West Company clerk Ross Cox traveled east from Spokane House, crossing to the north side of the Pend Oreille River (Cox called it the “Flathead River”) at Seneacquoteen and followed the established Indian trail eastward around the north end of lake Pend Oreille and up the Clark Fork River. Ross provided one of the earliest descriptions of the Trail to the Buffalo (Kalispel Road to the Buffalo) that passed by the mouth of Sand Creek. Arriving at Seneacquoteen Crossing on October 20, 1812 Cox wrote:

As this was the spot for crossing to proceed to the Flat-head country, we had to construct rafts for that purpose; which being prepared on the 21st, we crossed over, and passed all our goods and horses in safety, with the exception of one of the latter, which was drowned by the awkwardness of the man who held the reins. The day after, the weather set in very cold, accompanied by snow, which continued almost incessantly for fourteen days. During this period our route lay nearly due east through thick woods of lofty pine and cedar. The horses suffered dreadfully from the want of grass, the deep snow having completely covered the ground, and their only nourishment was obtained by plucking and chewing the branches of the adjoining trees.... We rose each morning at day-break, loaded the horses, travelled two or three hours, when we stopped for breakfast, waited an hour for this meal, and then continued on until four or five o’clock in the evening, when we stopped for the night. The path was narrow, and the trees covered with snow, which, from the loaded horses constantly coming in collision with the branches on either side, fell down at every moment in immense masses, annoyed us considerably, and greatly impeded our progress. Where the pine predominated, the under-growth was so thick that we could not obtain sufficient space for our tent; but where the cedar
prevailed, we occasionally were able to pitch it. This cheerless and gloomy march continued for fourteen days, during which period we seldom had a dry article of clothing on us. (Cox 1957:110,111)

John Work, 1825

The early decades of the nineteenth century after 1812 until the 1850s are almost devoid of historic information pertaining to Lake Pend Oreille and the project area. HBC and independent “free” trappers were moving through the area and sometime during this period Thompson’s “Kullyspel” Lake began to be called “Pend Oreille” or “Ear Pendant Lake” by French-speaking trappers. One of the few accounts of travel through the area is from the journals of HBC clerk John Work, who encountered “a good many Indians” at Lake Pend Oreille with whom he traded tobacco for camas. Work was travelling east on horseback with 11 men from the HBC post at Fort Spokane en route to trade with the Flathead Indians when he reached the Pend Oreille River (called the Flat Head River by Work) at Seneacquoteen Crossing on August 11, 1825. Work wrote:

Thursday, August 11, 1825
Set out at 4 o’clock and arrived at the Flat Head River at noon & immediately commenced gumming the canoes with occupied the whole afternoon and is not yet entirely completed. One of the canoes was taken across the River by the Indians & we had to send across for it. The Indians had also taken nearly all the poles and paddles which will cause us a loss of time and labor to replace them with others. We are very scarce of gum.

Friday, August 12, 1825
Notwithstanding I had the men at work by daylight, they were so long getting paddles, poles & ready that it was 11 o’clock before we started & then lost nearly an hour crossing ... so that it was noon when we got off. We got on pretty well and encamped past 6 o’clock in the Lake [Lake Pend Oreille] below the traverse to the island. One of the canoes had only 2 men & as they found poles & paddles ready, they went off in the morning & are yet ahead. Two of the canoes are still very leaky notwithstanding the time that was taken to gum them. Send off the Indians in the morning to the Fort [Fort Spokane] with the horses.

Saturday, August 13, 1825
Cold in the morning blowing fresh from the Southward. Lightening, & some thunder & rain in the night. Had the men up at 3 o’clock but it was blowing too fresh to attempt crossing the Lake & nearly 2 hours were lost waiting, still it was rough making the haven, afterwards we got on very well and encamped near 7 o’clock below Isle de Pierre.7 Passed a good many Indians at the upper end of the Lake, gave them a little tobacco to smoke, bought a little cammass [sic] from them, & then proceeded. (Elliott 1914:15)

From Work’s August 12, 1825 journal entry it is clear that, rather than follow the northern shore of Lake Pend Oreille, he canoed along the southern shoreline to a point below the “traverse to the island.” From there he canoed across the lake to Memaloose Island on the north shore passing Pearl and Cottage islands on the way. This was a route across the lake that David Thompson depicted on his 1814 map (Figure 13).

---

7 Elliott (1914:15) suggests this location is on the Clark Fork River just below Cabinet Rapids.
Figure 13. Detail from David Thompson’s original 1814 map showing canoe routes he used on Lake Pend Oreille. Sand Creek and the Sandpoint peninsula (hook-shaped) are shown in the upper left corner of this map segment (British National Archives, Kew, England. Photograph by Robert C. Betts.

Warren Ferris, 1830s

One other rare historical account from this period of scarce information is that of an American Fur Company trapper named Warren Ferris. In the early 1830s Ferris joined “a parade of a hundred-plus lodges of Pend d’Oreille Indians” following the Trail to the Buffalo eastward up the Clark Fork River. Ferris provided a colorful first hand description of a large number of Indians using this important east-west trail. Ferris wrote:

three thousand horses of every variety of size and color, with trappings almost as varied as their appearance, either packed or ridden by a thousand souls from squalling infancy to decrepid [sic] age, their persons fantastically ornamented with scarlet coats, blankets of all colors, buffalo robes painted with hideous little figures resembling grasshoppers ... and sheepskin dresses garnished with porcupine quills, beads, hawk bells, and human hair ... Listen to the rattle of numberless lodge poles trailed by pack horses, to the various noises of children screaming, women scolding, and dogs howling. Observe occasional frightened horses running away and scattering their loads over the prairie ... and in every direction crowds of hungry dogs chasing and worrying ... small animals. Imagine these scenes with all their bustle, vociferation and confusion, lighted by flashes of hundreds of gleaming gun-barrels, upon which the rays of a fervent sun are playing ... and you have a faint idea of the character and aspect of our march. (Ferris 1983:182, cited in Farr 2003:14–15)
Pierre Jean De Smet, 1841–1844

As early as 1831 Indian emissaries from the Flathead tribe living around Flathead Lake in what is now western Montana traveled to St. Louis to request the Jesuits to send a missionary to their tribe. It was not until April 1841 that Father Pierre Jean De Smet and several other Jesuit priests reached the Bitterroot Valley in western Montana where they began construction of St. Mary’s Mission. With the building of the mission underway, Father De Smet journeyed to the Hudson’s Bay post at Fort Colville in eastern Washington to obtain tools and construction materials. In November 1841 De Smet reached the Clark Fork River Valley where he wrote:

On the 3rd of November, after prayers and instructions to the savages, we continued our march. We were on the borders of Clark’s Fork, to which we were obliged to keep close during eight days, whilst we descended the country bordering the stream … We met in the course of that day with only one family, and that was of the Kalispel tribe. Whilst the women were rowing up the river in their light canoe, made of fir-tree bark, which contained their children and all the baggage, the men followed along the bank with their rifles or bows in their hands in pursuit of game. In all the little meadows or bottom-lands that we traversed, we saw a great number of horses, which the savages leave there, unguarded, often for months at a time.

On the 4th we entered a cedar and pine forest so dense that in its whole length we could scarcely see beyond the distance of twenty yards … We scarcely got through it after three days’ march. It was a real labyrinth; from morning till night we did nothing but wind about to avoid thousands of trees, fallen from either fire, storms or age. On issuing from this forest we were charmed by an interesting prospect: Our view extended over the whole surface of the lake called Pend d’Oreille, studded with small islands covered with woods … Another spectacle, still more magnificent, had arrested our attention before we reached the lake. At the head of it we traversed a forest, which is certainly a wonder of its kind; there is probably nothing similar to it in America … and really every tree which it contains is enormous in its kind. The birch, elm and beach, generally small elsewhere … swell out here to twice their size … cedars of four and five fathoms in circumference are here very common; we saw some six, and I measured one forty-two feet in circumference. A cedar of four fathoms, lying on the ground measured more than two hundred feet in length. The delicate branches of these noble trees, entwine themselves above the beech and elm; their fine, dense and ever-green foliage forming an arch through which the sun’s rays never penetrate. (Chittenden and Richardson 1905:347–349)

On November 7 De Smet reported that “We spent Sunday, the 7th of November, in devotional practices with three Kalispel families on the shore of the lake of that name, where we had arrived the evening before” (Chittenden and Richardson 1905:353). Continuing down the Pend Oreille River De Smet observed “Along the river we found at intervals a great number of little Indian camps of four to six lodges. These poor folk are abliged [sic] to scatter in winter to procure food by fishing and hunting” (Chittenden and Richardson 1905:356).

De Smet arrived at Ft. Colville on November 11, 1841 and returned to St. Mary’s Mission by the same route later that winter. By 1844 the Jesuits decided to establish a mission among the Kalispel, and in November of that year De Smet met Father Adrian Hoecken on the Pend Oreille River where they chose a site for a new mission (to be named St. Michael’s Mission) at a Kalispel winter camp near Albeni Falls. Father Hoecken wrote:

The place for wintering being determined, the first care of the Indians was to erect a house of prayer. While the men cut down fir trees, the women brought bark and mats to cover them. In two days this humble house of the Lord was completed – humble and poor indeed, but truly the house of prayer. (Schoenberg 1982:36)
De Smet described the site as “Well chosen, picturesque, agreeable and convenient ... a dense and interminable forest protects us from the north winds, and a countless number of dead trees standing on all sides furnished us with abundant fuel for our fires during the inclement season” (Carriker 1995:83, 84). De Smet’s descriptions of the dense forests surrounding Lake Pend Oreille and their ability to offer protection from north winds has implications for the possible presence of winter “headquarters” village(s) at Sandpoint. It is our opinion that the old-growth forests present in precontact times make the availability of suitable shelter almost ubiquitous around the shores of Lake Pend Oreille. The likely determinative factors in the placement of winter villages would be the presence of other important resources such as fresh water, favorable winter fishing spots, or areas more favorable for game hunting.

The site chosen near Albeni Falls, however, flooded during the spring runoff of 1845. De Smet and Hoecken, in consultation with the Kalispel, moved the mission down the Pend Oreille River to the vicinity of a cave which Hoecken named “New Manresa” on the present-day Kalispel Reservation at Usk. The new mission was named for St. Ignatius. The St. Ignatius Mission would remain at this location until 1854 when the Jesuits would move it to the Mission Valley in present-day Montana. Between 1841 and 1845, Father De Smet passed through the Lake Pend Oreille area on several occasions as he travelled between Jesuit missions.

**James Warre, 1845**

In 1845 the British, concerned about increasing tension with the United States over where to place the boundary between Canada and the United States, dispatched a British agent and artist Lt. James Warre and a companion, Royal Engineer Mervin Vavasourto, posing as private travelers and sportsmen, to travel through the Pacific Northwest on a secret military reconnaissance mission (Nisbet 2003:14). Warre, travelling with a fur brigade under the command of Peter Skene Ogden left Montreal on May 5, 1845, and by August 1845 crossed the Canadian Rockies and followed the Kootenai River south into what is now Idaho. Following the Indian trail south from what is now Bonners Ferry, Warre reached Lake Pend Oreille at the mouth of the Pack River at noon on August 12. By chance, Father Pierre De Smet, travelling with another fur party, reached the mouth of the Pack River at the same moment. Warre wrote:

> on Tuesday 12th August at Midday we came to the Mouth of the River and borders of lake Kuttlespelm or Pends-oreilles another Indian tribe living on the Borders. The River was too deep to ford & we were preparing to make a Canoe when we observed another Party approaching the opposite bank – These proved to be a Canadian Half Breed named Berland going to trade with the Flat Bow Indians8 and his Men & a Mr de Smidt a very intelligent well informed Jesuit Missionary in charge of the whole Columbia District ... at present he is on his way to the Blackfoot Country ... he gave me a great deal of information about the Columbia Country ... I remained an hour or two after my party had left, talking with [him] & looking at his drawings & likenesses of Indians. (Archives of Canada 1976:60)

Soon after this meeting Warre completed a watercolor which he titled “Kuttispelm Lake, August 12, 1845.” This is the earliest image we have of Lake Pend Oreille, and it was likely made from a location very close to the Sand Creek Byway project area. A comparison of the painting with the modern landscape suggests it was made looking east toward the mouth of Pack River from approximately where Sandpoint City Beach is located today (Figure 14).

---

8 Lower Kootenai Indians.
Shortly after Warre finished his painting of Lake Pend Oreille, Ogden’s men retrieved a cached bateau (a flat-bottomed boat) that had been left at the outlet of the Pend Oreille River, and Warre continued by boat down the river as the unloaded horses followed along the bank (Nisbet 2003:16). Warre (Archives of Canada 1976:62) continued:

On Thursday the 14th August we reached the point from whence we were to strike across the Mountains to Fort Colville on the Columbia having been two days descending the Stream & meeting numerous Indians (Kuttlespelm or Pends Oreilles) in their Canoes fishing & shooting &c. also a large party of them on their way across the Mountains to hunt Buffaloe [sic] & Winter. We passed (by portage) [a] pretty little Fall or rather Rapid\(^9\), with the exception of which the River was deep & navigable for any sized boats.

**Isaac Stevens/Lieutenant A. J. Donelson, 1853**

In 1853 several U.S. government survey parties consisting of engineers and explorers were sent westward to gain more knowledge of the country that lay between the Mississippi River and the Pacific Ocean. By the fall of 1853 one of the exploration parties commanded by Isaac Stevens reached the Bitterroot Valley in western Montana. From the Bitterroot Valley, Stevens sent a party led by Lt. A. J. Donelson to explore the Clark Fork Valley westward while Stevens left the Clark Fork River at present-day St. Regis and crossed what is now known as Stevens Pass to Coeur d’Alene (Richards 1993:127).

In a report written to Stevens from Olympia, Washington Territory dated February 23, 1853, Donelson reported on his reconnaissance trip but provided no information on Indians at Lake Pend Oreille:

---

\(^9\)Albeni Falls below Seneacquoteen Crossing.
[From the Flathead Valley] we pursued the line of Clark’s fork to a point twelve miles below Lake Pend d’Oreille [Seneacquoteen Crossing]10. Here Lieutenant Arnold left with a select party for the purpose of connecting the line with Fort Colville and with Captain McClellan’s survey.

I think the road after passing from the valley of the Jocko into that of the Flathead, would follow the hills on the left of the stream to a point some miles above its junction with the Bitter root. Then crossing the former, it would follow the right banks of Clark’s fork as far as Big Rock [Bad Rock?]; here it would cross, and following down the left bank, would re-cross at the Cabinet [Gorge?]. Then tunneling the Cabinet mountains three hundred yards, it would continue on the right of the river to Lake Pend d’Oreille, and on the eastern side of that to its lower extremity. As the lake is subject to high freshets, perhaps variations of fifteen feet from low to high water, it would be necessary to run the railroad above this, by keeping the sides of the hills, and in some instances by high embankments. A bridge half a mile long would be necessary for crossing the valley of Pack river. (Donelson 1855:270–283)

Isaac Stevens/Lieutenant B. Saxton, 1853

Another of the reconnaissance reports from the scouting parties Stevens sent out that contains information related to the Kalispel is that of Lieutenant B. Saxton. Lieutenant Saxon (travelling with Lieutenant Arnold) approached Lake Pend Oreille from the south arriving at the outlet of Lake Pend Oreille on August 10, 1853. Saxton wrote:

Marched ten miles, over a very bad road; part of the way through an almost impassable marsh, and obliged to cut our way through the thick undergrowth. Encamped in a pretty meadow of excellent grass, on Clark’s Fork of the Columbia, at the outlet of Pend d’Oreille lake. The river is about a third of a mile wide, and too deep to be forded. Found an old bateau, belonging to the Hudson’s Bay Company, in a very leaky condition; all hands at work caulking it. (Saxton 1855:257)

The next day Saxon and Arnold completed the crossing to the north side of the Pend Oreille River somewhere in the vicinity of Sand Creek. From there Arnold started for the mouth of the Clark Fork in the repaired bateau and Saxon traveled along the lake shore with the horses where he encountered a large party of Pend Oreille Indians returning from a buffalo hunt. In an entry dated August 11, 1853, Saxton wrote:

We succeeded in fitting up the boat and crossing the bulk of our stores yesterday. Finished crossing this morning with the loss of several horses. To relieve some of the weaker animals, Lieutenant Arnold proceeded to the upper end of the lake in the bateau with the bulk of the heavy articles, driving the animals along without their loads. We had great difficulty in cutting our way through the thick timber. We met a party, numbering at least a hundred, of Pend d’Oreille Indians, just returning from a hunting excursion on the Missouri. All – men, women, and children – were mounted on fine horses, and were bound on a trading expedition with the tribes nearer the coast. They had at least 300 horses, and were loaded with buffalo robes and dried buffalo meat. They were perfectly civil, and seemed to feel proud, rich, and independent.

Friday, August 12, 1853

Passed over twenty miles of very bad road, along the shore of Pend d’Oreille lake, a very beautiful sheet of water among the mountain. The southern shore of the lake is impassable, and is evidently the termination of the Blue mountains. On the northern shore, which we traversed, we were obliged to deviate occasionally into the timber, and climb some very steep hills, to avoid the water. The whole region is covered with a dense forest of pine, cedar, and other of the

---

10 Donelson and Arnold were travelling together as far as Senacquoten, then Arnold took the Indian trail to Ft. Colville to meet up with Capt. McClellan as suggested in Stevens letter to Donelson dated Oct. 1853. Arnold’s report to Isaac Stevens dated February 5, 1845 found in Stevens (1855) contained no information related to Lake Pend Oreille or the Kalispel.
common forest trees of New England. On the shores of the lake are many fine meadows, covered with luxuriant grass. The lake is navigable, and no doubt that in a coming time, not very remote, its repose will be broken by the shrill scream and the paddles of the steamboat. I met many Indians, fine specimens of the race.

Saturday, August 13, 1853
Marched twelve miles to a camp occupied by the Hudson’s Bay Company as a summer pasture for their cattle. The road was very bad, and our unshod animals had great difficulty in making their way over the sharp, flinty rocks; their hoofs were badly broken, and our trail might have been followed by means of the blood-stains upon the stones. I found Lieutenant Arnold here with the boat. He had a pleasant voyage up the lake, and speaks in the highest terms of the beauty of its scenery, viewed from the water. (Saxton 1855:257, 258)

Isaac Stevens/Lieutenant C. Grover, 1853

Another of Isaac Stevens’s exploring parties also traversed the north end of Lake Pend Oreille in mid-February 1853. Lt. C. Grover traveled west down the Clark Fork Valley and described the lake and mentioned the “sandy point” at the lake outlet, but apparently he encountered no Indians (and no winter village or hamlet. Grover wrote:

February 15, 1853
Early this morning we again resumed our journey. For the first few hours our way led through a defile between the main body of mountains on our right, and one which projected into the lake, forming a promontory on our left. Upon leaving this defile we came in full view of the lake, perfectly becalmed in its mountain-bed. Its form was irregular; sometimes it stretched out long arms into the blue distance, while at others bluff promontories, with their hard outlines, extended far into the heart of its waters. (Stevens 1855:510, 511)

We now followed the lake shore, and, after passing several small openings with fine grass, we camped at night in excellent feed at the mouth of Pack river. This is a small stream, emptying into the lake from the north through a flat open interval. The snow, which was fifteen inches deep at our last camp, has rapidly decreased to the depth of four inches to-night. (Stevens 1855:510, 511)

On the 16th we travelled about fifteen miles, and camped in a sandy point at the foot of the lake. In the latter part of the day the trail led round an arm of the lake, which was frozen over, and we saved about five miles by crossing on the ice. It was about eight inches thick, and perfectly safe, except where the rise and fall of the water had rived long seams in it. In crossing one of these, the mules suddenly rushed into one mass, and four of them went through; but they were released without loss or damage, excepting the thorough saturation of our beds, provisions, &c. Ducks, geese, and otter are very numerous along the lake shore. (Stevens 1855:510, 511)

Isaac Stevens/Dr. George Suckley, 1853

A report dated December 19, 1853 written from Olympia by Dr. George Suckley, an assistant U.S. Army surgeon with the Stevens expedition, was included in the 1855 Stevens report. Suckley travelled by skin boat down the Clark Fork and Pend Oreille rivers as far as the Kalispel village near present-day Usk, Washington. Of all of the reports compiled by Stevens (1855), Suckley’s contained the most information about the Kalispel; however, almost none of that information pertained to Lake Pend Oreille or the immediate project area but rather to the Kalispel village on the lower Pend Oreille River. The portion of

---

11 The 1866 Boundary Commission map identifies an HBC pasture for cattle at the mouth of the Clark Fork River in the vicinity of Indian Meadows.
Suckley’s report related directly to Lake Pend Oreille is included here. Starting his journey down the Clark Fork River from the Flathead Valley in October 1853 Suckley wrote:

I had considerable difficulty in making a canoe that would answer the purpose. A skin-boat, made of three bullock hides, was at length constructed, and on the 15th of the same month [October 1853] I embarked, with two white men and an Indian, to descend the Bitter Root river. The inhabitants of St. Mary’s were entirely unacquainted with the nature of the river and its capabilities for canoe navigation, no boats ever having been known to ascend the river higher than the Horse Plain, just below the junction of the St. Mary’s and Pend d’Oreille rivers.

My trip being considered so hazardous, I was obliged to proceed with great caution, and it was not until the eleventh day that I reached the latter river. On the 25th day after my departure from St. Mary’s I reached the Pend d’Oreille mission. Here I found that the skin-canoe had become so rotten that it became necessary in case I proceeded farther by water, to obtain a new boat.... I was reluctantly compelled to take horses and proceed to Fort Colville, on the Columbia river, distant sixty miles by land.

At a point about sixty miles above the Pend d’Oreille mission (of St. Ignatius) is the Pend d’Oreille or Kalispelm lake, formed by a dilation of the river; it is a beautiful sheet of water, about forty-five miles in length: below it the river is sluggish and wide for some twenty-six miles where rapids are again encountered during low water. From a point nine miles above the lake to these rapids, a distance of about eight miles, steamboats drawing from twenty to twenty-four inches could readily ascend. In high water, of course, the distance would be lengthened. There would be but one bad obstacle between the Cabinet (twenty-five miles above lake Pend d’Oreille) and a point ten miles below the mission, a distance of one hundred and forty miles. The obstacle alluded to is where the river is divided by rocky islands, with a falloff six and a half feet on each side [Albeni Falls]. (Suckley 1855:291–296)

The one comment Suckley made about Indian use of the Lake Pend Oreille area occurred when he reached the mouth of the Clark Fork River where he noted evidence of Indian fishing activity:

Just above Lake Pend d’Oreille the Clark river divides into three streams, which again unite, thus forming two or three large islands. One of these streams is wide, shallow, and swift. Here the Indians annually construct a fence, which reaches across the stream, and guides the fish into a weir or rack, where they are caught in great numbers. To the natives this is a place of great resort. (Suckley 1855:296)

Isaac Stevens, 1853

In Volume 1 of his final railroad survey report, Stevens (1855) included a chapter titled “Indians on the Route.” In that chapter wrote:

The Indians referred to by Mr. Gibbs, in his report, as the Upper Pend d’Oreiles, have been formed a comparatively recent period under Ambrose as their chief, and are known as the Kalispel or Kalispelms. They consist of a number of wandering families, composed of Spokanes, Kalispelms proper, and Flatheads, who, having intermarried, have formed a habit of sojourning in the general vicinity of the Horse and Camash plains, on Clark’s Fork, during their annual migrations to and from the buffalo hunting grounds. They have about forty lodges, numbering some two hundred and eighty inhabitants.

The Kalispelms proper, Pend d’Oreilles, have Victor for their chief, and have sixty lodges, or about four hundred and twenty inhabitants.... For much valuable information in reference to these Indians, and the Catholic mission established among them, I will refer you to Doctor Suckley’s report. (Stevens 1855:149)
Isaac Stevens/Captain John Mullan, 1854

John Mullan, just out of the military academy, was also a member of one of the parties commanded by Isaac Stevens. Operating out of a winter camp in the Bitterroot Valley, Mullan, with a party of 13 men, was directed by Stevens to explore all possible routes across the Bitterroot Mountains to the west (Hahn 1986:1, 2). In the spring of 1854, Mullan travelled down the Clark Fork River to Lake Pend Oreille. Spring travel around the north end of Lake Pend Oreille was difficult due to high water and flooding. Mullan reported:

I determined to examine the Clarke’s Fork valley in person, and starting with a pack train explored the country as far as the Pend d’Oreille Lake, where, finding the streams much swollen, with the lake trail under water, and no trails above through the forest, I was compelled to abandon my animals at the east end of the lake and continue my further examination to the Lower Pend d’Oreille mission by means of canoes.

I concluded that a wagon route could be easily and economically constructed from Hell’s Gate Road to the east end of the lake; the Bad Rock, 12 Cabinet mountain 13 and Pack River would form, it is true, three difficult problems, but could be solved by time and means; but the chief difficulties would be found in the section around the lake. This lake during the freshet has a rise of from ten to fifteen feet, completely covering the low water trails, thus forcing a location above high water mark and along the slopes of the difficult rocky spurs jutting upon its northern rim; from which I concluded a construction at this point could only be made at a heavy outlay; the Indians, also, gave me to understand that the country back was so difficult and impracticable that during the period of high water all travel was suspended. (Mullan 1998:5)

As the result of Mullan’s report of the difficulty of building a wagon road around the north end of Lake Pend Oreille as well the greater distance, the Coeur d’Alene–St. Regis route was chosen in 1859 over the Lake Pend Oreille route (Hahn 1986:3). This decision helped divert, at least for a brief time, some of the increasing incursions of whites into the Sandpoint vicinity.

Major John Owen, 1855–1863

One of the early pioneers in the Pacific Northwest, Major John Owen arrived in the Bitterroot Valley of Montana in 1850 and established a post known at Fort Owen (near present-day Stevensville) that became a center of trade for the Bitterroot Salish. Owen also served for a time as the “Indian Agent” for the Flatheads in the Bitterroot Valley. During the 1850s and early 1860s, Owen made at least six trips between Fort Owen and Fort Colville or other supply points in present-day Washington State. Those trips took him up the Clark Fork River and around the north end of Lake Pend Oreille in the 1850s and 1860s.

Journal VII: Trip from Fort Owen to The Dalles and Fort Vancouver Beginning March 26, 1855, and Returning to Fort Owen, Which Was Finished on July 25

In the spring of 1855, Owen traveled west from Fort Owen in the Bitterroot Valley to Fort Colville. After following the Indian trail along the north side of the Clark Fork River he reached Lake Pend Oreille on April 9 where the next day he found an encampment of Lower Pend Oreille (Kalispel) Indians. Owen wrote:

---

12 This was the rocky point on the north side of the Clark Fork River that Father De Smet had difficulty passing in 1841.

13 Cabinet Mountain was on the north side of the Clark Fork River at Cabinet Gorge, now the site of Cabinet Gorge Dam.
Monday April 9, 1855
Off in fair time. Trail some part of the way in the bottom bad & on the hill sides rocky. Reached the lake about mid day & campd [sic]. Feed [for the horses] short but green.

Tuesday April 10, 1855
Stormy. Laid over. Found Some Six Lodges of lower Pendesreilles Camped here subsisting entirely on fish which they catch on the Lake. Poor Devils they have No Meat or berries but plenty of poor half Starved dogs and children. My Camp is about a quarter of a Mile above them but I had a Visit from their dogs last Night. From a demonstration Made upon a sack of tongues found this Morning they [the dogs] are great foragers. (Phillips 1927:98)

On April 12 Owen raised camp and moved over to Pack River, a tributary of the lake which he crossed to make camp on the west side of the river. The following day he continued on from the Pack River camp around Lake Pend Oreille, crossed Sand Creek near the mouth of the creek, and continued down the Pend Oreille River to Seneacquoteen.

Saturday April 14, 1855
We have had another hard day on the animals. Mud & water. A few Miles from Camp we reached the End of the Lake & found another Slough [probably Sand Creek] passed fording With the packs Without Making a turn of two or three Miles through timber & Mud. After Striking the Continuation of the river [Pend Oreille] the Water was too high to keep the trail which forced us into the hills. We reached the Crossing of the River [Seneacquoteen] in good time & found two Canoes ready to Cross us which we soon accomplished after sending the packs over. (Phillips 1927:99)

Journal XVII: Trip from Fort Owen to Walla Walla and Return between April 11 and July 21, 1863

Major John Owen again traveled west along the Indian trail that followed the north side of the Clark Fork River in late April of 1863. He reached lake on April 22 at the mouth of the Clark Fork River where he “was not long in Engaging an Indian & his Canoe to take me with the packs to the Crossing of the river [Seneacquoteen Crossing on the Pend Oreille River]” (Phillips 1927:284). After camping a night at the mouth of the Pack River, Owen’s journal entry for Thursday April 23, 1863, read:

I got under Way by 7 O’clock A.M. 2 ½ hrs quiet run brought me to Sandy Point [mouth of Sand Creek] the lower terminus of the Lake. 5 ½ hrs further run brought me to the Crossing of the river at the Depot of the Boundary Com. of /59. My animals did not come up until some two hrs after I had reached the Crossing. The road around the bends of the Lake together with the bad trail made the travel of the Lake with Canoes Much preferable. (Phillips 1927:284)

John Jones Overlanders, 1858–1859

In 1858 a party of 10 pioneers left St. Paul, Minnesota, to cross the Rocky Mountains for the Oregon country (Smith 1989). On December 1, 1858, the party reached the Hudson’s Bay post at Tobacco Plains (Fort Kootenay) on the Kootenai River. After reaching the Tobacco Plains the party divided, and some wintered at Flathead Lake in what is now western Montana. By March 2, 1859, the Flathead Lake group had reached Lake Pend Oreille probably by way of the Pack River coming south from the Kootenai River. J. W. Jones, the leader of the group, recorded their arrival at Lake Pend Oreille and encounter with a group of Indians he identified as “Pen d’Oreilles” (Smith 1989:117).

Wednesday, March 2, 1859
Followed the trail and came to Flat Head, or Pend Oreille Lake, late in the afternoon. Crossed a portion of it and camped on its banks. The eastern portion of the lake was open; we saw quite a
number of swans, geese, and ducks. The scenery around this lake is sublime. My feet were very painful, the blood oozing out of my moccasins.

Thursday, March 3, 1859
Followed the lake for some distance and saw an Indian in a canoe fishing. We made for him and soon had the satisfaction of knowing that a camp was nearby. He started to herald our approach. In about an hour we arrived at a large lodge, where I should judge three or four families were living. These Indians are Pend’Oreilles; and though they were somewhat hostile to the Americans last summer, they received us with a warm welcome. We noticed a large pot full of meat on the fire. As soon as it was cooked the meat was placed in a basket and set before us. The contents of the basket proved to be venison, coon, and muskrat. Being very hungry, we went in with a will, making no distinction but took it as it came. The broth which was thickly colored with fat a shade darker than ‘charcoal’ was scooped out with horn spoons. They also set us out some very dirty venison tallow to eat with our meat, which was very much relished then by us. Having eaten to repletion, we returned thanks to ‘old John’ the chief, for his kindness. I procured a fresh pair of snowshoes for a trifling consideration. We also traded for some venison and coon meat.

Bidding them farewell, we now trudged our way along the banks of the Pend Oreille River, which is [a] broad, shallow, and very sluggish stream for some distance; and in its present stage, which is very low, it has no perceptible current. Camped about five miles from the Indian lodge. The snow is not as deep in this valley. River open. Weather pleasant. (Smith 1989:117)

The location of the Indian lodge on the shore of Lake Pend Oreille may have been in the vicinity of Sand Creek. If this party of whites reached the lake in the vicinity of the mouth of Pack River (or at Boyer Slough as they would have if they had followed the main Indian trail south from the Kootenai River) and then traveled an hour westward, they would have been in the vicinity of Sand Creek when they reached the Indian camp. The diary entry for the following day is consistent with the Indian lodge having been in the vicinity of Sand Creek. Soon after leaving the Pend Oreille camp they were “trudging” their way along the banks of the Pend Oreille River and had gone 5 miles before camping for the night on March 3, 1859. By noon on March 4 they had arrived at Seneacquoteen Crossing where they found “three Indians and three squaws” in a lodge on the south side of the river. The Indians took the whites across to the south bank by canoe. Jones wrote:

Friday, March 4, 1859
As it was snowing very hard, we concluded to stop all night with them. They were badly off for provisions depending entirely upon the “suckers” which they caught. They informed us that the river was open clear to the Columbia, with the exception of a quarter of a mile where we had to make a portage. We engaged the old man to take us to the Pend’Oreille Mission, which is situated at the foot of a range of mountains ... over which we had to cross to reach Colville Valley. The mission we learned was deserted. He concluded to take us upon the payment of a blanket and a shirt. (Smith 1989:118)

Augustus J. Thibodo, 1859
Dr. A. J. Thibodo left eastern Canada in June 1859 and completed his overland journey to Walla Walla on December 3, 1859. Thibodo’s party traveled by horseback down the Clark Fork Valley in the winter, and they were reduced to eating their dogs and horses by the time they reached Lake Pend Oreille. On Sunday November 20, 1859, Thibodo (1990:61) recorded that the party camped “on the edge of a stream ... about ½ mile from the foot of the lake (Kallespelms).” The next day, November 21, Thibodo wrote:

Crossed a small stream & travelled along the edge of the Lake, good travelling plain trail. The lake reminds me of what I have read of the Swiss Lakes the scenery is beautiful, had one hailstorm for
a minute only today, fine clear sky with occasional clouds ... some ice on the edge of the lake. Saw some fine large soft maples, saw a great quantity [of] ducks geese & swans could not get near them ... camped on the edge of the lake, in the evening 3 Indians came into our camp. 1 Spokane & 2 Kallespelms, they say ½ days journey to the crossing [Seneacquoteen] to the Frenchman’s & that there is 5 or 6 feet of snow on the Colville mountains. Very cold night, could not sleep for the cold blew very hard, until we struck to lake the snow averaged about 9 inches. (Thibodo 1990:61, 62)

The following day Thibodo (1990:62) reported the party continued around the north end of Lake Pend Oreille; after encountering an Indian camp and trading for food they proceeded down the Pend Oreille River to Seneacquoteen Crossing.

Left camp at 9 A.M. very cold & clear wind from the N. & very high, travelled along the edge of the lake about 11 A.M. came to 2 Indian tepis [sic], quite a number of them, have no meat or fish, the boys traded for about a quart of bran flour & some blue berries & some sweet roots resembling in appearance Hyacinth bulbs, scenery beautiful, swans very numerous but very wild, Lake about ½ mile wide with bluff shores in places, have noticed water marks on the trees 12 feet above its present level, followed the shore very close to the water very hard travelling passed some very good feed in places, boys footsore walking over the frozen & rough ground, the snow is disappearing as we go on, arrived at the crossing about 4 P.M. 2 Indians came with us & brought their canoes. Strange shape like a pike’s head, birch bark, exceedingly cold but bright & clear, could not sleep for the cold, Fires would not burn, bad wood. Provisions nearly gone, travelled about 12 miles. (Thibodo 1990:62)

This account seems to describe Sandpoint in that the party still had some distance to go before reaching Seneacquoteen and they observed quite a number of tepees at this location. Although a creek is not mentioned in this account, the party was traveling along the edge of the lake. It is intriguing to consider that this location might have been Indian Island.

**American Boundary Commission: George Clinton Gardner, 1860**

The next historic descriptions of the Indian trail connecting Lake Pend Oreille with the Kootenai River came from the journals and reports of the American and British Boundary Commission survey parties that used Thompson’s “Lake Indian Road” and other trails to move supplies and equipment between their depots on the Pend Oreille River and the Kootenai River.

The most detailed early historical records of the project area were created during the survey of the 49th parallel between the United States and Canada, when both American and British survey parties each established a major supply depot at Seneacquoteen Crossing at the point the Skeetshoo Trail coming from the south reached the Pend Oreille River at modern-day Lecled, Idaho. Because the north-south orientation of the mountain ranges make it impossible to travel east-west following the 49th parallel, the Boundary Commission survey parties had to approach the international boundary from the north or south. Supplies were brought to Seneacquoteen Depot from Walla Walla, and pack trains moved the surveyors and their camp equipment to the north end of Lake Pend Oreille and then north along Indian trails to the Kootenai River where another supply point was established at Chelemta Depot across the river from today’s Bonners Ferry. In 1860 and 1861 America and British survey parties passed through the project area continuously as they moved between their supply depots at Seneacquoteen Crossing and Chelemta.

---

14 Antoine Plante on the Spokane River.
15 Probably dried camas bulbs.
In addition to astronomers, surveyors, and naturalists the American party included the artist James Alden and the British party included a photographer. This photographer has never been identified but may have been Arthur Vipond, who received a “certificate of competency in photography on 25 March 1858” issued to the Royal Engineers (Mattison 1989). Mattison (1989:224) reported that “Three photographers were sent out from England on two occasions to document the 49th parallel survey. The first photographer, possibly A. J. Johnson, deserted in the spring of 1859 and was replaced in the fall of that year by two anonymous photographers ‘trained at the South Kensington Museum’ in England.”

Archibald Campbell, the head of the American Boundary Commission, placed George Clinton Gardner in charge of the American survey parties. Traveling overland from Fort Colville where the American surveyors spent the winter of 1859–1860, Gardner arrived at the site of the abandoned Jesuit Mission on the Pend Oreille River which in 1860 he noted as consisting of “five old log houses, dilapidated and almost unfit for use, situated about a half mile from the river on the east side” (Gardner 1861:151).

Gardner reported:

Finding two canoes there I tried to hire them so that I might drop the most of the party off at once, but that proved a failure and it was not until our arrival at the falls ¹⁶ that we found canoes we could get possession of peaceably. We passed many old Indian encampments but did not see any Indians until we found the house of an old Indian just opposite to our camp at the falls. He having two bark canoes we soon arranged with him to take us up the river thus enabling us to dispense with most of our packers, increasing considerably the number of days rations for the remaining ones.

There was a thin coating of ice formed over the channel or deepest water of the river during the nights, forming a serious obstacle to bark canoe navigation, and our old Indian friend would frequently stop to express his regrets at having entered into an agreement with us. The wind in the day would often break up this ice but then the floating pieces were even more dangerous, so after reaching the outlet of Kalispelum Lake ¹⁷ with our canoes we encamped, remaining over one day in order to examine the country beyond. The lake was frozen from point to point and it would have been dangerous indeed to have ventured further with the canoes; our rations also made it prudent for us to think of returning if we expected them to last as far south as the Spokane River. We thereupon only continued our reconnaissance over the lake seven or eight miles further, crossing from point to point on the ice, making a distance of about 60 miles by the river from the Mission.

The Vermilion or Tchce.q.tsum.in River ¹⁸ that empties into Clark’s Fork almost five miles above the falls is a bold stream from the north draining a large lake ¹⁹ called by the Indians E.sah.kwut, and it is said to be navigable at high water for canoes. About nine miles above this river is the crossing on the trail from the Spokane ²⁰ near the mouth of a small stream called by the Indians (Sinyakwateen) ²¹ draining Pekowla Lake, a sheet of water almost seven miles long and 500 or 600 yards wide. ²² The trail from the crossing follows along the right²³ bank of the river to Kalispelm Lake and thence around the northern shore of the lake. It appears to be nothing more than an

---

¹⁶ Today’s Albeni Falls on the Pend Oreille River between Priest River, Idaho and Newport, Washington.
¹⁷ Lake Pend Oreille, Idaho.
¹⁸ Priest River.
¹⁹ Priest Lake.
²⁰ Seneacquoteen Crossing.
²¹ Hoodoo Creek.
²² This lake has since dried up.
²³ North bank (river right and left are in relation to travelling downstream).
Ethnohistory

old Indian trail although used for years by the Hudson’s Bay Company in the transportation of supplies to and furs from, the Flathead country. To avoid the timber and underbrush it is located at the edge of the waters of the river and Lake, and consequently is impassible at high water while but a short distance back there seems to be a low terrace extending from the crossing of Clark’s Fork to the north of the lake where the trail forks, one branch to the north leading to the Kootenay Valley and the other following the valley of Clark’s Fork. From the information given by the Hudson’s Bay Company it was thought it would be necessary to navigate the river from the crossing to where the trail to the Kootenay leaves the lake but that would be attended with great delay and there is no doubt that a good trail can be opened above high water mark.

Upon our return down the river we left the canoes at the mouth of Sinyakwateen Creek and started again on snowshoes. Our old Indian canoe man being left to continue on down to his home where there was no doubt of his anxiety to be and perhaps he will never again undertake to navigate these waters at this season in a bark canoe. (Gardner 1861:150–154)

A letter to Lt. John G. Park dated March 12, 1860, describes Gardner’s first reconnaissance trip to Lake Pend Oreille earlier that winter in which he crossed Sand Creek and continued around the north end of the lake as far as today’s Boyer Slough:

After reaching the outlet of the Kalispelm Lake I encamped and remained over one day in order to examine the trail beyond. The lake was frozen over from point to point and we found no difficulty in traveling across the ice. I went up to the lake as far as the point where the trail to the Kootenay leaves it [David Thompsons “Lake Indian Road”], which is nothing more than an Indian trail. To avoid the timber and brush it is located at the edge of the waters of the lake and river, while but a short distance back, there seems to be a low terrace extending the whole way from the crossing of Clarks Fork to where the trail now leaves the lake. The half breed Guide, as also the old Indian who lives on the river tells me that the trail up the valley from the crossing is good, and dry at high water. There are several streams which we will have to cross but all of them can be forded without trouble there being only one, Skup-Kup-eh Creek, that remains high for more than a day or two: The guide pointed out to me the route to the crossing of the Kootenai River, and it appears to be over a level country as I could see no mountains except those to the east, and west which form a gap, to the north of the lake. The timber is dense but I judged to be with but little underbrush and the Indians tell me the grass is good the entire way to the Hudson’s Bay Fort on the Kootenay. The snow was several feet deep, so it was impossible for me to make as complete an examination of that portion of the route as I could have wished, but I have not the least doubt that a trail from the crossing of Clarke’s Fork can be made, and do away with the necessity of navigating the river and portions of the lake which would be attended with great delay. The Indians say we can reach the crossing of the Kootenay in three days from the crossing of Clarke’s Fork. (Gardner 1860)

On May 9, 1860, after the American depot at Seneacquoteen had been established, Gardner (1861:169,170) described crossing the Pend Oreille River and leading a party around the north end of Lake Pend Oreille along the old Indian Trail that crossed the mouth of Sand Creek.

---

24 At Boyer Slough.
25 Gardner was in the vicinity of Sandpoint, Idaho.
26 Seneacquoteen Crossing on the Pend Oreille River near LaClede, Idaho.
27 Possibly Sand Creek.
28 Today known as the Purcell Trench, a glacially carved valley.
29 Ft. Kootenay.
After preparing everything for a move beyond and with the hope of our not returning until the close of the season I crossed the river on the 9th May. My party consisted of recorder, cook, packers, and guide or interpreter (an Indian). Our route was along the right bank of the riverfollow an old Indian trail, crossing many small streams by fording until coming to Clep.clep.wah [Sand] Creek, a short but wide and deep tributary of the lake. Here we had to unpack and raft over our stores and swim the mules. The dry drift logs found along the lake shore served well to form a raft and being provided with auger and axe no time was lost so we were soon in motion again following the shore of the lake for about five miles beyond, making a distance during the day of about 20 miles. We encamped on a small stream coming from the northwhere we found a foot log across, over which we transported our supplies that afternoon so as to have a good start in the morning.

The route thus far has been along the water's edge over boggy ground in many places and will be impassable at high water. A short distance back from the river the ground appears more favorable for a trail and as this portion of the route had been partly examined during my winter trip to Kalispelum Lake, Mr. Gibbs, who has charge of the road party, had been posted. Along the lake beyond Clep.clep.wah [Sand] Creek there appears to be a terrace above the highest water so it was recommended that the trail be opened along the foot of the hills a mile or so back from the lake and then the numerous streams could be crossed without bridges or with short ones. (Gardner 1861:169,170)

By June 1860 the Americans were hard at work making the Indian trail from Seneacquoteen Crossing eastward around the north end of Lake Pend Oreille suitable for their pack trains. In early July Gardner wrote:

All the parties then with the exception of my own were in advance and on the Monday following July 2nd we were in motion escorted by the detachment in command of Lieutenant Camp. The new trail over which we passed proved to be a work of great labor and the amount of bridging required was marvelous. One of the bridges measured over 200 feet in length and about 12 or 15 feet high over a small creek [Sand Creek?] that we could almost step across at low water yet a few days before we crossed it would have been carried away and communications cut off had Mr. Gibbs who was the engineer of this structure, made it a few inches lower while without doubt it will be frightful to cross at low water and will probably not be used. All of these bridges were built upon bents and made from three to four feet wide. The one across Pack River was the most difficult of construction and instead of being horizontal has the appearance of an arched bridge on account of the men not succeeding in placing the bents in the position designated. Since it was considerable labor to place them at all to change them afterwards would have cost too much time. (Gardner 1861:192)

The American survey parties finished their work on the 49th parallel by the end of the year, and on December 6, 1860, the Americans vacated their depot at Seneacquoteen Crossing.

**Description of Indian Trails by George Clinton Gardner**

In May 1860 George Clinton Gardner, Chief Astronomer for the American survey parties made a reconnaissance trip from the Pend Oreille River to the 49th parallel to scout a route north. Gardner, although aware of the point the Indian trail meets Lake Pend Oreille, bypassed Boyer Slough and did not turn north until he reached the mouth of the Pack River. He then crossed to the east side of the river

---

30 Gardner crossed to the north side of the Pend Oreille River at Seneacquoteen Depot and was traveling eastward along the north side of the river toward Lake Pend Oreille.

31 Sand Creek at the present location of Sandpoint, Idaho.

32 Probably today’s Boyer or Mud slough.
and continued north along the higher ground, somewhat east of the trail that Thompson followed. On May 9, 1860, Gardner wrote:

On the second day after a march of five or six miles we reached Pack River, our route being almost due north along the east side of the prominent gap extending from Kalispelum Lake to the Kootenai River. The valley of the Pack River appears to have a southeast direction and its waters empty some distance east of where the Indian trail turns north from the Lake. The steam is rapid and deep and after reconnoitering above and below we found a heavy raft of drift wood over which we were able to cross our packs by hand but the mules had to swim at the usual Indian crossing. The bottom land along this river appears wide in places and quite boggy evidently being subject to an annual freshet. In leaving the river bottom we rise upon a terrace where the timber is large and free from underbrush through which we continued our course the next day north along the east side of the valley, crossing two or three tributaries of Pack River and encamped on a low divide before reaching a tributary of the Kootenai River. The timber here has been burnt and the grass not as good as that passed over in the open timber after leaving Pack River. South of Pack River the timber was dense and as far back as the crossing of Clark's Fork [Pend Oreille River] there was but little grass, the only good grass being upon the small prairies along the lake and river, which are flooded during high water. (Gardner 1861:171)

Gardner’s reason for keeping to the higher ground on the east side of the Pack River valley rather than taking the Indian trail north from the mouth of Boyer’s Slough was likely do to spring flooding that made the Indian trail unusable. His remarks on his return journey over the same route on May 27, 1860, made this pretty clear. Gardner recorded:

we found the branches of Pack River and Pack River itself, much swollen giving us great trouble in passing. We encamped on the 27th upon the north bank of Pack River after a travel of about 14 miles during the day. All of these streams will have to be bridged as also Pack River, and to bridge it will require some little engineering since the banks are low and the stream itself about 50 yards wide. (Gardner 1861:180)

This account stresses an important consideration of why Sandpoint and Indian Island had great importance to the Kalispel and other tribes after the arrival of the horse. Any area like the flats flanking Sand Creek and the peninsula that joined Indian Island to the higher ground of Sandpoint would have supported ample forage for the horses—a fact not lost on Gardner’s party as they struggled to find forage for their horses during a time of high water.

By the end of June 1860 American work parties completed their trail improvements and bridged the streams and rivers between Seneacquoteen Depot and Chelemta Depot. The work greatly improved the route for pack trains along the north side of the Pend Oreille River, around the lake, and north to the Kootenai River crossing and for a time the trail was known as “The Boundary Commission Road.” One of the streams Gardner crossed on July 2, 1860, and described as having been bridged can only have been Sand Creek.

**American Boundary Commission: James Alden, 1860**

James Madison Alden was the official artist for the United States Boundary Survey and completed a series of 66 “enlarged and repainted scenes” along the 49th parallel intended for a report that was never published (Stenzel 1975). While at Seneacquoteen Depot in 1860, Alden painted a number of watercolors of the Pend Oreille River and Lake Pend Oreille, which, along with the 1845 painting by James Warre and the British photographs, represent the earliest images of the project vicinity. Many of the American Boundary Commission camps appeared in Alden’s paintings including Seneacquoteen
Depot (Figure 15) on the Pend Oreille River and Chelemta Depot on the Kootenai River as well as scenes along the 49th parallel and along the route of travel of the surveyors (Figure 16).

Figure 15. “Sinyakwateen Depot from near left bank of Clark Fork (Pend Oreille) looking up. Camp bears N.E.” 1860 watercolor by James Alden (National Archives Collection, Washington, D.C. Bonner County Historical Society).

Figure 16. “Kellispelm Lake from Yellow Bluff (probably Warren) Island … looking SE toward south extremity of the lake.” 1860 watercolor by James Alden (National Archives Collection, Washington, D.C. Bonner County Historical Society).
British Boundary Commission: Charles Wilson, 1861

In May 1861 Charles Wilson, Secretary of the British Boundary Commission, arrived at Seneaqueetoon Crossing to help reopen the depot camp established by the Americans the previous year. Wilson sketched a picture of the view from Seneaqueetoon (Figure 17) and wrote in his journal:

May 25, 1861
We reached Sinyakwateen depot after a ride of 10 miles, through thick wood; round our depot the bush is nearly as thick as we used to have it on Fraser river, which prevents moving about much in the woods, but the place has it’s good points as well as its drawbacks.

May 27, 1861
Sinyhakwateen depot is on a prolongation of the great Kalispelm [Pend Oreille] Lake and I have already established a canoe so that I can go out and fish and explore the shores of the lake when I have time for it ... A paddle in the canoe of 10 or 12 miles would take me to a good hunting country, where mountain goat and bear are numerous, so that it is not such a bad place to stop at; wild fowl breed here, also & the day we arrived we found a duck’s nest with five good fresh eggs in it. The mosquitoes have not yet become numerous, but are said to be very bad in July and August, when I hope to escape them by taking a trip into the mountains. The scenery round is very pretty, with the quiet water reflecting back the dark pines of the mountain. (Wilson 1970:147)

Figure 17. Charles Wilson’s 1861 sketch view of the Pend Oreille River from Seneaqueetoon Depot (British Columbia Archives, Victoria, B.C. Catalog No. PDP03213).

On July 10, Wilson set out to follow the Indian trail east along the north side of the Pend Oreille River passing the mouth of Sand Creek and continued on to the Pack River. In July 1861 Wilson journeyed from Seneaqueetoon Depot to the British depot on the Kootenai River and described summer travel along the improved Boundary Commission trail in the vicinity of modern-day Sandpoint:
July 10, 1861

After starting we crossed our horses and baggage over the Pend Oreille River and got away from the opposite bank at about ½ past 7; for the first 12 miles we followed up the course of the river, through thick timber, catching an occasional glimpse of the river on our right, striking off then to the left. After 19 miles more we came to Pack river, which we crossed and camped a few hundred yards beyond at about ½ past 4; the whole of the road was over level ground, through a dreary forest in which the underbrush prevented our seeing anything but the narrow trail a few yards in advance of us; the heat was intense and there not being a breath of air it was like travelling through the thick atmosphere of an oven and gave us all headaches. At Pack river we were greatly troubled by mosquitoes and a large fly which bites like a lancet and draws blood very freely; we had to keep up large fires, in the smoke of which the poor horses stood, unable to feed from the number of flies and presenting a most melancholy spectacle. (Wilson 1970:147)

**British Boundary Commission: Samuel Anderson, 1861**

Samuel Anderson, commissioned as a lieutenant in the Royal Engineers in December 1858, eventually became the Chief Astronomer of the British survey parties. Anderson’s correspondence during the survey of the 49th parallel was published by the Champlain Society of Toronto (Jackson 2000). On July 3, 1861 Anderson wrote his sister Janet from the Kootenai River describing his journey north from Seneacquoteen Depot and his observations related to the Kalispel and Kootenai Indians in the vicinity of the Boundary Commission supply depots on the Pend Oreille and Kootenai rivers.

We left Sinyakwateen on June 15th and up to July 3, we had only reached 120 miles beyond it, altho’ we followed nominally a beaten track, used by the Indians of these parts. They speak quite a different language from the Colville Indians, and it is consequently impossible to communicate with them in any way but with signs; this is not a very difficult matter as the questions to be asked are so simple ... For instance the information one would try and get from them is, whether the trail is clear and fit for packed animals to travel over. Whether there is good grass everywhere for grazing: & whether the rivers are fordable or navigable by canoes or rafts &c.

We have seen very few Indians however, only a few fishing families at the places where our two depots are; but we frequently see the remains of very large camps, principally the framework of their lodges forming a conical enclosure. In some of the more recent ones the network of branches and leaves, or regular thatching, still remains, and they look remarkable snug & cozy inside. The fire is made in the middle of the lodge which is about 12 feet in diameter at the bottom, and the smoke of it escapes thro’ a hole left in the very top. Each family has a lodge of its own; the younger members do all the hard work of catching fish and procuring water and fire wood, the older ones gamble most of their time away when their clothes & any other small things frequently change hands. This amusement seems to be a part of their nature, for they have their own peculiar gambling games as well as games played with packs of cards. I suspect the latter can scarcely be very common among these Indians, as they have such few opportunities of intercourse with white men. (Jackson 2000:296)

**British Boundary Commission: John Keast Lord, 1860–1861**

Some of the most colorful and interesting accounts from the British Boundary Commission are found in the journals and writings of John Keast Lord, an assistant naturalist and veterinarian with the British surveyors. From the British camp at Seneacquoteen Crossing, Lord (1866:177) wrote that “the trail runs through twenty-five miles of dark, gloomy, grassless forest, until reaching the Pack river, a small stream, except in the flood-time: from this river to the Kootanie, the trees are less thickly clustered.” On encountering Kootenai Indians on the Kootenai River in the vicinity of Tobacco Plains, Lord (1866:178) continues, “All the savages I saw wore small brass crosses suspended from their necks, and invariably
made the sign of the cross on their breasts when they shook hands” and then goes on to describe the Kootenai canoe:

Their canoes are of a most singular shape, not unlike the Kallispellem canoe ... They are made of a large sheet of bark, stripped from the spruce-fir, which is tightly sewn at both ends, but sloped to form a conical point ... the bark is supported on ribs of split wood, and gummed where there are any holes or weak places. When an Indian paddles it, he sits at the extreme end, and thus sinks the conical point, which serves to steady the canoe like a fish’s tail, while the other is raised clear above the surface. They are more easily upset than any canoe I was ever in, but with skilled hands carry a fair-sized load, and pass rapidly over rather than through the water. (Lord 1866:178)

British Boundary Commission: Charles Wilson, 1861

Charles Wilson, Secretary to the British Boundary Commission, traveled north from Lake Pend Oreille to the Kootenai River crossing in July 1861. Wilson left the following description of the journey after starting north from the mouth of the Pack River:

July 11, 1861
Today we travelled 18 miles and camped on a small creek where there was a good supply of grass and a good breeze blowing kept off the mosquitoes and flies in some degree; a portion of the road we kept along the side of a steep bank to escape a large swamp on the left from which the water runs in one direction to the Pend Oreille and in another to the Kootenay. The journey was through forest the whole way, so that we could see nothing but the peak of some distant mountain, which occasionally showed itself through an opening in the timber.

July 12, 1861
After 12 miles we reached the Kootenay river, which we crossed and camped at our advanced depot of Chelemta through dense timber and the mosquitoes very bad, especially about Paddler’s lake33 where the ground was low and swampy and the underbrush very thick ... Soon after my arrival I had a visit from the chief and a number of Indians belonging to the tribe of Lower Kootenays. They seemed to be a very quiet and harmless people, but speaking a different language from any I had yet heard, we were only able to talk by signs, which is not a very profitable way of gaining information. (Wilson 1970:150)

Again in August 1861 Wilson travelled from the Boundary Commission supply depot at Chelemta on the north side of the Kootenai River (across from modern-day Bonners Ferry) south along the Indian trail leading to Lake Pend Oreille and down the Pend Oreille River to Seneacquoteen Depot. In his journal entry for August 22, Wilson (1970:163) noted the forest fires raging between Lake Pend Oreille and the Kootenai River.

August 22, 1861
Today we arrived at Sinyakwateen and finished our trip; the only incident in the last few days being that one day we found the whole country in a blaze and the trail much obstructed by blazing logs and fallen trees over which we had to scramble. (Wilson 1970:163)

Prospectors and Miners: Winter 1865–1866

On December 31, 1865, a party of prospectors who had followed the Trail to the Buffalo west from Montana along the Clark Fork River and around Lake Pend Oreille arrived at Walla Walla. A journal kept by an unidentified member of the party was published by the Walla Walla Statesman on January 12,

33 Paddler’s Lake appears on Boundary Commission maps just southeast of Bonners Ferry.
1866. The starving party of prospectors had reached lake Pend Oreille on December 14, 1865, where they “came to an Indian camp where we got flour, sugar, fish, and cammas [sic] roots, off which we made a glorious repast” (*Walla Walla Statesman* 1866:2). The following morning the party of whites was “Awakened by the Indians chanting a morning hymn” and the journalist writes “These Indians are all of the Catholic faith, and noble fellows they are.”

On December 16, 1865, the party crossed the pack river over ice and “came to a trading post, where we bought 50 pounds of flour for $20, and bacon at $3.25 per pound” then continued on until dark camping at the “junction of the Kootenai Trail” (today’s Boyer Slough just east of the present town of Kootenai). On December 17, 1865

Had but little to eat, having fed nearly all our flour to the animals. This day had a fall of 15 inches of snow, making in all two feet, but in places drifted to a depth of four or five feet. Traveled most of the day on the ice, along the margin of the lake, and at 3 p.m. crossed to the south side, and continued down five miles to the ferry [Seneaquoqueen Crossing]. Crossing the lake was the most perilous part of the whole journey, as the ice broke clear across and the water spouted until it was two inches on the ice (*Walla Walla Statesman* 1866:2).

**Wild Horse Trail: Louis Trimble, 1865**

Gold was discovered in 1863 on Wild Horse Creek just east of today’s Cranbook, British Columbia, sparking a short-lived gold rush. By June 1864 as many as 500 prospectors and miners had reached the site of the discovery, and at the height of the rush there were 20,000 men in the area around Wild Horse Creek (Trimble 1952:5, 13). Most of the men on Wild Horse Creek in 1864 were Americans, and most of the supplies the miners needed came north from the closest supply point at Walla Walla. The route from Walla Walla to the gold fields became known as the “Wild Horse Trail.” The section of trail between Lake Pend Oreille and the Kootenai River was heavily travelled in 1864, and by 1866 the *Mary Moody*, the first steamboat on Lake Pend Oreille, was making twice weekly trips from Pend Oreille City at the south end of the lake to Cabinet Gorge and on the way stopping at Kootenai Landing at the mouth of Boyer Slough to pick up and discharge freight and passengers heading for the gold fields.

Despite the fairly frequent movements of men and pack animals over the trail, there were few settlements along the route until sometime after the gold rush had ceased. Bonners Ferry was founded at this time, but was only a ferry crossing and a small trading post at the beginning. From there northward and southward there was nothing to aid the single traveler. As a result, travel was dangerous, especially during the time of deep snows, and a number of cases are recorded where men and animals were found frozen in the spring following a heavy winter. But the Wild Horse was still the most practical trail, and men and supplies continued to move over it as long as sufficient gold remained in the Wild Horse area.

By 1880, however the boom was so completely over that ... below the border there was only Richard Fry at Bonners Ferry. Although for a time the road was almost abandoned, discoveries of galena ore around the Kootenay Lake district stimulated traffic again on that part of the trail running from Lake Pend Oreille to Bonners Ferry. The Northern Pacific railroad had arrived in

---

34 This is the only record of a trading post on Lake Pend Oreille in the 1860s, and it was likely a temporary establishment probably consisting of a tent camp. The location of the post is thought to be at what is now called Mud Lake or Mud Bay, on the west side of the Pack River near its mouth.
Kootenai, Idaho, and David Thompson’s old route became a freight road, terminating at Bonners Ferry where steamboats bound for Kootenai Lake took over. (Thimble 1952:13)

In May 1866 one unnamed and disillusioned traveler, who had headed around Lake Pend Oreille and north on the Wild Horse Trail, wrote “today I am satisfied that no word in the English language can convey an idea of its condition ... I have seen every animal in one train mired down at once, and their untied loads would not weigh 300 pounds. In short the road is impassable to anything without wings or life preservers” (Cork 1985:3).

**Camels on the Wild Horse Trail: James Watt, 1860s**

For a brief time during the Wild Horse gold rush in the late 1860s, Arabian camels were experimented with as pack animals to move supplies along the Wild Horse Trail. These animals had been purchased from the U.S. Army for sale to miners by the American Camel Company of San Francisco. They were capable of carrying much heavier loads than mules while subsisting on brush and could travel 35 miles a day and go six to 10 days without water (Cork 1985:4). Reportedly, several camel pack trains of five or six animals traveled through north Idaho. The camel trains might have had some advantages, but the problems they caused to the mule skinners resulted in a short-lived experiment. No accounts of camels at Lake Pend Oreille have been found but James Watt, a mule skinner who traveled the Wild Horse Trail in the 1860s, has left an 1866 or 1867 account of a camel train on the Moyie River that must have passed through Lake Pend Oreille:

I first saw the camel pack train on the Kootenay trail ... This was on the Moyie River in 1866 or 1867; this camel train was packing into the Kootenai mines from Walla Walla or from Fort Hope. Our own pack train was a pretty big one, 125 or 130 mules, and there was great excitement on account of the report that the camels were frightening and driving the mule trains off the pack trails. There were three men in charge of these camels, one cook and two packers. The train was a small one; only about six animals. The camels kept up a constant bleating when being loaded and unloaded, and on hearing them or smelling them a mule train would at once stampede right off the trail. The camels were equipped with a pack saddle instead of the aparejos [a packsaddle of leather or canvas] such as we used, and they carried 800 to 900 pounds apiece, as against 350 to 500 for our pack mule. The camels browsed on brush, and could get along anywhere a mule or cayuse could. The British Columbia camel train that I met at the Moyie River on the trail to the Wild Horse mines, was I believe, packing from Fort Hope at the time.” (Watt 1891:31–32)

**Dr. Hendryx’s Wagon Toll Road/Kootenai Trail: 1885**

In 1885 the Wild Horse Trail between Lake Pend Oreille and Bonners Ferry was widened and improved by a Dr. Hendryx who envisioned establishing a toll road between the town of Kootenai and the steamboat landing at Bonners Ferry. Kootenai was the closest stop on the Northern Pacific Railroad from Sandpoint. Dr. Hendryx saw the creation of a toll road to the Kootenai River as a “gateway” to the Kootenay mines and as a potentially paying proposition (Cone 1991:37). In the spring of 1885, after securing a franchise granted by the County of Kootenai to “construct, maintain and operate a toll road ... from what is known as Mud Slough ... to the Kootenai River at near Bonners Ferry” and obtaining land for a town site to be named “Kootenai” at the southern end of the trail, Dr. Hendryx started crews working on the trail (Cone 1991:37). Cone writes:

Next, a small sawmill was brought in [to Kootenai town site] and timber rights were secured nearby. Before long, the mill was busy cutting lumber for framed buildings, including a general office for the K.M. & S [Kootenay Mining and Smelting Company], a boarding house and a general store.
Meanwhile, a gang of men were hard at work upgrading the old trail. Where possible, the trail was straightened and widened, and bridges were built to span the worst hollows. In the wettest spots, logs were laid down along side one another as corduroy.

Traffic over the toll road was light at first but gradually began to increase although it never reached the level Dr. Hendryx had hoped it would ... The company charged packers $5.00 for a team of four horses or oxen, $6.00 for teams of six, and collected tolls of between $2.00 and $2.50 per ton of ore. At the start of the 1888 season, a concern called the Thompson and Company State and Steamboat Line started running a stage between Kootenai and the river.

While the toll road was only 32 miles long, those who made the trip, whether by stage, on horseback, or on foot, had their fair share of discomforts to contend with. With spring breakup, the road became impassable in places for man or beast on account of the deep mud. (Cone 1991:37)

Cone goes on to provide some delightful if not distressing contemporary accounts of travel over the “improved” toll road that for a time was known by some as the “Kootenai Trail” and by some as “the worst wagon road in America.” According to Cone, one tenderfoot wrote:

The trip from Spokane Falls to the Kootenay mining district is at once misery and a delight. The man looking for discomfort will be fully accommodated ... At Kootenai Station ... he will be dumped into the chill grey of the morning in as desolate a spot as there is in all of Idaho ... A few hours later the kicked takes his own life in his hands ... and boards the stagecoach ... He will do this just once. The next time he will walk. The distance is only thirty-four miles but it takes six hours and a ocean of blasphemy to traverse it. (Cone 1991:37)

Cone (1991:37) reports that by 1888 the toll road had been sold back to the county for a price said to be “half of its original cost.”

**Kootenai Wagon Road, 1887**

From 1887, not long after the Kootenai toll road had started operation, we have an account of winter travel south along the road and a most interesting account of Kalispel Indians in Sandpoint. After crossing the Kootenai River on Dick Fry’s ferry the narrator of the journey wrote:

We camped on the western bank of the river, at the commencement of the waggon [sic] road which leads from this place to Sandpoint on the Northern Pacific Railway ... On the 16th of November we started about mid-day along the road, which was well chopped out and quite practicable for waggons [sic] the bridges over the worst hollows or streams, corduroy work in wet places, and very fair engineering along its whole course.

The waggon [sic] road, which is about thirty-five miles long, wanders all the time through splendid forests, varied by patches of burnt timber and occasional rivers, lakes, and bits of prairie, the latter very scarce. The ‘cold snap’ which had come on continued all the time, and we had the thermometer inside the lodge down to 14 degrees before the fire was lit, the blankets being covered with ice where our breath froze upon them. One night we camped near a creek running into the so-called Pack River, and here the burnt forest, like that in the Sinclair Pass, had the property of being fire-proof.

It was rather melancholy work trudging along this comparatively civilized path, and feeling that each step brought us nearer to all the restraining rules and regulations of dress and behavior from which we have so long been free ... But it had to be faced, and one morning the lodge was
pitched by a little brook, in a pretty grassy valley labeled under the name of Mud Slough. Opposite our door rose the tall gaunt framework of a huge trestle viaduct, across which twice a day rushed a brutal train.

There was a little station here called Kootenay, guiltless of booking office, waiting-room, or in fact anything but a platform and a name; and the great city of Sandpoint was understood to be five miles away ... It is perhaps unnecessary to say anything about American railway time keeping, but it is the fact that we tried four times to catch a train to or from Sandpoint and never succeeded ... there were several trestle bridges between Sandpoint and Kootenay, and these even in daylight are not pleasant to walk over; as the top is composed simply of one pair of rails and their ties, with no filling in between the latter, no parapet, and no space at the side ... Poor wild wanderers like us were evidently unfitted to cope with the perils and delays of railway traveling so we thought it best to move our camp down to Sandpoint.

Sandpoint is a quaint little churchless city on the shores of the beautiful Lake Pend Oreille, across which the railway runs on a very long trestle viaduct. Its only street is entirely occupied by the railway track, and it consists of about a score of buildings of various kinds, including a good sprinkling of general stores and eating-houses; at the latter of which they provide the weary traveler with excellent food at one shilling a meal, about the cheapest entertainment we ever found.

Here we fell in with the Calispel tribe of Indians the wily gamblers who had so despoiled the poor Flatbows [Lower Kootenais]. The contrast between the winners and the losers was very marked. The latter we had left shivering, half-clad in their dados; and now here were the victors, each dressed in several suits of the most gorgeous and voluminous of trappings, swaggering about as if the whole universe was theirs, and enjoying themselves amazingly. The Calispels are a small tribe, only about 100 in number, but they have powerful relatives and backers in some of the big clans, who will not allow them to be eaten up by their enemies ... their hair is plaited and painted in an exceedingly lavish and intricate manner, with a thick fore-lock in front, neat bands of crossed and interlaced plaits on the crown and sides, and a heavy wavy mane reaching far below the shoulders ... Several of them came to visit our camp, and stayed a long time shooting and otherwise amusing themselves ... These had many trousers of Gordon and Macgregor tartan, and blankets innumerable; and were further adorned with rings, necklaces, and other trinkets. (Lees and Clutterbuck 1892:353–364)

Figure 18 shows a wagon road bridge in 1907.

Mary Sands, 1891

Another account of travel north from the town of Kootenai along the “Kootenai Trail” showed that travel from Kootenai to Bonners Ferry was still an ordeal in 1891, as given by Mary Sands:

By the time the wagons were loaded the next morning, it was ten o’clock when Sam Smith and Dan McLeod announced they were ready to roll the wagons. The road was a succession of mud holes and ruts. The wheels often sank up to the hubs, and frequently both teams had to be hitched to one wagon for a distance, or the men had to throw logs across the road to give the weary horses a more solid footing.

35 Boyer’s Slough.
The slow travelling from the rain and soggy roads caused them to have to stay overnight at the Fourteen Mile House before reaching the final day of their journey. This final day found Tom walking much of the way, carrying the baby, for— with his bruised flesh—he refused to endure another mile of the continual jolting. A few miles short of their destination, the teamsters were obliged to stop and administer first aid to their horses. (Sands 1993:7)

The Steamer Surprise Traveled the Kootenai Trail, ca. 1885

In 1885 Dr. Hendryx’s toll road had been extended south about half a mile to a good location for a steamer landing that Dr. Hendryx named Galena Landing (Cone 1991:37). About this time the K.M. & S. (Kootenai Mining and Smelting Company) 31-foot propeller steamer *Surprise* arrived by railcar from Chicago (Cone 1991:37). The idea was to drag the *Surprise* 32 miles over the newly improved trail to the Kootenai River. This task was accomplished but not without some difficulty. A firsthand account of the ordeal was handed down by one of the men involved in this feat.

When the steam launch arrived at Sandpoint on its two long trucks, I was startled by its size out of water. The trail, which at that time led over the Pack River Pass to Dick Fry’s, was about the crookedest, narrowest, and most ‘up and down’ path through the dense forest imaginable, and it seemed an utterly impossible job to take this craft, though lightened of its somewhat old-fashioned heavy boiler and machinery, which we took out before loading her on the cars at Duluth, across this pass in the Selkirk range. A large force of Kootenay Indians and some ten or twelve white men, assisted by stout tackle and pulleys, at last managed the business, though it took upwards of three weeks and cost an unconscionable sum. For the greater part of the forty miles—the present good waggon [sic] road, by taking a straight course, has cut down the distance by two-fifths—the hull was carried bodily by the men; while on the steep hills, where she could not be carried, we pulled her up and let her down on rollers with pulleys fastened to trees.
On one such occasion, when we were letting her down a very steep hill, one of the ropes broke just as I was lying on my stomach underneath the bow of the hulk, fixing the rollers. Fortunately for me, these rollers, which consisted of barked logs cut from a tree, were more than a foot in diameter, and the squeeze I got as the hull skidded over me was not very serious, but it was a decidedly unpleasant sensation. (Baillie-Grohman 1900:254)

The Coming of the Northern Pacific Railroad: Winter 1882

Construction of the Northern Pacific Railroad in the early 1880s was the event that opened up settlement of north Idaho and brought rapid changes to the traditional way of life for the Kalispel and other north Idaho tribes. The following 1882 account describes the pandemonium and intense activity associated with building the railroad that must have astonished and frightened the Kalispel and other tribes whose traditional way of life was ending.

we left Spokan [sic] before light next morning for Lake Pend Oreille … At Dry Lake there is a remarkable trestle being built, which consists of no less than 132 bents. Just beyond this point was one of the enormous railroad camps which always precede the iron of a new road. It was the veritable canvas city, and its inhabitants white men, Chinamen, horses, mules and dogs. Everything here is on an enormous scale. The eating tents cover an area equal to that of a large hotel, the sleeping tents are numbered by hundreds, there are great forges and watering troughs at which twenty-five horses could drink at one time, the bread pan in the cook tent was large enough to serve a full-grown man for a bath tub.

As we approached the lake, the road became more and more rough. We passed frequent railroad camps, first the carpenters and bridge-builders, next the graders and then the “right of way men,” whose business it is to chop their way through the forest, and clear off all the timber along the line of the track, for a width of fifty feet. Having felled it they leave it to dry, when it is fired. Too often the fire spread and large tracts of county are burned over and much valuable timber destroyed … as we approached the lake the woods were on fire everywhere. This had been going on for some time, and on several occasions, recently, the fires had been so extensive that the stages have been obliged to abandon all hope of getting through … At the end of the stage route is the beautiful Lake Pend Oreille, surrounded on all sides by the towering hills, a lovely sheet of water. (Grinnell 1972:12, 13)

The writer went on to describe the Indians seen along the Pend Oreille River:

Fifteen miles down the Pend d’Oreille River, or as it is sometimes called, Clark’s Fork of the Columbia, is Senequateen … We saw many Kallispelm Indians about the ferry. This tribe, erroneously called Flatheads, hunt all through this region. They are well-to-do, and own many horses. It is in July and August that they are most numerous about the lake, when they come down to its shores as the waters fall to dig the camas (Kamassia esculenta), which forms a considerable portion of their vegetable food … All these Indians dry berries for winter use, and the “sawice berry” [serviceberry], which grows very abundantly all through the mountains here, forms a large proportion of their food of this description.

On our way from “The Crossing” [Seneacquoteen] to the lake we saw a number of Indians in their canoes. These are curious structures, made of the bark of the white pine, and sharply pointed at both ends … the canoes are closed above from each end for some distance, and the Indians paddle on both sides. As might be imagined, these canoes are extremely crank and upset very easily, for they are really almost cylindrical in shape, and there is nothing to keep them steady … the Indians creep along close to the shore, scarcely crossing from point to point. (Grinnell 1972:12, 13)
The Coming of the Northern Pacific Railroad, 1881

By Christmas 1881 Northern Pacific Railroad track construction from the east had almost reached Lake Pend Oreille, but with the ground deeply covered by snow it did not appear that track would extend beyond Hangtown before spring. By January 9, 1881, the rail head had reached the south end of the projected trestle bridge across the lake (Lewty 1987:91). Work on the 8,428-foot-long trestle bridge began in July 1881 and the first locomotive crossed the bridge from Ventnor to Sandpoint at 1:30 p.m. on Sunday, March 5, 1882 (Lewty 1987:91, 92).

The Coming of the Northern Pacific Railroad: Robert Weeks Trading Post, 1881–1884

The first permanent structure on the bank of Sand Creek was a small trading post dealing in furs operated by Robert Weeks. Eventually, with the arrival of the Northern Pacific Railroad construction crews in 1881 and 1882, Weeks opened a hotel and began operating a small sawmill; his wife, Emma, became the postmaster (Snedden 1990:1). In its very early rough-and-tumble railroad days the town, first called Pend d’Oreille, then Sand Point, and finally Sandpoint had a reputation for being one of the toughest towns in the west. An account (much shortened here) of the town by Baillie-Grohman just two years after the arrival of the railroad mentions Weeks and sheds light on the character of the town before it settled down a bit.

I was riding at a trot towards Sandpoint, along the narrow trail at a point where it twisted through a particularly dense bit of forest, when suddenly I saw Sprowle, half concealed behind a big pine, with a rifle to his shoulder, taking deliberate aim at me ... he missed me clean ... It was a close shave ... The absence of any police or Justice of the Peace at Sandpoint, where the only representative of the latter class—a notorious gambler—had lately “run agin a gun and passed in his chips suddenlike” made it impossible for me to take any steps to have Sprowle arrested, and I knew only too well that it was useless in the presence of a number of toughs who were practically running the “town,” to appeal to the few decent citizens in the place.

I decided to stay the night in Sandpoint. Sprowle I did not see, but I heard that he had arrived shortly after my reaching Sandpoint, his horse dropping down dead as he rode into the single street consisting of two rows of shanties that faced the railway track.... There were only three men in Sandpoint I could trust. One was Weeks, the postmaster, who had charge of the ready money I needed, and who was the owner of the only store, on the counter of which I was in the habit of sleeping when in Sandpoint, for the only “hotel” had been burnt down some weeks before ... the first inkling of what was brewing was Weeks's suggestion that as he had heard there might be some trouble he would prefer my seeking other quarters for the night. His whole capital was in the store, and in the back room slept his wife and child, so his request was but a prudent precaution, and, as he pressed upon me two new ’45 Colts out of his stock, and offered me an empty shack, standing a little distance off as quarters, I knew he was doing the best he could for me.

as daylight waned ... Weeks reported that two men, friends of Sprowle, with rifles were posted as sentries in front and behind the cabin ... Towards evening one unpleasant fact came to my knowledge ... it was that the monthly pay-car had passed through Sandpoint that afternoon, and hence all the male population in the place with the exception of Weeks were “filling up: as fast as the six whiskey dens in the place could bring about that happy end. Added to the local population came sundry track-men and section hands, for the nearest settlement towards the
west was Rathdrum, forty miles off, and to the east Clark’s Fork, some twenty odd miles away, not a single human dwelling being found nearer than those two points, save the shelter occupied by the railway hands ... Hence it was quite an understood thing that pay-day was followed by a night or two of the rowdiest debauch. I had been a witness at different times of dozens of such pay-day pandemoniums [sic] in railway camps, and I knew Sandpoint—known also as Hang Town36—could hold its own for depravity [Figure 19]. But a few months before, during construction days, a pay-day “bust” had ended in two men being lynched who, it was afterwards found had nothing whatever to do with the crime of which they had been accused, i.e. Sand-bagging a contractor’s paymaster ... no steps whatever were taken to punish the drunken crowd.

With such surroundings I knew I had to reckon on the occasion in question ... my refusal to leave town seemed to surprise Sprowle’s party, and it upset their plans which, as I subsequently heard, was to get me away from Sandpoint, stop the train in the woods, and after a rope’s end inquiry, let Sprowle wreak his revenge ... one fellow, a bridge night-watchman, on whose vigilance depended the lives of all the railway passengers passing at night time over those many miles of long wooden trestle bridges near Sandpoint, which were constantly catching fire – made bolder than the rest by the “tangle-foot” he had imbibed, volunteered to take me single-handed, and he really did burst in the flimsy door or our shack ... In the struggle in the dark, the fellow’s six-shooter went off ... next morning a thoroughly paralyzed town met the gaze of the one or two passengers who arrived by the train at Sandpoint. Among these was Messiter, who had heard from some train hands of the proposed little “fun” that was to have taken place during the preceding night, and who now, relieved to find me safe and sound, very good naturedly offered to stand by me in any further trouble that might arise. (Baillie-Grohman 1900:242–244)

Figure 19. NPRR map showing locations of Hangtown and Ventnor south of Sandpoint (Lewty 1987:xviii).

36 The community known as “Hang Town” was actually a small track-side community just south of Ventnor (Lewty 1987:xviii). See Figure 19.
Accounts of Indians: Norma Hohl, 1881–1882

Norma Hohl was the great granddaughter of Bert and Emma Weeks, who established a trading post at Sandpoint in 1881 just prior to the arrival of the Northern Pacific Railroad. In 1993 Hohl sent the Bonner County Historical Society part of her mother’s memoirs that related to the Weeks’ store in Sandpoint:

They finally built a store, a trading post. They were right on the railroad. That is what Grandpa was doing making ties for the railroad. So Grandma run the store and she wouldn’t see Grandpa for weeks at a time after he got up the line away ... so there she was, stuck with her two kids ... And she traded with the Indians. They had furs and they traded for furs ... they [the Indians] wouldn’t trade for the whole pile of furs. Each fur, she had to make a deal on and then he would stand back ... he’d buy things from the store for the cost of that fur. And then they’d go to another fur and if he bought a blanket he’d just strip off the old blanket she said it was most often hanging in threads and they used them for leggings and he’d cut that thing in half and lace up the leggings and put it on right there in the store.

When it was cold weather, the Indians liked to come in around the big old iron stove cause they was out in just teepees or some of them had like a dugout, a mud affair. But they’d get cold and they’d come in ... But Grandma said she never had any trouble with the Indians cause the only time she had any trouble was when some of the white men, there was a few renegades come through and she has come trouble with them ... she really feels that’s what set the store on fire you know, it burned down. The Indian Squaws would come and they’d set up the little papooses on their boards outside in the sun ... she said she used to feel sorry for them. She’d go out and put them in the shade or something. The squaws didn’t care and she [Grandma] said mother spent most of her time down in the Indian village playing with the Indians. (Hohl n.d.)

Accounts of Indians: Jeff Craemer, 1886

In 1886, Jeff Craemer arrived in Sandpoint on a hunting and fishing trip only four years after the Northern Pacific Railroad tracks reached Lake Pend Oreille. Craemer, a gentleman sportsman fond of wearing “my buckskin suit” wrote an account of his adventures at Lake Pend Oreille (Daly 1998). Arriving by train from Spokane Craemer wrote:

My stopping place was at Pend d’Oreille Station.... others call the place Sand Point. I alighted there with my traps and baggage and wired John that I would wait here until he came. I then took a stroll to view the Idaho architecture of this growing young place. When the railroad was being built, Sand Point numbered eight thousand population. One hundred would probably be the number now if a census were taken. But if the dogs were counted in, I think it would reach its old figure. The depot is a very pretty one built in Swiss style; the rest of the town is built of native woods, plain finish.

I never saw so many dogs as Sand Point owns; a fight was in progress soon after the train departed ... I thought every person in town would go out to see it. But no! I, and an old Kootenai squaw ... were all the audience. Sand Point has no streets. The railroad divides the town, and there is great rivalry between the “North Siders” and the “South Siders.” The eating house is on the north side, and the sleeping room on the south. (Daly 1998:25)

Craemer’s first hunting camp on the lake was at Bottle Bay on the west shore, which he reached by boat. Here he was visited by a “Pend d’Oreilles” Indian he referred to as a “chief” and called “Moushelle.” This man was almost certainly Michelle, an Upper Pend Oreille head chief who was the successor to Chief Alexander who died in 1868 (Bigart and Woodcock 1996:99). Michelle, whose Indian name was Whe-whitth-schay (Plenty of Grizzly Bear) died at his home near the present-day town of Ronan, Montana, about 1890 (Bigart and Woodcock 1996:99). Craemer wrote:
About noon we had a caller. We were sitting smoking in the tent when we discovered a birch canoe containing an Indian coming around the bend and land on the beach near our boat. The Indian was tall, well made, dressed in a flannel shirt and deer skin leggings, bare headed and bare footed. It was Moushelle, the chief of the Pend d’Oreilles, whose wick-io-up we had noticed back on the point.... He was a man of some wealth in land and horses. He stopped half way up the beach, when we went out and invited him in ... He told us where we could find “Steya” (moose) plenty ... he couldn’t go himself as he had to dig potatoes, but his brothers Alex and Tom would pack and guide. (Daly 1998:34)

Later Craemer and his hunting partner went to pay a visit to “Moushelle” at his camp and Craemer continued:

The flap of the tent raised and out came the chief followed by his two squaws, five children, five dogs, and two very old Indians who were Moushelle’s mother and uncle ... Moushelle shook hands and “How’d” as if it had been months since we last met. His boats, made of white pine bark, were drawn up along the shore. They were a different pattern from anything I had seen before ... They are paddled with a short blade dipped three times quickly on one side, raised out of the water and dipped three strokes on the other, and so on, giving the boat a zigzag course, but move fast.

The squaws and younger children were dressed in deer skin, with bright red and yellow shawls and blankets. The oldest son, a young man about sixteen or eighteen, was naked except for a breech-cloth, his body streaked with vermillon and ochre ... The chief himself was dressed as before with the exception of a head-dress made from the skin of a pony’s tail, the hair of which was cut short and stood out straight all around. He had also an eagle feather fastened to it, which drooped over his long hair.

After the first review, the squaws, dogs, children and old people, went back into the tent. We were now requested to follow, and did so. The wigwam being large enough to accommodate us all. The squaws were preparing a meal. The bread was placed in a long-handled frying pan, held vertically to the fire, first on one side and then on the other. Venison cuts stuck on pointed sticks were held in the blaze ... I was given the place of honor. We had for dinner, soup, fresh bread, and venison. At the close of the meal Moushelle passed the pipe around... My buckskin suit and moccasins formed an endless subject of conversation. (Daly 1998:35)

Accounts of Indians in the Pack River Delta: Ethel Ashley, 1888

Ethel Ashley was born October 5, 1882, in Denver, Colorado. With her mother and sister, she arrived by train from the east on August 27, 1887 to join her father. He had come to Lake Pend Oreille in 1886 looking for work and had homesteaded at the mouth of Pack River at what is now known as Sunnyside. In her memoirs, written when she was 92 years old, Ashley recalls the Indians who used to visit their Sunnyside homestead.

In 1888, the Indians came thru Sandpoint and Kootenai over a trail across the hills and into Pack River Valley just south of the Buttes,37 then south on the meadow to the then “Hawkins Point” on Pend Oreille Lake near the mouth of Pack River and the old N.P.R.R. trestle. There they camped unpacking their ponies, then cutting poles for their teepees. They fished and prepared to go across the meadow to the “Indian Ford” on Pack River, on to Hope, up Hope Mountain for the huckleberries which they gathered and put into cedar bark baskets covered with leaves and hung on their pack saddles. [At] Hope and farms they sold the berries for 50 cents a generous gallon or 25 cents for half a gallon measured in the then lard pails. (Ashley 1994: unpaginated)

37 “The Buttes” is a local name for a hill that is located on the west side of the Pack River near its mouth.
Accounts of Indians in the Pack River Delta: Dale Selle, 1880s

Dale Selle grew up in Sandpoint and is related to the Ashley and Hawkins families. These families came to north Idaho in the early 1880s and settled on “Hawkins Point” at the mouth of the Pack River in 1885 (Hawkins) and 1886 (Ashleys). In March 2001, Robert Betts interviewed Dale and his father Bob Selle about the early history of the Pack River Delta. Dale recalled his great aunt Ethel Ashley telling him about Kalispel families arriving at the mouth of the Pack River each summer and camping at “Hawkins Point”:

[coming into Mud Lake on the east side of the Pack River] they’d wade in the stream, the kids would, and they’d just kind of spread out and on a “dog trot” they’d run once they hit this meadow (the Pack River Delta). They must have been excited, they [the Hawkins and Ashley kids] were glad to see them coming ... They’d come down here to camp [at Scott’s Spring on Hawkins Point]. They had baskets for the huckleberries and stuff. Horses of course. Wagons in later years. (Betts and Lyons 2001)

Will Hawkins was well known to the Kalispel. He grew up with Kalispel kids and spoke at least some Kalispel. A Hawkins family glass plate photograph taken about 1900 shows a Kalispel man standing with his rifle at Hawkins Point (Figure 20).

According to the Hawkins family, the Kalispel band that returned annually to camp near Hawkins Point was led by a man named Pierre (Peell) Joseph. Whether the individual with the rifle in the Hawkins photograph is Pierre Joseph or one of his band is not clear. In 2001 Kalispel elder Alice Ignace confirmed that Pierre Joseph was buried on the Kalispel reservation at Usk and that he was a Coeur d’Alene married to a Kalispel woman (Betts 2001:25). Dale Selle’s mother used to tell a story about the Indian women coming to their house to measure the white children’s feet for moccasins. Selle related that:

The Indian women would tie knots in a buckskin string and they had foot measurements for all the kids on one string. Then they’d come back with a finished pair that fit just right. She also used to tell how much the Indian women liked potatoes, how they would boil them and throw anything they had in with the potatoes, squawfish or anything ... and camas, there was a little camas around here ... in a wet year there’d be quite a lot of camas. Not every year but you get the right conditions in the spring and it’ll be blue camas all over here, not all over the meadow but all over the banks. It only comes every so many years ... they [the Indians] used to burn pine needles off over by the Wildlife Viewing area [Sunnyside road at Oden Bay] so it [the camas] would come. (Betts 2001:26)

---

Figure 20. Kalispel man at Hawkins Point at the mouth of the Park River about 1900 (Ashley family photograph courtesy of Dale Selle).
**Accounts of Indians in the Indian Meadows/Clark Fork River: Tillie Ruen, 1890s**

Tillie Ruen was born near Clark Fork, Idaho, in 1893 to parents who had come from Washington State by covered wagon in the late 1880s to homestead on the Clark Fork River just east of the town of Clark Fork. On January 25, 1981, Ruen, then 88 years old, was interviewed by Sharon Boswell. Some of her earliest memories as a child were of the Indians who camped on or near their homestead. Ruen recalled:

They just brought their tents along and put them up and lived in those tents and then when they come across [the river] why they’d come up and get the vegetables and stuff from us down below there because there wasn’t any other place to get vegetables or any other people living here ... I think they were Kalispel because they seemed to come out of Montana. [They came in] summer time to fish and pick berries. There were a lot of dew berries and raspberries all through the woods. And huckleberries up in the mountains ... They brought us huckleberries and we found out what they were and then they would tell us where they found nice patches and where we could go and pick.

they’d go through with a whole bunch of horses. They’d go down on the lake a lot. Down to Hope. I think, they’d get across [the river] and they’d go down there on the lake. I think they spent a lot of time on our property that I own down there by the lake. 38 Down by the lake I think there were a lot more of them down there. They’d come from different directions ... they’d come down on our place, to the old ranch down there and go through those rituals of theirs and everything, their songs and their powwows and things like that for us kids and mother. Dad was gone on the railroad so much. There were real friends with us, and they’d pick out the famous horse that they had and every fall they’d give us a pony, for us to keep ... we never had a bit of trouble with them. So many people were kind of mean to them ... but mother and us kids never had a bit of trouble. When they wanted chickens or anything like that, well she’d trade them chickens for berries ... they like chickens awfully well. She’d have some older hens that they’d want because they wanted to cook them ... She’d trade berries for them, for huckleberries. (Ruen 1981:unpaginated)

**Accounts of Indians in Sandpoint: Mel Nesbitt, Late 1890s (after 1894)**

Mel Nesbitt was born in 1887 or 1888 and came to Sandpoint as a child in 1893 and remembered only six families living in town (Nesbitt 1973). In a 1973 interview, Nesbitt, then in his 80s, talked about Indians on Sand Creek around 1895 (Nesbitt 1973): “I seen Indians on the Sand Creek side, where the bathing beach is,” there’d be a thousand or fifteen hundred camped there and then down Sand Creek, that grass was up to a horses belly, you know, and that was full of Indians. And up at the mouth of Pack River, more ... I was only about seven years old then.” Nesbitt donated an 1894 photograph to the Bonner County Historical Society showing an Indian teepee at the city bathing beach (City Beach) (Figure 21).

**Accounts of Indians in Sandpoint: Vera Jones, ca. 1915**

Vera Jones was born in Sandpoint in 1908. She and her husband, Walt Jones, built the Lakeside Motel on Sand Creek in 1940 and operated the motel for 35 years. Before she passed away in 1994, Jones wrote of her life in Sandpoint. One of her earliest memories as a young girl (probably around 1915) was of Indians racing horses through town: “The first exciting thing I remember were the Indians on the Fourth of July racing bare back down Ella Avenue as it was the longest and straightest street in town at that

---

38 The Ruens owned property near Denton Slough at the mouth of the Clark Fork River. The area was known as “Indian Meadows” because of late summer/early fall Indian gatherings that lasted there into the early 1900s.

39 The area referred to as the “bathing beach” was at the mouth of Sand Creek.
time” Jones (1984:2). Jones also recalled the Indian powwows at City Beach before 1940: “The Indian powwow’s were fun too, they played all kinds of games, the most popular one was the stick game, they made moccasins for any one that would buy them, sold Huckleberries, did bead work, put on some of their dances” (Jones 1984:7).

Accounts of Indian Powwows and Gatherings in Indian Meadows: Nina (Smith) Owen, 1887

Nina Smith, later to marry Sam Owen, arrived at Lake Pend Oreille from Sweden with her family on July 6, 1887, when she was 11 years old. (Parsons 1973). In a short 1973 biographical sketch of Nina Owen based on interviews conducted when she was 82 years old, Parsons (1973:4) reports that “Mrs. Owen has vivid recollections of both the Indian and Chinese populations of the [Hope] area although The Smith girls did not play with Indian children. They were fearful of the Indians because they had a habit of entering the building without knocking. The girls would run and lock themselves in their bedroom.” (Parsons 1973:4). Owen misunderstood the sociability of Kalispel Indians who camped at the nearby Indian Meadows when they would arrive uninvited and come into their house without knocking (Fritz 2010:197). Parsons continues:

There were Indians in the vicinity of Highland House [in Hope] year around. Hundreds of them lived the year around at what later became known as Indian Meadows. In the fall, various tribes
would congregate there until thousands of Indians were fishing, hunting and picking berries. The meadows were located east of Hope among the cottonwoods around the mouth of the north fork of the Clark Fork River ... Excepting for an occasional Indian who became a trouble maker when spurred by fire-water, the natives were peaceful. Their lives revolved around the network of waterways centered by Lake Pend Oreille and fleets of canoes were a common sight. “Canoes were so light an Indian would pick one up and carry it on his shoulder,” said Mrs. Owen, “Yet they were strong enough to carry his entire family. They floated like a feather on the water” (Parsons 1973:5)

Mrs. Owen recalls: “One fall about 2,000 Indians congregated at the meadows to practice war maneuvers, preparatory to helping the Flat Head make war on the Nez Perce, whom the Flat Heads claimed had stolen one of their squaws. The set up posts about fifty feet apart. Then they’d charge, with their ponies running at top speed, and throw tomahawks into the posts as they rode by. Every night they beat tom-toms and engaged in war dances. They dressed in war regalia and painted their faces red, with black streaks on cheeks and foreheads. After they had practiced about a month, they all left to fight the Nez Perce but were defeated with heavy losses ... they brought back many wounded, most of whom died and were buried at Memaloose Island.” (Parsons 1973:5)

**Accounts of Indian Powwows and Gatherings in Indian Meadows: Robert Martin, 1904**

Robert Martin, who came to East Hope from Iowa in 1904, remembered as many as 25 or 30 teepees at Indian Meadows (Figure 22), sometimes in two separate camps (Mitchell n.d.:32). Hope citizens often interacted with the Indians. Martin recalled whites visiting the camp to buy huckleberries, horsehair rope, blankets, and tanned buckskin gloves, and to watch the Indians gamble at their stick games. Sometimes the Indians rode into Hope bringing flat birch bark baskets filled with huckleberries which they sold for about fifty cents a gallon. The berries the Indians brought had often been kept for days and were strong with the flavor of campfire smoke (Mitchell n.d.: unpaginated).

**Accounts of the Indian Powwows and Gatherings at Sandpoint: Charlie Stidwell, ca. 1908**

Charlie Stidwell was born in Montana in 1900 and came to Sandpoint with his family in 1908. Stidwell, interviewed in 1978, recalled Indian powwows at Sandpoint in the first decade of the 1900s that were held both at City Beach and also just north of Lincoln School on Boyer Street at what was then the Humbird Ball Field.

Where this last bridge is now use to be a long sandy point there. I also said that Sandy Point was kind of a gathering place for Indians. We had a lot of Indians coming up here visiting especially in the summer time and in the fall when the huckleberries were ripe. We use to buy our huckleberries from the Indians ... They use to come around selling huckleberries to us. They used to have big Indian powwows down there as well as up across from the Lincoln School which at one time was sort of a jungle. We’d go up there and see their teepees and see their stick games and so forth like that. That would be somewhere about the late 1920s, maybe before that. Much of this I’m telling you was when I was a kid growing up. (Stidwell 1978)

---

40 Mrs. Owen probably overestimates the number of Indians considerably.

41 Memaloose Island, off the Hope Peninsula and now privately owned, was a Kalispel burial island.

42 The most recent of Sandpoint’s long bridges.
Figure 22. Indian camp at Denton Slough (Indian Meadows) at the mouth of the Clark Fork River taken 1898 (Photograph by Phoebe Jeannott of Hope, Idaho. John B. Leiberg photo, Bonner County Historical Society).

A photograph in the Bonner County Historical Society collections from an unknown donor (Figure 23) shows a group of Indians camped at City Beach in the late 1890s.

Figure 23. Indians camped at City Beach, Sandpoint, Idaho 1896–1897 (Bonner County Historical Society Accounts of the Indians [Pow Wows and Gatherings] at Sandpoint. Photograph # 31.13).
Accounts of Indian Gatherings in Indian Meadows: Grace Prete, 1920s

Grace Prete, 80 years old at the time of a U.S. Forest Service interview in 1988, remembered that as late as the 1920s families of Indians would still come to Indian Meadows in August to pitch their teepees. They would remain there on into the fall to dry fish and gather huckleberries. Prete (1988) recalled that relations between the whites and Indians were very friendly although she remembers the Indians did not like their pictures to be taken (although Figure 24 suggests otherwise).

![Figure 24. Kalispel Indians in the early 1900s. One unidentified woman on the left and five men, likely a mixture of Upper and Lower Pend d’Oreilles (Kalispels) in a store in Hope (Bonner County Historical Society).](image)

Accounts of the Indian Powwows and Gatherings in Indian Meadows: Robert Green, 1920s

Robert Green was born in 1912 and lived much of his life around the town of Hope on Lake Pend Oreille. Green’s family homesteaded at the north end of Lake Pend Oreille in 1886. This interview was conducted on February 8, 2001 by Bob Gunter. In this part of the interview Green spoke about the use of Indian Meadows at the mouth of the Clark Fork River by Indians in the early 1900s.

I’ll tell you there was about 30 or 40 teepees a lot of the time. My sister says there was a lot more than that ... and they’d catch big squaw fish ... they’d build a little frame of willows and that was used to lay the fish on—they’d smoke them ... during the summer time they’d go up a trail into the mountains and get huckleberries ... and they made cedar baskets. They hauled those berries in cedar baskets on horses. There used to be a trail ... went right up behind my granddad’s homestead that went clear over to Troy, Montana. They went up that trail, about 3
feet wide. Then in the fall they’d go back up on the Flathead country in Montana. But they’d stay there [at Indian Meadows] during the summer and fatten their horses up there in the bottoms where there’s lots of hay … There was an old … he was kind of a French Indian I guess, I can’t remember but he used to come and stay at our house.\(^{43}\)

In the fall of the year we’d have our [Pioneer’s Society] meeting out there [Indian Meadows] … an old timers picnic is what it was over there, \(^{44}\) and he’d go out there and give these talks and he was interesting, he could tell about his dad \(^{45}\) and the early days of the Indians.

[Indian Meadows] was on the flats right at the mouth of the river. Right close to where the slough runs out. It’s changed an awful lot since that time … they [Indians] came every year. We had our old timers picnic there while the Indians were there as a rule. Sometimes they would have already left when we were there but they was around. And I know that was … the last was in 1928. I remember that, I had an old Model A at the time. (Green 2001)

**Newspaper Account of Indian Gathering at Pack River Delta, 1912**

The Sandpoint paper *Pend D’Oreille Review* reported on September 6, 1912, that “A number of Indians are camped at the mouth of the river [Pack River]. They have come for their annual supply of huckleberries. There are Spokanes, Kalispells [sic] and Coeur d’Alenes in the camp.”

**Accounts of Sandpoint Powwows: Warren R. “Chuck” Peterson, 1920s–1930s**

Chuck Peterson was born in 1924 and grew up in Sandpoint, where he worked most of his life for the U.S. Forest Service. Upon retiring from the U.S. Forest Service, he became the best-known local historian of both the history and prehistory of Sandpoint until his death in 1986. His interest ranged from prehistoric archaeological sites and rock art to lookout towers, early railroads, and logging history. Peterson’s vast collection of research and photographs were donated by his descendants to the Bonner County Historical Society.

**Accounts of Sandpoint Powwows: Wilma Allen, 1920s**

Wilma Allen came to Sandpoint from Montana with her family in 1923 when she was five years old. Allen recalled the Sandpoint Indian powwows and the stick games played by the Indians (Figure 25) in 1928, when she was 10 years old.

> The Indians used to have their pow-wows down on the beach. I can remember going down there and we all swam together, the Indian kids and the city kids. We had fun playing together, doing things together, and we had a good time. It was fun watching the older Indians play the stick games. They were forever passing a thing along and you didn’t know who had that gadget in their hands … That was an Indian game and that stayed an Indian game. There was no participation with white people … it was an Indian gambling game and white people were not in on it. (Gunter 2011)

---

\(^{43}\) This may very well have been Duncan McDonald, a mixed-breed, who lived near St. Ignatius Mission in Montana. Son of Agnus McDonald, the Hudson’s Bay Factor at Fort Colville, Duncan McDonald was involved in the discovery of David Thompson’s Kullyspel House site in 1923.

\(^{44}\) The Pioneer Society meetings at Indian Meadows began about 1922.

\(^{45}\) Angus McDonald (b. 1816, d. 1889) was HBC Factor in charge of Fort Colville on the Columbia River and later Fort Connah in Montana. He was related to Finan McDonald, David Thompson’s clerk at Kullyspel House.
The Recent Past to the Present

Lahren (1998) and Lyons (2009:2) explain that the ethnographic data provided by Indian informants reflected conditions from the mid-nineteenth to early twentieth century. Even before direct contact with Euro-Americans, the horse had made its way to the Plateau. The horse facilitated Plains bison hunting and intensified trading among the Kalispel and others, which resulted in an abandonment and concomitant restructuring of certain aboriginal cultural patterns. The acculturation process accelerated once Euro-Americans penetrated the area with the arrival of explorers, fur trappers and traders, missionaries, miners, and homesteaders. It was not long after the Euro-American takeover of Kalispel territory that the remnants of the once more numerous Kalispel peoples were confined to a reservation.

The fur traders introduced an entirely new concept of trade; the use of barter and/or money ushered in a new epoch to the Indians. Prostitution, drunkenness, and increased gambling activities were harmful impacts that occurred during this period. As noted by Schultz (1971:26), “Basically, the fur trade led to severe economic exploitation and a dependency on Euro-American material culture. In both cases, the results were deleterious to the Indian.”

Early missionary activity was intense, competitive, and destructive. Competition for “souls” began in earnest after 1830. This competition perpetuated itself with little or no concern for the confusion created by different Christian doctrines. Missionary activity helped destroy many aboriginal cultural patterns because missionaries sought to effect a complete change in the Indians’ cultural system. Missionary efforts focused on the eradication of aboriginal cultural patterns and the substitution of Euro-American cultural patterns. Agriculture among the Kalispel eliminated the traditional seasonal round and resulted in the abandonment of their “wandering life.”

The arrival of miners and homesteaders further influenced the acculturation process. The miners and homesteaders had as their goal the removal of Indians from their aboriginal territory. Their motivating factors were resource exploitation and territorial acquisition. The U.S. government established reservations to facilitate the opening of the west for permanent American settlement. The reservations
followed the same assimilative design: remove Indians from their aboriginal lands, relocate them onto reservations, pay them for these lands, introduce them to agriculture, and eventually have them accept the white man’s way.

On July 16, 1855, Isaac Stevens concluded a treaty in the Bitterroot Valley with the Flathead, Kutenai, and Upper Kalispel/Pend d’Oreille. Victor of the Lower Kalispel/Pend d’Oreille did not attend this council. Alexander signed for the Upper Kalispel but Stevens would not let him speak for the Lower Kalispel. The Hell Gate Treaty of 1855 resulted in the cession of 12,806,000 acres and the creation of the Flathead Reservation (Jocko Reservation) in the Mission Valley of western Montana. In 1904 a law was passed to allot the reservation and in 1910 it was opened to settlement under the homestead laws. In 1936, the members ratified a constitution, and the reservation became known as the Confederated Salish and Kootenai Tribes of the Flathead Reservation. The original reservation consisted of 1,243,969 acres. As of 1989, 611,353 acres were held in Tribal Trust and 43,835 were in Individual Indian Trust for a total of 655,188 acres. This is 53 percent of the land set aside in the Hell Gate Treaty of 1855. Trust land is mostly forested and grazing lands along the edges of the reservation. The interior of the reservation is farm land mostly owned by non-Indians. In 1989, there were 6,283 enrolled members of the Confederated Salish and Kootenai Tribes.

By 1875, the tribal population had shrunk to only 395 people. In 1887 the United States wanted the remaining Lower Kalispel to cede their lands and move to the Flathead Reservation, as proposed in the Treaty of Sandpoint. If certain families desired, they could move to the Colville or Coeur d’Alene reservations. At this time the Lower Kalispel consisted of two major bands: one under Victor and his son Marcella, and the other under Michael. Michael signed the agreement and moved his band to the Flathead Reservation. Marcella did not sign the agreement and remained in the Pend Oreille Valley. Since 1855 this small group of Lower Kalispel had remained in their aboriginal territory and opposed any attempt at removal; they refused to sign this so-called treaty. Their descendants live on the Kalispel Reservation today. With the influx of settlers to the Sandpoint area and the decimation of tribal ranks, the Indians were forced out of the immediate area surrounding the lake and upper river, but they continued to visit Sandpoint for powwows well into the 1930s.

It is possible that the Kalispel photographed in Sandpoint around 1900 (Figures 26 and 27) were members of Victor’s or Michael’s bands or at least were among those Lower Kalispel that remained in their territory before the establishment of the Kalispel Reservation in 1914. An undated photograph on file at the Bonner County Historical Society, probably taken around 1900, shows a group of Indian men and women and their horses on a sandbar in Sand Creek just north of the Cedar Creek Bridge (see Figure 27).

President Wilson issued an Executive Order in 1914 and created the 4,629-acre Kalispel Reservation on the east side of the Pend Oreille River near Cusick/Usk, Washington. From 1880 to 1910, as more white settlers moved into Kalispel territory, the tribe watched its land disappear, but they were powerless to prevent it. Many white settlers filed claims under the Homestead Act in order to “legally” obtain land that was rightfully home for much of the tribe. This time period also saw the widespread use of alcohol, which many consider to be a cause of the breakdown of the family unit among Indians.

In 1924 the Kalispel Reservation was allotted, but the allotments were only for 40 acres in contrast to the 160-acre allotments on other reservations. Sixty acres are held in Tribal Trust and only one 40-acre allotment has been lost to non-Indian ownership. The Kalispel ratified a constitution in 1938, and in 1989 their enrolled population was 246.
Figure 26. Indians arriving at Sandpoint on horseback (ca. 1900) (Bonner County Historical Society).

Figure 27. Indians with horses setting up or packing up their camp located on the east terrace of Sand Creek at Sandpoint (ca. 1900) (Bonner County Historical Society).
The first church was built in 1914 on the Kalispel Reservation by Jesuit missionary Father Edward M. Griva. Within a year, 41 Indians and six whites were confirmed. Superintendent Colgrove of the Coeur d’Alene Agency was instrumental in establishing the first school on the reservation in 1915. He estimated that there were 24 children in accessible distance and recorded 114 adults (54 men and 60 women). The Indian school was closed in 1948; the students were sent to a non-Indian school in Cusick.

The economy of Pend Oreille County, Washington, like most of the inland northwest, was in recession after World War I. The Kalispel had been reduced in numbers by influenza in 1918. Although some worked part-time for white ranchers and lumber companies, most supported themselves by hunting and fishing. Superintendent Colgrove stated that they lived in extreme poverty, but that this adversity and neglect had a positive effect on them because they have learned to work to live and to rely upon themselves. During this period, they adopted many of the Euro-American material cultural items but maintained much of their aboriginal culture.

According to the KTI (2009a), economic development on the reservation was hampered by lack of land allotment to individual Indians. It was not until 1925 that the first set of allotments were made, and the second set was completed in 1933. The first timber sale occurred in 1928, but fires in 1930 and market problems in 1931 resulted in the contract not being completed until 1938. In 1965, only a couple of homes on the reservation had running water, and there was just a single telephone for the entire tribe. The average annual income was approximately $1,400. In 1992, the KTI developed a mission statement to foster belief in positive growth and community development. It promotes respects of traditions, the power of education, the need for a nurturing environment for children, and success through current and future enterprises. It reflects goals the tribe has established and is currently working to accomplish (KTI 2009b).

As recently as the 1940s, the Upper and Lower Kalispel bands, now living on Indian reservations in Montana and Washington State, were joined by the Bonners Ferry Kootenai to camp at traditional Kalispel sites in Sandpoint (Fritz 2010:109–110). Speaking of the Indian Meadows area at the mouth of the Clark Fork, Fritz noted:

This northern shoreline of the delta continued to be an important traditional fishing and camping site for Upper and Lower Kalispels in spring, summer and fall until the early 1940s. A few old-timers from Clark Fork and Hope still remember the large Indian encampments that took place at the mouth of the Clark Fork. Families from a number of tribes around the area—Spokane, Bitterroot Salish, Kootenai, Coeur d’Alene, Nez Perce and others—would join the Kalispel at this traditional site, which white settlers called Indian Meadows. The Indians would spend time fishing for whitefish, pike minnow, bull trout and cutthroat trout and dry their catch on sticks at warming fires near their sleeping lodges. They even went night fishing with torches to fish for char or bull trout. Their horses would graze on the grasses in the long meadow of what today is Denton Slough. They would also hike or ride horses up into the surrounding Cabinet Mountains to hunt deer, bear, woodland caribou and mountain goats, and to pick baskets of huckleberries. (Fritz 2010:206)

The late Henry SiJohn spoke to Fritz (2010:207) of those past times and the three-day horse and wagon trip made from Plummer, Idaho, to the Clark Fork Delta area. This poignant story provided by Fritz likely just as accurately conveys the importance of Sandpoint to the tribes today:

“They missed this place so badly,” Henry [SiJohn] would recall. “When they got here we’d unpack the tent and before we’d even put it up, they would sit on the tent and cry and wail for about 15 to 20 minutes while everybody just stood around and waited until they got through.” He used to say their strong feelings were both in appreciation for being able to return again to this special place, and in bittersweet remembrance of earlier days. The last summer Henry spent at the edge...
of the Clark Fork Delta was 1932. His eyes welled up with tears and his voice quivered as he recalled those years spent here; he believed it was as close to a utopian lifestyle that any person could live. They would visit with old friends, make new acquaintances, and barter for goods. Even weddings would take place. Henry said that every summer was like returning home. “And when you return home,” I remember him saying, “everything is good.” (Fritz 2010:207)

In 1999, the Kalispel, Confederated Salish and Kootenai, and Coeur d’Alenes returned to Indian Meadows once more. For the first time in 50 years, a tribal gathering at this location took place, led by Kalispel elder and spiritual leader, Francis Cullooyah. Tribal elders from several tribes, drummers, singers, dancer, and many non-natives celebrated what this place continues to represent to tribal peoples today (Fritz 2010:207).

On May 16, 2006, Cliff SiJohn, an elder of the Coeur d’Alene Tribe, visited the ITD Sand Creek Byway Project Office and reported to project archaeologists that within the time of tribal memory the Indian Island area had not been a village site but rather an important late summer “huckleberry season gathering place” for all the area tribes. Mr. SiJohn related that families from the different tribes established temporary camp sites in the Dog Beach area “up away from the beach” and engaged in various games out on the sand spit which existed prior to the construction of Albeni Falls Dam. Activities engaged in by the Coeur d’Alene and other tribes often involved various forms of competitive gambling events such as horse racing, stick games (see Figure 25), a kicking game, and a game in which contestants attempted to throw a stick through a rolling hoop with an interwoven sting design. Mr. SiJohn also described a game that was like “throwing dice” but used notched beaver teeth (personal communication, Cliff SiJohn, May 16, 2006).

According to long-time Sandpoint resident Gary Weisz, an amateur historian with extensive knowledge of both the history and prehistory of the area, prior to the construction of Albeni Falls Dam in the mid-1950s the area just north of Dog Beach was the highest elevation of land on Indian Island and was used extensively as a camping area by Indians as late as the early 1900s. A home movie taken in 1931 by Sandpoint photographer Ross Hall (personal communication, Dan Hall, February 10, 2010) and housed in the Bonner County Historical Society collections shows a stick game taking place somewhere in the Sandpoint vicinity, possibly on Indian Island or perhaps at what is now City Beach (see Figure 25). When Robert Betts showed a copy of the Ross Hall movie at the Kalispel reservation at Usk in 2000, Kalispel elders recognized some of the stick game participants as Kalispel and others as Kootenai Indians from Bonners Ferry.

In an unpublished autobiographical sketch, Chuck Peterson, another amateur Sandpoint historian and artist who had extensive knowledge of the history and prehistory of the Sandpoint area, related that:

> When I was growing up in Sandpoint during the late 1920s and early 30s Indians would still come to town and camp on the lakeshore where City Beach is now.... They would build fires among the canvass tepees at night and have dances and stick games. The older people in town called them powwows and discouraged us from getting too close. It always surprised me that there were so many. Each family had a teepee and sometime there would be at least a hundred. I often wondered where they came from but was too afraid of them to ask ... I believed they and the arrowheads would be here forever. (Peterson 1960:1)

Early Sandpoint newspapers at the Bonner County Historical Society indicate Native American gatherings for powwows and stick games at Sandpoint ended in the late 1930s. According to Fritz (2010:341), however, the powwows at Sandpoint were discontinued in the early 1950s. The powwow

---

46 The handwritten manuscript is not clear but “a hundred” probably refers to people, not tepees.
grounds were located just east of what is now City Beach in Sandpoint. Supported by the City of Sandpoint, the annual powwows usually lasted three days, with the first day spent conducting memorials, giveaways, and other tribal ceremonies. Non-Indians did not attend until the second day. In September 2000, a few months before Sandpoint’s centennial was to be celebrated, a powwow and feast of traditional foods was held for the public at Lakeview Park in Sandpoint, nearly 50 years after the last powwow was held at City Beach.

The Indian Island area (and the popular Dog Beach) has been repeatedly and extensively scoured by artifact collectors since at least the 1950s. Reportedly, hundreds of arrowheads and prehistoric artifacts have been collected by local residents from this vicinity over the last 50 or more years, so that little surface evidence of the extensive Native American use of this area remains.

**DISCUSSION**

*James C. Bard*

To better understand the ethnographic and ethnohistoric record for Sandpoint, it is necessary to define certain terms. Smith (1985) described several kinds of ethnographic sites: caches, camps, cemeteries, petroglyphs, villages, and weirs. In a recent ethnographic context statement prepared for the USACE’s Lake Pend Oreille Historic Property Management Plan (USACE 2008:Appendix E), the USACE discusses the settlement pattern and how the subsistence strategy of the Kalispel groups related to available definitions of archaeological site types.

As summarized by the USACE (2008:E-10), the rich and varied resources available to the Kalispel groups led them to cluster along the rivers and lakes where they could move about to exploit diverse resource areas such as camas prairies, huckleberry fields, and other seasonal forage, hunting, and fishing areas. Networks of waterways and trails connected them to resources and to one another. Settlement consisted of a pattern of congregations and dispersals according to the seasonal round of resource exploitation. Large numbers of people gathered in the winter, in or near villages where food had been stored throughout the previous year. People also congregated at other times for specific purposes such as gathering, fishing, camas digging, or huckleberry collection. Gathering together for social events such as dances and First Foods ceremonies was also commonplace. Ephemeral camps of varying sizes and groupings were located near seasonally available resources.

The importance of the central base camp and the use of storage technologies are key to understanding the Kalispel subsistence strategy, which was based on diverse and seasonal resources. In the Pend Oreille Valley, during the winter months of November through March, household groups would congregate into large economic and social formations where winter stored food caches had been positioned previously (Smith 1936–1938). It should be noted that household and nuclear family are not synonymous. Affinal and consanguineal relationships would have been implicit in such co-residency but would not have been required. Kalispel households typically held on average three nuclear families per dwelling. As noted by the USACE (2008:E-10), these seasonal aggregations are usually recognized as “villages,” although there is little taxonomic distinction in the ethnographic literature between large villages associated with macro-band population aggregates and small satellite kindred hamlets. However, villages with 250 or more inhabitants had leadership and community infrastructure that was qualitatively different than an ad hoc residency of a kindred group of 25 residents (in a hamlet).

Among the Kalispel, the smaller and kindred-based household groupings that chose not to co-reside with the village proper were located nearby but not so far away as to be living in relative social isolation (Smith 1936–1938). Each household occupied a conical tule mat lodge with a centrally placed hearth and storage pits or pantries on each side of the structure’s entrance where some of the winter foods would
be kept (Smith 1936–1938). Households consisted of three families closely related with each family numbering about six individuals (Smith 1936–1938:469). Interestingly, these numbers suggest a minimum average household population of 18 individuals but Smith continually stated that such households held 24 persons. In the Research Design prepared for this project (Weaver et al. 2006:2–8; see (Appendix 1 – Research Designs and Project Planning), Kevin Lyons described winter residence types (Table 3).

Table 3. Suggested Taxonomy for Lower Kalispel Residential Configurations

<table>
<thead>
<tr>
<th>Season</th>
<th>Taxon</th>
<th>Demography</th>
<th>Archaeological Signatures</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter</td>
<td>Household</td>
<td>6–17 souls</td>
<td>Single residential feature with attendant storage features. Functionally diverse artifact assemblages but quantities per volume are modest.</td>
</tr>
<tr>
<td>Winter</td>
<td>Hamlet</td>
<td>18–30 souls</td>
<td>Up to five residential features with attendant storage features. Functionally diverse artifact assemblages, quantities per volume are high.</td>
</tr>
<tr>
<td>Winter</td>
<td>Village</td>
<td>31–250 souls</td>
<td>Up to 42 residential features with attendant storage features, one or more mat lodge features are typical in these formations as are dedicated locations for winter stores and cemeteries.</td>
</tr>
<tr>
<td>Winter</td>
<td>Multi-band village</td>
<td>251–1,000 souls</td>
<td>A rarified and perhaps apocryphal contingency at the upper range. Due to scalar stressing and weak social control it is doubtful that such as configuration was ever stable during long winters.</td>
</tr>
</tbody>
</table>

Villages were typically arrayed in a linear (string) fashion parallel to the river with the dwelling entrances placed on the leeward side of the lodges. Each day, the household required provisioning with firewood and fresh water. Proper site selection made these tasks easier. Smith (1936–1938) explained that landforms with primary south aspects may have been important for maximum solar exposure with shelter from prevailing winds. Proximity to potable water, fuel supplies, and winter deer yards were also important considerations. Proximity to the over-wintering resident white-tailed deer yards may have been the most important variable when the Kalispel sited their winter villages.

A village could be relocated on either the upstream or downstream side of a preferred location but as both the community’s central cache site and winter deer yards were essentially fixed locations, a village could generally be found in the same vicinity from year to year (Smith 1936–1938). After Euro-American contact and the advent of new trading patterns, firearms, a cash economy, the horse culture, and dramatic depopulation from disease and the draw of mission settlements, long established communities broke apart and new ones were created (USACE 2008:E-11).

Indian Island and Sandpoint Revisited

As discussed in the Ethnography chapter of this volume, Indian Island is home to two recorded archaeological sites: 10BR538 and 10BR1026 (Figures 9 and 10). Indian Island corresponds to Smith’s (1985) site 110 q̓əp̓əq̓ə’ which was used (in ethnographic times) in the late spring and summer and functioned as a central/temporary base camp for trapping beaver and for fishing (USACE 2008:E-18, Table E-1).

Sandpoint is home to several recorded archaeological sites. Site 10BR1, a prehistoric beach campsite, is located just 0.1 mile east of the Sand Creek Byway corridor. It corresponds to Smith’s (1985) site 111 which was used (in ethnographic times) in late spring and summer and functioned as a central/temporary base camp (USACE 2008:E-18, Table E-1).

Prior to the disruptive impacts of Euro-American settlement, Sandpoint might have been the location of a winter “headquarters” type settlement (Teit 1930) for the Upper Kalispel. This possibility does not
negate Sandpoint’s use in prehistoric times as a seasonally occupied central temporary base camp for hunting and fishing. If there is archaeological evidence of a winter settlement somewhere in the immediate Sandpoint (and Indian Island) vicinity, it has not yet been discovered by archaeologists.

Archaeological Signatures

Kalispel ethnography contains detailed records of activities very likely to have left distinctive archaeologically recognizable patterns in the ground (Andrefsky and Presler 2000). Since a significant part of our understanding of prehistory comes from these patterns (“features”), Salo’s (1994:3.18–3.23) analysis (and its recent update, USACE 2008:E-11–E-16) is shown here. He classified features functionally as processing, storage, and consumption/dwelling units. All processing and most consumption/dwelling units involved fire-related processes at some time in their use-cycle.

Processing

Food/Storage Preparation

- **Large-bulb Camas Steaming Pit.** This feature was used to process camas bulbs primarily for storage whole. It required excavation of a pit averaging about 8 to 10 feet in diameter and about 6 feet deep; it was filled with an intense fire that heated fist-to-egg sized rocks, which were then spread over the bottom of the pit and covered with layers of vegetation and camas bulbs/alectoria lichen, sealed with the blanket of pine bark and earth or sods, and topped by a long-burning fire. An intact abandoned example would have decayed and collapsed layers undisturbed in the above order; torn apart, there would be a rock-lined pit surrounded by piles of organically-enriched earth and charcoal. These pits often were reused until the local fuel and raw material supplies gave out. Smaller and larger pits were made according to the numbers of families and quantities of materials involved. Following cooking for 48 hours, the bulbs were dried on a rack over small fires, sealed in containers with bear grease, and cached for later use. The smaller bulbs were pounded in rawhide sacks, sundried on hides, and cached.

- **Cake Camas Steaming Pit.** This feature was used to process mixed size and off-season camas bulbs to make cakes for storage. A smaller pit was used, about 4 to 5 feet in diameter. Similar layering and firing was done, but interrupted after 24 hours when the camas was partly cooked. It was taken out, cooled, pounded, and hand-pressed into cakes, which then were re-baked in the same pit for 24 hours until done. The cakes were removed and dried on racks over small fires and then hung in strings in the high part of the family’s cache. This same pit process sometimes was used to process camas/alectoria lichen mixtures for storage, but the mixture was not steamed in bags. The size of this pit would be the main archaeological discriminator.

- **Small Steaming Pit.** Used to cook a wide variety of foods, this pit was about 1.5 feet in diameter and about 1.5 feet deep. It was lined with rocks heated in a nearby fire, which then were covered with twigs, grass, the cooking goods, then grass, then earth; a stick was left protruding from the pile. It was pulled out, water was poured in to generate steam, and the hole was plugged to complete the cooking process. For some substances, a single large hot rock was used.

- **Meat Roasting Pit.** Fairly small pits (around 4 feet in diameter and about 6 inches deep) were made to roast meat for later boiling or for immediate consumption. A small (about 3 feet diameter ?) pit was excavated. Rocks were heated in a nearby fire, then tonged into the pit, where they were covered with evergreen branches, meat, then more branches or grass, and cooked for about 30 minutes. Meat precooked this way was later boiled for final preparation. For immediate consumption, the rocks used were large and flat, and the meat was placed directly upon them, covered by branches weighted down with cold rocks, and cooked for about
20 minutes until thoroughly done. Archaeological signatures of these two types should be similar, but distinguishable by stone sizes and shapes.

- **Stone Boiling Pit.** To prepare meals, a small hole about 1 foot in diameter and 3 to 12 inches deep was dug and lined with an impervious substance; food and water were added, then heated by application of rocks heated in a nearby fire. In spring and summer, the lining was soft inner tree bark; in the fall and winter, a hide (with hair to the outside) was used.

- **Surface Oven.** To cook meat for immediate use, a large rock sometimes was heated on the surface of the ground; the whole process worked as in the Meat Roasting Pit as described above.

- **Smoke-Curing Rack Fire.** To dry various substances with a smoke-cure, a low fire or series of fires using non-pitchy wood was built under a tripod or double-tripod based rack. Substances were placed on mats over the fire.

**Hide Tanning**

- **Smudge Pit.** A small hole about 6 to 8 inches deep was excavated and a small poorly-ventilated cedar fire was built in it; skins were held over the pit in a conical shape and smoked until properly cured.

**Storage**

**Food**

- **Elevated Cache.** The primary form of storage structure was the elevated cache, which was built by the women of the family near the summer camp in cool dry locations. It was a gabled structure elevated about 6 feet, constructed on four main posts about 6 inches in diameter. Outer dimensions were about 8 by 10 feet. Archaeological signature, unless the structure burned in place, would be extremely faint, mainly a quadrilateral arrangement of four post holes.

- **Underground Cache.** Underground caches were built during two times of the year. In the fall, they were constructed near the summer camp and somewhat close to the wintering site to hold supplies that would be used frequently during the winter. In the spring, they were built near the winter village to house leftover wintering supplies. In either case, they were places on a level plot on soft, well-drained soil. The cache was from 3 to 8 feet in diameter, depending on the number of families using it, and about 3 feet deep. The floor was covered with tule mats; a dome over the pit was made of barked poles constrained by a bottom course of heavy logs; the poles were covered with cedar bark, or grass/pine needles with as much bark as could be found. The whole affair was then covered with about a foot of earth. A side entrance was cut, then sealed off after the cyst had been filled with supplies.

- **Indoor Closet.** Large amounts of supplies were stored inside winter lodges; these arrangements are discussed below under Consumption/Dwelling Units.

**Fuel**

- **Dedicated Tipi.** Wood for winter fuel was stored in a lightly-built tipi about 10 to 20 feet in diameter, placed near the winter lodge to the side of the main entrance. This feature is unlikely to have a distinctive archaeological signature.

- **Lean-To.** A four-pole lean-to about 6 to 8 feet square was sometimes used next to a smaller conical mat lodge, or against the side of a long mat lodge. This feature is unlikely to have a distinctive archaeological signature.
Consumption/Dwelling Units

Residences – Tipis

- **Mat-Covered, Winter Form.** A tipi was erected over a prepared pit about 4 to 12 inches deep and 10 to 15 feet in diameter (see Figure 6). Three main poles set into holes were used in the frame; other smaller poles were laid against these poles, then bound into place by about 10 rings of woven withies. Three to four courses of tule mats were laid over the structure. Earth was banked up about 6 to 12 inches on the outside base of the structure to keep out drafts. About 1 foot of grass or pine needles was laid around the inside of the tipi base. The door was faced away from the prevailing winter wind, preferably toward water or a trail. It was sealed by a specially constructed mat, In later times, a 10 inch wide pine or cedar board was used as a threshold. On either side of the entrance, storage areas were closed off with vertically mounted split cedar or pine boards. An inner door to the living room ran between these storage closets. A surface fire area (hearth) was located in front of the door, immediately underneath the roof opening. Three border poles marked off the fire area from the bough-covered eating/sleeping floors. A four-inch drying pole ran over the fire area. The archaeological signature of this dwelling form should be fairly strong, primarily a depression with a fire area in the center, possibly with small stone boiling pits nearby, and very clean floor area.

- **Mat-Covered, Summer Form.** The summer tipi was much simpler and lighter in construction. It was not built in a depression. It has but one or two layers of mat covering, no bottom packing, storerrooms, or drying pole.

- **Bark-Covered, Winter Form.** These houses were not frequent as they required more work to build than the mat-covered tipi or lodge. It had the same frame, floor preparation, and plan as the mat tipi, but was covered with cedar bark shingles. In the winter form, two courses were used. All branch holes in the cedar bark were plugged with glue made of camas bulbs, or sometimes a whole bulb was used as a plug. A series of withie rings was laid over the outside bark courses, one difference from the mast tipi construction method.

- **Bark-Covered, Summer Form.** The summer form of bark tipi was somewhat more common, actually preferred as it was relatively cool. Construction details are not known, except that a single course of cedar bark covering was used.

- **Hide-Covered, Summer Form.** A relatively small, lightweight summer shelter was made using sewed elk or bison hides (Figure 28). Erected over a three-pole frame, it had much the same floor plan as the summer form of the mat tipi, except it was only about 10 feet tall at the apex. The bottom of the covering was staked with pegs. The entry was a small circular hole several feet off the ground, to make it difficult for dogs and enemies to enter.

Residences – Lodges

- **Mat-Covered, Winter Form.** Mat lodges were used only in winter. In construction and layout they resemble an elongated mat tipi. They were built over a hole excavated about 8 to 10 inches deep, and about 12 to 14 feet wide and 20 to 60 feet long, averaging about 40 feet in length. Holes about 1 foot deep were excavated to receive the main frame poles. The bottom course of mats extended into the hole, was covered by cedar bark, and then secured against drafts with an earth packing. The inside joint was packed with grass or pine needles.
Doorways were placed at both ends of the structure, and each had a storage closet arrangement as in the mat tipi. As these structures were multi-familial, each family area was marked off by poles from the wall to the fire area. The central fire area was about five feet wide, and contained two or three fires for light, heat, and cooking.

• **Bark-Covered.** The cedar bark covered lodge may have been used in summer and winter. It was smaller than the mat covered lodge, only about 10 to 20 feet in length, and about 10 to 12 feet high at its apex. Layout and floor treatment was similar to the mat lodge, except sometimes it only had one door. It was somewhat less frequent than the mat lodge.

*Residences – Temporary Shelters*

• **Small Bark-Covered Tipi.** A small (6 to 8 feet in diameter) bark covered tipi sometimes was erected at the end of a trapline.

• **Lean-To.** Small open-fronted, mat- or bark-covered lean-tos similar to the wood storage lean-to sometimes were used as summer residences by a single family.

• **Sweat Lodges.** Sweat lodges were important sanitary and ritual structures, and were built in private areas near every major encampment. There were two forms, large and small.
  – **Large.** Associated with larger camps, this feature was about 8 feet in diameter. It was usually placed in a private area, near water if possible. A bent stick frame was covered with a non-pitchy bark, and about 6 inches of earth was placed over the structure. The entrance was about 2.5 feet high and 2 feet wide, facing water if possible. The floor was of grass, pine needles, or boughs (no pine or cedar was used). There was a round, 18-inch-diameter, 12-
inch-deep pit in the center for the heated rocks. Rocks, small stones, were heated in a fire outside the structure then tongued into the pit.

- **Small.** The small form was placed and constructed similarly, except it was only about 4 feet in diameter and the heating rock pit was located inside at the right of the door. The round rock pit was about 12 inches in diameter and about 18 inches deep.

**Village/Camp Layout**

The design factors for Kalispel village/camp layouts are known for winter villages, summer camps and special task camps. Winter villages were located in level, open-forested areas, preferably with south or western exposures in calm areas with good firewood and water sources. Houses were placed in rows parallel to the water; most activities in the winter villages took place inside the structures. Summer camps were located near the main economic activities and comprised mainly clusters of mat and later canvas-covered tepees, with many drying racks for food and materials processing (Figure 29). Specific task camps were occupied by small groups using very simple shelters, and were used mostly during the spring and fall (USACE 2008:E-16).

![Figure 29. Encampment at Denton Slough, early 1900s (Courtesy of W. R. “Chuck” Peterson, Hope, Idaho).](image)

**Kalispel Use Locations**

Different sites would yield differing archaeological signatures and as shown above, there are several different kinds of sites: winter villages or camps; temporary base camps (deer, bear hunting; fishing; berry harvesting); fishing weirs; deer fences or traps; caches; burials or cemeteries; pictographs; and petroglyphs. As the definitions imply, winter villages were locations where band members over-wintered. They usually had a series of bark- or mat-covered single or multiple family dwellings with assorted outbuildings and storage structures. Their use focused on the winter season, but they could have been used at other times of the year as well. Temporary base camps were somewhat simpler with
less sturdy dwellings, and these were located conveniently near groups of resources available at a given time. Fishing weirs were stone or wooden obstructions used to block or channel fish migration and were most frequently placed at creek or river mouths (Figure 30). Caches took a variety of forms and the other site types are fairly self-explanatory. Though there are no known or reported Indian burials on Indian Island (but Indian skeletal remains had been reported from locations further upstream from the mouth of Sand Creek near what was the location of the Humbird Mill), the Kalispel favored burial of their dead on islands and cemeteries were frequently located on such landforms (USACE 2008:E-16).

![Figure 30. Remains of a fish weir on Calispel Creek ca. 1936. View to the east by Allan H. Smith (Allan Smith Collection, Lewis Clark State College Library Archives).]

**Concluding Thoughts**

Sandpoint is located at the point where Sand Creek flows into Lake Pend Oreille; its location and setting argue for its designation as a high probability area for all types of sites. We specifically used the plural form of the word site to convey our findings that Sandpoint was occupied in several areas and at different times for different or similar purposes. The archaeological record of the Sandpoint area documents Indian occupation for thousands of years. While it is appropriate to distinguish between archaeological and ethnographic sites when conducting research on a given area, it is not necessary to think of them as discrete phenomena. There are late ethnographic sites, however, that may be discontinuous with the prehistoric record and may only apply to the Protohistoric or Historic periods.

The Sandpoint area seems to be a continuously occupied area, both prehistorically and ethnographically, and meets the definition of a “cultural locality” with multiple archaeological sites that include single as well as multi-component sites. Having worked in the montane areas of Montana and Idaho for over 30 years, Sylvester Lahren would argue that Malouf’s concepts are still applicable to this area. In the case of Sandpoint, based on a careful review of the ethnographic literature and personal research conducted in the general area, the authors believe that it is reasonable to hypothesize that Sandpoint might have been occupied on an annual basis from prehistoric to historic times.
The Sandpoint vicinity, including the Sand Creek Byway project corridor (US 95) that extends from Indian Island to the north, was used by Indian groups during the contact period and up into the modern recent past. The ethnographic record points to the Sandpoint vicinity as a place where a variety of seasonally dependent activities were conducted including fishing, deer hunting, beaver trapping, and plant food gathering.

The ethnographic record is clear that Indian informants recall use of the vicinity as a late spring and/or summer encampment. Other ethnographic information suggests possible use of the vicinity in the more distant past as either a small winter hamlet or small winter village, or, perhaps a “headquarters” type winter village. To be sure, with the advent of the horse, the local Indians who once relied mostly on canoe travel enjoyed greater mobility and trail access to “the buffalo.” Travel by horse almost ensured the use of the Sandpoint vicinity and the ribbon of grassy meadows flanking portions of Sand Creek as a way station or camp. Ideally situated on the large sand spit, Indian Island in particular seems to have been used in the late contact and early historical era time periods for such purposes. Moreover, Sandpoint the town, with its modern transportation facilities (three railroads present by 1900 and wagon and later auto roads around the lake and steamboat traffic across the lake itself), facilitated the use of Sandpoint to continue a pattern of group gatherings (powwows) into the twentieth century.

The next chapter of this volume describes the archaeological remains found in Sandpoint and explores how the artifacts support, to varying degrees, one or more of the possible past uses of Sandpoint and Indian Island as fishing camps, summer villages, winter hamlets or villages, or some likely combination of several of these possible uses.
Sandpoint is located in the Kootenai–Pend Oreille region of the Eastern Plateau—the drainage basins of the Kootenai, Pend Oreille, and Spokane rivers (Figure 31). The presence or absence of migrating salmon and steelhead \(^{47}\) probably affected the course of cultural development more than any other single factor. Bonnington Falls on the Kootenai River, Metaline Falls on the Pend Oreille River, and Spokane Falls on the Spokane River stopped spawning migrations of anadromous fish on the upstream courses of those rivers during the Holocene epoch (Fulton 1968, 1970). Anadromous fish represent the only significant food resource \(^{48}\) for which a presence/absence contrast exists between the two regions of the Eastern Plateau (Kootenai–Pend Oreille and Salmon-Clearwater) (Roll and Hackenberger 1998:120–137). The ethnographic record (Smith 1936–1938), however, indicates that Kalispel bands intensively used resident fisheries in a seasonal manner that yielded large quantities of fish, notably mountain whitefish (*Prosopium williamsoni*) and bull trout (*Salvelinus confluentus*).

In the western areas, the distribution of camas (*Camasia quamash*) and ease of transportation on lakes and low-gradient streams dampened some disparities created by salmon distributions. Native peoples exploited extensive camas beds of the Calispell Valley downstream from Pend Oreille Lake and those of the lower Coeur d’Alene, St. Joe, and St. Maries rivers, clustered along the western periphery of the region. Along the western margin of the region, the gradient of most rivers decreases sufficiently to produce nearly flat-water conditions on many streams.

Downstream from Bonners Ferry, Idaho, about 60 km (37 miles) of low gradient conditions permitted access to the normally calm waters of Kootenay Lake; other flat-water sections include Priest Lake, Pend Oreille Lake, and Lake Coeur d’Alene. Low-gradient conditions permitting two-way travel by aboriginal watercraft prevailed over large portions of the lower courses of the Coeur d’Alene, St. Joe, and St. Maries rivers.

Other waterways at least seasonally accessible for aboriginal navigation included the lower reaches of the Clark Fork River and parts of the Pend Oreille River. Being close to areas of high salmon productivity like Kettle Falls on the upper Columbia River, abundant camas beds, and reasonable transportation of bulky products combined to give peoples on the western edge of the region a way to intensify their subsistence potential in ways not otherwise available to neighboring upstream groups.

As explained by Thoms and Burtchard (1987:105), the regional framework for prehistoric land use and archaeological site distribution is linked to postglacial climatic and physiographic factors. Human

---

\(^{47}\) Kendra L. Philmon of the Kalispel Tribe (personal communication 2013) notes that local human populations focused their provisioning efforts on available resources (bull trout, westslope cutthroat trout and mountain white fish). These species formed the foundation of intense and technologically sophisticated strategies equal to contemporaneous systems associated with the mainstem system of the Columbia River. Quantitative differences in run size of local versus migratory stocks did exist and probably affected the desirability of their use by extra-local human populations; but in terms of local provisioning needs and their affect on “cultural development” there is little developed data to suggest that they were not as important.

\(^{48}\) Kendra L. Philmon of the Kalispel Tribe (personal communication 2013) cautions this is “Both a broad and essentialist notion that skims over important cultural ecological dyads of the sub-regions. Anadromous stock in the head waters of the Columbia system was nutritionally inferior to other competing resources in terms of protein quality and lipid content and more variable in its availability. Far more salient is the xeric and mesic divide of the sub-regions and their varying windows of opportunity of harvestable food stuffs that set quantitative limits on carrying capacity.”
Figure 31. Regional map showing major river drainages, Sandpoint, and historic settlements, travel routes, and important toolstone quarry sites (Miss 2004:Figure 1).
adaptation and population size fluctuated with changes in topography, vegetation, and water resources changes.

After the glaciers retreated, the region was cooler and moister than today. Emerging ridges and terraces were rocky, with little soil development. Many of the sites that are 8,000 to 10,000 years old are situated on south-facing terraces, often some distance from permanent water. By 7600 B.P., a warming trend was underway and led to a long period of moderating climate that was warmer and drier than the present climate. Land surfaces stabilized and animal and plant resources expanded, providing diverse resource niches in the evolving ecosystem that could be exploited. Landreth et al. (1985:202) postulate greater residential mobility during this period with occupation of lower- and middle-level terraces.

Thoms and Burtchard (1987:496) found that sites in the middle Kootenai River area tended to fall on the upper-valley terraces around 4500 to 2000 B.P., and deer and elk hunting was the main subsistence activity. Valley bottoms were first used in the winter, but over time, there appears to have been adaptation to valley resources, with greater emphasis on root crops and fishing. Larger, more permanent camps and greater population are the projected outcomes. By the later period, there may have been year-round occupation of the valley floor around Lake Pend Oreille.

Artifacts from both private collections and limited excavations on the Pend Oreille River suggest earlier use of the valley, and settlement may extend back 10,000 years (Miss and Hudson 1987). Most of the sites recorded in the Sandpoint vicinity are associated with the Lake Pend Oreille drainage system; over 400 sites are known around Lake Pend Oreille and its tributary streams (Salo 1988:5-17). Sites are usually located at the confluence of tributary streams and sloughs around the lake. Terraces and benches somewhat above the waterways are desirable spots for occupation. The northern side of Lake Pend Oreille (including the river portion) has more recorded sites than the south side (Miss and Hudson 1986:37).

Sites around Lake Pend Oreille have shallow deposits, limited artifacts, and abundant, thermally altered rock features. Extensive disturbance due to dam construction and associated reservoir pool fluctuations and unauthorized collecting have harmed the archaeological record. Artifacts from both private collections and from professional archaeological investigations suggest at least an occupation range of 7,000 years, but most of the radiocarbon dates are from rock features dating to the last 3,500 years of prehistory (Thoms and Burtchard 1987:497). Based on radiocarbon dates from camas ovens documented during the Calispell Valley Archaeological Project (CVAP) on the lower Pend Oreille River near the Kalispel Reservation, the earliest use of camas ovens extends back to around 5000 B.P.

According to archaeological evidence, use of camas ovens increased around 3500 B.P. This implies the extensive use of the project area by Interior Salish–speaking groups going back at least 3,500 years and perhaps as much as 5,000 years ago (Burtchard et al. 2000:10, 70). The abundance of these features, dating primarily to the Late Prehistoric period (before A.D. 500–1750), may support the theory of intensified occupation of the valley and the inclusion of vegetal crops in the diet. Ground and pecked stone, cobble tools, and tabular knives found with rock clusters may also indicate plant harvesting and processing.

After 3000 B.P., a climatic change to cooler, moister conditions was underway. Open grasslands, which had provided readily accessible game, shifted to become densely vegetated forests. The upland sites may have been less desirable for human occupation at the time than the valley areas, triggering a focus on the lower, riverine terraces. Tool stone selection indicates an abrupt change from use of local siltstone and argillite to more imported materials such as Yellowstone National Park obsidian and cryptocrystalline materials from Canada and Montana. Projectile point styles also resemble Late period types from these more distant regions.
Miss (1990) suggests that the subsistence and settlement strategies noted for the Kootenai River area by Thoms and Burtchard (1987) are applicable to the Pend Oreille Valley. By 5000 B.P., subsistence efforts focused more on root collecting than game hunting, although not to the exclusion of hunting and fishing activities. Settlement shifted accordingly, with greater use of valley environments, more permanent habitation sites, and increased population. The sites are mostly processing, habitation, and special use/location sites, which refers to minor exposures of FMR or isolated artifacts.

**Previous Studies**

As early as the late 1880s, archaeological sites (Lake Pend Oreille petroglyphs) were being documented by John B. Leiberg, a geologist surveying and assessing the north Idaho forests in 1893 (Leiberg 1893:156). Rust (1912) reported on archaeological sites in the Lake Pend Oreille and Lake Coeur d’Alene areas.

The next archaeological project was the survey of the Albeni Falls Reservoir along the Pend Oreille River as part of the River Basin Survey Program (Shiner 1950, 1953). Miller (1954, 1959) and Tuohy (1958a, 1958b) conducted work in the 1950s. Miller identified prehistoric sites and four burial sites in Kootenai County, while Tuohy surveyed a natural gas pipeline in the vicinity. In addition, Smith (1957) published a paper based on his fieldwork at Kalispel sites on Lake Pend Oreille, and in 1961 Mallory surveyed the Pacific Gas Transmission Company’s Alberta to California pipeline. A few years later, Swanson (1968) conducted surveys in northern Idaho.

In the 1970s, USACE-sponsored surveys were conducted on the Albeni Falls Dam reservoir (Delisio 1974; Munsell and Salo 1974). Other surveys related to specific sewer system and transmission line projects were undertaken as well. North Idaho College conducted excavations at Rocky Point (10BR39) near Dover (about 1.6 km [1 mile] southwest of Sandpoint) in 1976, and the USACE sponsored test excavations at 10BR94 (on the north side of the Pend Oreille River, east of Hornby Creek) and 10BR99 (north side of Pend Oreille River near Keyser Slough) in 1978 and 1979.

In the 1980s, the USACE sponsored three inventories in various places around Lake Pend Oreille (Gough and Boreson 1985; Miss 1991; Miss and Hudson 1986) and documented petroglyphs (Boreson and Peterson 1985). Other work conducted in the 1980s included excavations at 10BR42 (east side of the mouth of Sagle Slough across the lake from Sandpoint) by Rice (1983). Surveys conducted for the USACE recorded 390 prehistoric and historic sites on the shores of Lake Pend Oreille and both banks of the Pend Oreille River upriver of Albeni Falls Dam. Most of the sites are beach lag deposits on the surface or exposed in eroding cutbanks. Projectile points dated to at least 8000 B.P. on stylistic grounds were inventoried from local collections, a time span comparable to that of surrounding regions.

As reported by Miss (2004:59), excavations in the immediate project vicinity began in the 1950s when 10BR20, which is located at the mouth of Hoodoo Creek at Seneacquoteen just upstream of the Riley Creek Campground, was tested (Shiner 1953:5). A dozen test pits excavated through 4 feet of “damp sticky blue clay” recovered only a few artifacts (Shiner 1953:5). Sandy beach deposits on the spit at the mouth of Cocolalla Creek yielded scrapers; lanceolate, basal-notched, and medium-sized stemmed and side-notched projectile points; drills; cobble choppers; a stone bead; a fishing weight; pestles; and a maul. The assemblage was believed to represent hunting, hide preparation, fishing, and plant processing by groups, probably from the east or north because the projectile points did not resemble other Plateau forms with which the investigators were familiar. Absence of village sites or any evidence of tool manufacture, acknowledgement of the severe nature of winters in the vicinity and anecdotal evidence about seasonal contemporary Indian use by local residents were used to conclude that there was no
permanent, year-round occupation of the Albeni Falls area and that the impending reservoir posed no threat to archaeological resources (Shiner 1953:9–11).

Ten other excavations have been completed in the project vicinity including one, at 10BR39, that remains unreported. The site was located about 1 mile southwest of Sandpoint. Although no report on the site has been written, examination of the collection housed at the Alfred W. Bowers Laboratory of Anthropology at the University of Idaho revealed that scrapers, blade or point base fragments, projectile points and point fragments and axes were recovered from this site (Boreson 1985:206).

Testing at the mouth of Riley Creek, across the river from Hoodoo Creek and the historic site of Seneacquoteen, located what was believed to be a short-term hunting camp (10BR99) dating to about 1300 B.P. (Knudson et al. 1979). Just east of the mouth of Priest River, excavations at 10BR94 revealed two prehistoric occupations, one of which was below the 6,870-year-old Mazama ash (Hudson et al. 1980). Testing at 10BR20 (south side of Pend Oreille River at mouth of Hoodoo Creek) revealed cultural deposits sufficient to determine the site eligible for the National Register of Historic Places (NRHP) and surface depressions of possible prehistoric origin were found by Salo (1990).

A single test unit at 10BR42 yielded cultural deposits that produced a radiocarbon date of 3580 ±140 B.P. (Rice 1983). Testing of 10BR790 at the mouth of Smith Creek recovered a small collection of flat, notched pebble fishing weights and Mazama tephra (Miss 1990b). Test excavation and ground-penetrating-radar studies were conducted at 10BR870 (north side of Pend Oreille River near mouth of Carr Creek); an intact camas oven was found and dated to 2140±70 B.P. (Nelson and Miss 1994). At 10BR435 near Muskrat Lakes and at 10BR453 near Cocolalla Creek, Miss (1994) conducted shovel/auger testing. Both efforts encountered cultural remains in adjacent terraces, dense FMR and scattered artifacts on the beach below. Finally, systematic testing of 30 sites was carried out by the USACE from 1995 to 2000. The KTI currently monitors sites during lake drawdowns (Betts and Lyons 2001).

The Upper Pend Oreille River Archaeological District, which the Sandpoint vicinity is part of, includes 248 recorded properties, most of them prehistoric sites distributed in nearly continuous strips on each side of the Pend Oreille River from Albeni Falls dam upstream to Lake Pend Oreille. The sites represent occupation that began before 7000 B.P. and intensified after that time in response to regional changes in climate, improvements in storage and processing technology, increased population, and local evolution of the landscape and its resources. Thirty sites had been tested as of 2002 by the USACE under a systematic, multiyear effort and a few more independently evaluated for other projects.

As summarized by Miss (2004:5), 14 archaeological sites in the Upper Pend Oreille River Archaeological District have been recommended eligible for the NRHP based on their intact cultural deposits containing lithic, bone, botanical, or historical remains. The tested sites have multiple occupations; several have cultural material that has been dated to before and after the deposition of Mazama tephra, which was generated about 6850 B.P. This volcanic ash is a widespread temporal marker in the district. A series of calibrated radiocarbon dates ranges from 8200 B.P. to the Late Prehistoric/fur trade era. The recovered artifact assemblages are small, especially from excavated contexts. The assemblages show, however, extensive use of local tool stone as well as contacts with obsidian sources in central Oregon, southwest Idaho, southeast Idaho, and western Wyoming. The beaches of these and other untested sites display wave-lagged occupations represented by a variety of stone tools and abundant FMR. FMR is easily the most common artifact in the district and is representative of camas processing in earth ovens on a large and prolonged scale.
Culture chronologies available for the Pacific Northwest region have been proposed by Taylor (1973), Choquette and Holstine (1980), Choquette (1987), and Roll (1982), in addition to Malouf (1956a) and Flint (1982). None of these schemes have gained a wide following. Thoms (1984) and Thoms and Burtchard (1987) returned to a three-period classification, often an adaptation of Mulloy’s (1958) Northwestern Plains sequence. Division into Early, Middle, and Late periods is a useful scheme, particularly when the Middle period is further subdivided into early and late segments (Reeves 1970).

Pend Oreille–Clark Fork River Basin

There is no published cultural chronology available for the Pend Oreille–Clark Fork River basin, which includes the Sandpoint vicinity. The CVAP has provided the most carefully dated series of assemblages relevant to the Pend Oreille Valley, and our analysis follows the chronological sequences used in the CVAP. It is important to note that the first cultural chronology proposed specifically for the project vicinity is available through Lawr Salo, USACE–Seattle District. Appendix D of the draft Historic Properties Management Plan, Albeni Falls Dam and Pend Oreille Lake Project (USACE 2008:Appendix D) is unpublished and not widely distributed or used. A brief synopsis is provided here (Table 4).

Table 4. Proposed Cultural Chronology for the Pend Oreille River Valley

<table>
<thead>
<tr>
<th>Phase</th>
<th>Dates</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purcell</td>
<td>Before 8000 B.P.</td>
<td>Human use was sparse and not focused on the relatively unstable and unproductive shoreline of the lake and river. Large lanceolate projectile points include forms like Hell Gap, Agate Basin, Alberta, and Windust; no fluted point tradition is evident. Highly mobile large-game hunters adapted to the cold steppe environment of the recently de-glaciated Pend Oreille region. Cascade-style lanceolate points are common as well as dart-sized side-notched points. Broad spectrum foragers exploited the sagebrush steppe–woodland mosaic of the early Holocene epoch. Earlier focus on large game like deer, elk, woodland caribou, and possibly bison continued. People used variety of microhabitats and diverse plant and animal resources. The subsistence pattern was not focused on riverine settlement or resources. The cooler climate, increased forest cover, and eventual closure of forest canopy decreased landscape productivity. This process began as early as 6,000 years ago and was complete by 2500 B.P. Regional population increased and innovations in procurement, processing, and storage technologies became widespread; settlement patterns changed profoundly. Exploitation of riverine habitats became more pronounced. Camas was established as an important staple along with local game and other resources. Dependence on stored resources began, as did population aggregation along the Pend Oreille River. Points are more commonly made of local materials, suggesting smaller foraging radii with dart-sized corner-notched and poorly formed stemmed points. Pelican Lake Corner-notched from the northern Great Plains and short-bladed stemmed forms similar to interior British Columbia styles suggest contact with other groups. By the Late Prehistoric period, the river and lake were the main means of east-west travel and the focal point of residence; the valley bottoms provided most important resources. Camas was processed in bulk and likely traded. Village-sized aggregates assembled annually at prime locations for the winter. Obsidian trade with Oregon, southern Idaho, and Wyoming is indicated. Elements of the ethnographic pattern observed by early Euro-Americans were well established during this period, including strong riverine orientation for settlement, resources, and travel. This period begins with the fur trade and ends near the present. Even before fur traders appeared, Indians were exposed to Euro-American goods, technology, and disease through trade with other groups. Indians’ interactions with an expanding Euro-American population continued after initial exploration through the industrial expansion of mining, railroads, and logging. Cultural evidence of Indian groups and white settlement co-mingle, as at Seneacquoten where early Euro-American travelers used the traditional Indian crossing of the Pend Oreille River.</td>
</tr>
<tr>
<td>Hoodoo</td>
<td>8000 B.P.–4500 B.P.</td>
<td></td>
</tr>
<tr>
<td>Cocolalla</td>
<td>4500 B.P.–2500 B.P.</td>
<td></td>
</tr>
<tr>
<td>Kalispel’em</td>
<td>2000 B.P.–250 B.P.</td>
<td></td>
</tr>
<tr>
<td>Protohistoric/ Historic</td>
<td>250 B.P.–50 B.P.</td>
<td></td>
</tr>
</tbody>
</table>

Adapted from USACE (2008:Appendix D).
Pend Oreille River from Cabinet Gorge to Calispell Valley

Landreth et al. (1985) conducted intensive testing of 10BR413 at Cabinet Gorge and found two assemblages. Based on their relationship to Mazama tephra horizons and artifact typology, one assemblage was dated to some time before 7,000 years ago, and the other was dated to between 4,500 and 2,000 years ago. Over 150 sites have now been identified in the Calispell Valley and surrounding area (Salo 1988; Thoms 1986), and over 100 radiocarbon dates are available for a variety of cultural and environmental features.

Intensive excavation at six sites in the Calispell Valley has resulted in the recovery of 14 chronologically and stratigraphically discrete, radiocarbon dated, and functionally typed cultural assemblages. Together with the dated but functionally untypable assemblages from small excavations at 10BR43 (Rice 1983), 10BR94 (Hudson et al. 1980), and 10BR99 (Knudson et al. 1979), this dataset formed the basis for a very preliminary proposed occupational sequence for the Albeni Falls Dam and Pend Oreille Lake Project. The sequence’s outline and general description are derived from collections research conducted by Miss and Hudson (1987).

**Early Prehistoric Period (before 8000–5000 B.C.)**

Most of the region was open to human occupation by the onset of the Holocene, around 10,000 B.C. Prior to that time, glacial Lake Missoula flooded over the Eastern Plateau for the last time (Atwater 1986), and the largest of the mountain glaciers had retreated to higher elevations. Cold sagebrush-steppe vegetation developed over much of the area with some cold-forest varieties developing in selected locations. Large lanceolate and stemmed lanceolate Paleo-Indian type projectile points make up the Early period and generally predate 5000 B.C. The “classic” Plains Paleo-Indian Clovis, Folsom fluted, and lanceolate Agate Basin point types occur infrequently if at all. Later forms identified as Agate Basin-like, Plainview-like, or Plano appear rarely. Artifacts usually considered diagnostic of later Paleo-Indian affiliation such as Hell Gap, Alberta, and Cody (Scottsbluff and Eden) appear mostly as isolated surface finds on the Atlantic slope drainages that lead onto the northwestern plains (Salo 1994:3–31).

No buried Paleo-Indian site with reasonably intact deposits has been discovered in the region, probably due to inadequate sampling of landforms of sufficient antiquity. Most archaeological surveys have been located on floodplain and alluvial terrace settings where preserved sediments of early age and context may occur infrequently if at all.

Early period assemblages are identified by large-stemmed and lanceolate projectile points with large flaked stone tool forms on higher or older landforms. Bola stones are associated with these occupations. No radiocarbon dates are available, and stratigraphic positioning of most occupations with respect to Mazama tephra has not been established. Small occupations beneath Mazama tephra documented at 10BR99 and 10BR413 lack other attributes to include them with other Early period assemblages, however. The more than 30 early Holocene surface assemblages around Pend Oreille Lake bear close resemblance to the relatively well-dated Windust phase assemblages from the lower Snake River (Leonhardt and Rice 1970), which date from around 10,000 to 8,000 years ago. Outside the Great Basin, they represent the largest known localized Early period occupation west of the Rocky Mountains (Salo 1994:3–31).

Late Early period assemblages are characterized by leaf-shaped and shouldered lanceolate and large side-notched projectile point forms. Again, there are no local radiocarbon dates on this later portion of the Early period, but the Late Early period is probably equivalent in age to the Kartar phase (Lohse 1985) or the Lower Snake River Cascade phase. The estimated local time range for this period is from 8,000 to
5,000 years ago. Associated excavated assemblages have been found at 10BR413 and 45PO143; some 40 sites in the vicinity are associated with this period (Salo 1994:3–31).

Miss and Hudson (1986) illustrate artifacts from 10 surface collections in the Lake Pend Oreille vicinity, including a number of lanceolate and stemmed or shouldered lanceolate projectile point forms suggestive of great antiquity. Many of these strongly resemble Plateau types, especially some of the Windust phase varieties (Rice 1972). Choquette (1987:113) believes the early occupation of the Kootenai region by Goatfell people emphasized the Purcell Trench and southwestern Purcell Mountains with a gradual shift of emphasis toward the southeastern Purcell Mountains due to changes in ungulate range. Alternatively, Thoms and Burtchard (1987:243) believe Goatfell materials may reflect vagaries of archaeological survey on different landforms throughout the Kootenai region rather than a cultural shift.

Projectile points reminiscent of recognized Plains varieties seem to occur with greatest frequency along the upper reaches of the Clark Fork and its tributaries. Downstream on the lower Clark Fork, Pend Oreille, and lower Kootenai rivers, projectile points are more reminiscent of early Plateau forms (Melton 1984). Faunal remains from Early period components were not preserved or remain unreported. Bighorn sheep, wapiti, mule, and white-tailed deer, and extinct and contemporary forms of bison appear in non-cultural fossil localities along the upper Clark Fork in late Pleistocene and early Holocene deposits. Faunal assemblages in early sites on the Plateau (Rice 1972:157–160) contrast with the homogeneous Plains Paleo-Indian focus on mammoth or bison (Frison 1978). Eastern Plateau peoples were well dispersed and maintained themselves with a forager strategy that depended on seasonal movements of resident big game and seasonal availability of selected plant foods.

**Middle Prehistoric Period (before 5000 B.C.–A.D. 500)**

Chatters (1998:29–48) postulates a set of progressive increases in effective precipitation in the Eastern Plateau beginning around 6500–6000 B.C. Ponderosa pine and Douglas fir forests expanded at the expense of grasslands in the Flathead and Kootenai drainages while sagebrush steppe replaced grasses at lower elevations in the Columbia River basin. Chatters explains seemingly contradictory patterns (expanding forests and more moisture; expanding shrub steppe and warmer drier conditions) as evidence of a basic change in climatic pattern from continental to maritime around this time period. In the Kootenai region, the pollen record documents increases in larch and Douglas fir polllens and decreases in polllens from open-terrain species such as grasses and sagebrush. Mehringer et al. (1977:366) observe a large increase in the frequency of charcoal (in the pollen record) from this time, which they believe reflects increased forest fire frequency. Along this line, Choquette (1987:98) suggests that an increase in forest development reduced open terrain available for big game habitat in the southwestern Purcell Mountains and promoted a culture shift in geographic focus to grassy slopes on the rainshadowed east side of the Purcell-Cabinet mountain divide.

More precise information about the seasonality of precipitation might change the interpretation of the numbers of key species of big game available for human predation. If summer precipitation prevailed and maintained a longer pulse of green forage so animals could build up large winter fat reserves, populations might have increased dramatically beyond those observed today. Alternatively, cold, wet winters and hot, dry summers would probably have had an adverse impact on deer and other ungulates.

Early Middle Prehistoric period (5000 to 2000 B.C.) cultural developments appear to have been contemporaneous with the inferred transition from a continental to a maritime climate (Roll and Hackenberger 1998:125). Early Middle period assemblages are characterized by large- to medium-sized corner-notched and side-notched projectile points similar to the McKean-Duncan-Hannah series from the western Great Plains. Northern Plateau-like stemmed and lanceolate points, while present, are not common. Over 56 sites are associated with this period, and four components at the CVAP have been
associated with the period by projectile points and radiocarbon dating. Radiocarbon dates on camas features show heavy use of camas from 2,500 to 3,500 years ago (Andrefsky et al. 2000).

Late Prehistoric Period (before A.D. 500–1750)

Throughout the Eastern Plateau, the introduction of the bow and arrow, as indicated by distinctive small side-notched and corner-notched projectile points, marks the beginning of the Late Prehistoric period. Late period assemblages are characterized by small corner-notched, side-notched, and stemmed projectile points. The stemmed and corner-notched forms are often Plateau-like. Sometime after A.D. 1000 bow-and-arrow hunters in the region began to replace the small stylistically homogeneous Avonlea points with slightly larger side-notched and, less frequently, corner-notched points. In almost all contexts, deer or deer-sized mammals dominate Late period faunal inventories. During this same time interval, the assemblages start to contain a bit more diversity. A few elements of bison figure in the faunal assemblages from several sites (Roll and Hackenberger 1998:126).

Over 56 sites have Late period indicators, and 10 radiocarbon-dated CVAP components are associated with this period. A large, multifamily mat lodge structure dated around 1,500 years ago was excavated by the CVAP and is the only residential structure archaeologically identified in the region thus far.

Flathead Valley

Since the early 1950s, the University of Montana conducted archaeological research in the Flathead Valley and along the upper Clark Fork River (Malouf 1956a, 1956b, 1982, 1988). Although no stratified sites had been found as of 1982, a series of four major lake terraces around Flathead Lake disclosed different sequences of projectile point types. The highest and oldest terrace yielded lanceolate and large side-notched projectile points, including basalt specimens. The middle terraces had medium-sized corner and basal-corner notched points, also including basalt materials. The lowest and youngest level had smaller corner-notched and a few small side-notched points, many made of cryptocrystalline silicates (CCS).

Kootenai River Basin

Cultural sequences incorporating radiocarbon dates from sites in the Libby Additional Units and Reregulating Dam Project were published by Roll (1982). Using his own data and that summarized by Munsell and Salo (1979), Roll concluded that subsistence patterns were relatively consistent throughout the past 6,000 years. Intensive hunting of larger ungulates, fishing and gathering of various vegetal resources formed the economic basis, and this economy was implemented through frequent moves of residence. Roll defined six archaeological phases: Bristow phase (5,500–4,500 years ago), Calx phase (4,500–3,300 years ago), Kavalla phase (3,300–1,800 years ago), Stonehill phase (1,800–1,300 years ago), Warex phase (1,300–800 years ago), and the Yarnell phase (800–100 years ago).

Choquette (1987) took a different approach by drawing on his work in the Canadian Kootenay territory, data summarized by Munsell and Salo (1979), Roll’s (1982) data, information from a Bonneville Power Administration power line inter-tie project in the Purcell Trench (Choquette 1984), inventory and testing data from Libby Dam (Schalk 1984; Thoms 1984), and information from other sources. His resulting model contains a sequence of “complexes” tied to time and space that can serve as phase surrogates. His land-use model hinges on identification of stone materials to specific sources or geological formations; the main weakness of his model is a scarcity of adequately dated and reported assemblages and noncomparable stone typing in the existing assemblages.
The Goatfell complex is estimated to range in time from earliest deglaciation (by 12,000–11,000 years ago) to sometime after the Mazama ashfall about 7,000 years ago. There are no direct radiocarbon dates on Goatfell complex assemblages in the Kootenai River basin, but typologically similar assemblages have been dated as early as 9,000 years ago in nearby areas. Large stemmed and leaf-shaped projectile points, flake tools and bifaces, and scarce FMR are characteristic of Goatfell complex assemblages. Stone for chipped tools include a range of microcrystalline and cryptocrystalline silicates, but dark microcrystalline stone (possibly from Harvey Mountain and Goatfell quarries) appears to dominate.

While Choquette (1987) does not formally define the geographic distribution of the complex, it appears to focus on the Purcell Trench from the Sandpoint vicinity north to the Goatfell Quarry and westward to Kootenay Lake. Sites are located on lake terraces or mountainsides and represent an outgrowth of a pluvial/glacial lakeside adaptation.

The Bristow complex retains many of the same attributes, especially a preference for dark microcrystalline stone for finer chipped stone tools, but uses outwash cobble sources rather than massive stone quarries. The time range is from around 8,000 to 5,000 years ago based on geochronology and artifact typology. Medium-sized stemmed projectile points, large side-notched points, large biface technology, and continuing FMR scarcity are characteristic. Its geographic focus appears to be on the southeastern Purcell Mountains, and sites are located on higher river terraces. The Bristow complex may be a direct outgrowth of the Goatfell complex (Choquette 1987).

The Inissimi complex is a distinctive departure from the preceding complexes. The complex is poorly defined in time but has a radiocarbon date around 2,700 years at a major site (Roll 1982). Although several different kinds of stone are used for chipped tools, there is a strong preference for green microcrystalline stone (Kootenay Argillite) with a tabular fracture tendency.

Biface reduction technology and flake tools continue; FMR increases and circular features are found. Expanding-stemmed/concave-based, parallel-stemmed, and leaf shaped projectile point forms occur, but a point form with expanding stemmed convex based with ground edges and acute to right-angled shoulders (“Inissimi Point”) predominates. Its geographic focus is the Purcell Trench and the middle Kootenai region. Sites are located on lower river terraces associated with confluences, outlets, eddies, and rapids.

The Late Prehistoric Akiyinek and Akahonek complexes are roughly equivalent in time but differ in geographic and stone material focus. Neither is well dated over the entire extent of its occurrence, but the Akiyinek complex has a series of dates from a site ranging from 1,000 to 500 years ago (Roll 1982). Its tool assemblage consists of small forms manufactured on flakes. Projectile point forms include small side-notched/concave-based (Avonlea-like) and small unnotched triangular forms. There are dense deposits of FMR and burned bone. Stone materials vary but trend toward suites of CCS, especially red and golden dendritic chert likely from sources in the Madison Formation near Missoula. The Akiyinek complex centers on the Big Bend reach of the Kootenai River with sites located on large alluvial terraces. The origin of the Akiyinek and Akahonek complexes is unknown, but both may be progenitors of the Libby and Tobacco Plains bands of Kootenai Indians, respectively.

The Akahonek complex is characterized by use of a range of stone materials with dominant gray cryptocrystalline chert for small flake tools. It dates from some time before 1,400 years ago to the Historic period, based on a series of radiocarbon dates from several assemblages. Tool assemblages are similar to those of the Akiyinek complex. Early Akahonek components include small corner-notched projectile points. Later components include small side-notched, triangular unnotched, and Avonlea-like forms. Sites are located on alluvial terraces and uplands (Choquette 1987).
Columbia River

Kettle Falls

Work at Kettle Falls (Chance and Chance 1985) has produced an occupation sequence but without developing a stylistically chronology. The occupations are divided into seven major periods; except for the oldest period, all assignments are based on dendro-corrected radiocarbon dates.

The Shonitkwu period, with two known occupation assemblages, is estimated to range from about 9,600 to 8,800 year ago on the basis of stratigraphy and stylistic similarities. It corresponds with the Lower Snake River Windust phase (Rice 1972). Microblade technology is present.

The Slawntehus period (7,300–5,600 years ago) has 27 known occupation assemblages (including surface sites) and seems to correspond with the early Cascade phase and very early Kartar phase assemblages. Microblade technology is also present in this period (Chance and Chance 1985).

The Ksunku period (4,800–3,600 years ago) was a major constituent of the Kettle Falls assemblages (three representatives). As in the two previous periods, microblade technology is present (Chance and Chance 1985).

The Skitak period (3,600–2,800 years ago) corresponds to the Hudnut and Frenchman Springs phases and has three representatives. Microblade technology continues in this period.

The Takumakst period from about 2,800 to 1,700 years ago (five representatives) roughly corresponds with the late Hudnut and Frenchman Springs phases. Microblade technology is no longer present.

The Sinaikst period (1,700–600 years ago) corresponds in many respects with the Coyote Creek and Harder phases and is represented by six large assemblages.

The final prehistoric period, Shwayip (600–200 years ago), with seven representatives, is analogous to the ethnographically described culture of the area and roughly corresponds to the Numipu phase (Leonhardy and Rice 1970).

Chief Joseph Dam Project

The Chief Joseph Dam project developed a three-part chronology aimed at identifying and studying change in settlement patterns and adaptive strategies for occupations that were present (Lohse 1985).

No evidence of early postglacial occupation was found at Chief Joseph Dam; therefore no local equivalent of the early Vantage or Windust phase could be defined. The early Kartar phase (ca. 6,500–4,000 years ago) roughly corresponds to the Cascade phase (Leonhardy and Rice 1970). Artifact assemblages contain high proportions of multipurpose cobble tools; microblade technology is fairly common at nonresidential sites. Emphasis on CCS early in the phase declines with dark fine-grained volcanics (basalt) playing a larger role toward the end of the phase. Projectile points associated with this phase include large-stemmed forms and distinctive leaf-shaped lanceolates; the later part of the phase includes large side-notched forms. There is a well-developed bone tool industry, including fishing implements like barbed harpoons and woodworking items such as antler wedges and adzes.

The following Hudnut phase (4,000–2,000 years ago) represents a very large occupation of the area. Artifact assemblages associated with this phase include a variety of lanceolate and stemmed projectile points; late in the phase a series of large basal- and corner-notched forms of overall triangular outline appears. Cobble tool usage declines; use of dark volcanics such as basalt peaks about 3,000 years ago, then falls off sharply. Microblade technology is present until about 3,000 years ago (Lohse 1985).
Prehistoric Archaeology

The Coyote Creek phase (2,000–100 years ago) artifact assemblages include an early series of delicate stemmed and expanding stemmed (barbed) projectile points. Late in the phase small side-notched points appear. Nearly all smaller chipped stone artifacts are of CCS such as chalcedony and jasper. Cobble tools are fairly infrequent. Ground and polished nephrite adzes appear in the inventory. There is a proliferation of fishing implements including valved harpoons. In addition to the development of formal phase descriptions, an extensive projectile point typology and stylistic chronology was provided (Lohse 1985).

Lower Snake River

The widely used Plateau region chronology, developed using over 20 well-dated assemblages from a long reach of the lower Snake River in Washington and Idaho (Leonhardy and Rice 1970), segregates the past 10,000 years into four prehistoric culture-historical phases; a fifth phase is added to characterize Ethnographic-period cultures.

The Windust phase (10,000–8,000 years ago) is characterized by a series of large-stemmed and leaf-shaped lanceolate projectile points; many specimens exhibit basal grinding. Large bifacial and unifacial chipped stone implements are common; edge-faceted cobbles, bola stones, and a bone tool industry are present. Chipped stone technology was based on a flake/blade core system primarily using CCS.

The following Cascade phase (8,000–4,500 years ago) is recognized by a series of leaf-shaped and large side-notched projectile points; the latter points occur after the Mazama ashfall. Large bifacial knives, grinding stones/manos, edge-ground cobbles, and a well-developed bone tool industry are present. Flake/blade lithic technology is characteristic of this phase. Pit house remains associated with this phase have been found in the Clearwater River drainage (Ames 1980). Salmon remains and mussel shells are found in fairly large quantities, and large land mammal bone findings comprise mule deer, antelope, and elk.

The Tucannon phase (4,500–2,500 years ago) has triangular points with contracting stems and triangular points with side notches or corner notches that generally resemble Pinto and Elko types within the Great Basin projectile point series. Basalt is favored for chipped stone tools; technology is based on flake production. Heavy use of riverine resources in the form of salmon and river mussels is apparent. There are isolated pit houses in the Tucannon phase.

The Harder phase (2,400 to 100 years ago) is divided into early and late parts. The Early Harder (2,500–700 years ago) is characterized by small corner-notched and large and small basal-notched projectile points. The Later Harder (700–100 years ago) is characterized by small, thin, corner-notched and rectangular-stemmed projectile points, with a few small side-notched triangular forms late in the sequence.

In addition to the faunal remains found in earlier phases, this phase shows an increase in bison. Net sinkers and salmon remains abound, suggesting continued focus on riverine resources. Pestles and hopper mortar bases suggest use of roots. The remains of prehistoric houses are found in large numbers at selected sites (Leonhardy and Rice 1970).

Prehistoric Sandpoint

Miss (2004:55–56) advances ideas about the likely appearance of the area encompassed by the Upper Pend Oreille River Archaeological District during the prehistoric past. Albeni Falls Dam raised the river level from 624 m (2,048 feet) to elevations that normally occurred during spring runoff. The largest recorded floods produced peak elevations of 633 m (2,075.9 feet) in 1894 and 632 m (2,071.6 feet) in
1948 at Sandpoint. The reservoir is maintained at 628 m (2,062 feet) from May until late September and is drawn down to 626 m (2,055 feet) in the winter.

This high water is an obvious change from prehistoric conditions. The levee and swale topography probably extended closer to the river, but a broad beach was probably still created by the seasonal flood waters and was used by early peoples as a living surface. Early historical photographs show broad areas on the floodplain and lowest terraces near Sandpoint, Morton Slough, and Priest River that were used as hay fields before construction of the Albeni Falls Dam. The fine-grained sediments of the lower terraces were backed by dense conifer forests of Douglas fir, hemlock, cedar, white pine, and ponderosa pine. The forests were probably multiaged as a result of fire, perhaps intentionally set in order to maintain particular biota.

Ethnographic accounts reveal villages populated by several hundred people and large multitrade gatherings at prime camas grounds. Prehistoric settlement was probably more evenly distributed along the river with transportation between settlements by water. Stream and slough confluences were the best locations for semipermanent settlements as long as they were above the reach of seasonal flooding. Expanses of camas meadow near Morton and Seneacquoten would have prompted specialized locations where temporary campsites were established while camas was collected and processed. Given the ease of water transportation, camas may also have been moved to central base sites for processing. Winter hunting on lower slopes and in the meadows next to the river, and summer and fall hunting and gathering on nearby ridges and in uplands would have provided other important resources.

The earliest Euro-Americans used the same Indian trails for travel and many of the same camps or village sites for trading posts and camps. This pattern continued until the early 1880s when the railroads arrived. The region was changed by growing railroad settlements, like Sandpoint, as well as the Euro-American extractive economy, which focused on logging and lumber production. Mills were erected on river banks at Dover, Laclede, and Priest River. Settlers took up land through the Homestead Act or purchased land from the railroads. Forests along the river were quickly cut for lumber and in 1910, massive fires swept through the area further reducing the forest cover. Terraces along the river that may have been productive camas grounds became pastures and log yards.

**RESEARCH DESIGN**

**Known or Suspected Resources**

Two ethnographic sites were recorded in the project vicinity by Smith (1985). The first was a late spring and summer camp used by the Upper Kalispel reportedly located close to the tip of the sand point near the end of the railroad trestle bridge; this may have been a significant Upper Kalispel camp location. The second was located farther from the lake than the first and nearer to Sand Creek. Visits by two Blackfoot war parties around 1820 (Teit 1930:313) are attributed to this vicinity. The Kalispel fought off the first party and the other retreated when discovered. Archaeological evidence distinguishing historic use from earlier occupations would be the presence of trade goods, like beads, metal axes, other tools, or evidence of horses. Indian burials near the mouth of Sand Creek were noted in the local press as early as 1906 and as recently as 1940; all appear to have been located at the south end of First Avenue in what was known as the Weil Addition (now largely occupied by the Condo del Sol) (Miss et al. 2002:12).

Prehistoric sites representing camps and processing locations can be expected on more stable terraces just above the Sand Creek floodplain and near the mouth of Sand Creek. These landforms are relatively young and would have been available only for Late period occupation. The top of the major terrace is old enough to host any occupation following deglaciation and stabilization of landforms. Artifacts as old
as 10,000 years could be found in near surface deposits. Prehistoric archaeological sites in the project area include 10BR1, a prehistoric beach campsite located 0.1 mile east (outside) of the project’s area of potential effect, and 10BR538 and 10BR1026, a pair of adjacent sites that are probably the same site artificially separated by US 95 (Miss 2004:99, Figure 37). In addition, within the Sandpoint townsit site (10BR859), shovel probes on the slope showed sparse prehistoric cultural material extending to ca. 80+ cm below surface (Miss et al. 2002:16). Finally, 30 pieces of prehistoric lithic debitage were observed in shovel probes excavated at Sandpoint Southwest (10BR978) (Miss et al. 2002:18).

Portions of the project area once used as a Humbird Mill yard suggest that any prehistoric archaeological materials would likely be disturbed. The terrace margin above the creek, which was less affected by these Historic-period activities, is likely to have greater potential for prehistoric site discovery (Miss et al. 2002:11).

Key Parameters

It was imperative that known, recorded prehistoric archaeological sites and any newly discovered prehistoric archaeological resources identified during subsurface testing, data recovery, or during project construction meet minimal thresholds of integrity before expenditure of data recovery funds could be justified. The occupations in the sites/resources would have needed to be dated either with relative or absolute chronological dating techniques. The array of objects (artifacts/ecofacts) would have needed to be classifiable in some fashion that related to the research topics to which they may have been able to contribute information. Prehistoric sites having integrity would provide sufficient justification for their data recovery, especially if these sites/resources could address questions posed in the research design.

Important Constraints

Basin hydrology is important to understanding the characteristic distribution of prehistoric archaeological sites on low-lying floodplains; the livability of different land surfaces certainly depended on it, at least seasonally. Stream gradients strongly influenced modes of transportation and local geochronology. Hydrology also affects the scheduling of archaeological investigations. Historically the unregulated water surface elevation (lake level) fluctuated between a mean low of 2,048 feet and mean high of 2,061 feet. Floods in 1894 and 1948 produced peak water surface elevations of 2,075.9 and 2,071.7 feet at Sandpoint.

The unregulated historical cycle was characterized by a rapid rise in lake level with the onset of spring runoff, a rapid lake level drop in midsummer; and stable water levels during the fall and winter. This cycle was important as it affected the distribution of prehistoric sites along shorelines. The project vicinity is characterized by low stream gradient and would have been easily navigable by early watercraft; this low gradient contributed fine-grained sediments to the landforms along the reservoir.

The chief physical constraints on archaeological fieldwork in the project area are low water and weather; low water now occurs in late November through early April. Surface collecting must be conducted when the water is low and the ground is free of snow and dead vegetation. Testing fieldwork typically can occur under worse conditions but with added expense. The lake sediments become extremely hard when dry, so cost-effective work in them must take place while they are still moist. Practically speaking, there is an annual fieldwork window of about six weeks in early spring for subsurface testing.
Basic Local Research Problems

Salo (1994:4-5) outlined several overarching research domains for the project vicinity: identification of cultural developmental stages; the Paleo-Indian problem as it relates to hunter-gatherer evolution; general cultural evolution and application of lakeside economic adaptations; and adaptation to glaciated environments (also known as the middle Holocene occupation problem). These larger research domains can only be addressed once more basic local research problems have been addressed.

Culture History and Chronology

Before work on higher-level problems can take place, there must be a set of analytically organized, dated occupational assemblages. These occupational assemblages can be assembled into a time sequence of different levels and kinds of adaptation for the area in a descriptive fashion.

Geochronology

The study of Pend Oreille River fluvial geomorphology and geochronology is important to understanding regional prehistory. River and lake terrace and bar development sequences must be known to understand how sites relate to important environmental features. Because humans actively concentrate a wide range of organic debris in their dwelling sites, chronology of environmental developments often is more conveniently identified using dateable materials from archaeological sites (radiocarbon samples, volcanic ashes in stratified contexts, stylistically dateable artifacts like projectile points). Understanding local geochronology is key to understanding the distribution of prehistoric sites and the history of their preservation or destruction. Erosional river regimes can selectively remove evidence of certain periods of occupation so it is important to understand when they occur so that a reduction in archaeological data from that time range is not seen as evidence of local human population reduction.

Seasonality

Determining the season or seasons when a site was occupied is critical to understanding prehistoric economic systems. The scope of seasonality identification usually is a function of the number of seasonally assignable specimens; the use of larger numbers of identifiers tends to give a wider range of time of site occupation. New developments in seasonality studies include use of freshwater mussel shell hinges to identify season of death (Chatters 1998); charred botanic remains have the potential to contribute to seasonality studies but require greater technical expertise found with specialists in ethnobotany and paleoethnobotany.

Functional Variability

Hunter-gatherers, particularly more mobile ones, often left behind little debris at their dwelling and work-sites; finding and identifying the age of these sites is difficult. To understand how groups used their territory and how and why those uses changed, archaeologists must secure evidence from the many different kinds of activities they engaged in at those locations; there must be temporal control as well. In the western part of the Columbia River basin there is considerable variability within each time period for each major kind of site with respect to age, cultural associations, and economic function (Campbell 1985; Schalk 1980). The project area should also exhibit such variability, based on the results of work by Knudson et al. (1979), Hudson et al. (1980), and Rice (1983), as well as results of the CVAP (Thoms 1986). High variability accounts for much of the difficulty archaeologists have in trying to construct regional cultural sequences using geographically limited data samples. To identify and explain variability in the archaeological record requires greater quantities of data (i.e., good dated assemblages with reliable sample sizes).
Early Holocene Occupations

In every geographic area of the country, evidence for the earliest occupations is very sparse and usually not well dated. Lack of radiocarbon dates may be the result of the conditions under which early sites were preserved, because the late Pleistocene and early Holocene were characterized by a highly energetic geological environment. On the other hand, very light and intermittent use of most sites (even regions) by very small groups of highly mobile hunter-gatherers may have left little carbonaceous material suitable for dating. Because the project vicinity has occupations estimated to fall in the range of 11,000–10,000 to 7,000 years ago, there is an excellent potential to produce data relevant to these issues.

Timing of Initial Occupation

The Columbia River basin has several major subbasins with large valleys surrounded by high mountains that, in the late Pleistocene, had alpine glaciers, plateau ice caps, and valley and continental glaciers. At the last glacial maximum, the volume of ice in each subbasin varied but generally declined along a southerly trending critical altitude and temperature gradient. The basins with the least ice volume should have been the first available for human occupancy, or the first free of the highly erosive effects of glacial meltwater flows. The Clark Fork/Pend Oreille basin, once drained of its massive glacial lake (Lake Missoula), would have opened around 12,000 to 13,000 years ago. Generally speaking, the geographic sequence of initial human occupation of the subbasins appears to follow out the sequence of deglaciation. In the Clark Fork/Pend Oreille basin, archaeologists have found unfluted lanceolate and large-stemmed projectile points characteristic of Windust period occupations, some appearing to date around 9,000 to 10,000 years ago (Miss and Hudson 1987).

Early Holocene Taphonomy

Postglacial landforms in glacially overridden areas were dynamic. Valleys filled with glacial debris were being rapidly incised by the highly erosive rivers swollen with meltwater. Areas once under continental glaciers were rebounding from the immense weight of the ice (Andrews 1974). Some valleys were occupied by stagnant blocks of ice, alongside which flowed vastly swollen rivers that undercut their banks and even attacked consolidated rock valley sides.

Along the main rivers, there is evidence that these instabilities resulted in frequent landslides, damming flows temporarily. When the dams broke, catastrophic floods of varying severity probably resulted. All of these factors probably had severe destructive effects on any existing local archaeological record, destroying much occupational evidence along streams. The combination of downcutting (downward erosion that depresses a stream or river channel) and isostasy (gradual rebounding of the earth’s surface from removal of glaciers) may have meant that landforms that in one century may have been located close to water and might have hosted habitation, in the next century may have been high and dry. If these successive landforms were inhabited in an unbroken sequence, the ultimate result might be the impression of extremely low overall use of the local environment when the actual situation would have been moderately low use on each of a sequence of a rapidly developed series of landforms.

The project area was extraordinarily well favored for riverbank stability and site preservation. Compared to all other northern Columbia River subbasins, it contained the least ice, and it almost certainly was ice-free at a relatively early date. Because much of the area was either unglaciated or contained ice of less thickness than other areas, it may have been relatively unaffected by isostasy. Because large areas of it did not contain ice-marginal streams, it may have been less subject to landslide damming. More importantly, it contains two very large, deep lakes that may have served as stilling basins for glacial meltwaters and landslide-breech floods, reducing erosion of downstream riverbanks. Much of the
immediate project area is low gradient and still, and from deglaciation until about 6,000 to 7,000 years ago, appears to have been in the backwater or upper pool of a large shallow lake centered on the Calispell Valley, about 64 km (40 miles) downstream (Mierendorf 1986).

**Early Holocene Adaptations**

The unglaciated part of the Columbia River basin that had been grassland during the Pleistocene remained grassland at the end of the Pleistocene, with some changes in the brush and forb content. In each glaciated northern Columbia River subbasin, there has been a succession from grass-dominated tundra in the late Pleistocene to progressively more densely forested environments; early postglacial vegetation changes were rapid and relative environmental stability was not characteristic until the middle Holocene. Human occupation of the deglaciated basins of the northern Columbia River basin may have been slowed because the nearby human cultures were not adapted to the basin’s environments. Native grasslands of the Columbia River basin could not support sustained grazing by large herds of ungulates, but early human incursions did take place as evidenced by a Clovis fluted point cache on a high, late Pleistocene flood bar near Wenatchee (Mehringer and Foit 1990). This site provides evidence of bison and other big-game hunting, showing that sufficient game was present in the Columbia River basin to support at least a small number of very early occupants.

If the earliest Columbia River basin peoples were Clovis, then they were adapted narrowly to hunting grazing bison and mammoth, possibly in tundra environments. It is assumed that the unstable, sparsely vegetated, and relatively unproductive environments of the newly deglaciated basins would have been unattractive. If this was the case, the basins would have to await first occupation by other peoples already adapted to use the kinds of resources that would have been present. By around 11,000 years ago, such peoples were living nearby, possibly even in the Columbia River basin. Archaeological assemblages of the Western Pluvial Lakes tradition (WPL) are found in fairly large numbers around the large late Pleistocene lakes of the Great Basin.

WPL assemblages indicate both big-game and broad-spectrum hunting, fishing, and collecting. Similar but slightly later Windust assemblages in the unglaciated part of the Columbia River basin have nearly identical tool kits and adaptation. The Windust sites occur on mainstem rivers, often near extraordinarily productive fisheries, or near other bodies of water such as lakes or ponds. Despite the WPL adaptation being broader than Clovis, it may still have had adaptive limitations that may have kept it from very early occupation of some basins. Great Basin studies suggest that early WPL adaptation may have relied on game and other resources tethered to water sources in a drying environment. Basins without large lakes may have been less attractive to WPL-like early occupants. The project vicinity has such resources and also large numbers of early Windust/WPL–like assemblages. Choquette (1987) speculates that the Pend Oreille Lake area was populated from the south by descendants of the WPL tradition. As the late Pleistocene lakes to the south dried, people may have sought similar environments to the north or otherwise began to alter their lifestyles.

Early occupants of the Columbia River basin could also have come from the east. Assemblages characterized by Hell Gap, Agate Basin, Scottsbluff, and Angostura types of lanceolate and large-stemmed projectile points include evidence of big-game hunting and some broad-spectrum foraging. No physical barrier would have prevented peoples from the east from entering the Columbia basin; only adaptive barriers would have been effective in blocking new entrants. Because the project vicinity has relatively large numbers of “Plano” occupations and high potential for dating them, the Columbia basin may be very important for understanding late Pleistocene and early Holocene population movements and their relation to localized human adaptations.
Early Middle Holocene Adaptations in the Columbia River Basin

Evidence for human use of most of the project region does not become frequent until after about 7,000 years ago; not until about 5,000 years ago did the region’s populations finally begin to stabilize and expand. The reason the Columbia River basin’s populations seemed to have been stable at a very low level between about 10,000 and 7,000 years ago is not known, but the dynamic landscape may have been a large factor that limited productivity of economically important species like fish. The continual and fairly rapid change may have made it difficult for people to attain a highly refined knowledge of environmental resource productivity that would allow even modest population expansion using their available technology. How the expansion after about 7,000 years ago was achieved is unresolved. The project vicinity has the greatest number of occupations in the Columbia River basin that appear to date before about 7,000 years ago, and it probably has the highest potential among all regional subbasins to shed light on this issue.

Late Middle Holocene Occupations in the Columbia River Basin

Salo (1994:4-13) reports that the western central part of the Columbia Plateau shows a declining occupation frequency during the late middle Holocene (ca. 2,000–1,500 years ago) while at the same time, the mountainous areas to the east in the Purcell and Rocky Mountain trenches (Roll 1982; Schalk 1984; Thoms 1984) and the Pend Oreille/Clark Fork River valleys seem to show increased occupational frequency (Hudson et al. 1980; Knudson et al. 1979; Miss and Hudson 1987; Salo 1988; Thoms 1986).

The western decline is corroborated by an ever-increasing quantity of well-dated assemblages from data recovery and other research projects. In contrast, the trend in the east toward increased occupational frequency is so far construed chiefly from inclusion of projectile point types in a variety of surface collected assemblages accumulated with unknown kinds and degrees of sampling bias. The project vicinity has assemblages that appear to be associated with the time period in question, and it is likely that they can be dated with radiocarbon methods to investigate the trend. If the trend in the east is confirmed, as appears likely, then the question of what kind of cultural or environmental event it represents can be addressed.

Hunter-Gatherer Evolution

Pend Oreille Lake and the Pend Oreille River between the lake and the Calispell Valley are characterized by complex, and possibly unique, microenvironments. Perhaps as early as around 12,000 years ago when the area became free of ice, the vicinity presented a unique set of opportunities for occupation; in fact, there are no other places in the region where there is such a large set of indications of early use (Miss and Hudson 1987). By and large, the mountainous fringe of the northern Columbia Plateau except for Pend Oreille Lake has shown relatively few indications of early use.

Pend Oreille Lake may have been attractive at an early time because it could easily be accessed. Prehistoric visitation of the area took place frequently as evidenced by two major trails crossing the area: the north-south Cariboo and Skeetshoo roads and the east-west Pend Oreille Trail (Miss and Hudson 1985).

The archaeological record suggests relative ease of movement of goods or persons because the area’s tool assemblages show a very high percentage of materials from outside the area (Knudson et al. 1979; Miss and Hudson 1987; Salo 1988). At the time of Euro-American contact, the area supported relatively large game populations as a relatively reliable food source and was blessed with one of the most productive camas grounds in the Pacific Northwest, at least after 5,000 years ago. The only missing item
was salmon, but the area had other major fish resources, which the Kalispel relied upon, including the mountain whitefish.

Some investigators believe Plateau hunter-gatherers had to maintain a generalized adaptation because of periodic failures that occurred in each major resource. Blights might affect roots and berries, and berries tend to be vulnerable to wide variations in production. Deer herds have marked cycles of growth and decline and even salmon may fail on occasion to provide the full return to support a local population (due to disease or weather). Hence, areas with greater diversity are most likely to have produced a stabilizing population of early hunter-gatherers.

The larger question is how this area differs from other areas with large mountain lakes without anadromous fishes (e.g., Flathead and Coeur d’Alene lakes). Evidence of early occupation along the Flathead Lake/River system is quite light compared to that seen on the Pend Oreille River/Lake system, and few if any of the sites occur in stratified context. Although the Flathead system has a camas resource, camas does not seem to have been used to the degree it was among the Lower Kalispel. The Coeur d’Alene Lake/Spokane River system is somewhat more like the Pend Oreille system with a notable camas resource, but it had a less productive fishery and may not have had as much game. In addition, private ownership around its shorelines precludes much archaeological investigation.

Another question is whether or not local population levels were stable or showed stable increases through time. Chatters (1998) documents evidence of population crashes in the middle Holocene and possibly later, but his data sample might be biased. In the Calispell Valley, the development and use of camas is now well understood, but little information is available about fishing or hunting practices, even in later time periods. The project area has a major geographic component—the lake and river—that is not represented in the Calispell Valley; looking at data from the project area and from the Calispell Valley can help us more fully understand the sequence of cultural development in the land of the Kalispel.

Kalispel Adaptive Model

Salo (1988:4-18, 4-19) proposes an adaptive model for the Kalispel and explains that twentieth century ethnographic studies among the Kalispel were conducted to produce data useful for archaeological research into Kalispel economic practices. In the 1930s, Allan Smith recorded reams of detail about features of Kalispel culture that were likely to have left archaeological evidence. Chatters (1998) argues that any hunter-gatherer group does not purely engage in collecting or foraging; instead, each hunter-gatherer group practices many different patterns, tending toward a group of economic practices that can be classed within one of the two major adaptive forms. The goal of classification is to view the group’s economic activities in such a way that identifies ranges within the kinds of adaptive behavior that actually were practiced. Methods used to measure behavioral characteristics must be sensitive to scale and degree of the major strategic elements involved in adaptive nodes. These major strategic elements are mobility, predation, and technology (Salo 1988:4-18).

- **Mobility** refers to how group members behave in space and time with respect to the resources in their territory. Do they move to the resources when plant foods are ripe or game herds are gathered, or do they gather quantities of resources and then transport them to their favored residence location? The former behavior is typical of foragers while the latter is typical of collectors with a central base or bases.

- **Predation** is the way in which group members secure their main resources (floral and faunal). Do they take prey as they encounter it, using a wide variety of species, or do they focus on
seasonally highly abundant species, storing part of the take for leaner times? The former behavior is more typical of foragers while the latter typifies collectors.

- **Technology** refers to the complexity of objects and processes used to make a living. Does a group have a relatively few kinds of relatively simple tools used the same way in most places and frequently discarded, or does the group have an elaborate set of specialized objects used in a highly specific way according to place, time and task, and carefully maintained? Foragers typically adhere to the former pattern while collectors follow the latter.

Salo (1994:Table 4-1) presents a matrix that can be used to classify these elements, with archaeological measures that can be used to develop the classifications, and bipolar expectations within the measures for idealized forager-collector extreme types (and for forager-collector types that might be expected in the project area).

**Lakeside Adaptations**

The development of lakeside adaptations in the Great Basin has been the focus of investigation for almost 50 years, but to date, there has been little research on lakeside adaptation in the Columbia River basin. The project area is a vital source of information on lakeside adaptations.

**Origin of Sedentism among Hunter-Gatherers**

Explanations for the origin of sedentism among hunter-gatherers tend to emphasize the central importance of spatially and temporally abundant food resources suited for long-term food storage. The lack of salmon and the relatively unproductive nature of plant foods in the project area appear to be factors that would preclude the development of sedentism similar to that achieved in the lower portions of the Columbia River basin. Alternatively, the great diversity and abundance of food sources seem to imply greater potential for reduction in mobility than exists in other areas of the boreal forest.

Changes through time in site distribution and content should be investigated. Pestles and other nonflaked lithic tools usually associated with plant processing are more common at sites occupied during the last 2,000 or 3,000 years than they are at sites occupied between 7,000 and 3,000 years ago. The same can be said about net weights, which are tools probably associated with fishing. It is possible that later-period groups spent a greater portion of the year in the project area in comparison to their predecessors for two reasons. First, hunting was probably more important in the winter. Second, plant and fish resources were most important during spring and fall.

**General Cultural Evolution**

The Columbia River basin is one of the few places where an economic way of life that many cultures passed through earlier in their development can be studied with both historic and archaeological data to help us understand general cultural evolution.

**Adaptation to Glaciated Environments**

How hunters and gatherers adapted to glaciated and near-glacial environments such as the project area is an important research topic. In Europe, deglaciated areas were not immediately populated upon the ice’s melting; this time lag was true for people at all levels of economic adaptation, whether hunters, herdsmen, or farmers. The closer to the center of a glaciation, the longer it takes for stable human populations to establish themselves. Interestingly, vegetation grows in glaciated areas almost immediately after ice is no longer present. Evidence exists from North America that thin continental glaciers were overgrown by vegetation colonizing the soil and rubble on top of the ice mass at its
advancing or stagnant fronts. Where there is vegetation, there is also animal life that could be used to sustain human life.

*Fur Trade Era*

The early 1800s brought significant change to Indian cultures in the project region. Arrival of fur traders from the North West Company, the American Fur Company, and the Hudson’s Bay Company triggered important cultural and economic changes. In relatively few areas are there good archaeological data present to allow study of the interaction of European and Indian cultures at this critical time period. Documented collections from the project area indicate a high potential for supporting such studies.

**Research Questions**

The research design for the project (Appendix 1 to this report) poses a number of research questions. Pertinent research questions from the research design are included here. Assuming that the discovered archaeological resources met minimal thresholds of integrity and significance and that data recovery was determined to be warranted, the occupations in the sites/resources had to be datable and the array of objects (artifacts/ecofacts) in them amenable for classification in some fashion that related to the research topics to which they could contribute information. When these basic needs were met, the sites and resources were then useful in addressing the general research questions and several Sandpoint-specific research questions presented below.

**Chronology**

The primary objective of a chronological study on archaeological sites in the project area was to determine when a site or suite of sites were used or occupied. Chronological studies help determine site-specific chronology, compare occupational histories with other sites in surrounding areas, and test the validity of current culture history sequences for the region.

Chronological data are especially important for northern Idaho prehistory as they may help determine the initial dates of post-glacial settlement and changes through time and help resolve some of the research problems described earlier. By themselves, individual sites rarely begin to address these topics, but they can provide information relevant for local and regional syntheses. The following questions were posed to support further local and regional chronological studies:

- What is the chronological range of occupation/use of each single component, multicomponent, or mixed component site found in the project area?
- Can distinct single-component loci be identified within the multicomponent sites? Can these loci be placed in chronological order using available data?
- Do the temporally diagnostic artifacts correlate with the absolute chronology?
- Do the temporally diagnostic artifacts correlate with the site stratigraphy to provide a rate of deposition and a determination of site integrity?
- Is occupation continuous, or are distinct periods of disuse or abandonment present?
- Is the site chronology similar to other known sites in the Pend Oreille Lake/River region?
- Is there a protohistoric component present that can help address research issues related to the impact of the fur trade on local Kalispel Indians?
- Do the data obtained from debitage and non-diagnostic artifacts produce a chronology? (Do these data compare to other data, diagnostic artifacts, radiocarbon dates?)
• Do the chronological data and radiocarbon dating allow an assessment of the stratigraphic integrity of the site deposits?

Lithic Technology

The study of the lithic technology focused on determining the nature of flaked and ground stone procurement and manufacturing activities represented by both the artifacts and manufacturing waste present. The following questions were posed to support further local and regional lithic study:

• What lithic assemblage(s) and manufacturing techniques (including types, range, and variability for both chipped and ground stone materials) are present? How do these compare to assemblages from other sites (see Miss and Hudson 1987)?

• Do the lithic assemblage(s) and manufacturing techniques change through time?

• If chronological variation in lithic manufacturing techniques and raw material preference is present, do the metric and nonmetric (primary versus secondary flakes, etc.) attributes of whole flakes change over time?

• Are lithic workshop or activity areas present, and do these change over time?

Settlement, Subsistence, and Seasonality

Settlement systems and accompanying subsistence strategies have been topics of considerable interest in regional research. Settlement, subsistence, and seasonality studies are important to determine why and when sites were occupied (season) and what economically valuable resources were used and/or exploited. The topics are functionally interrelated because the prehistoric aboriginal groups in the region were hunter-gatherers and fishers who relied on available seasonal resources and scheduled their subsistence rounds in response to resource availability.

Plant macrofossil analysis had the potential to be particularly fruitful if applied to archaeological deposits that might be encountered during construction of the Sand Creek Byway. The following are general research questions were posed in the event suitable materials were discovered and analyzed:

• What was the subsistence economy at the site, and did it change through time?

• Did the prehistoric subsistence regime correlate with a specific season or seasons?

• Can the subsistence activities be correlated with specific intra-site locations?

• Can a specific season or seasonal rounds be determined from the range of subsistence activities represented at the site (or sites in the area)?

• If macroscale mobility is indicated, is this correlated with climatic change?

• What are the predominant faunal and vegetal resources? Can their ecological zones be determined? Are there changes in species exploitation over time?

• Do the results of faunal, palynological, and macrobotanical studies suggest substantive differences in resource exploitation between different site types?

• Do the results of the paleoenvironmental studies indicate relationships between the populations of the various sites (i.e., macroscale mobility on either a seasonal, annual, or multiannual basis)?

• Are faunal or botanical remains present, and if not, why not?
• Can subsistence activities be correlated with specific cultural groups? Are the subsistence activities specific to certain areas? Do the subsistence activities fluctuate through time and space?

**Trade and Exchange**

The goal of a trade and exchange analysis is to understand the nature of resource procurement and distribution networks operant in the overall prehistoric economic system of the region. The following questions were posed to support further local and regional trade and exchange studies:

• What materials indicative of trade are present?
• What is the point of origin of the trade commodities?
• How many lithic sources are represented at each site?
• Do the lithic sources change over time in terms of absence, preference, and quantity? Can any changes be correlated with artifact style changes?
• Can any site be identified as a center for exchange or manufacturing of trade items or raw materials? How does the trade network represented at a site compare with other sites in the area?
• If Protohistoric period sites can be identified, are any materials or sources unique to the territories of a specific cultural group or groups?

**Prehistoric Demography**

The study of prehistoric demography in Idaho is of ongoing interest in regard to population movement and replacement, population size and density measure research based on the theoretical availability and exploitation of subsistence resources, and the demographic relations of hunter-collector groups, among other issues. Physical anthropology, through the analysis of aboriginal skeletal remains, can provide cultural and physical knowledge of the people who once occupied the project area. In addition, the archaeological study of grave-associated artifacts can provide insights into social status and societal complexity, as well as provide technical information on the material culture of the group.

In the event that prehistoric skeletal remains were recovered, the research design posed some general questions that could be addressed from scientific archaeological analysis of discovered burials and associated grave goods:

• Do the burials and their grave associations exhibit change through time (e.g., position, orientation, grave offerings) in a manner that would indicate cultural change rather than a change in genetic or physical type?
• Do the skeletal attributes of the prehistoric population change through time? Do the skeletal remains indicate population replacement or displacement by another group?
• What was the age/sex composition of the site’s population? Can inferences on the demographic structure of the site’s occupants be extrapolated? Is there evidence of change through time (i.e., life tables)?
• What was the relative health of the site’s population? Do particular physical types have a propensity to certain pathological conditions? Were there periods of time when individuals suffered from pathologies?
Can the prehistoric population be assigned to a specific physical type (genetic pool)? Were they of the same physical type as the people in other geographical areas? Does the physical type change through time as documented by mitochondrial DNA analysis?

Can a reasonable estimate of the population of each site and the region through time be derived from the available data?

Site Function

Sites, whether single component, multicomponent, or mixed, are microcosms of cultural activities and use. Sites come into existence for a variety of reasons but are generally related to sociodemographic and ceremonial or religious purposes (including settlement, subsistence, and economics). The interpretation of site function by an archaeologist relies on the types, amount, and arrangement of the cultural material observed and available for analysis and comparison. Archaeological material may be arranged in clusters (forming associations) or dispersed vertically or horizontally throughout a site. These arrangements allow the identification of activity areas or loci. The following questions were posed to better understand site function:

- What is the function(s) of each site? What activities were conducted? Can multiple uses or functions be identified?
- Does the site belong to a specific physiographic (i.e., correlation of site type with geographical area) or geological area (for example, are village sites confined to riparian or marsh areas)?
- Can the site be placed into the regional network (e.g., allowing for resource availability and environmental factors, FMR/lithic scatters and temporary camps should be located within an interactive zone)?

RESULTS OF THE INVESTIGATIONS

While the Sandpoint Archaeology Project was primarily driven by the effort to document the historic Sandpoint townsite on the east side of Sand Creek, it was fully expected that excavations would also encounter evidence of prehistoric activity. Landreth et al. (1985:Table 11.1) summarized early archaeological investigations in the Lake Pend Oreille area through 1984 and Miss (2004:Table 14) brought this summary up to date as of 2002. Since the 1980s the U.S. Army Corps of Engineers (USACE) has funded a number of archaeological surveys and site testing efforts that focused on the north end of Lake Pend Oreille as well as the Clark Fork and Pend Oreille rivers. These and earlier archaeological investigations identified numerous prehistoric sites in the project vicinity (Betts and Lyons 2001; Gough and Boreson 1985; Miss 2001; Miss and Hudson 1986; Miss et al. 2002; Salo 1988).

Although extensive archaeological surveys have been conducted on both federal and private land at the north end of Lake Pend Oreille, very few significant large excavations have been conducted in the project vicinity prior to the Sandpoint Archaeology Project. In 1979, excavations were undertaken at the USACE Riley Creek Campground on the Pend Oreille River (Knudson et al. 1979), and in 1985, excavation was conducted at the historic Cabinet Landing Site on the lower Clark Fork River (Landreth et al. 1985). These excavations yielded both historic and prehistoric components.

Documentation of local private artifact collections by the USACE also demonstrated extensive prehistoric occupation of the Lake Pend Oreille area and, based on both projectile point typology and radiocarbon dating of sites, occupation occurred over a long time span (Miss and Hudson 1987). Based on the presence of early Windust and Cascade projectile points (Leonhardy and Rice 1970) that are both present in local private collections and documented by archaeological survey and testing work,
prehistoric sites extend back for over 7,000 years in the Sandpoint area. Weisz (2006) recently published data on bola stones from 10BR522 at Hornby Creek on the Pend Oreille River, and this site may be one of the earliest sites in the vicinity of the Sandpoint project area.

Miss (2004:Table 2) lists only two radiometric dates older than 7000 B.P. for sites within the Upper Pend Oreille River Archaeological District. 10BR95 produced a calibrated date of 7820 to 7960 B.P. and 10BR956 produced a calibrated date of 8030 to 8200 B.P. At present, this Early Prehistoric occupation is not well dated or understood because almost all the older projectile point types have been surface finds or came from limited survey testing. While there are very few pre–5000 B.P. radiocarbon dates on archaeological sites in the Lake Pend Oreille area, cultural components underlying a Mazama tephra horizon dating to approximately 6800 B.P. (Matz 1991) have been identified at a number of sites in the project vicinity including the Cabinet Landing Site (Landreth et al. 1985:253; Miss 2004:Table 15).

We now have a growing number of radiocarbon dates on area prehistoric sites less than 5,000 years old (Miss 2004:Table 2) and extensive ethnographic information on Native American occupation of the Lake Pend Oreille at Euro-American contact (see Ethnography and Ethnohistory above). Native American use of the Lake Pend Oreille area by the Kalispel and other tribes and at least seasonal use of the Sand Creek area into the early twentieth century is documented ethnographically and by early historic accounts after 1809.

The results of prior archaeological, ethnographic, and historical research in the immediate project vicinity, as well as preliminary archaeological survey and testing along Sand Creek itself (Miss et al. 2002) left little doubt that evidence of prehistoric activity would be encountered during excavation of the early Sandpoint townsite. While the Sandpoint Archaeology Project was primarily designed to recover historic archaeological remains associated with the early Sandpoint townsite and the Humbird Lumber Mill, identification of a prehistoric component and recovery of prehistoric artifacts was an integral goal of the project (Weaver et al. 2006; see Appendix 1 to this report).

In addition to presenting research questions that might be addressed through the identification of historical features and recovery of historical artifacts, the research design poses questions that might be addressed through recovery of prehistoric material and identification of prehistoric features (see above). Disturbed ground surfaces and mixing of cultural components resulted from early historical activity that significantly affected the integrity of a prehistoric site component. This historical activity included landscape modifications due to flooding, many construction projects, and fires. Another major ground disturbance was filling by the Northern Pacific Railroad in 1894 to raise its tracks 10 feet above the high-water line.

Methods

As explained in greater detail in Appendix 2 (Testing and Data Recovery Methods), the entire area of potential effect for the proposed Sand Creek Byway was surveyed and partly tested by NWAA in 2002. Additional testing was conducted in 2006 to verify the presence or absence of intact cultural deposits and features. Hand and mechanical testing methods were employed, consisting of shovel and auger probing, excavation of small shovel test units (STUs), excavation of standard 1 × 1–meter (m) or 5 × 5–foot test units (TUs), vibracoring/sonicoring offshore areas during periods of high lake levels, and subsurface exploration using backhoes and loader/scrapers to trench and/or strip overburden.

Data recovery focused on cultural deposits associated with the early Sandpoint townsite, or what was termed the Target Horizon during field excavations. This was the chronological period from approximately 1882 through 1920 by which time almost all the buildings associated with the early townsite had been torn down or relocated to the west side of Sand Creek. The Target Horizon was
identified by the age of the historical artifacts contained within it. In some locations, long narrow
backhoe trenches were initially excavated to investigate the stratigraphic position and depth of the
Target Horizon in order to guide the removal of overlying sediments to within inches of the early
townsite’s cultural horizon. Stratigraphic profiles of these test trenches were examined, and most were
photographed and drawn in an effort to characterize the sequence of historical deposits and to identify
undisturbed sediments and original ground surfaces. An archaeologist attempted to identify hearths or
other prehistoric features below historical deposits while inspecting the initial trench excavation and
resulting trench wall profiles. Shovel testing and auger borings were also used to determine the depth
and extent of Target Horizon deposits and to explore for underlying prehistoric site components.

Large volumes of cultural matrix associated with the early townsite were excavated and processed while
maintaining provenience according to methods used in historical archaeology (unit, level, and feature).
Because of the ground disturbance and mixing described above, it was determined that capturing
precise horizontal and vertical provenience measurements, such as three-point-provenience commonly
employed in prehistoric archaeology, would be an inappropriate methodology. Measurements were
made using an engineering scale in tenths of feet and excavation layout used a 5-foot grid system. Once
the depth of the Target Horizon was determined, overlying sediments containing post-1920 historical
artifacts were mechanically removed to within a few inches of the Target Horizon, and any remaining
post-1920 cultural deposits were skim-shoveled or otherwise manually removed rapidly without
screening.

Excavation within the Target Horizon (usually designated as Level 1 after the overlying cultural deposits
had been removed) continued by skim shovel and trowel. Larger or more delicate historical artifacts
were bagged by the excavator; the sediment matrix, along with most of the artifacts (including glass,
ceramics, metal, and bone), was transferred to either dry screen or wet screen operations for artifact
recovery. All wet screening and almost all dry screening used ¼-inch mesh screens. Dry screening using
½-inch mesh was only used in situations where the recovery of prehistoric debitage was likely such as at
some of the expanded Indian Island STUs at 10BR1026 where initial testing had produced lithic debitage.

After the Target Horizon was reached, excavation and data recovery continued until culturally sterile
sediments were encountered. Excavation generally continued into underlying sterile sediments until the
archaeologist was sure all historical artifacts had been recovered and that no underlying prehistoric
component was present immediately below the historical component. Auger tests were frequently
placed in the center of the excavation unit once the unit had reached the depth at which no historical
artifacts were being recovered. Augered sediments were extracted in 6-inch arbitrary levels to ensure
that no historic or prehistoric cultural horizons—perhaps separated by a sterile fill or natural soil
horizon—underlie the Target Horizon. These auger probes were generally taken to the maximum 7-foot
depth possible with one auger handle extension, until undisturbed, well-sorted fluvial deposits were
encountered, or until water-saturated sediments prevented sediment recovery.

Many excavation units placed close to Sand Creek encountered the water table. Drainage systems and
sump pumps were used to drop the water level so that excavation could continue. In fine, water-logged
sediments, artifact recovery depended largely on transportation of sediment by bucket to the wet
screen area where all or most of the artifacts were recovered at the wet screen with no provenience
other than the excavation unit and level from which they came. Many of the prehistoric artifacts,
especially small pieces of debitage, were recovered from the wet or dry screens from mixed cultural
deposits.

Prehistoric lithic artifacts recovered either by the excavator or by the screeners were bagged separately
by excavation unit and excavation level. FMR and suspected FMR were also collected and bagged
separately from historical material. The presence of FMR, especially multiple pieces of FMR from the same excavation unit, signaled slower and more careful excavation by trowel to watch for prehistoric artifacts and to record the distribution of the FMR in plan view within the excavation unit in order to help determine whether or not an intact prehistoric feature was present. Bone (many pieces of which were cut or exhibited butcher marks) was bagged separately but in all cases was associated with the historic Target Horizon.

For those excavation units in which prehistoric artifacts were identified during excavation, an effort was made to record the vertical and horizontal provenience of the lithic artifacts within the excavation unit and level to the extent possible, as well as to try to determine whether the prehistoric material was in disturbed or undisturbed deposits and whether or not it was associated with historical material.

**Issues in Prehistoric Artifact Recovery**

The essential issue in the recovery of prehistoric artifacts and identification of prehistoric features was that the methodology driving the excavations was not focused on the recovery of prehistoric material. The recording of excavation data was generally too coarse-grained to adequately document the vertical and horizontal provenience of individual lithic artifacts and the stratigraphic context from which prehistoric material was recovered. The 5 × 5–foot grid system, while ideal for the data recovery excavation of historical archaeological deposits, was less than ideal when looking for possible patterning in the horizontal distribution of prehistoric material including FMR.

The culturally mixed and disturbed historic deposits encountered in most data recovery units rarely permitted excavation by natural stratigraphy. Vertical control was usually kept by arbitrary levels within historical deposits often with gradational upper and lower contacts. Where stratigraphic levels were defined, historical artifacts were often noted as intrusive into underlying levels in the vicinity of cultural or stratigraphic contacts. This was likely a result of historical activity by movement of people, animals, wagons, and perhaps other processes that mixed artifacts vertically, especially during times when the ground surface was muddy and rutted by horse and wagon traffic.

Undoubtedly some lithic artifacts were missed as a result of the need to recover and screen large quantities of historical materials prior to scheduled construction. Moreover, the grading plan specifications indicated that any cultural materials not recovered prior to construction would be destroyed. Sediments containing historical artifacts were often simply skim-shoveled into buckets and the artifacts recovered during wet or dry screening. Water screening was used extensively due to saturated sediments that could not be dry screened. As a result, much of the prehistoric debitage and even some of the lithic tools were not recovered from tightly controlled excavation but from wet-screened sediments often with no provenience other than the excavation unit and Level 1 Target Horizon designation.

If an in situ prehistoric feature or a concentration of prehistoric artifacts or FMR was identified, the excavation methods would have immediately switched from rapid recovery of historical material to slow excavation procedures consistent with data recovery in prehistoric sites. The focus on rapid recovery of historical materials may have, to some limited degree, reduced the recovery of prehistoric lithic artifacts mixed with historical materials or constrained the archaeologist’s ability to recognize significant aspects of the stratigraphic context from which the prehistoric material was recovered.

Nevertheless, it is unlikely that significant information on the prehistoric component was lost. Excavation field notes indicate that in units from which prehistoric material was recovered by the excavator, and not from the screens, those lithic artifacts were clearly mixed with historical artifacts in culturally disturbed deposits. Where the vertical provenience of the prehistoric material was recorded, it
was also evident that in almost every instance the prehistoric material had been redeposited and was not in primary depositional context. One exception to this is the recovery of a projectile point (LC# 45019) and argillite flake from possible primary depositional context at the Courthouse/Jail area (10BR978 OP-3). In some instances the vertical position of waste flakes or even lithic tools demonstrated that they had been incorporated in fill or were otherwise redeposited in disturbed sediments (Figure 32). In no instances were prehistoric artifacts recovered from deep shovel or auger tests that reached undisturbed sediments below the level of historical ground disturbance.

![Figure 32. A redeposited groundstone pestle (LC# 40395) found in a vertical position in N150 E70 at the Blacksmith Shop excavation (10BR977 OP-1)](image)

**Sample Size**

Leonhardy (1970:99) argues that a minimum sample of 150 to 200 artifacts from a single analytical unit is the absolute minimal sample size needed to define an archaeological assemblage. He suggests an optimal sample size of 500 to 800 artifacts as a representative range of archaeological material to characterize an archaeological component. As explained by Clarkson and O’Connor (2006:196) there is no magic minimum number that will always overcome sample size effects, because every assemblage is different. The only general rule as far as stone artifacts are concerned is “more is better” (within practical limits). For as much as the data recovery team excavated and processed large quantities of site deposits, the yield of prehistoric artifacts was disappointingly low.

Table 5 summarizes the prehistoric artifacts recovered from all sites and operations within the project area. Not only do the 120 prehistoric artifacts recovered from the Sandpoint Archaeology Project fail to reach even the lower end of Leonhardy’s minimal range, but these lithic artifacts were recovered from multiple localities and operation areas, covering an area approximately 2.1 miles in length. Almost all lithic artifacts were found in association with historical artifacts in mixed and disturbed cultural deposits.
without the primary depositional context necessary to determine relative stratigraphic relationships between prehistoric artifacts even from within the same locality.

Because no intact prehistoric features were identified and no lithic artifacts were recovered in direct association with datable charcoal or other organic material in an undisturbed primary depositional context, dating of the prehistoric occupation(s) in the project area is necessarily limited to what can be determined from the morphology of the projectile points recovered and the presence or absence of other temporally diagnostic artifacts. Unfortunately the small prehistoric artifacts sample size limits our

<table>
<thead>
<tr>
<th>Artifact Class</th>
<th>10BR978</th>
<th>10BR859</th>
<th>10BR977</th>
<th>10BR1026</th>
<th>Work</th>
<th>Housing</th>
<th>Trench 53-S</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Flaked Stone Tools</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bifacial tools</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Projectile points</td>
<td>6</td>
<td>9</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Side-notched</td>
<td>1</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Corner-notched</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lanceolate</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unknown (fragment)</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Knife</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Choppers</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cobble chopper</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tabular chopper</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Net weight/knife</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>Unifacial tools</strong></td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Scrapers</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>End scrapers</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Side scrapers</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Spokeshaves (modified debitage)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>Unmodified Debitage</strong></td>
<td>5</td>
<td>38</td>
<td>5</td>
<td>48</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>13</td>
</tr>
<tr>
<td>Primary flakes</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Secondary flakes</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tertiary flakes</td>
<td>1</td>
<td>10</td>
<td>1</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pressure flakes</td>
<td>1</td>
<td>10</td>
<td>3</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Shatter</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td><strong>Modified Debitage</strong></td>
<td>2</td>
<td>8</td>
<td>1</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Retouched flakes</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Spokeshaves (tools)</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Utilized flakes</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Utilized spalls</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>Ground Stone Tools</strong></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Pestles</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nephrite celts (adzes)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unknown objects</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td><strong>Other</strong></td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Flake cores</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Hammerstones</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td><strong>Fire Modified Rock (FMR)</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>By number</td>
<td>5</td>
<td>42</td>
<td>19</td>
<td>66</td>
<td>0</td>
<td>5</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>By weight (kg)</td>
<td>0.13</td>
<td>4.52</td>
<td>0.98</td>
<td>5.63</td>
<td>0</td>
<td>0.2</td>
<td>0.2</td>
<td>0.4</td>
</tr>
</tbody>
</table>

**Table 5. Artifact Matrix of All Prehistoric Artifacts by Site and Operations Area**

**Volume 3: The Ethnography and Prehistory of Sandpoint**

119
ability to determine with any certainty the activities that did or did not take place in the project area during certain time periods.

**Overview of Data Recovery Excavation Results**

With the possible exception of the projectile point and waste flake recovered from the jail (10BR978 OP-3), no prehistoric artifacts were recovered from intact primary depositional context or in association with prehistoric features. Exploratory backhoe test trenches, STUs, and excavation units in all site and operation areas revealed evidence of disturbed stratigraphy and fill deposits from historic activity. Almost all prehistoric artifacts recovered are essentially without stratigraphic context because they come from mixed cultural deposits that are the result of both historical and modern ground-disturbing activities in the project area.

Plotting prehistoric artifacts and FMR horizontally by grid unit, especially in the Chinatown area of 10BR978, shows that horizontal artifact distribution is not random. Areas of higher concentration of lithic artifacts and FMR are apparent in units associated with Chinese occupation (10BR978 OP-2), but no prehistoric features were recognized at this location or elsewhere in the project area. Consequently, no datable prehistoric hearths or datable organic material was recovered in direct association with lithic artifacts in undisturbed deposits, and no radiocarbon samples were collected associated with prehistoric material. No faunal material was recovered from a recognizable prehistoric context.

Two factors in play in the project area make stratigraphic comparison of excavation levels containing prehistoric material problematic and unproductive: highly disturbed and mixed cultural deposits and the lack of tight natural stratigraphic control among excavation units within a single site or operation area, or between different sites. Stratigraphic context and the association of prehistoric artifacts with features and recognizable activity areas is the most important aspect of interpreting the prehistoric use of a locality. In the project area, the prehistoric artifacts lack archaeological context, which hampers our ability to address research questions. Inferences must rely on the nature of the artifacts themselves. Dating of the prehistoric use of the project area can only be estimated by projectile point morphology. Even then, these estimates are only possible for those diagnostic projectile points that can be assigned to a temporal range based on their association with datable cultural deposits at other prehistoric sites in the southern Columbia River basin for which projectile point chronologies have been developed.

As discussed in detail above (see Culture History and Regional Chronologies section), the Columbia Plateau is generally subdivided into two subareas, the Northern Plateau and the Southern Plateau, based on both archaeological and ethnographic observations (Rice 1972:8). Although Lake Pend Oreille has been placed in a third subarea, the Eastern Plateau, by Roll and Hackenberger (1998:Figure 1), geographically it is near the extreme northeastern boundary of the Eastern Plateau and has been influenced prehistorically by all three Columbia Plateau culture areas. A well-defined cultural chronology based on local archaeological investigations has not been published for north Idaho (but see Salo 2008:Appendix D for an unpublished chronology for the Pend Oreille River Valley), and consequently north Idaho archaeologists have most often looked to established prehistoric southern Columbia Plateau chronologies (Ames et al. 1998) for relative dating of north Idaho sites based on projectile point morphology and other diagnostic artifacts. The Lower Snake River cultural chronology defined by Leonhardt and Rice (1970) (see Culture History and Regional Chronologies section) has been the prehistoric cultural sequence most widely used by archaeologists working in north Idaho. As noted earlier, five phases were identified within this Lower Snake River chronology: Windust (10,000–9000 B.P.); Cascade (8000–5000 B.P.); Tucannon (5000–2500 B.P.); Harder (2500–700 B.P.); and Numipu (350–50 B.P.). Lohse and Schou (2008:188189) summarized each of these phases in terms of projectile point typology and other artifacts associated with these five time periods.
Prehistoric Artifacts

Table 5 lists 119 prehistoric artifacts and 97 pieces of FMR recovered from the Sandpoint Archaeology Project by site and operation area. Thirty bifacially worked tools and six unifacial tools together make up 30 percent of the lithic assemblage, an unusually high percentage of formal tools compared to lithic debitage. The 16 projectile points recovered make up over half (53 percent) of the bifacial artifacts, a very high percentage of projectile points to other artifacts. Four ground stone tools represent only 3 percent of the total assemblage. Three hammerstones and a single cobble flake core complete the non-debitage part of the assemblage, bringing the total number of artifacts apart from lithic debitage to forty-four.

As noted in Table 5, the remaining 63 percent of the prehistoric assemblage consists of 66 pieces of debitage and 10 pieces of lithic shatter. Fourteen (22 percent) of the 65 pieces of debitage show evidence of either intentional retouched or use wear. Four flakes, including one probably used as a spokeshave (LC# 45127), are unifacially retouched. Nine flakes and one spall show light retouch along one or more margins resulting from use of the artifact for cutting or scraping. Further discussion of the lithic debitage in terms of raw material type and manufacturing stage represented is presented below (see Lithic Debitage section). In addition to lithic artifacts, 97 fragments of FMR weighing 7.79 kilograms were collected.

It is evident from Table 5 that almost all the prehistoric artifacts and FMR were recovered from 10BR978. The three 10BR978 operation areas account for 31 (80 percent) of the formal lithic tools recovered from the project area, including all of the projectile points. Most of the FMR and 59 of the unmodified and modified flakes (79 percent) were recovered from 10BR978. Of the 97 pieces of FMR, 66 (68 percent) by number and 72 percent by weight came from 10BR978. The 10BR978 operation areas were based on differences in historic townsite structures and activities, to differentiate the Restricted District (OP-1) from the Chinatown area (OP-2) and the Courthouse/Jail area (OP-3). From a prehistoric perspective, all three 10BR978 operation areas are part of the same landform and essentially the same prehistoric site area; the operation areas have no bearing on the prehistoric site component.

While the OP-2 area accounted for the majority (76 percent) of the prehistoric tools and debitage and most of the FMR (64 percent by number and 80 percent by weight) recovered from 10BR978, this may reflect the fact that over 90 percent of the Chinatown area (OP-2) was excavated while portions of the Restricted District and Courthouse/Jail areas were left unexcavated.

The number of prehistoric artifacts and FMR recovered from testing and excavation of the townsite area (10BR859), the Blacksmith Shop (10BR977), and the Indian Island area (10BR1026) is relatively low. Therefore, it seems evident that most prehistoric activity encountered within the project area was located in the vicinity of the Restricted District and Chinatown (10BR978) and Indian Island (10BR1026).

Functional and morphological categories of lithic artifacts recovered from the project area are presented in Table 5 by site and operation area. The basic categories for prehistoric artifacts used in this analysis are flaked stone tools, ground stone tools, unmodified debitage, modified debitage, and other. FMR is also summarized in Table 5. Each of these morphological classifications and associated functional categories is discussed below, following a brief description of lithic raw material.

Lithic Raw Material

Prehistoric people using the project area used a variety of raw lithic materials in tool manufacture and had access to distance raw material sources through travel or trade networks. Artifacts made from locally obtainable quartz, quartzite, and metasediments such as black and gray argillite were recovered,
as well as artifacts made from cryptocrystalline chert and chalcedony (Figure 33) that were probably not available locally (Landreth et al. 1985:212). Also recovered were projectile points made from obsidian (LC# 45015) and Kootenai Argillite (LC# 40339) as well as a nephrite celt (LC# 40390) all of which demonstrate distant contacts and/or trade.

Figure 33. Lithic debitage recovered from Sandpoint sites. A variety of lithic raw materials are represented.

Perry (1992) has reported on the confusion relating to the identification of basalt and argillite at archaeological sites in the southern Columbia Plateau. Because it is difficult to distinguish basalt from black argillite (a metamorphosed siltstone) without microscopically examining thin sections (Perry 1992:206), this analysis has lumped what may actually be one or more artifacts made from basalt into the raw material category of black argillite. The identification of one projectile point (LC# 40339) made from Kootenai Argillite is based on microscopic and macroscopic comparison with Kootenai Argillite reference samples obtained from Wayne Choquette in British Columbia and confirmation by Gary Weisz, a Sandpoint amateur archaeologist who has examined hundreds of artifacts made from Kootenai Argillite in private artifact collections in north Idaho.

**Flaked Stone Tools**

The flaked stone tools were subdivided into bifacially and unifacially worked tools and include 36 artifacts in the assemblage, 31 of which came from 10BR978 and most of those (n=23) came from 10BR978 OP-2 (see Table 5). The flaked stone tools consist of 30 bifacial and six unifacial tools. The bifacial tools consist of projectile points, knives, choppers, and a notched cobble net weight that has been bifacially worked (LC# 45042). The 16 projectile points in the assemblage are the most temporally diagnostic artifacts recovered. In the absence of datable prehistoric features or other time-stratigraphic indicators such as datable tephra horizons, only the projectile points are available to provide temporal indicators of the prehistoric occupation(s) of the project area. The unifacial tools consist of side and end
scrapers as well as a modified secondary flake (LC# 45127) that probably functioned as a spokeshave. Some of the retouched and utilized flakes were probably used as expedient scrapers or knives. Evidence of use wear modification in some flakes can only be seen under high magnification.

**Projectile Points**

Sixteen complete or fragmentary projectile points were recovered by the Sandpoint Archaeology Project, all from the three operation areas at 10BR978 (Tables 5 and 6). The Restricted District (10BR978 OP-1) excavations produced six points. These included one side-notched point (LC# 40233), three corner-notched points (LC# 7831, 8014, 45007), and an obsidian point base from what is probably a lanceolate or tear-drop-shaped point (LC# 45015). The sixth artifact is the fragmentary base of a biface (LC# 45006) that has been classified as a point base of unknown morphology. The Chinatown (10BR978 OP-2) excavations produced nine projectile points. These included two side-notched points (LC# 40340, 40341), five corner-notched points (LC# 40307, 40337, 45090, 45098, 45105), and two lanceolate points (LC# 40338, 40339). Only one projectile point was recovered from the Courthouse/Jail area (10BR978 OP-3), a lanceolate point (LC# 45019). Tables 6 and 7 provide metric data, classification, and estimated temporal range for projectile points recovered from 10BR978.

**Table 6. Classification and Temporal Range of 10BR978 Projectile Points**

<table>
<thead>
<tr>
<th>LC#</th>
<th>OP Area</th>
<th>Morphology</th>
<th>Classification</th>
<th>Temporal Range (B.P.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40233</td>
<td>OP-1</td>
<td>Side-notched</td>
<td>Tucannon phase</td>
<td>5000–2500 B.P.</td>
</tr>
<tr>
<td>40340</td>
<td>OP-2</td>
<td>Corner-notched</td>
<td>Tucannon phase</td>
<td>5000–2500 B.P.</td>
</tr>
<tr>
<td>40307</td>
<td>OP-2</td>
<td>Corner-notched</td>
<td>Gatecliff split-stem</td>
<td>4500–1250 B.P.</td>
</tr>
<tr>
<td>40337</td>
<td>OP-2</td>
<td>Corner-notched</td>
<td>Tucannon phase</td>
<td>5000–2500 B.P.</td>
</tr>
<tr>
<td>8014</td>
<td>OP-1</td>
<td>Corner-notched</td>
<td>Tucannon phase</td>
<td>5000–2500 B.P.</td>
</tr>
<tr>
<td>45105</td>
<td>OP-2</td>
<td>Corner-notched</td>
<td>Tucannon phase</td>
<td>5000–2500 B.P.</td>
</tr>
<tr>
<td>40338</td>
<td>OP-2</td>
<td>Lanceolate</td>
<td>Cascade A</td>
<td>8000–4000</td>
</tr>
<tr>
<td>45019</td>
<td>OP-3</td>
<td>Lanceolate</td>
<td>Cascade A</td>
<td>8000–4000</td>
</tr>
<tr>
<td>40339</td>
<td>OP-2</td>
<td>Lanceolate</td>
<td>Cascade B</td>
<td>8500–6500</td>
</tr>
</tbody>
</table>

The two projectile point fragments, LC# 45006 and 45015, are excluded from this table because their fragmentary nature prohibits further classification.

**Table 7. 10BR978 Projectile Point Measurements**

<table>
<thead>
<tr>
<th>Type and LC#</th>
<th>OP Area</th>
<th>Length*</th>
<th>Blade Length*</th>
<th>Width*</th>
<th>Neck Width*</th>
<th>Thickness*</th>
<th>Weight (g)</th>
<th>Comments</th>
<th>Classification and Temporal Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side-notched</td>
<td>40233</td>
<td>OP-1</td>
<td>3.42</td>
<td>2.56</td>
<td>1.21</td>
<td>0.76</td>
<td>0.56</td>
<td>2.0</td>
<td>Arrow point</td>
</tr>
</tbody>
</table>

**49** In this analysis the category “corner-removed” has been lumped with “corner-notched.” Three projectile points might have been classified as “corner-removed”: LC# 45090, 45007, and 45105.
Table 7. 10BR978 Projectile Point Measurements

<table>
<thead>
<tr>
<th>Type and LC#</th>
<th>OP Area</th>
<th>Length*</th>
<th>Blade Length*</th>
<th>Width*</th>
<th>Neck Width*</th>
<th>Thickness*</th>
<th>Weight (g)</th>
<th>Comments</th>
<th>Classification and Temporal Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>40341</td>
<td>OP-2</td>
<td>3.14</td>
<td>2.61</td>
<td>1.48</td>
<td>0.83</td>
<td>0.28</td>
<td>0.1</td>
<td>Arrow point</td>
<td>Plateau Side-notched 1500–200 B.P.</td>
</tr>
<tr>
<td>40340</td>
<td>OP-2</td>
<td>4.37</td>
<td>3.42</td>
<td>2.08</td>
<td>1.25</td>
<td>0.73</td>
<td>0.7</td>
<td>Dart point</td>
<td>Avonlea 1700–750 B.P.</td>
</tr>
<tr>
<td>7831</td>
<td>OP-1</td>
<td>~2.22</td>
<td>~1.69</td>
<td>1.99</td>
<td>1.19</td>
<td>0.57</td>
<td>1.7</td>
<td>Tip missing, resharpened dart point</td>
<td>Tucannon phase 5000–2500 B.P. Pelican Lake phase 3000–1800 B.C.</td>
</tr>
<tr>
<td>8014</td>
<td>OP-1</td>
<td>~3.27</td>
<td>~2.97</td>
<td>1.71</td>
<td>0.95</td>
<td>0.54</td>
<td>2.9</td>
<td>Tip missing, probably dart point</td>
<td>Tucannon phase 5000–2500 B.P.</td>
</tr>
<tr>
<td>40307</td>
<td>OP-2</td>
<td>NA</td>
<td>NA</td>
<td>2.13</td>
<td>1.27</td>
<td>0.85</td>
<td>0.4</td>
<td>Point base, dart point</td>
<td>Gatecliff split-stem 5000–3000 B.P. (Holmer 1995) 4500–1250 B.P. (Thoms and Burtchard 1987)</td>
</tr>
<tr>
<td>40337</td>
<td>OP-2</td>
<td>2.83</td>
<td>1.95</td>
<td>1.80</td>
<td>0.97</td>
<td>0.59</td>
<td>0.3</td>
<td>Resharpened dart point</td>
<td>Tucannon phase 5000–2000 B.P.</td>
</tr>
<tr>
<td>45007</td>
<td>OP-1</td>
<td>4.18</td>
<td>3.55</td>
<td>1.75</td>
<td>0.98</td>
<td>0.48</td>
<td>2.4</td>
<td>Dart point</td>
<td>Quilomene Bar C-n 3000–2000 B.P. Pelican Lake phase 3000–1800 B.C.</td>
</tr>
<tr>
<td>45090</td>
<td>OP-2</td>
<td>3.64</td>
<td>3.05</td>
<td>2.03</td>
<td>0.99</td>
<td>0.49</td>
<td>3.0</td>
<td>Dart point</td>
<td>Quilomene Bar C-n 3000–2000 B.P. Pelican Lake phase 3000–1800 B.C.</td>
</tr>
<tr>
<td>45098</td>
<td>OP-2</td>
<td>3.66</td>
<td>2.87</td>
<td>1.76</td>
<td>1.18</td>
<td>0.54</td>
<td>2.8</td>
<td>Dart point</td>
<td>Quilomene Bar C-n 3000–2000 B.P. Pelican Lake phase 3000–1800 B.C.</td>
</tr>
<tr>
<td>45105</td>
<td>OP-2</td>
<td>3.58</td>
<td>2.61</td>
<td>1.84</td>
<td>1.16</td>
<td>0.32</td>
<td>2.0</td>
<td>Dart point</td>
<td>Tucannon phase 5000–2500 B.P.</td>
</tr>
</tbody>
</table>

**Corner-notched**

<table>
<thead>
<tr>
<th>Type and LC#</th>
<th>OP Area</th>
<th>Length*</th>
<th>Blade Length*</th>
<th>Width*</th>
<th>Neck Width*</th>
<th>Thickness*</th>
<th>Weight (g)</th>
<th>Comments</th>
<th>Classification and Temporal Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>40383</td>
<td>OP-2</td>
<td>4.76</td>
<td>NA</td>
<td>1.83</td>
<td>NA</td>
<td>0.61</td>
<td>0.6</td>
<td>Kootenai Argillite</td>
<td>Cascade A 8000–4000 B.P.</td>
</tr>
<tr>
<td>40339</td>
<td>OP-2</td>
<td>4.47</td>
<td>NA</td>
<td>1.89</td>
<td>NA</td>
<td>0.72</td>
<td>0.6</td>
<td>Kootenai Argillite</td>
<td>Cascade B 8500–6500 B.P.</td>
</tr>
<tr>
<td>45015</td>
<td>OP-1</td>
<td>NA</td>
<td>NA</td>
<td>1.83</td>
<td>NA</td>
<td>0.53</td>
<td>1.8</td>
<td>Obsidian, point base, channel flake removal</td>
<td>Base fragment</td>
</tr>
<tr>
<td>45019</td>
<td>OP-3</td>
<td>3.12</td>
<td>NA</td>
<td>1.64</td>
<td>NA</td>
<td>0.55</td>
<td>3.0</td>
<td>Cascade A ? 4000–3000 B.P.</td>
<td>Base fragment, date unknown</td>
</tr>
</tbody>
</table>

**Lanceolate**

<table>
<thead>
<tr>
<th>Type and LC#</th>
<th>OP Area</th>
<th>Length*</th>
<th>Blade Length*</th>
<th>Width*</th>
<th>Neck Width*</th>
<th>Thickness*</th>
<th>Weight (g)</th>
<th>Comments</th>
<th>Classification and Temporal Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>40338</td>
<td>OP-2</td>
<td>4.76</td>
<td>NA</td>
<td>1.83</td>
<td>NA</td>
<td>0.61</td>
<td>0.6</td>
<td>Kootenai Argillite</td>
<td>Cascade A 8000–4000 B.P.</td>
</tr>
<tr>
<td>40339</td>
<td>OP-2</td>
<td>4.47</td>
<td>NA</td>
<td>1.89</td>
<td>NA</td>
<td>0.72</td>
<td>0.6</td>
<td>Kootenai Argillite</td>
<td>Cascade B 8500–6500 B.P.</td>
</tr>
<tr>
<td>45015</td>
<td>OP-1</td>
<td>NA</td>
<td>NA</td>
<td>1.83</td>
<td>NA</td>
<td>0.53</td>
<td>1.8</td>
<td>Obsidian, point base, channel flake removal</td>
<td>Base fragment</td>
</tr>
<tr>
<td>45019</td>
<td>OP-3</td>
<td>3.12</td>
<td>NA</td>
<td>1.64</td>
<td>NA</td>
<td>0.55</td>
<td>3.0</td>
<td>Cascade A ? 4000–3000 B.P.</td>
<td>Base fragment, date unknown</td>
</tr>
</tbody>
</table>

**Unknown**

<table>
<thead>
<tr>
<th>Type and LC#</th>
<th>OP Area</th>
<th>Length*</th>
<th>Blade Length*</th>
<th>Width*</th>
<th>Neck Width*</th>
<th>Thickness*</th>
<th>Weight (g)</th>
<th>Comments</th>
<th>Classification and Temporal Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>45006</td>
<td>OP-1</td>
<td>NA</td>
<td>NA</td>
<td>~1.64</td>
<td>NA</td>
<td>0.58</td>
<td>NA</td>
<td>Base of probable lanceolate point</td>
<td>Base fragment, date unknown</td>
</tr>
</tbody>
</table>

Projectile points recovered at 10BR978 are made from a variety of lithic materials from both local and distant sources. Three corner-notched points, one (LC# 45007) from the Restricted District and two (LC# 45090, 45105) from Chinatown (OP-2), are made from black argillite, a metamorphosed siltstone that was probably locally available. Recently, a bedrock source for very fine-grained argillite, ranging in color from black to gray, was discovered on the north side of the Clark Fork River in the vicinity of the Cabinet Gorge Dam (personal communication, Gary Weisz 2009). Samples of argillite from that source were compared microscopically with argillite artifacts recovered from the project area; no positive matches were made. A lanceolate point (LC# 40339) made from a particular type of light green argillite, known as Kootenay Argillite, was recovered from the Chinatown area of 10BR978. The source of Kootenay Argillite
has been identified in the Selkirk Mountains on the west side of Kootenay Lake in British Columbia (Choquette 1984:382).

Ten projectile points are made from cryptocrystalline chert of various colors. One of these, a side-notched point (LC# 40341) from the Chinatown excavation appears to be made of translucent chalcedony, a very fine-grained type of chert. The Restricted District excavations produced four chert points: two corner-notched point (LC# 7831, 8014), one side-notched point (LC# 40233), and one biface fragment (LC# 45006) from what was probably a lanceolate point. In addition to the chalcedony point four other chert points were recovered from Chinatown. These included two corner-notched points (LC# 40307, 45098), an asymmetrical side- to corner-notched point (LC# 40337), and a lanceolate point (LC# 40338). The lanceolate point from the Courthouse/Jail area was also made from a whitish chert.

Knudson et al. (1979:6) report that cryptocrystalline cherts and chalcedonies are not locally available in northern Idaho and it is likely that this material or artifacts made from this material were transported to the project area from some distance away. The single obsidian point base (LC# 45015) that was recovered from the Restricted District is also made from a material that would have come from a distant source. X-ray fluorescence analysis on this obsidian point base indicates that it originated from the Timber Butte source in southwest Idaho (Skinner and Thatcher 2010:1). Trace analysis studies conducted on obsidian artifacts from other north Idaho and eastern Washington sites indicate that obsidian found in these sites had its origin in northwestern Wyoming, eastern Oregon, and southern Idaho (Andrefsky et al. 2000, Vol. 4: 19.9; Miss 2004:21, Table 7).

**Projectile Point Classification**

The primary reference source used for the classification typology and temporal span of the projectile points recovered from this project is Lohse and Schou (2008:189), an outgrowth of earlier work by Lohse (1985) in classifying Rufus Wood Lake projectile points within established Columbia Plateau types. Lohse and Schou developed a computerized projectile point classification system for the southern Columbia Plateau based on an analysis of over 1,500 projectile points covering the last 7,000 years of the Archaic period, representing 60 separate cultural components indexed by 161 radiocarbon dates. Building upon the Rufus Wood Lake projectile point assemblage, Lohse and Schou (2008:191, Figure 2) used multivariate discriminate analysis in a computer program (SIGGI) to classify a large collection of plateau projectile points to identify and establish the temporal range of six distinct major type series of projectile points in the southern Columbia Plateau. Projectile points entered into the SIGGI database are those from excavated sites where large numbers of points are associated “with a single site, within a specific layer, in association with cultural features representing clear prehistoric human activity, and bracketed by reliable radiocarbon dates” (Lohse and Schou 2008:193).

The resulting classification resulted in robust discrimination between recognized projectile point types and could consistently separate recognized forms over the span of Columbia plateau prehistory. The type series, type variants, and individual types identified proved effective in demarcating periods of time important for development of regional and areal cultural sequences. (Lohse and Schou 2008:193)

Sandpoint Archaeology Project projectile points were not digitized and submitted for computerized SIGGI classification but were morphologically compared to illustrated SIGGI examples presented by Lohse and Schou (2008). In addition to southern Columbia Plateau projectile point types illustrated and described by Lohse and Schou (2008), the present effort to classify and date the points recovered from the Sandpoint Archaeology Project looks to three other archaeological efforts for projectile point and other artifact type comparisons and temporal dating:
• Lower Snake River projectile point classification, type terminology, and temporal ranges (Holmer 1995; Leonhardy and Rice 1970; Lucas 2000; Rice 1969, 1972)
• CVAP on the Lower Pend Oreille River (Andrefsky et al. 2000)

These are the areas closest to north Idaho where the most extensive large-scale archaeological excavations have occurred and where prehistoric cultural chronologies are most developed. For these two reasons, the projectile points and other artifacts recovered by the Sandpoint Archaeology Project can be best compared to these classification systems.

In some cases, notched bifaces resembling projectile points may have functioned as hafted knives (Miss and Hudson 1986:52). Without microscopic use wear analysis it is often not possible to differentiate notched projectile points from knives. It is possible that some of the artifacts included here under the category of projectile points may have functioned as knives.

**Temporal Range of Projectile Points from 10BR978**

Of the 16 projectile points recovered from 10BR978, 14 could be classified and assigned a temporal range based on comparison of point morphology with established regional point types (see Tables 6 and 7). The 11 notched points are identified as either arrow or dart points based on size and neck width (see Table 7). Two side-notched arrow points from OP-2 postdate 1700 B.P. Nine larger dart points from OP-1 and OP-2 probably date to between 5000 and 1800 B.P. Three lanceolate points, classified as Cascade A or Cascade B, likely date between 8500 and 4000 B.P. Based on the presence of both obverse and reverse channel flake scars, the obsidian point base (LC# 45015) from OP-1 may be the oldest point recovered. Unfortunately the base fragment of this obsidian point is too fragmentary to classify morphologically. Complete descriptions of all 16 projectile points with classification reference citations follow.

**Artifact LC# 7831**

Artifact LC# 7831 is a chert corner-notched projectile point made recovered from 10BR978 (OP-1) at Unit N157.5 E005, Level 1 (Figure 34). The distal tip and the left lateral tip of the base are missing on this short, thick, poorly made, and somewhat asymmetrical point. The crushed tip is likely the result of an impact fracture. The straight base lacks evidence of basal thinning. It is likely that this point was originally longer but that it has been resharpened to the extent further resharpening was not possible. The vascular glassy discoloration of the material and presence of a pot-lid fracture indicate thermal alteration and perhaps intentional heat treating to improve the quality of the raw material. This point is morphologically similar to artifact LC# 40337.

There is no stratigraphic provenience for this point, which was recovered during wet screening of water saturated sediments containing historical artifacts in the vicinity of the Lakeside Inn boiler tank. No other prehistoric artifacts or FMR were recovered from this unit, and this point clearly came from a disturbed historic cultural horizon.
Figure 34. Chert corner-notched projectile point from 10BR978 OP-1, N157.5 E005, Level 1. LC# 7831.

Classification: Tucannon phase/Lower Snake River cultural sequence (Lucas 2000:3, 23, Figure 7d)
Temporal range: 5000–2500 B.P.
Classification: Pelican Lake phase/Kootenai River region (Gough 1984:305, Figures 55b, 104)
Temporal range: 3000–1800 B.P.

Poorly worked projectile points with a relatively high thickness-to-width ratio are associated with the Tucannon phase on the lower Snake River. Tucannon phase points are reported to be relatively thick, crudely formed stemmed and side- to corner-notched points mostly made from basalt (Lucas 2000:4). A prominent attribute of most Tucannon phase points are their wide-open side or corner notches, or elongated stems (Lucas 2000:57). Three distinct projectile point forms are commonly associated with Tucannon phase assemblages. Lucas (2000:56) notes that “one of these forms has a short blade, shoulders of varying prominence, and a contracting stem while a second variety is notched low on the side or at the corner to produce an expanding stem and short barbs.” The third variation is a small to medium-sized, side-notched point with a concave base (Lucas 2000:56). Lucas (2000:Figure 7d) illustrates a Tucannon phase corner-notched expanding stem point identical in shape to LC# 7831 (as well as to LC# 40337 discussed below). The Tucannon phase follows the earlier Cascade phase and is generally considered to span the time period from 5000 to 2500 B.P. although its beginning is not well understood and it may have begun on the lower Snake River somewhat prior to 5000 B.P. (Lucas 2000:3).

Gough (1984:Figure 87d) illustrates an almost identical short, “stubby,” deeply corner-notched, expanding stem point from a site on the Kootenai River between Libby and Troy, Montana, noting its similarity to points from the Middle Prehistoric period’s Pelican Lake phase (3000–1800 B.P.).

**Artifact LC# 8014**

Artifact LC# 8014 is a banded gray chert corner-notched eared projectile point recovered from 10BR978 (OP-1) at S15 E55, Level 1 (Figure 35). The triangular blade has straight sides, is biconvex in cross section, and has a concave base. Edge or basal grinding is not evident. The tip of the point and one basal ear are missing, and the tip of the other ear is also missing, due to snap fractures.
Prehistoric Archaeology

Figure 35. Chert corner-notched projectile point from 10BR978 OP-1, S15 E55, Level 1. LC# 8014.

Classification: Tucannon phase/Lower Snake River cultural sequence (Lucas 2000:3, 23, Figures 7i, 7j)
Temporal range: 5000–2500 B.P.

There is no stratigraphic provenience this artifact, which was recovered from a water-saturated excavation unit located almost at the edge of Sand Creek at the southern end of the Dance Hall in the Restricted District. All excavated sediments were wet-screened, and all artifacts were collected from the screen. This point was recovered from a disturbed cultural context and was associated with a variety of historical artifacts, including bricks and dimensional lumber (recorded as Feature 15). A burned cultural horizon was noted but was clearly historical in origin. No other prehistoric artifacts or FMR was present in this unit.

This point resembles a point illustrated by Rice (1969:136, Figure 29f) and recovered from the Marmes Rockshelter in eastern Washington. It is classified by Rice in the same side-to-corner-notched projectile point category (I-24) as another Marmes Rockshelter point (Rice 1969:136, Figure 29e); it is morphologically similar to LC# 45105. This category of CCS and basalt projectile points from Marmes Rockshelter are described by Rice (1969:22) as having “convex to straight sides; acute tip; broad, semicircular notches removed laterally and from the base; stem expanding; base concave to slightly convex lenticular cross section; percussion and pressure flaked with variable quality.” The length, width, and thickness metric attributes of point LC# 8014 (see Table 7) compare very closely with the means of length, width, and thickness for 20 points within this category (Rice 1969:22). Of the 20 category I-24 points recovered from the Marmes Rockshelter, 18 could be attributed to specific stratigraphic levels. Sixteen were recovered from Levels V, VI, and VII above Level IV, a Mazama ash horizon, which is generally assigned a stratigraphic horizon age of 6800 B.P. (Matz 1991:5). At the Marmes Rockshelter, two category I-24 points came from Level III, directly below the Mazama ash horizon.

Lucas (2000:24, Figures 7i, 7j) illustrates two side-to-corner-notched points with triangular blades and concave or notched bases similar in morphology to LC# 8014 that he classifies as Tucannon phase projectile points (see discussion of Tucannon phase projectile points under LC# 7831). The Tucannon...
phase follows the earlier Cascade phase and is generally considered to span the time period from 5000 to 2500 B.P., although its beginning is not well understood and may have begun on the lower Snake River somewhat prior to 5000 B.P. (Lucas 2000:3).

Artifact LC# 40233

Artifact LC# 40233 is a chert side-notched projectile point recovered from 10BR978 (OP-2) at Unit N25 E60, Level 1 (Figure 36). It has a triangular blade and a straight base. The blade is diamond-shaped in cross section. Edge or basal grinding is not evident. This point was recovered from a disturbed cultural deposit containing a medium density of historical artifacts and two squared 4 × 6-inch wood beams. The point came from near the base of the historical Level 1 Target Horizon deposit, just above its contact with underlying light yellow clayey silt. It was noted on the level form that the southwest quadrant of the unit was taken down 0.7 foot below the target horizon into sterile clayey silt sediment. No other prehistoric artifacts or FMR was recovered from this unit.

Figure 36. Chert side-notched projectile point from 10BR978 OP-2, N25 E60, Level 1. LC# 40233.

SIGGI classification: Columbia C-nB/Columbia Corner-notched series (Lohse and Schou 2008:Figures 7, 7n)
Temporal range: Columbia Corner-notched B (2000–150 B. P.)

Lohse and Schou (2008:200) report that “Columbia Corner-notched projectile points constitute a general series that can be broken into an earlier larger form (Corner-notched A) and a later smaller form (Corner-notched B).... Both of these forms have well developed corner notches, convex to straight lateral margins, and straight to expanding stems.”

Artifact LC# 40307

Artifact LC# 40307 is a base of a brown chert corner-notched eared point base recovered from 10BR978 OP-2 at Unit N75 E55, Level 1 (Figure 37). It has prominent, slightly sloping, shoulders and a deep
Prehistoric Archaeology

Figure 37. Chert corner-notched projectile point from 10BR978 OP-2, N75 E55, Level 1. LC# 40307.

Classification: Gatecliff Split-stem (Holmer 1995:7; Thoms and Burtchard 1987:Table 1.1)
Temporal range: 4500–1250 B.P.

There is no stratigraphic provenience for this point other than that it came from below the sod layer and above 0.7 foot below the surface where Level 1 was terminated at compact white fine silt (a possible ash horizon). The point was recovered from the disturbed Level 1 Target Horizon deposit in association with a wide variety of historical artifacts including Chinese ceramics and bone but no FMR. A small amount of charcoal was present at the Level 1/2 contact. Historical artifacts were also present at this contact.

Holmer (1995:7) terms this type of point base “Gatecliff Split-stem” and assigns an age range of 5000–3000 B.P. to this type in the upper Snake River basin of eastern Idaho. His diagnostic attributes for the Gatecliff Split-stem points are “triangular blades with straight to slightly convex edges. Notches form square to sloping shoulders and a slightly contracting to slightly expanding stem that is narrower than the blade width. All bases are markedly notched.” North of Lake Pend Oreille in the Middle Kootenai Valley, similar concave or split-stem base points are associated with the Early Middle Prehistoric (7500–4500 B.P.) and Late Middle Prehistoric (4500–1250 B.P.) time periods (Thoms and Burtchard 1987:Table 1.1). In the vicinity of the project area, corner-removed points are diagnostic of the Late Middle Prehistoric period in the Middle Kootenai Valley but do not occur in the Early Middle Prehistoric period. LC# 40307 is associated with LC# 45007, 45090, and 45105, which some researchers have referred to as corner-removed points but are here classified as corner-notched points from 10BR978 OPs 1 and 2. The association suggests this concave-based or “split-stem” point probably dates to between 5000 and 1250 B.P. (Holmer 1995:7; Thoms and Burtchard 1987:Table 1.1).

Artifact LC# 40337

Artifact LC# 40337 is a black chert side-to corner-notched projectile point recovered from 10BR978 OP-2 at Unit N65 E40, Level 1 (Figure 38). It has a short, thick blade that is planoconvex in cross section. The notches and base morphology are somewhat asymmetrical. The margin of the straight base is bifacially
Figure 38. Chert side/corner-notched projectile point from 10BR978 OP-2, N65 E40, Level 1. LC# 40337.

Classification: Tucannon phase/Lower Snake River cultural sequence (Lucas 2000:3, 23, Figure 7d)
Temporal range: 5000–2500 B.P.

There is no stratigraphic provenience for this point other than that it came from between 0.4 and 0.7 foot below the ground surface and was associated with a dense concentration of historical artifacts in the Level 1 Target Horizon. These disturbed and mixed historical deposits contained a wide variety of historical artifacts, including two Chinese coins and a 1984 penny. A concentration of 19 angular rocks was present in the northwest quadrant in Level 1, but these were not clearly FMR and no soil staining or other evidence of a hearth was associated with these angular rocks. However, near the bottom of Level 1 in the south half of the unit there was a charcoal stain associated with six more angular rocks. Excavation continued into the underlying angular gravel stratum (Level 2), where a unifacially retouched mica schist fragment, possibly a knife fragment (LC# 45071), and a black chert pressure flake (LC# 45070) were recovered in association with additional historical material. Some bone was recovered from both Levels 1 and 2 in this unit, but the historical deposits were clearly disturbed, with prehistoric material not occurring in its primary depositional context. No prehistoric feature was identified.

This point is similar in morphology to LC# 7831 and is also classified here as a Tucannon phase projectile point dating to between 5000 and 2500 B.P. on the lower Snake River (Lucas 2000). See the Tucannon phase projectile point discussion under LC# 7831 above.

Artifact LC# 40338

Artifact LC# 40338 is a brown chert lanceolate projectile point/knife recovered from 10BR978 OP-2 at Unit N65 E45, Level 1 (Figure 39). This almost complete, symmetrical lanceolate biface made from brown chert is classified here as a point, but it also could have been used as a knife. The distal tip is missing, possibly as a result of an impact fracture. That attribute and its lack of observable striations or wear along its lateral margins under 75× magnification suggest it is a point rather than a knife. It is
Prehistoric Archaeology

Figure 39. Chert lanceolate projectile point/knife from 10BR978 OP-2, N65 E45, Level 1. LC# 40338.

Classification: Cascade A/Lower Snake River cultural sequence Cascade series (Lohse 1985:344; Lohse and Schou 2008:199; 196, Figure 7d)
Temporal range: 8000–4000 B.P.

planoconvex in cross section with numerous step fractures on the dorsal and ventral surfaces. Basal grinding is not evident. It is relatively thick, crudely worked, and exhibits a chemically weathered (patinated) surface.

There is no stratigraphic provenience for this point other than that it was recovered from between 0.4 and 0.9 foot below the surface in the Level 1 Target Horizon, consisting of light brown silt and containing a wide variety of historical artifacts. Excavation notes indicate this point was “out of context being mixed with the historic items.” No FMR or other prehistoric material was recovered from this unit.

Lanceolate or lenticular points are chronologically earlier than notched points on the southern Columbia Plateau and are associated with the Cascade phase on the lower Snake River. Lanceolate Cascade series points in the Lower Snake River cultural sequence are generally dated to between 8000 and 5000 B.P. (Lohse and Schou 2008:199). This Sand Creek specimen most closely resembles the Cascade A type point (Lohse and Schou 2008:196, Figure 7d), which Lohse describes as a

broad, often thick lanceolate point with a rounded to pointed base. Flaking patterns are primarily variable to mixed, although collateral and transverse flaking are also present. Serrated margins are exhibited, but are not nearly as frequent as on the Cascade C variant. Cross sections are usually biconvex or planoconvex, but trapezoidal cross sections are common, and diamond cross sections occur. (Lohse 1985:344)
Lohse (1985:344) assigns a temporal range of 8000 to 4000 B.P. to Cascade A type points. The extent of patination of the chert on this artifact suggests considerable age, and it may date closer to the older end of the temporal range presented above.

Artifact LC# 40339

Artifact LC# 40339 is a lanceolate projectile point made from Kootenai Argillite (a light green colored siliceous metasediment) recovered from 10BR978 OP-2 at Unit N105 E50, Level 1 (Figure 40). This is an almost complete lanceolate point with excursive (i.e., outwardly curved) lateral margins. Its greatest width is about a third of the way from the base toward the tip, and it has a planoconvex cross section. Two small chips are missing from the lateral margins of its shallow concave base. Edge-grinding is evident on the lateral margins at the base. A number of the flake scars terminate in step fractures.

Figure 40. Kootenai Argillite lanceolate projectile point from 10BR978 OP-2, N105 E50, Level 1. LC# 40339.

Classification: Cascade B/Lower Snake River cultural sequence Cascade series (Lohse 1985:344)
Temporal range: 8500–6500 B.P.

There is no stratigraphic provenience for this point other than that it was recovered from fine-grained silt below the sod horizon and above the lower limit of Level 1, at 0.9 foot below the surface. It was associated with Chinese and other historical artifacts that field notes describe as “randomly scattered throughout the unit.” Excavation field notes further comment that “a lot of artifact mixing has occurred suggesting previous ground disturbance.” A side-notched point (LC# 45105), a hammerstone (LC# 45109), and two articulating pieces of a heavy-duty quartzite knife (LC# 45023) were also recovered from this excavation unit. Some faunal remains were recovered from this unit. No FMR or charcoal was present, and no prehistoric feature was identified (see LC# 45105 discussion).
Lanceolate and lenticular point types on the southern Columbia Plateau are associated with the Cascade phase on the lower Snake River. Lohse (2008:Figure 2) shows Cascade A, B, and C type lanceolate points dating between about 8000 and 5500 B.P., with most datable Cascade points occurring in the range of 7000 to 6500 B.P. Morphologically, this Sand Creek specimen would be most similar to the Cascade B (Type 14) point with a temporal span of 8500 to 6500 B.P. as described by Lohse (1985:344). This is a very early point type for the project area.

The Cascade B point type is described as a slender lanceolate point with a slightly concave base, it differs from the Windust C point in not having a marked basal notch. Also it is thinner with a more regular outline and cross section, which gives it an almost delicate appearance. Flaking patterns are variable to mixed; serrated margins occur; and cross sections are planoconvex, biconvex, and trapezoidal. (Lohse 1985:344)

Rice (1972:54, Figures 10, 11) illustrates lanceolate projectile points with a “basal notch” within the variation of point styles he includes in the Windust phase. These points are all made from cryptocrystalline material. Rice (1972:50) describes 41 points within this category as having “convex sides; acute tip; ‘U’ or ‘V’ shaped basal notch; lenticular (37) or planoconvex (4) cross section; greatest width usually about one-third the length from the base; pressure flaked with variable quality.” Lanceolate points with concave bases appear early in the Windust phase but are continuous into the later Windust phase and into the Cascade phase (Lohse 1985:344–345; Rice 1972: 133–134, Figure 37). According to Lohse (1985:344), the Cascade B type point does not occur frequently and is morphologically close to the Windust C type variant.

Choquette (1984:382) describes Kootenai Argillite as a pale green laminar siliceous metasediment with a translucent to waxy luster. It is prone to step fractures. He identifies the source area as the Selkirk Mountains of British Columbia adjacent to the north arm of Kootenay Lake. Gough (1984:311–312) notes that along the Kootenai River sites “associated with the highest frequencies of Kootenai Argillite represent the earliest intensive cultural deposits on the floodplain terraces” and that these sites are all associated with specific hydrologic features such as river bends and confluences of watercourses. Gough further notes that “a distinctive style of dart point (‘Inissimi Point’) with an expanding stem, a convex (often ground) base, pronounced shoulders, and typically excrucurate blade edges” has been found in cultural deposits dominated by Kootenai Argillite and that the “settlement pattern represented by the distribution of Kootenai Argillite began at least as early as that time when projectile point base forms were changing to expanding-stem base forms by around 3500 B.P. (Gough 1984:312).

Miss and Hudson (1987:20) report that platy, greenish Kootenai Argillite is strongly represented among middle-sized corner-notched and lanceolate projectile points in private collections in the Lake Pend Oreille area. Miss and Hudson also speculate that the high frequency of Kootenai Argillite in this area may represent a “cultural manifestation similar to that of Cascade material preference, in addition to cultural contact and trade networks.”

A morphologically identical basally notched lanceolate point (made from cryptocrystalline material, however) was recovered from Level II below Mazama volcanic ash at the Marmes Rockshelter in eastern Washington (Rice 1969:3, 17, Table 1, 127, Figure 25g). The generally accepted date for the Mazama ash fall is about 6800 B.P. (Matz 1991:5).

Artifact LC# 40340

Artifact LC# 40340 is a black argillite side-notched projectile point recovered from 10BR978 OP-2 at Unit N100 E45, Level 1 (Figure 41). It has a triangular, somewhat excrucurate blade that is biconvex in cross
Figure 41. Black argillite side-notched projectile point from 10BR978 OP-2, N100 E45, Level 1. LC# 40340.

Classification: Avonlea (Holmer 1995:13)
Temporal range: 1700–750 B.P.

section. The base is very slightly concave and shows evidence of basal thinning. The tip is asymmetrical as a result of an impact fracture and one basal ear is missing as a result of a snap fracture. This is a relatively thick point with a number of blade margin flake scars terminating in step fractures that resulted from the poor quality of the raw material being worked. Edge or basal grinding is not evident. The appearance of the fresh surface exposed by the basal snap fracture is glassy in texture, suggesting possible heat treatment of the raw material to improve its quality for tool manufacture.

The excavation unit from which this point was recovered is near the northern limit of the Chinese artifact distribution associated with the Chinatown excavation. There is no stratigraphic provenience for this point other than that it came from within Level 1 below the sod layer and from above light tannish/gold fine sandy silt encountered at 0.9 foot below the surface. Mixing of cultural material was noted in Level 1, and this point was found in association with a wide variety of historical material including Chinese ceramics. Some bone was recovered from this unit but no FMR. This point was clearly recovered from disturbed cultural deposits.

Holmer illustrates similar side-notched points from the upper Snake River basin of a type that he terms Avonlea, which other researchers formerly included in the Desert Side-notched category. Holmer (1995:13) defines Avonlea points as “small, triangular points with excursive blades, concave bases and low, shallow side-notches.” They are distinguished from the later Desert Side-notched points by having lower and shallower notches. The neck width (1.25 cm) of LC# 40340 suggests it is a dart point rather than an arrow point (see Table 7).

Artifact LC# 40341

Artifact LC# 40341 is a light yellow translucent chert or chalcedony side-notched projectile point recovered from 10BR978 OP-2 at Unit N100 E55, Level 1 (Figure 42). This small, very symmetrical point
Figure 42. Chert/chalcedony side-notched projectile point from 10BR978 OP-2, N100 E55, Level 1. LC# 40341.

SIGGI classification:  Plateau Side-notched (Lohse and Schou 2008:Figure 7u)
Temporal range:  1500–200 B.P.

with deep, narrow side notches has a triangular blade and straight base. It is a very delicate, thin, well-made point, lenticular in cross section with no evident edge or basal grinding.

There is no stratigraphic provenience for this point other than that it was recovered from the Level 1 Target Horizon below a 0.1- to 0.2-foot sod cap and above a depth of approximately 0.7 foot where Level 1 ended in a light gray tan silt. This point was recovered from disturbed sediments containing a wide variety of historical material and bone but no FMR.

Lohse and Schou (2008:200) note that their Plateau Side-notched classification “designates a large, highly variable series of small Side-notched points with straight or concave bases, marking the late prehistoric period.” Variants of Plateau Side-notched points are also classified as Rabbit Island Stem C and Rabbit Island Stem B (Lohse and Schou 2008:198, Figures 7, 7u). Thoms and Burtchard (1987:Table 1.1) date Plateau Side-notched points slightly later in the Middle Kootenai Valley, ranging from 1250 to 200 B.P. In the upper Snake River basin of eastern Idaho, similar side-notched points are termed Desert Side-notched and dated from 750 to 100 B.P. (Holmer 1995:14).

Artifact LC# 45006

Artifact LC# 45006 is a possible lanceolate point base made from pinkish-white chert recovered from 10BR978 (OP-1) at Unit N30 E55, Level 1 (Figure 43). It is a crescent-shaped fragment from the end of a thin delicately flaked bifacial tool. The surface of the artifact exhibits a glassy appearance and pot-lid fractures characteristic of thermal alteration, which possibly indicate intentional heat treating to improve the quality of the material for flaking. A concave snap fracture extends across what is probably the distal edge of a lanceolate or leaf-shaped point; however, the fragmentary nature of this artifact prevents any typological classification. It is possible that it may be an ovate knife rather than a projectile point, although the quality of the material and fine delicate flaking suggest a projectile point base.
This artifact came from the same excavation unit and level as a corner-notched point (LC# 45007), an end scraper (LC# 45005), and a metasediment waste flake (LC# 45004). The prehistoric material in this unit was mixed with historical artifacts in a disturbed historical deposit. There was no indication of an associated prehistoric feature and no FMR was recovered from this unit (see LC# 45007).

**Artifact LC# 45007**

Artifact LC# 45007 is a black argillite corner-notched projectile point recovered from 10BR978 OP-1 at Unit N30 E55, Level 1 (Figure 44). It has an expanding stem with a straight base and triangular blade. The blade is slightly biconvex in cross section, and edge or basal grinding is not evident.
SIGGI classification: Quilomene Bar C-n/Quilomene Bar series (Lohse and Schou 2008:Figure 7o)  
Temporal range: 3000–2000 B.P.

SIGGI classification: Pelican Lake phase/Kootenai River region (Gough 1984:305, Figures 55b, 104)  
Temporal range: 3000–1800 B.P.

There is no stratigraphic provenience for this point or the three other prehistoric artifacts found in this unit other than that they were recovered from disturbed sediments associated with the Level 1 Target Horizon in the vicinity of the Dance Hall. Other prehistoric artifacts from this unit included a biface fragment (possible point base) (LC# 45006), a thumbnail end scraper (LC# 45005), and a metasediment flake (LC# 45004). Field notes indicate the artifacts were recovered from “mixed cultural deposits within strata from many depositional episodes” that sloped westward toward Sand Creek. The prehistoric artifacts were recovered in association with historical material including glass, ceramics, metal, and faunal material and clearly came from mixed cultural deposits. No FMR was recovered from this unit or adjacent units.

Gough (1984:Figure 55b) illustrates a point/knife from McCarthy Lake a few miles north of Lake Pend Oreille that is morphologically almost identical. Gough (1984:166, Figure 104) compares this deeply corner-notched, expanding stem point to the Pelican Lake phase (3000–1800 B.P.), within what has been known as the Middle Prehistoric period in the Kootenai River Region. The Pelican Lake phase compares chronologically to the later part of the Tucannon phase (5000–2500 B.P.) in the Snake River Region of eastern Idaho. Miss and Hudson (1987:28) report that eastern corner-notched Pelican Lake series points are widespread from 2200 to 1600 B.P. but that the distribution of this point style to the west is less uniform and covers a longer time period. Pelican Lake points are associated with the period from 4000 to 2000 B.P. on the Columbia Plateau (Miss and Hudson 1987:28).

Artifact LC# 45015

Artifact LC# 45015 is an obsidian lanceolate projectile point base recovered from 10BR978 OP-1 at Unit N175 E35, Level 1 (Figure 45). The lateral margins taper slightly toward the straight base from a snap fracture. At the distal snap fracture the cross section is biconvex. Basal edge grinding is evident. Longitudinal flake scars are apparent on both the dorsal and ventral surfaces, representing channel flakes that have been removed to thin the base of this point. Pressure rings show that these channel flakes were struck off from the base toward the distal end of the point. The channel flake scars truncate lateral flake scars resulting from the removal of biface thinning flakes, indicating the channel flakes were removed as basal thinning flakes during the last stage in finishing this point. This lithic technology is characteristic of very early Paleo-Indian Clovis and Folsom fluted points (Yohe and Woods 2003:5).

There is no stratigraphic provenience for this point base other that it came from the Level 1 Target Horizon in the vicinity of the northern saloon in the Restricted District and was associated with a wide variety of historical material including glass, ceramics, metal, and leather. No other prehistoric artifacts were recovered from this unit. Some mammal bone was recovered from this level but no FMR. Feature 14, an historical feature consisting of a pit and a layer of decomposing wood, was recorded in the northwest corner of this excavation unit. This projectile point base is specifically mentioned in only in the Level 1 artifact log, not the level narrative, and it is likely it was recovered during screening. The Target Horizon in this unit sloped to the west about 15 to 20 degrees, and it is probable that this point base was mixed with historical cultural deposits as a result of both historical ground disturbance and colluvial slope movement.
Due to the fragmentary nature of this point, it is not possible to determine its classification or temporal range. It undoubtedly dates earlier than the side and corner-notched points recovered in the project area for two reasons. First, it was the only obsidian artifact recovered within the project area during the data recovery program. Second, the point exhibits flake scars from the removal of channel flakes. Taken together, these two reasons suggest this could be a very early point predating any of the other points recovered. However, the lack of good stratigraphic provenience, the fragmentary nature of the point, and its association with historical artifacts in clearly mixed cultural deposits make it difficult to suggest cultural affiliations or chronological dating based on similar points from datable contexts at other sites.

This point was submitted to the Northwest Research Obsidian Studies Laboratory for x-ray fluorescence analysis. Results of that trace element analysis indicate the source of the obsidian was Timber Butte in southwest Idaho (Skinner and Thatcher 2010:1). Other obsidian artifacts recovered from the Lake Pend Oreille Archaeological District have been sourced to Timber Butte. In fact Miss (2004:21) identifies Timber Butte as the single-most commonly represented southwest Idaho obsidian source for obsidian artifacts from the Lake Pend Oreille area that have been submitted for source analysis.

Obsidian artifacts are rare in sites around Lake Pend Oreille and along the Pend Oreille and Clark Fork rivers; however, it is clear that obsidian from several sources reached north Idaho in prehistoric times.

50 In his review, Kenneth Reid (personal communication 2013) suggests this specimen may well fall into that fuzzy “western fluted” category favored by some investigators. It could be either Clovis or immediately post-Clovis in age, and therefore has considerable culture-historical significance for the Sandpoint area. The closest Clovis point is also made from Timber Butte obsidian but was found much further south in Long Valley on the North Fork of the Payette. Reid recommends a complete analysis of the specimen be contracted out to a qualified specialist and added as an appendix to this report. The Clovis lithic technology literature is now well advanced and further study of this specimen would be helpful to other researchers. The Sandpoint Archaeology Project has been completed and there is no mechanism available to conduct such a worthwhile investigation. However, this specimen can be accessed at the Bowers Museum of Anthropology (Northern Repository) at the University of Idaho should a qualified scholar wish to undertake the investigation.
Two obsidian flakes from the Cabinet Landing Site on the Clark Fork River were analyzed by x-ray fluorescence to determine their source areas (Landreth et al. 1985, Appendix D; Sappington 1985:293). Both obsidian flakes were similar in their trace elements and appear to have their source area in the Wallowa Mountains in northeastern Oregon, near the town of Baker.

Thirty-three obsidian artifacts were recovered from three sites on the lower Pend Oreille River by the CVAP (Sappington 2000). Through x-ray fluorescence analysis, source areas for 30 of these artifacts were identified (Sappington 2000:F.2). The majority (n=20) were sourced to Bear Gulch/West Camas Creek in southeastern Idaho, and an additional southeastern Idaho specimen probably came from a source near Burns. Seven specimens were sourced to northwest Wyoming, correlating closely with the Obsidian Cliff source within Yellowstone National Park. An additional specimen probably came from another source (Kepler Cascades) within Yellowstone National Park but may have come from Buck Spring in north-central Oregon. An obsidian biface fragment correlated closely with a source in northeastern Oregon known as Ebell Creek. On the lower Pend Oreille River, Andrefsky et al. (2000, Vol. 4:19.9) report that “obsidian recovered from two residence sites (45PO137 and 45PO138) suggest that different groups may have been using the project area beginning sometime after approximately 1,500 years ago.” Most of the obsidian from 45PO137 was sourced to eastern Idaho while the majority of the obsidian from 45PO138 originated in the vicinity of Yellowstone National Park in Wyoming (Andrefsky et al. 2000, Vol. 4:19.9).

Miss (2004:21, Table 7) provides source information for 31 obsidian samples collected within the Lake Pend Oreille Archaeological District. She notes that the largest number of samples (39 percent) were identified with southeast Idaho-southwest Wyoming sources at Bear Gulch (n=8), Obsidian Cliffs (n=4), and Malad (n=1) as a group; Oregon sources, including Whitewater Ridge (n=5), Little Glass Butte (n=1), Dooly Mountain (n=1), and Newberry Volcano (n=2), rank second in total number (33 percent). Miss (2004:21) identifies Timber Butte (n=8) as the single-most commonly represented southwest Idaho obsidian source, making up 24 percent of the sample.

Based on the results of obsidian sourcing analysis from sites in the Lake Pend Oreille area as well as the lower Clark Fork and Pend Oreille rivers, it is evident that obsidian was highly valued as a raw material for tool manufacture and was traded over long distances. Obsidian reached north Idaho region from sources in southern Idaho, northeastern Oregon, and northwestern Wyoming.

**Artifact LC# 45019**

Artifact LC# 45019 is a lanceolate projectile point made from chert recovered from 10BR978 (OP-3) at TU-2006-2, Level 4/5 (63–64 centimeters below the surface [cmbs]) (Figure 46). This is a complete lanceolate gray chert point with a convex base. This small point is widest one-quarter of the way toward the tip from the base. It is planoconvex in cross section, and basal grinding is evident on the lateral margins near the base.

This point was recovered from an STU later expanded into a 1x1-m test unit (TU-2006-2) immediately east of Unit N190 E50 at 10BR978, the Courthouse/Jail area just north of Chinatown. Four flakes were also recovered from this test unit, all from dry screening. A quartzite secondary flake (LC# 45020) was recovered from 25 cmbs in Level 3. Two pressure flakes, one of black argillite (LC# 45016) and one of brown chert (LC# 45017), were recovered from Levels 2 through 4, above 55 cmbs. The chert point and one black argillite pressure flake were recovered from the Level 4/5 contact between 55 and 64 cmbs associated with a sharp stratigraphic contact between dark brown fine sand containing some charcoal (Level 4) and fine yellow sand with no charcoal (Level 5). These two artifacts may have been in primary depositional context, although historical material was mixed through all upper five levels of this test unit. Excavation continued to 85 cmbs, terminating in sterile compact reddish-brown silty sand (Level 6).
Figure 46. Chert lanceolate projectile point from 10BR978 OP-3, TU-2006-2, Level 4/5, 63 to 64 cmbs. LC# 45019.

Classification: Cascade A/Lower Snake River cultural sequence Cascade series (Lohse 1985:344)
Temporal range: 8000–4000 B.P.

Some bone was present but no FMR was recovered. No prehistoric feature was identified. OP-3 excavation Unit N190 E50 was later opened immediately to the east of TU-2006-2 to attempt to recover additional prehistoric material associated with a possible living surface. Two pieces of FMR were recovered from Level 4 in Unit N190 E50 but no additional prehistoric artifacts were found.

Lanceolate or lenticular points are chronologically earlier than notched points on the southern Columbia Plateau and are associated with the Cascade phase on the lower Snake River. Lohse and Schou (2008: Figure 2) show Cascade A, B, and C type lanceolate points dating between about 8000 and 5500 B.P., with most datable Cascade points occurring in the time span of 7000 to 6500 B.P.

This Sand Creek specimen most closely resembles the Cascade A type point (Lohse and Schou 2008:196, Figure 7d), which Lohse describes as a broad, often thick lanceolate point with a rounded to pointed base. Flaking patterns are primarily variable to mixed, although collateral and transverse flaking are also present. Serrated margins are exhibited, but are not nearly as frequent as on the Cascade C variant. Cross sections are usually biconvex or planoconvex, but trapezoidal cross sections are common, and diamond cross sections occur. (Lohse 1985:344)

The Cascade A type point is thought by Lohse (1985:344) to occur as late as about 4000 B.P.

Chance et al. (1977:151–153, Figure 57) illustrate a cryptocrystalline point similar in morphology to this Sand Creek specimen that is assigned to the Shoikku period, the earliest prehistoric occupation at Kettle Falls dating from 9000 to 8000 B.P. It is unlikely this point dates that early, and it more likely falls
into the 8000–4000 B.P. time period that Lohse (1985) assigns to the Cascade A type lanceolate or leaf-shaped points in the southern Columbia Plateau.

**Artifact LC# 45090**

Artifact LC# 45090 is a corner-notched projectile point made from black argillite recovered from 10BR978 (OP-2) at Unit N80 E35, Level 1 (Figure 47). This is an almost complete corner-notched (or corner-removed) point made from black argillite. It has a triangular blade that is biconvex in cross section and a slightly expanding stem with a straight base. The right tip of the base is missing. No edge or base grinding is evident.

![Figure 47. Black argillite corner-notched projectile point from 10BR978 OP-2, N80 E35, Level 1. LC# 45090.](image)

SIGGI classification: Quilomene Bar C-n/Quilomene Bar series (Lohse and Schou 2008:Figure 7o)
Temporal range: 3000–2000 B.P.

SIGGI classification: Pelican Lake phase/Kootenai River region (Gough 1984:305, Figures 55b, 104)
Temporal range: 3000–1800 B.P.

There is no stratigraphic provenience for this point other than that it appears to have come from tan-colored sand between 0.75 and 1.45 feet below the ground surface in Level 1. A dark brown sand stain was present in the excavation unit in Level 1, but it is not evident from the field notes that the point was associated with the stain. There is no mention of charcoal in Level 1. No other prehistoric artifacts were recovered from this unit, although “bone fragments” and seven fragments of FMR were collected from Level 1, and another seven pieces of FMR were present in the adjacent unit to the west. No prehistoric feature was recorded in either unit. A large amount and variety of historical material was present in Level 1 in association with this point and the FMR. The point was clearly recovered from a mixed cultural deposit in disturbed sediments.
Artifact LC# 45098 is a side-notched projectile point made from chert recovered from 10BR978 (OP-2) at Unit N85 E25, Level 1 (Figure 48). This is a nearly complete corner-notched eared point made from black chert. It has an excurvate triangular blade that is slightly biconvex in cross section and an indented base. Edge or basal grinding is not evident. A V-shaped chip is missing from one lateral margin near the tip. The break appears fresh and may have resulted from skim shoveling during excavation. A large pot-lid fracture on the blade and a glassy appearance of the chert indicate thermal alteration and possible intentional heat treatment of the raw material to improve the quality of material for flaking.

SIGG classification: Quilomene Bar C-n/Quilomene Bar series (Lohse and Schou 2008:Figure 7o)
Temporal range: 3000–2000 B.P.

There is no stratigraphic provenience for this point other than that it was recovered from the Level 1 Target Horizon below the sod cap and above 1 foot, where Level 1 terminated in tan compact silty sand. It was the only prehistoric artifact recovered from a disturbed cultural deposit containing a wide variety of historical artifacts and a few bone fragments but no FMR, although seven fragments of FMR were found in the adjacent unit to the southeast (Unit N80 E30). No evidence of a prehistoric feature was noted in association with this point.

Although in its morphology this point resembles the Cold Springs S-n classification of Lohse and Schou (2008:Figure 7h), it is assigned here to the Quilomene Bar C-n classification based on its weight (28 g) and ratio of blade length to total length (0.78 cm) (Lohse 1985:350, Figure 11.13, Table 11.14; Lohse and Schou 2008:Figure 7o). Lohse (1985:350) describes Quilomene Bar Corner-notched points as “big, heavy points, with straight to slightly convex lateral blade margins, deep, broad corner notches, and markedly expanding, thick stems.” Lohse (1985:350) also notes that “cross sections are usually biconvex but may be somewhat trapezoidal or irregular.” This point type seems to appear a little later than the Columbia
Corner-notched or the Rabbit Island A types that date to around 3000 B.P. and may continue well past 2000 B.P. (Lohse 1985:350).

**Artifact LC# 45105**

Artifact LC# 45105 is a corner-notched projectile point made from gray argillite recovered from 10BR978 OP-2 at Unit N105 E50, Level 1 (Figure 49). This is a very thin corner-notched (or corner-removed) expanding stem point made from a distinctive gray argillite with quartz or calcite veins. The blade is excursive with rounded shoulders. It has a straight base, and edge grinding is apparent along the blade margin and at the base. This is a poorly made point; the bifacial shaping of the margin does not carry beyond the edge of the blade and the stem is minimally worked.

Figure 49. Gray argillite corner-notched projectile point from 10BR978 OP-2, N105 E50, Level 1. LC# 45105.

Classification: Tucannon phase/Lower Snake River cultural sequence (Lucas 2000:3, 23, Figure 7e)

Temporal range: 5000–2500 B.P.

Stratigraphic provenience for this point is limited to its recovery from fine-grained silt below the sod horizon and above the lower limit of Level 1 at 0.9 foot below surface. It was associated with Chinese and other historical artifacts. Field notes indicate that historical artifacts were “randomly scattered throughout the unit” and that “a lot of artifact mixing has occurred suggesting previous ground disturbance.” A lanceolate projectile point (LC# 40339) was also recovered from Level 1. An early shovel test in the northwest quadrant of this unit (STU-2006-5) produced a hammerstone (LC# 45109) and two conjoining pieces of a quartzite knife (LC# 45023) recovered from 23 to 36 cmbs. STU-2006-5 was later expanded into Unit N105 E50. These three artifacts were recovered from at or near the bottom of Level 1 in Unit N105 E50, and it is likely the two points came from near the bottom of Level 1 as well. Some bone was recovered from this unit, but no FMR or charcoal was present. No prehistoric feature was identified.
This point is similar in morphology to a point illustrated by Lucas (2000:24, Figure 7e) that he identifies as a Tucannon phase corner-notched expanding stem point. However, this point is very thin, and Lower Snake River Tucannon phase points generally have a high thickness-to-width ratio. This point, with its wide notching and expanding stem, is cautiously classified here as the corner-notched expanding stem variation of a Tucannon phase point (see LC# 7831 above). The Tucannon phase follows the earlier Cascade phase and is generally considered to span the time period from 5000 to 2500 B.P., although its beginning is not well known and may have begun on the lower Snake River somewhat prior to 5000 B.P. (Lucas 2000:3).

**Other Bifacial Tools (n=13)**

Thirteen bifacially worked artifacts are classified as other than projectile points (see Table 5). Nine of these are classified as knives, three as chopping tools, and one as a bifacially worked net weight/knife. All but one of these came from 10BR978. One quartzite knife (LC# 45110) was recovered from the town’s Commercial District (OP-1 at 10BR859).

Eight lithic artifacts classified as knives were recovered from 10BR978, all from OP-2. One artifact classified as a knife was recovered from OP-1 of 10BR859 (Table 8).

**Table 8. Flaked Stone Knives**

<table>
<thead>
<tr>
<th>Provenience</th>
<th>Comments</th>
<th>LC#</th>
<th>Raw material</th>
</tr>
</thead>
<tbody>
<tr>
<td>10BR978 OP-2 N50 E40, Level 5</td>
<td>Granite fragment with snap fracture on one margin. Margin adjacent to snap fracture bifacially retouched for entire length of 3.21 cm.</td>
<td>7708</td>
<td>Granite</td>
</tr>
<tr>
<td>10BR978 OP-2 N50 E45, Level 6, Feature 3</td>
<td>Ovoid flattish cobble, bifacially worked around 95 percent of margin. Cortex on dorsal surface.</td>
<td>8342</td>
<td>Quartzite</td>
</tr>
<tr>
<td>10BR978 OP-2 N105 E50, Level 4</td>
<td>Heavy-duty knife, two articulating pieces, split elongated river cobble with unifacial retouch along one margin. Planoconvex in cross section. One end broken off, chip out of other end.</td>
<td>45023</td>
<td>Quartzite</td>
</tr>
<tr>
<td>10BR978 OP-2 N45 E35, Level 5, Feature 3</td>
<td>Tabular biface, worked along length of both lateral margins and one end. Possible unifacial retouch on opposite end.</td>
<td>45043</td>
<td>Grey argillite</td>
</tr>
<tr>
<td>10BR978 OP-2 N60 E30, Level 1</td>
<td>Midsection fragment of tabular knife worked unifacially along one margin (opposite margin naturally backed). Snap fracture at one end; length of remaining working edge is 8.43 cm.</td>
<td>45059</td>
<td>Quartzite</td>
</tr>
<tr>
<td>10BR978 OP-2 N65 E40, Level 2</td>
<td>Fragment. Apparent unifacial retouch (or use wear) along one margin for 0.82 cm of 1.11 cm length. Broken edge adjacent to possible retouch.</td>
<td>45071</td>
<td>Micaceous quartzite</td>
</tr>
<tr>
<td>10BR978 OP-2 N70 E60, Level 2A, Feature 7</td>
<td>Biface fragment. Snap fracture along one margin adjacent to straight edge. Semilunar curved edge is minimally worked.</td>
<td>45079</td>
<td>Micaceous quartzite</td>
</tr>
<tr>
<td>10BR978 OP-2 N70 E60, Level 2A, Feature 7</td>
<td>Planoconvex tool fragment. Snap fracture along distal end. Cortex present.</td>
<td>45081</td>
<td>Quartzite</td>
</tr>
<tr>
<td>10BR859 OP-1 N60 E45, Level 1</td>
<td>Quartzite fragment. Bifacially worked along one margin. Possible unifacial retouch along opposite margin.</td>
<td>45110</td>
<td>Quartzite</td>
</tr>
</tbody>
</table>

**Knives from 10BR978 OP-2 (Chinatown)**

Four of the knives recovered from OP-2 of 10BR978 are made from quartzite (LC# 8342, 45023, 45059, and 45081), one is made from micaceous quartzite (LC# 45079), one is made from argillite (LC# 45043), and one is made from granite (LC# 7708) (see Table 8). In addition, a small lithic fragment with retouch or use wear along one acute edge (LC# 45071) is probably a fragment of a micaceous quartzite knife.

Two of the knives, one of quartzite (LC# 8342) (Figure 50) and one of argillite (LC# 45043) (Figure 51) were recovered from Levels 5 and 6 within Feature 3, a large historical dugout structure containing historical artifacts and wood planking and consequently are from a redeposited context. One of the quartzite knives is exceptionally large (LC# 45023) (Figure 52).
Figure 50. Quartzite knife from 10BR978 OP-2, N50 E45, Level 6, Feature 3. LC# 8342.

Figure 51. Argillite knife from 10BR978 OP-2, N45 E35, Level 5, Feature 3. LC# 45043.

Figure 52. Quartzite knife from 10BR978 OP-2, N105 E50, Level 4. LC# 45023.
One of the knives is a large semilunar tabular knife fragment (LC# 45079) (Figure 53) made from micaceous quartzite and bifacially worked along its convex edge. It was recovered from Unit N70 E60 along with another quartzite knife (LC# 45081), a quartzite cobble chopper (LC# 45082), three chert and argillite waste flakes, and a piece of quartzite shatter in the immediate vicinity of Feature 7. Chance et al. (1977) report on the large number of micaceous quartzite knives recovered at the Kettle Falls fishery site on the Columbia River. The Kettle Falls knives are described as "bifacially retouched slabs having a thickness of less than 1 cm," an arbitrary measurement used at Kettle Falls to differentiate thinner knives from bifacial chopping tools (Chance et al. 1977:74). Chance et al. (1977:74) also note that at Kettle Falls, according to numerous informants, "at least some of the knives were used for cutting fish," but suggest some were probably also used as hide scrapers.

Knife from 10BR859 OP-1 (Townsite Commercial District)

A bifacially worked quartzite knife (LC# 45110) was recovered from the Townsite commercial area excavation Level 1 Target Horizon in Unit N60 E45 (Figure 54). This was the only prehistoric artifact recovered from this vicinity. No FMR or charcoal was associated with this artifact, which was associated with a large number of historical artifacts, including a 1911 Canadian five-cent piece. This prehistoric artifact was clearly recovered from a disturbed context in a mixed cultural deposit.

Choppers

Four chopping tools were recovered, one from the Restricted District and three from the Chinese assemblage (10BR876 OP-1 and OP-2, respectively) (Table 9). All the choppers recovered from this site came from mixed cultural deposits containing historical artifacts.

Figure 53. Micaceous quartzite knife from 10BR876 OP-2, N70 E60, Level 2A, Feature 7. LC# 45079.
Table 9. Chopping Tools

<table>
<thead>
<tr>
<th>Provenience</th>
<th>Comments</th>
<th>LC#</th>
<th>Raw material</th>
</tr>
</thead>
<tbody>
<tr>
<td>10BR978 OP-1</td>
<td>Flat cobble bifacially worked along part of one margin and unifacially worked along 90 percent of opposite margin.</td>
<td>45008</td>
<td>Quartzite</td>
</tr>
<tr>
<td>N30 E65, Level 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10BR978 OP-2</td>
<td>Heavy-duty chopping tool. Bifacially retouched around 50 percent of perimeter. Tag note: 0.8 foot below the surface in southwest corner.</td>
<td>45082</td>
<td>Rose quartzite</td>
</tr>
<tr>
<td>N70 E60, Level 2A, Feature 7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10BR978 OP-2</td>
<td>Light-duty chopping tool. Primary flake with cortex. Unifacially worked around 40 percent of margin.</td>
<td>45099</td>
<td>Metasediment</td>
</tr>
<tr>
<td>N85 E60, Level 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10BR978 OP-2</td>
<td>Light-duty chopping tool with cobble cortex opposite working edge.</td>
<td>45168</td>
<td>Metasediment</td>
</tr>
<tr>
<td>N80 E30, Level 1</td>
<td>Bifacially worked on one margin</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cobble chopper LC# 45008 (Figure 55) came from disturbed and mixed cultural deposits containing historical artifacts in the Restricted District’s Dance Hall area (OP-1). An historic pit feature (Feature 17) was documented in the north wall of the unit from which this cobble copper was recovered.

Cobble chopper LC# 45082 (Figure 56), recovered from 0.8 foot below the surface in Unit N70 E60, was associated with a large semilunar tabular knife fragment (LC# 45079) made from micaceous quartzite along with another quartzite knife (LC# 45081), three chert and argillite waste flakes, and a piece of quartzite shatter. These artifacts were all recovered in the immediate vicinity of Feature 7, which is discussed previously (see Knives from 10BR978 OP-2 [Chinatown] section).

Cobble chopper LC# 45099 (Figure 57) was recovered from Level 1 in Unit N85 E60. It is made from metasediment and likely functioned as a light-duty chopping tool. It is made from a primary flake with residual cortex and is unifacially worked around 40 percent of its margin.

Cobble chopper LC# 45168 (Figure 58) recovered from Level 1 in Unit N80 E30 was the only artifact from this excavation unit but seven pieces of FMR were also collected from this unit and another seven pieces of were collected from the unit immediately to the east of Unit N86 E60 along with a corner-notched projectile point (LC# 45090). This is the largest concentration of FMR identified in the Chinatown area but a large number of historical artifacts came from Level 1 in both units and no prehistoric feature was identified.
Figure 55. Quartzite cobble chopper from 10BR978 OP-1, N30 E65, Level 1. LC# 45008.

Figure 56. Quartzite cobble chopper from 10BR978 OP-2, N70 E60, Level 2A, Feature 7. LC# 45082.

Figure 57. Metasediment cobble chopper from 10BR978 OP-2, N85 E60, Level 1. LC# 45099.
Figure 58. Metasediment cobble chopper from 10BR978 OP-2, N80 E30, Level 1. LC# 45168.

Multifunctional Tool

A tabular ovoid multifunctional artifact (LC# 45042) manufactured from quartzite was recovered from 10BR978 OP-2 at Unit N45 E35, Level 5, Feature 3 (Figure 59). It is bifacially worked around its entire margin and weakly notched on the left and right lateral margins. The lateral notches appear to be

Figure 59. Quartzite multifunctional tool from 10BR978 OP-2, N45 E35, Level 5, Feature 3. LC# 45042.
intentional and suggest that this artifact may have functioned as a net weight. If so, it is the only net weight recovered in the project area. The completely worked bifacial margin indicates this multifunctional tool was also used as a heavy-duty knife, but whether this artifact was a net weight later modified into a knife or vice versa is somewhat difficult to determine. However, the lateral margins within the notches are ground or worn smooth, suggesting that this artifact was probably initially a knife later converted into a net weight. This artifact was recovered from within the deep Feature 3 historical dugout in which prehistoric artifacts were mixed with historical deposits in disturbed fill and historically excavated sediments.

Unifacial Tools

Six unifacially worked tools were recovered from the project area, five of which were classified as end or side scrapers and one as a unifacially retouched flake/spokeshave (Table 10). Of these six tools, 10BR978 produced four: two end scrapers and two side scrapers; one of these end scrapers came from the Restricted District (OP-1), and the Chinatown (OP-2) excavations produced a second end scraper and two side scrapers. In addition, a large flake with retouch along one concave margin that probably functioned as a spokeshave came from the OP-1 excavation at the Humbird Blacksmith Shop and Club House (10BR977). Another side scraper came from STU-2006-29 at 10BR1026 (Indian Island) in the vicinity of Dog Beach. These artifacts are discussed individually below by site and operation area.

Table 10. Unifacial Tools

<table>
<thead>
<tr>
<th>Provenience</th>
<th>Comments</th>
<th>LC#</th>
<th>Raw material</th>
</tr>
</thead>
<tbody>
<tr>
<td>10BR978 OP-1 N30 E55, Level 1</td>
<td>End scraper. Distal end of thumbnail scraper. Steep unifacial retouch entire length of distal end. Proximal snap fracture.</td>
<td>45005</td>
<td>CCS (red chert)</td>
</tr>
<tr>
<td>10BR978 OP-2 N60 E30, Level 1</td>
<td>Side scraper. Tool fragment with snap fractures on two adjacent margins. Unifacial retouch along part of convex third margin. Glassy surface of material and possible thermal alteration.</td>
<td>45062</td>
<td>CCS (dark brown chert)</td>
</tr>
<tr>
<td>10BR978 OP-2 N75 E65, Level 1</td>
<td>End scraper (probable). Flake fragment with steep unifacial retouch along one margin.</td>
<td>45085</td>
<td>CCS (dark brown chert)</td>
</tr>
<tr>
<td>10BR978 OP-2 N90 E55, Level 1</td>
<td>Side scraper. Complete secondary flake with steep unifacial retouch along one margin for 4.38 cm. Side scraper on flake.</td>
<td>45103</td>
<td>CCS (brown chert)</td>
</tr>
<tr>
<td>10BR977 OP-1 N55 E85, Level 2</td>
<td>Spokeshave. Secondary flake with steep unifacial retouch along concave edge.</td>
<td>45127</td>
<td>CCS (gray chert)</td>
</tr>
<tr>
<td>10BR1026 STU-2006-29, Stratum A</td>
<td>Side scraper (possible). Unifacial retouch along two margins and distal snap fracture. Appears heavily water worn. Associated with historical material.</td>
<td>45155</td>
<td>Gray argillite</td>
</tr>
</tbody>
</table>

10BR978 Restricted District (OP-1)

Artifact LC# 45005 is an end scraper made from red chert recovered from Unit N30 E55, Level 1 (Figure 60). This is the distal end of a thumbnail end scraper. Steep unifacial retouch is present along the entire length of the working end of the tool, opposite a proximal snap fracture. This artifact was recovered from the historic Target Horizon in the southern part of the Restricted District, just north of the Dance Hall. Two projectile points (LC# 45006 and 45007) and a tertiary metasediment waste flake (LC# 45004) also came from this unit, but no FMR was recovered and no prehistoric feature was identified. A large number of historical artifacts also came from Level 1 in this unit. The prehistoric artifacts were clearly from mixed cultural deposits and not in primary depositional context.

10BR978 Chinatown (OP-2)

Artifact LC# 45062 is a side scraper fragment made from quartzite recovered from Unit N60 E30, Level 1 (Figure 61). This is a small triangular fragment of a unifacial tool, possibly a side scraper but the size of the piece recovered makes identification difficult. It has snap fractures on two margins and unifacial retouch along part of the convex edge of the third side. The surface of the material appears glassy, possibly the result of exposure to heat, although intentional heat treating is not likely with quartzite.
Two other lithic artifacts were recovered from Level 1 in this unit, a fragment of a convex bifacial knife made from quartzite (LC# 45059) and a red chert primary flake (LC# 45061), as well as four pieces of FMR and five pieces of bone, although the bone is probably part of the historical site component. Unit N60 E30 is just a few feet north of the large Feature 3 depression, and it is likely that prehistoric material was mixed with historical deposits during construction of this feature. The Level 1 Target Horizon in this unit was 0.7 to 0.8 foot thick and contained a large number of Chinese and other historical artifacts. The prehistoric artifacts and FMR recovered from this unit were mixed with disturbed historical deposits.

Artifact LC# 45085 is an end scraper made from dark brown chert recovered from Unit N75 E65, Level 1 (Figure 62). This artifact, with steep unifacial retouch along one margin, has morphological characteristics of a thumbnail end scraper. However, it is somewhat asymmetrical, and most of the worked edge is straight rather than convex as with typical thumbnail end scrapers.
Figure 62. Brown chert end scraper from 10BR978 OP-2, N75 E65, Level 1. LC# 45085.

One other lithic artifact, a complete black argillite secondary waste flake (LC# 45086), came from this unit. No FMR was recovered from this unit. An historical pit feature (Feature 6) measuring 1.5 × 1.0 feet in plan view and 1.2 feet deep containing historical artifacts and some charcoal was present at the eastern edge of this excavation unit but was unrelated to the prehistoric artifacts, which came from a mixed cultural deposit in disturbed ground.

Artifact LC# 45103 is a side scraper made from brown chert recovered from Unit N90 E55, Level 1 (Figure 63). This is a complete, large secondary flake with steep unifacial retouch along almost the full length of its longest margin. It is the best example of a side scraper that was recovered in the project area.

Figure 63. Brown chert side scraper from 10BR978 OP-2, N90 E55, Level 1. LC# 45103.
Prehistoric Archaeology

Level 1 in this unit was brown, loosely packed silty sand extending from just below the surface sod horizon to 0.65 foot below the ground surface. This level contained a very high density of historical artifacts as well as this single prehistoric artifact, which was mixed in with historical material and was obviously in disturbed context. Some bone was recovered from this unit but no FMR.

10BR977 Humbird Blacksmith Shop and Club House (OP-1)

Artifact LC# 45127 is a spokeshave made from dark gray chert recovered from Unit N55 E 85, Level 2 (Figure 64). This unifacial tool is made from a large retouched secondary flake. It is the only spokeshave in the prehistoric artifact assemblage. Steep unifacial retouch is present along a concave edge that extends about two-thirds the length of one lateral margin.

![Gray chert side spokeshave from 10BR978 OP-2, N55 E85, Level 2. LC# 45127.](image)

This artifact was recovered from between 0.7 and 1.2 feet below the ground surface in Level 2 of Unit N55 E85 at the extreme southern end of the Blacksmith Shop excavation (10BR977 OP-1) where the density of historical artifacts decreased. Level 2 is described as light olive brown compact sandy silt mottled with oxidized pockets of brownish-yellow sandy silt. Historical artifacts were recovered from both Level 1 and Level 2 in this unit, but the density of historical artifacts was very low in Level 1 and decreased further in Level 2. Level 2 historical artifacts were associated with the gradational mottled contact between Level 1 and Level 2 at approximately 0.7 foot below the ground surface. There is no provenience information for this prehistoric artifact within Level 2. The Level 2 excavation narrative does not mention any lithic artifacts, and it is likely this isolated prehistoric artifact was recovered during screening. No FMR was recovered from this unit.
Artifact LC# 45155 is a side scraper made from gray argillite recovered from STU-2006-29, Stratum A (Figure 65). This incomplete side scraper is made from a thick secondary flake and exhibits unifacial retouch or possibly use wear along two lateral margins. The artifact is planoconvex in cross section, and a snap fracture is present at one end. A large flake scar is present on the dorsal surface. The retouched lateral margins are smooth. The artifact appears water worn, possibly from wave action along the lake shoreline.

Figure 65. Gray argillite side scraper from 10BR1026, STU-2006-29, Stratum A. LC# 45155.

STU-2006-29 was a 1 × 1 m–test excavation on the western shore of a small cove known locally as Dog Beach. This test unit was placed near a surface scatter of FMR on a low terrace edge cut vertically by wave action. In addition to this lithic artifact, historical artifacts and very recent material such as pop-tops from aluminum cans were recovered from Stratum A. At 39 cmbs, large concrete slabs were encountered, which terminated the test. The slabs were thought to be buried riprap from an earlier shoreline stabilization effort. This lithic artifact clearly came from a disturbed (probably fill) deposit.

Modified Flakes

Of the 69 debitage artifacts recovered from all sites and operation areas that had flake morphology, 15 (22 percent) were modified by intentional retouch or showed evidence of use wear (Tables 11 and 12). Six (40 percent) of the modified flakes show evidence of retouch, as opposed to use wear resulting from utilization of a flake as a scraper or knife without further intentional modification. Five of these retouched flakes were unifacially worked, and one was bifacially modified. The most striking example of a unifacially modified flake recovered is a secondary flake with steep unifacial retouch along one concave edge (LC# 45127). LC# 45127 was probably used as a spokeshave, as discussed previously (see Unifacial Tools section). Three of the retouched flakes are cryptocrystalline chert, with one each of black argillite, gray metasediment, and quartzite (see Table 11).
In total, nine artifacts show evidence of being utilized (see Table 12). Eight CCS flakes and one quartzite spall (LC# 45011) have evidence of use wear along one or more margins. Eight of these artifacts exhibit very light unifacial use wear along an edge that was probably used for scraping. One large tertiary flake (LC# 45123) has more pronounced evidence of both unifacial and bifacial use modification. It is interesting to note that all of the utilized flakes are of cryptocrystalline chert, a material that produced sharp flakes that could be used for scraping or cutting without further edge retouch.

**Lithic Material**

Lithic material used prehistorically for tool production in the project area includes cryptocrystalline cherts of various colors along with chalcedony, argillite (a metamorphosed siliceous siltstone), vein quartz and quartzite, and metamorphosed sedimentary rock referred to by the general term *metasediment*. In addition, one projectile point base of obsidian (LC# 45015) was recovered.

Some of the raw lithic material from which Sand Creek artifacts were made can be obtained locally. Landreth et al. (1985:212) note that “glacial deposits and the quartzites, siltites, and argillites of the Precambrian Belt series dominate the lower Clark Fork River geologic setting.” In addition, quartzite cobbles and quartz can be found locally in Sand Creek.

Argillite and metamorphic sedimentary rock were also probably obtained locally for tool manufacture. Basalt is probably also represented in the artifact assemblage recovered in the project area, but as Perry (1992) has pointed out, positive differentiation between basalt and black argillite requires microscopic examination of thin sections. Consequently in the present analysis, dark basalt-like material has been included in the black argillite classification.

Other lithic material represented by artifacts from the project area does not occur locally. Knudson et al. (1979:6) note that “In general, cryptocrystalline cherts and chaledonies are absent in northern Idaho and adjacent parts of Washington, British Columbia, and Montana, and one must travel out of the region to acquire such materials for flakes tool production.” As discussed above (see Projectile Points
section), obsidian in particular was traded over long distances prehistorically; the one obsidian artifact recovered (LC# 45015), which was sourced to Timber Butte in southwest Idaho, clearly demonstrates long-range contacts and/or trade with distant groups. One lanceolate projectile point (LC# 40339) and two waste flakes (LC# 8805 and 45077) of a light green argillite known as Kootenay Argillite were recovered from 10BR978. As discussed above (see Projectile Points section), this particular type of argillite has its source in British Columbia in the Selkirk Mountains on the west side of Kootenay Lake. The recovery of a nephrite celt (adze) also demonstrates contact and/or trade with groups to the north in British Columbia. The middle Fraser River area in British Columbia appears to be the source for artifacts made from this material which was traded southward into the southern Columbia Plateau area.

**Other Artifacts: Lithic Workshop**

Four artifacts were recovered that represent lithic workshop activity in the project area (Table 13). A quartzite hammerstone (LC# 45109) was found in a 2006 STU in the Chinatown area of 10BR978. Another possible hammerstone of igneous material (LC# 45120) came from excavations at OP-5 in the Townsite area at 10BR859, and a quartzite cobblean flake core (LC# 45116) was found on the surface at OP-1 at the same site. One additional hammerstone came from the OP-1 excavation at the Blacksmith Shop/Club House (10BR977). These artifacts are discussed individually below.

<table>
<thead>
<tr>
<th>Provenience</th>
<th>Comments</th>
<th>LC#</th>
<th>Raw material</th>
</tr>
</thead>
<tbody>
<tr>
<td>10BR978 OP-2 STU-2006-5, Level 4</td>
<td>Hammerstone. Large elongated cobbles with very light apparently intentioned battering around most of the circumference.</td>
<td>45109</td>
<td>Quartzite</td>
</tr>
<tr>
<td>10BR859 OP-2 N395.9 E50, surface</td>
<td>Flake core. Large cobbles with four large unifacial scars on the dorsal surface and one small scar facet on the ventral surface. Light battering is present around the entire intact edge.</td>
<td>45116</td>
<td>Rose quartzite</td>
</tr>
<tr>
<td>10BR859 OP-5 N440 E45, Level 1</td>
<td>Hammerstone. Complete cobbles with heavy edge battering on side and possible light battering at one end.</td>
<td>45120</td>
<td>Igneous rock</td>
</tr>
<tr>
<td>10BR977 N85 E75, Level 1</td>
<td>Hammerstone. Large cobbles with medium to light battering around entire circumference and one unifacial impact scar.</td>
<td>45130</td>
<td>Igneous rock</td>
</tr>
</tbody>
</table>

**10BR978 OP-2 Chinatown**

Artifact LC# 45109 is a hammerstone made from quartzite recovered from STU-2006-5, east half, Level 4 (which is also Unit N105 E50 on the Chinatown grid). This is a large, elongated cobbles with very light but apparently intentioned battering around most of the circumference. No other cultural modification is evident.

Field notes indicate this cobbles was found at 30 cmbs adjacent to half of a unifacially worked quartzite knife (LC# 45023). The articulating other half of this quartzite knife was also recovered from this test unit. The association of this lightly battered cobbles with other lithic artifacts from the same depth below the ground surface increases the likelihood that the light battering around the edge of the cobbles is cultural rather than a result of natural causes.

This initial 50 cm × 1.0 m–STU was enlarged into a 1 × 1–m TU to better examine the soil stratigraphy, and this TU eventually became incorporated into the Chinatown excavation grid, which fell to the northwest quarter of Unit N105 E50. The initial and expanded STU encountered a black charcoal-rich cultural horizon containing historical artifacts directly below the organic horizon. Historical artifacts were present throughout the test unit, but the black charcoal-stained cultural horizon, which contained a few angular rocks and associated historical artifacts, ended at the Level 3/4 contact at 22 to 25 cmbs. Level 4 contained non-FMR angular rock between 22 to 29 cmbs in a matrix of light brown fine silty sand. The prehistoric artifacts from this test unit were recovered at 27 to 30 cmbs in Level 4. A few historical artifacts were also recovered from Level 4. Excavation was taken down to 50 to 54 cmbs to
culturally sterile sediments in Level 4. The TU was augured to 196 cmbs without recovering additional cultural material.

During the Chinatown excavation, a complete lanceolate projectile point made from Kootenai Argillite (LC# 40339) and a corner-notched point made from black argillite (LC# 45105) were recovered from the Level 1 historic Target Horizon in Unit N105 E50. There is no vertical provenience for these two projectile points other than that they came from above 29 cmbs and thus could have been associated with this hammerstone and the unifacial knife fragments. Some bone was recovered from Unit N105 E50, but no FMR or charcoal was present and no prehistoric feature was identified. The concentration of two articulating knife fragments, two projectile points, and a hammerstone within this unit suggests the prehistoric material had probably not been displaced very much by historical activity even though some disturbance of the cultural deposits is evident from the mixing of historical and prehistoric artifacts.

10BR859 (OP-2) Townsite

Artifact LC# 45116 is a quartzite cobble flake core recovered from Unit N395.9 E50, as an isolated surface find (Figure 66). This artifact is a large rose quartzite cobble with four large flake scars on the dorsal surface from which flakes were removed. There is also a small scar facet on the ventral surface. The cobble also exhibits light battering around its entire edge. It is unlikely that natural forces could have removed four (or possibly five) flakes by percussion from this cobble, and it is almost certainly a flake core, the only flake core recovered in the project area. Unfortunately this single recovered flake core has no provenience because it was found as an isolated surface artifact on the mud flat adjacent to Sand Creek north of and outside the Townsite OP-2 grid area.

![Figure 66. Quartzite cobble flake core from 10BR859 OP-2, N395.9 E50. LC# 45116.](image)

10BR859 (OP-5) Townsite

Artifact LC# 45120 is a hammerstone made from igneous rock recovered from Unit N440 E45, Level 1 (Figure 67). This artifact is a medium-sized irregularly shaped cobble with heavy edge battering at a single location on one side and possible light battering at one end. No other artifacts came from this excavation unit; consequently it is somewhat problematic as a culturally modified cobble. It is possible the edge battering could be natural, although two pieces of FMR came from Unit N440 E45, which perhaps tips the scale somewhat toward cultural modification.
This excavation unit was located on the mud flat of Sand Creek, and the excavated sediments were water saturated. This cobble (along with the two fragments of FMR) was recovered during water screening. They were associated with a dense concentration of historical material in a dark cultural horizon in gray silt loam sediments. No other prehistoric material or FMR came from adjacent excavation units.

**10BR977 (OP-1) Blacksmith Shop/Club House**

Artifact LC# 45130 is a hammerstone recovered from Unit N85 E75, Level 1 (Figure 68). This large cobble of dark igneous rock has medium to light battering around its entire circumference and one unifacial impact scar. The scar alone might be attributed to a natural cause, but the light battering around the circumference is undoubtedly cultural.

This artifact came from less than 0.5 foot below the surface in the upper part of Level 1 in Unit N85 E75 at the southern end of the Blacksmith Shop excavation in the area of the Club House. It was associated with historical artifacts in disturbed historic deposits that were thought to be a dump area before the Club House was constructed at this location. No other prehistoric artifacts or FMR were recovered from this or adjacent excavation units.

**Groundstone Tools**

Four ground stone tools were recovered from two sites within the project area (Table 14). At 10BR978, a broken groundstone tool (LC# 45002 of unknown function made from what is probably basalt came from the Restricted District, and a broken quartzite pestle (LC# 40347) was recovered from the Chinatown excavation. At the 10BR977 Blacksmith Shop/Club House location, a complete pestle (LC# 40395) made from ophiolite (greenstone) came from OP-1 at the top of the bluff where the Blacksmith
Figure 68. Igneous rock hammerstone from 10BR977 OP-1, N85 E75, Level 1. LC# 45130.

Table 14. Groundstone Tools

<table>
<thead>
<tr>
<th>Provenience</th>
<th>Comments</th>
<th>LC#</th>
<th>Raw material</th>
</tr>
</thead>
<tbody>
<tr>
<td>10BR978 OP-1 N25 E50, Level 1</td>
<td>Unknown. Probable proximal end of a paddle-shaped object. Also possible adze use.</td>
<td>45002</td>
<td>Basalt</td>
</tr>
<tr>
<td>10BR978 OP-2 N75 E70, Level 1</td>
<td>Pestle. Elongated cobble. Heavily battered and flattened at distal end. Broken at proximal end.</td>
<td>40347</td>
<td>Quartzite</td>
</tr>
<tr>
<td>10BR977 OP-1 N150 E70, Level 2</td>
<td>Pestle. Complete groundstone pestle with flattened distal end from heavy use. Proximal end tapers to a point.</td>
<td>40395</td>
<td>Ophiolite (greenstone)</td>
</tr>
</tbody>
</table>

Shop was situated. OP-2 at 10BR977 produced a nephrite celt (adze) from Trench D on the bank slope below the Blacksmith Shop. These artifacts are discussed individually below.

10BR978 OP-1 Restricted District

Artifact LC# 45002 is an unknown object made from basalt recovered from Unit N25 E50, Level 1 (Figure 69). This broken groundstone object is just under 10 cm long with the distal end just starting to flare abruptly outward on two opposite sides at the point at which the break occurs. The surface is “pocketed” apparently from differential weathering of softer inclusions in the matrix material. The proximal end of this artifact is beveled and exhibits either intentional unifacial modification or evidence
Figure 69. Basalt unknown paddle-shaped object from 10BR978 OP-1, N25 E50, Level 1. LC# 45002.

of battering, possibly from use as an adze. This may have been a secondary use of the artifact after it was broken.

There is no vertical provenience for this artifact, which came from Unit N25 E50 at the south end of the Restricted District just north of the Dance Hall location. It was associated with a high density of Target Horizon historical material. No other prehistoric artifacts or FMR were present in this unit.

This artifact does not seem to be a broken pestle handle, but rather the proximal end of a paddle-shaped object. Such artifacts are rare in the Lake Pend Oreille region but are known from private collections in the area. A groundstone paddle-shaped artifact at the British Columbia Provincial Museum in Victoria, B.C. is labeled as a hand maul.

A complete example of a paddle-shaped object from private property in the Clark Fork Delta overlooking the USACE drift yard is in a local private collection. Another local example of a groundstone paddle-shaped artifact that has been bifacially worked around the edge of the broad end was found a number of years ago on the shore of Lake Pend Oreille close to the Sandpoint Water Treatment Plant very close to the project area. This artifact is currently in a local Sandpoint collection (Figure 70). These paddle-shaped objects are of unknown function, although Kootenai tribal elders of the Creston Band in British Columbia have reported that these objects were used as hoes for digging (personal communication, Wayne Louie, Creston Band of Kootnay Tribe of Indians 2007).

10BR978 OP-2 Chinatown

Artifact LC# 40347 is a pestle made from quartzite recovered from Unit N75 E70, Level 1 (Figure 71). This incomplete groundstone pestle is made from an elongated cobble. It is heavily battered and flattened at its distal end with a break at the proximal end. The flattened oval working surface measures 3.5 × 4.7 cm.
Figure 70. Comparison of artifact LC# 45002 (right) with paddle-shaped artifact from the Sandpoint Water Treatment Plant area on the shore of Lake Pend Oreille.

There is no vertical provenience for this artifact other than that it came from the Level 1 historic Target Horizon in which historical artifacts and some bone were present. No FMR was recovered from this unit. Dark stains in the northern half of the unit were thought to be decomposed organics associated with tree roots. A complete secondary waste flake of black argillite (LC# 45087) also came from this unit. Both lithic artifacts were recovered from a mixed and disturbed cultural deposit.
Artifact LC# 40395 is a pestle recovered from Unit N150 E70 (northwest quadrant), Level 2 (Figure 72). This complete groundstone pestle made from ophiolite (greenstone) measures 20.7 cm in length with its distal end battered and completely flattened from heavy use. From the wider, distal, working end the body of the artifact tapers to a point at the proximal handle end.

It was recovered from near the edge of the bluff at the northern end of the Blacksmith Shop and was the only lithic artifact from this unit. No evidence of a prehistoric feature was noted in this unit and no FMR was recovered from this or adjacent units. Field narratives indicate this artifact was found in a vertical position in Level 2 matrix with the distal end near the contact with Level 3, a compact white silt. The fact that this large artifact was not found in a horizontal position strongly indicates that it has been redeposited and was recovered from a secondary depositional context (see Figure 32).

Artifact LC# 40390 is a celt (possibly an adze) made from nephrite recovered from 10BR977 OP-2, Blacksmith Shop/Club House (Figures 73 and 74). Only one artifact made from nephrite was recovered from the project area. This complete but battered groundstone celt or adze has a slightly convex beveled distal bit end from which the margins taper toward the pole end. The dorsal surface is largely unpolished and irregular with some cortex present. Approximately 70 percent of the dorsal surface along the right margin from the pole end to the bit is battered from use or from intentional unifacial flaking. The ventral surface is battered and pitted. Microscopic use wear striations are visible perpendicular to the bit. Striations also occur parallel to the bit on both the dorsal and ventral surfaces. The left margin shows linear striations and a slight lip resulting from a saw-and-snap manufacturing process.
This isolated artifact was recovered from near the bottom of Trench D, which was placed at a right angle to the slope orientation below the edge of the bluff near the northern end of the Blacksmith Shop. Field notes (Betts, October 1, 2008) indicate it came from a mixed slope deposit near the top of Level 3 and approximately 1.5 feet below the slope surface, associated with buried organics above well-sorted fine sand. Colluvial downslope movement of sediment and artifacts had apparently mixed the overlying historical material, but the celt appeared to have come from just under the historical artifact horizon.

Celts are generally associated with woodworking activity. The use of nephrite for celt manufacture on the Columbia Plateau probably did not begin earlier than about 2400 B.P. (the beginning of the Plateau horizon of the Plateau Housepit tradition on the British Columbia Plateau). Nephrite celts became more common after the start of the Kamloops horizon around 1200 B.P. in British Columbia (Darwent 1998:63, 92–93).
The recovery of an isolated nephrite celt or adze (LC# 40390) from OP-2 at 10BR977 points toward prehistoric contact or trade to the north in British Columbia. Most of this discussion follows the publication *Prehistoric Use of Nephrite on the British Columbia Plateau* (Darwent 1998), which provides extensive information on the manufacture, use, and distribution of nephrite celts on the Columbia Plateau.

**Material and Source**

Nephrite and jadeite are two minerals commonly referred to as jade. Nephrite and jadeite are chemically unrelated and have completely different origins, but the two minerals cannot be positively identified without thin sectioning to confirm the presence of tremolite (Darwent 1998:6, 49). Nevertheless the likelihood of jadeite being used prehistorically for celt manufacture by interior groups is negligible, largely because in British Columbia jadeite only occurs in the northwestern part of province, in the Pinchi Lake area (Darwent 1998:10).

The principal prehistoric source for nephrite on the interior Columbia Plateau is the mid-Fraser River area between Lillooet and Hope in southern British Columbia. Nephrite artifacts were made from sawn nephrite boulders that occur only in the Lytton and Lillooet region along the Fraser River. Based on the distribution of these sawn nephrite boulders, the area between Lillooet and Lytton is thought to be the primary production zone for prehistoric celt manufacture. The Nicola Valley and Western Shuswap lakes regions to the east functioned as a secondary staging area for the trade of nephrite (Darwent 1998:63, 76). Darwent (1998:Figure 5.26) maps three zones illustrating the structure of the prehistoric nephrite exchange system. These are the “Primary Production Zone” on the mid-Fraser River and a “Direct Contact Zone” between the Fraser River and the Adams Lake area. To the south of the Direct Contact Zone is the “Indirect Contact Zone” to the west of the Arrow Lakes.

**Trade and Distribution of Nephrite Artifacts**

Well-developed trade networks were present on the British Columbia Plateau at the time of Euro-American contact, but there are no direct ethnographic references to nephrite being exchanged (Darwent 1998:19). Prehistorically however, nephrite celts are the first form of evidence for inter-Plateau trading (Darwent 1998:89). In looking at the distribution of nephrite artifacts on the British Columbia Plateau Darwent (1998:63, Figure 5.11) notes that “major clusters occur in the Lillooet, Lytton, and Shuswap Lakes area. Smaller concentrations appeared in the southern Okanagan Lake region, around the Arrow Lakes, the Grand Coulee/Chief Joseph Dam and Wanapum Dam areas, and The Dalles.” He cautions, however, that the frequency of nephrite artifacts in any location is largely a product of the amount of archaeological work performed in that area.

In looking beyond the Shuswap Lakes and Nicola Valley areas within the Direct Contact Area to the Okanagan Lake region and the Columbia Plateau immediately east of the mid-Fraser River, Darwent (1998:88) reported that celt sizes decrease and occur less frequently in burials, with the exception of the Arrow Lakes region.

Darwent (1998:Figure 5.26) shows nephrite moving southward to the Columbia River through the Indirect Contact Zone along two routes, one following the Okanagan River drainage and the other along the Arrow Lakes. Darwent (1998:92) notes that “trade routes between the British Columbia and Columbia Plateaus are generally thought to have followed the Similkameen and Okanagan rivers and possibly the Upper Columbia River.” Darwent (1998:64) states that “the distribution of nephrite is affected by the location of mountain ranges and the courses of major rivers.” It appeared that a likely trade route for nephrite into the Lake Pend Oreille area would have been via the Arrow Lakes to Kettle Falls on the Columbia River, then south along the Colville River to the Pend Oreille River and up the Pend
Oreille River to Lake Pend Oreille. Darwent (1988:63, 92) notes that the most distant nephrite artifacts occur in the Burns Lake area (east of Prince George, British Columbia) to the north, the Kootenays to the east, and the Snake River in Idaho to the southwest.

**Celts**

The most common artifact type manufactured from nephrite on the British Columbia Plateau is the *celt*, a term for a class of ground stone implements that encompasses the functional and morphological types of artifacts known as adzes, axes, gouges, and chisels (Darwent 1998:16). Nephrite celts are generally considered to be synonymous with prehistoric woodworking on the British Columbia Plateau and coast. Nephrite was also used by interior Prehistoric people for skin scrapers, pestles, and hammerstones (Darwent 1998:18). Although many smaller celts were manufactured to serve utilitarian woodworking purposes, it is clear that other longer celts were created specifically for wealth or status purposes and functioned as high-value trade items (Darwent 1998:6, 17, 88).

To conclude whether nephrite artifacts were used by Plateau societies to fulfill utilitarian woodworking requirements or as items of status, property or wealth, it is likely that both functions were of importance, especially in the production zone along the Fraser River. In regions beyond this area on the British Columbia Plateau, however, it appears that the prestige roles of nephrite implements were more salient.... It seems probable that more emphasis overall was placed on the symbolic or wealth-bearing functions of the material rather than on its utilitarian uses. (Darwent 1998:93)

Darwent (1998:16, 19) defined three sizes of celts recovered from archaeological sites. The largest range in length from 15 to 45 cm and may be straight or taper slightly from bit to pole. These celts usually do not exhibit wear, and ethnographic data suggest that these large celts were made specifically for wealth or trade purposes. Mid-range celts are 10 to 12.5 cm in length and are proportionately broader and slightly tapered and sometimes rougher in form. The smallest “chisel-sized” celts are less than 10 cm in length. Both the mid-range and small size celts were used predominantly for woodworking (Darwent 1998:16). The nephrite celt (LC# 40390) from 10BR977 measures 9.4 cm in length.

**Celt Manufacturing Process**

The majority of nephrite celts were made using sawing techniques in which irregularly shaped boulders were sawn longitudinally in parallel grooves to a depth of 2 or 3 inches. Darwent described this process:

in one of the grooves a wedge was fitted in such a way that, when sharply struck the impact bore on the entire length of the surface with equal pressure, resulting in a lengthwise cleavage. The initial cutting was accomplished by the means of a sharp siliceous sandstone [saw] and water.

After a blank has been sawed from a boulder/cobble, usually further modification has to be performed to make the celt functional, including grinding the bit and shaping the margins. (Darwent 1998:14, 46)

Four methods of celt manufacture by sawing are listed and illustrated by Darwent (1998:43–46, Figures 5.2–5.7).

- Method 1: This is the simplest form of the sawn blank celt involving only one saw cut near the exterior of the cobble/boulder. There is no necessity to snap the blank out of the boulder if the cut is made through the entire thickness of the cobble. The resulting celt typically has a cortical rind over one face and evidence for sawing on the other.
Method 2: Two parallel grooves were sawn into a boulder and wedges were placed into the grooves. Then the wedges were driven into the grooves in order to snap out the celt. Celts manufactured in this fashion often have the remnants of the snap area remaining on one margin unless it has been ground away.

Method 3: In this method the nephrite boulder/cobble was cut by sawing grooves in each face of the rock. After the sawing was complete, the central rib was broken and the blank removed. Celts made from this blank form usually have a distinctive snap scar on at least one face instead of the margins unless it is ground away.

Method 4: This method was used to reduce flat boulders/cobbles and involves sawing three grooves to create a blank: two parallel grooves on one face and a centrally cut groove on the other face of the rock.

Evidence of Manufacture or Use Wear

In examining finished celts from the British Columbia Plateau, Darwent (1998:48, 52) reports that 27 percent displayed evidence of the manufacturing process such as a groove or a snap scar on the margin or face of the artifact. The reminder (73 percent) appeared to have had evidence of the manufacturing process ground away. The left margin of the 10BR977 celt (LC# 40390) exhibits linear striations and a slight lip resulting from a saw-and-snap manufacturing process.

Of the 46 celts that Darwent (1998:52–53) examined that retained the bit end, 83 percent exhibited possible signs of use generally consisting of striations oriented perpendicular to the cutting edge. Microscopic use wear striations are visible perpendicular to bit on the nephrite celt (LC# 40390) recovered at 10BR977. Irregular striations also occur parallel to the bit of this artifact on both the dorsal and ventral surfaces. A minority (17 percent) of the celts inspected by Darwent displayed no macroscopic evidence of use.

Archaeological Context

Darwent (1998:59, 86–88) presents data on the association of celts with various types of prehistoric sites.

Housepit: The high percentage of miscellaneous worked fragments in housepit contexts, the overall shorter lengths, and the low ratio of complete to broken celts indicate that in this context celts probably functioned primarily as utilitarian tools.

Burial: Most nephrite celts have been recovered in burial contexts (Darwent 1998:76, 82, 86). Of the total number of artifacts, 82 or 48 percent of the sample (n=171 see Darwent 1998:Table 5.15) were associated with burial sites, and 58 or 33.9 percent were found in housepit sites, followed by campsites, lithic scatters, and resource sites. Most of the celts in burial sites were over 15 cm in length; in both campsites and housepits, most celts were well under this length. The size of nephrite celts associated with burial sites is almost three times longer on average than those found in housepit sites and twice as long as those recorded in campsites (Darwent 1998:82).

Campsite: The largest proportion of celts in campsites fall between 50 and 99 mm and in housepits between housepits between 1 and 49 mm. It appears that complete celts are more often associated with burial sites and campsites (Darwent 1998:82).

Lithic Scatter/Resource Site: Nephrite artifacts were rarely associated with resource based sites. The only such site to yield a nephrite artifact was a fishing station (EeRk 4) and very few of these
site types have been excavated. Construction of fishing platforms, drying racks, and weirs would have been necessary at such a site, and therefore it is not surprising that celts should be associated (Darwent 1998:88).

**Chronology of Nephrite Occurrence on the British Columbia Plateau**

Darwent notes that

On the Columbia plateau, early dates associated with celt use are similar to the British Columbia Plateau with sites in the Washington Okanagan having nephrite celts associated with dates of 3020 ± 150 B.P. and 2730 ± 160 B.P.

The first interior celts are made on sawn blanks, which on the Southern Coast were preceded by flakes and pebble forms. It would appear from this that celt technology was already partially developed before it was adopted by Interior groups. (Darwent 1998:24)

The following chronological summary of nephrite occurrence on the British Columbia Plateau is drawn from Darwent (1998:20–24, 63).

**Early Period (>8000 B.P.):** “The paucity of data ... makes it difficult to make any evaluation of the Early Pre-historic period” [in relation to the use of Nephrite] (Darwent 1998:20).

**Middle Period (8000–3500 B.P.):** No manufacturing or use of nephrite is known to have occurred during this time period (Darwent 1998:20).

**Late Period (4000/3500–200 B.P.):** This period is marked by development of the Plateau Pithouse tradition between 4000/3500 B.P. on the British Columbia plateau. From the dates associated with the nephrite in this period it appears that nephrite technology was adopted or developed shortly after the introduction of the pithouse complex (Darwent 1998:22). Within the tradition, three cultural horizons exist.

- **Shuswap (4000/3500–2400 B.P.):** This is the earliest known occurrence of nephrite celts. Darwent (1998:22) reported that the “Earliest (accepted) date associated with nephrite artifacts on the British Columbia Plateau comes from the Arrow Lakes Region ... a celt was found in an occupation associated with a carbon date of 3090 ± 200 B.P. During the Shuswap horizon nephrite artifacts are rare although they are found over a broad area” (Darwent 1998:89, 93).

- **Plateau (2400–1200 B.P.):** Based on amount of excavation there is a slightly greater rate of occurrence associated with Plateau horizon deposits (Darwent 1998:63). During the Plateau horizon the center of nephrite manufacture was probably in the Lilooet region. By the start of the Kamloops period, it appears that the exchange of the material had expanded into the adjacent Shuswap lakes and Nicola Valley regions (Darwent 1998:93).

- **Kamloops (1200–200 B.P.):** In terms of the total number of nephrite artifacts recorded the “largest fraction is associated with Kamloops horizon” (Darwent 1998:63) (however, see previous bullet on Plateau horizon). “By the Kamloops horizon, it is evident that nephrite artifacts were important or valued commodities ... Data suggest that there was intensification in the nephrite industry throughout the Plateau pithouse traditions, which peaked in the Kamloops horizon” (Darwent 1998:89, 92).

During the period covered by these three Late period cultural horizons, there was “use of a heavy-duty woodworking tool kit consisting of nephrite adzes, bone and antler wedges, and large hammerstone or hand mauls” (Darwent 1998:21). There was also a dramatic increase in celt sizes over time within the
Late period; Kamloops celts are very large in comparison with Plateau or Shuswap celts (Darwent 1998:63). Small celts are present from the Shuswap horizon onward with large celts developing in the Plateau horizon after 2400 B.P.

Based on the radiocarbon dates associated with nephrite artifacts in the Northwestern portion of the BC Plateau, it is probable that nephrite celt technology moved from the southern coast of British Columbia into the interior (Darwent 1998:23). Darwent (1998:2) states that “dates given for the initial occurrence of celts in coastal sites generally range from 4500 to 3000 B.P., with 4000 B.P. being a rough mean” [and that] “the use of sawing techniques to manufacture celts did not occur on the coast until the Locarno Beach Culture Type between 3200 and 2400 B.P.” (Darwent 1998:22).

**Nephrite Occurrence at Lake Pend Oreille Sites**

Nephrite is quite rare in the Lake Pend Oreille area. Nevertheless, several nephrite celts have been found by private land owners in the region.

Several nephrite celts found along the Pend Oreille River or along the shore of Lake Pend Oreille are in private artifact collections in Bonner County. On April 23, 2002, Robert C. Betts interviewed Phil Dreisbach of Hope, Idaho, who allowed examination of a small nephrite celt that came from his property at the mouth of Trestle Creek at the north end of Lake Pend Oreille. The nephrite celt and other artifacts had been found on the property by the Dreisbach family in their garden area. The Dreisbach family had owned their Trestle Creek property since the 1930s but sold the property to the USACE following construction of the Albeni Falls Dam. It is now an Idaho Department of Fish and Game boat launch and recreation site.

The Trestle Creek artifact is a groundstone nephrite celt measuring 9.53 cm long and 1.9 cm thick (Figure 75). It is 3.4 cm wide at the beveled distal bit end. Three linear grooves are apparent, two on the lateral sides and one on the dorsal surface. Little if any use wear is apparent at the bit end.

Two much larger nephrite celts in another private collection were reportedly found on Memaloose Island many years ago (Figure 76). Memaloose Island is a privately owned island off the Hope Peninsula at the north end of Lake Pend Oreille. It was used as a burial ground by the Kalispel Tribe into early historic times. Numerous petroglyphs have been identified at multiple locations on the island and recorded as 10BR003 (Betts and Lyons 2001:34–37).

**Lithic Debitage**

Lithic debitage was recovered from all sites and most operation areas, although the greatest amount of debitage was recovered from the OP-2 Chinatown area at 10BR978 (see Table 5). Of the 76 unmodified and modified waste flakes and core shatter recovered from the project area, by far the majority of the debitage (65 percent) came from the Chinatown excavation. When the lithic debitage from all operation areas in 10BR978 is combined, the number of unmodified flakes, modified flakes, and core shatter from this site totals 59, or 77 percent of the lithic debitage recovered from the project area. Lithic debitage recovered from other sites and operation areas is negligible except for 13 pieces of unmodified debitage from shovel testing and a test unit at 10BR1026 at Indian Island in the vicinity of Dog Beach.

Most, if not all, lithic debitage was recovered from the dry- and wet-screening operations using screens with ¼-inch mesh. It is likely that some very small waste flakes and shatter were not recovered. In some instances, ¼-inch mesh screens were used when the potential for debitage recovery was considered high; for example, when a 1 x 1 m–test unit was placed near STUs at 10BR1026 that had produced lithic debitage. Standard excavation methodology relied on ¼-inch mesh screens for both historic and
prehistoric artifact recovery. Some lithic debitage may have been missed in the screening operation that focused on recovery of historical artifacts. It is often the case that you tend to find what you are looking for, and it is easy to miss a small or broken piece of lithic debitage when searching for rusted metal, nails, ceramic fragments, and glass in a matrix of angular rock, gravel, pebbles, and sediment. Even so, the small amount of lithic debitage recovered is surprising.
At most prehistoric sites lithic debitage far exceeds recognizable worked tools. The small quantity of lithic debitage recovered—especially at the Chinatown excavation—is perplexing. The paucity of debitage cannot be attributed to the excavation methodology, which was based largely on recovery of historical artifacts, because the excavators and screeners were constantly alert for prehistoric artifacts and most of the archaeological crew also had extensive experience in prehistoric archaeology.

If significant lithic workshop activity had taken place in the Chinatown or adjacent operation areas one would expect to recover not only a much larger number of waste flakes and shatter but also other evidence of tool manufacture such as hammerstones and flake cores. Yet only three hammerstones were recovered from the project area, each from a different site (see Table 13). A single battered quartzite cobbble (LC# 45109) considered to be a hammerstone was recovered from an STU in the Chinatown area. No flake cores were found at any of the operation areas at 10BR978. The only flake core found in the project area was the isolated surface find of a cobbble flake core (LC# 45116) at 10BR859 (Townsite OP-2). The almost complete absence of hammerstones and apparent lack of flake cores at 10BR978 along with the limited amount of lithic debitage suggests tool manufacture was probably not a significant activity at this site.

**Lithic Manufacturing Stages**

When the type of unmodified and modified debitage recovered at 10BR978 and the other sites is analyzed in terms of the stage of tool manufacture, the data also indicate minimal tool manufacture. Four primary technological categories of lithic debitage were recognized in this analysis, based on the attributes of the waste flakes recovered, along with a fifth category for core shatter. Description of these categories is taken from Choquette (1982:Appendix 3).

- **Primary decortication flakes**: These are usually, but not always, larger flakes on which there is evidence of the dorsal surface or cortex of the original core from which they are struck. These would be the first flakes removed from the core. They usually do not show evidence of the scars (facets) from previous flake removals on their dorsal surface.

- **Secondary flakes**: These are flakes removed during the reduction of tabular cores after initial decortication and usually lack evidence of the surface cortex of the core. Distinct flat or dihedral striking platforms with acute dorsal angles are usually present and some exhibit a pronounced bulb of percussion, ripple marks on the ventral surface, or other evidence of hard hammer percussion. These include flakes removed during core preparation and core rejuvenation flakes or flakes struck from large unifacial or bifacial tools. Facets from the removal of previous flakes are usually apparent on the dorsal surface. Choquette (1982:Appendix 3) notes that “this group is characterized by large size (at least 5 cm length) and striking platform dorsal angles greater than 60 degrees).”

- **Tertiary flakes**: These flakes, sometimes identified as bifacial thinning flakes, result from the thinning and shaping of preforms into tools either by hard or soft hammer percussion. Choquette (1982:Appendix 3) describes these flakes as “characterized by acute angled faceted striking platforms, diffuse bulbs of applied force, feathered terminations, and sub-lamellar or spatulate shape” and notes that “overhanging lips on striking platforms are suggestive of soft hammer percussion.

- **Tertiary pressure flakes**: These are small sharpening flakes with small platforms and bulbs of applied force suggestive of pressure flaking as opposed to percussion flaking. They are usually sublaminar in outline with feathered terminations (Chance and Chance 1985:477).
• **Core shatter:** These are irregular usually blocky chunks of rock without flake morphology that are by-products of core reduction or tool manufacture. They are generally recognized by their raw material type, which is often exotic to the local area and similar to the lithic material of artifacts present at the site.

*Site 10BR978*

10BR978 is the only site within the project area from which sufficient debitage was recovered to suggest what type of activity might have been taking place related to the manufacture or resharpening of stone tools. Any comments based on the recovered debitage would be highly speculative for two reasons. First, the number of modified and unmodified waste flakes recovered at 10BR978 is small. Second, all of these flakes come from historically disturbed cultural deposits. However, by combing the debitage from all operation areas at 10BR978 and including both modified and unmodified flakes and shatter, the resulting 66 pieces of lithic debitage (Table 15) do suggest a pattern of activity that indicates bifacial thinning and tool resharpening was probably the primary focus rather than tool manufacture. Of the 56 pieces of lithic debitage recovered that exhibit flake morphology (i.e., all manufacturing stages except shatter), only seven flakes (13 percent) exhibit outer cortex and a lack of dorsal flake scars characteristic of primary decortication flakes. This small percentage of primary flakes and the fact that no flake cores and only a single hammerstone were recovered at 10BR978 suggest that production of tools from cores or preforms was probably a less significant activity than the bifacial thinning or resharpening of tools brought to the site from elsewhere.

The secondary core reduction or preform preparation flakes are somewhat more numerous and account for 34 percent of the flakes (n=19), but the majority of the debitage recovered from 10BR978 consisted of the 30 tertiary flakes (some of which show the platform morphology of bifacial thinning flakes) and small pressure flakes produced in the final stage of tool manufacture or resharpening, which together make up 54 percent of the non-shatter debitage. Considering that the smaller tertiary and pressure flakes were more likely to have either passed through the ¼-inch screens or were not detected by the screeners focusing on recovery of historical artifacts, it is likely that the ratio of these flakes to the larger primary and secondary flakes would have been even higher if total recovery of lithic debitage had been possible. Although too small to be a valid sample, these results suggest that bifacial reduction and tool resharpening were more common than primary tool manufacture at this site.

<table>
<thead>
<tr>
<th>Site and OP Area</th>
<th>LC#</th>
<th>Material</th>
<th>Primary</th>
<th>Secondary</th>
<th>Tertiary</th>
<th>Pressure</th>
<th>Shatter</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>10BR978</td>
<td>OP-1</td>
<td>45003 CCS (gray chert)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Distal end</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45004</td>
<td>Metasediment</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>Distal end</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45010</td>
<td>Black argillite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Core shatter, 1 fragment retouched</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45011</td>
<td>Quartzite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cobble spall with retouch</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45026</td>
<td>CCS (gray chert)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>No flute morphology</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45040</td>
<td>Black argillite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Complete, from vibracore testing</td>
<td></td>
</tr>
<tr>
<td></td>
<td>45044</td>
<td>CCS (red chert)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Proximal end, light use wear</td>
<td></td>
</tr>
<tr>
<td>OP-2</td>
<td>2528</td>
<td>CCS (red chert)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>Proximal end</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7635</td>
<td>Quartzite</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Complete</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7636</td>
<td>CCS (black chert)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Proximal end, utilized flake</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7655</td>
<td>CCS (red chert)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Complete, thermal alteration</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7709</td>
<td>CCS (green chert)</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1 complete, unmodified; 1 distal end with use wear</td>
<td></td>
</tr>
</tbody>
</table>
Table 15. Lithic Debitage from All Sites and Operation Areas by Manufacturing Stage

<table>
<thead>
<tr>
<th>Site and OP Area</th>
<th>LC#</th>
<th>Material</th>
<th>Primary</th>
<th>Secondary</th>
<th>Tertiary</th>
<th>Pressure</th>
<th>Shatter</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7726</td>
<td>Metasediment</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Proximal end, retouched</td>
</tr>
<tr>
<td></td>
<td>7775</td>
<td>CCS (red chert)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td>8805</td>
<td>Kootenai Argillite</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td>8806</td>
<td>CCS (red chert)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td>45028</td>
<td>Metasediment</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td>45045</td>
<td>CCS (black chert)</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>Proximal end, light use wear</td>
</tr>
<tr>
<td></td>
<td>45046</td>
<td>CCS (green chert)</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>Proximal end</td>
</tr>
<tr>
<td></td>
<td>45047</td>
<td>CCS (green chert)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td>45048</td>
<td>CCS (red chert)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fragment</td>
</tr>
<tr>
<td></td>
<td>45049</td>
<td>CCS (red chert)</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>No flake morphology, water worn</td>
</tr>
<tr>
<td></td>
<td>45051</td>
<td>CCS (red chert)</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Complete, possible thermal alteration</td>
</tr>
<tr>
<td></td>
<td>45052</td>
<td>Black argillite</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>No flake morphology</td>
</tr>
<tr>
<td></td>
<td>45053</td>
<td>CCS (red chert)</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>Complete, light use wear</td>
</tr>
<tr>
<td></td>
<td>45054</td>
<td>CCS (black chert)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Distal end, thermal alteration</td>
</tr>
<tr>
<td></td>
<td>45055</td>
<td>Black argillite</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td>45056</td>
<td>CCS (green chert)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Proximal end</td>
</tr>
<tr>
<td></td>
<td>45057</td>
<td>Black argillite</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fragment, retouched</td>
</tr>
<tr>
<td></td>
<td>45058</td>
<td>CCS (green chert)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Distal end</td>
</tr>
<tr>
<td></td>
<td>45061</td>
<td>CCS (red chert)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Distal end</td>
</tr>
<tr>
<td></td>
<td>45063</td>
<td>CCS (red chert)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Distal end</td>
</tr>
<tr>
<td></td>
<td>45064</td>
<td>Quartz</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>No flake morphology</td>
</tr>
<tr>
<td></td>
<td>45066</td>
<td>Quartzite</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Proximal end, retouched</td>
</tr>
<tr>
<td></td>
<td>45067</td>
<td>CCS (gray chert)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Proximal end</td>
</tr>
<tr>
<td></td>
<td>45068</td>
<td>CCS (red chert)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td>45070</td>
<td>CCS (black chert)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td>45072</td>
<td>Quartzite</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td>45073</td>
<td>CCS (red chert)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Proximal end</td>
</tr>
<tr>
<td></td>
<td>45074</td>
<td>Metasediment</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td>45075</td>
<td>CCS (red chert)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td>45076</td>
<td>CCS (red tan chert)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td>45077</td>
<td>Kootenai Argillite</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Proximal end</td>
</tr>
<tr>
<td></td>
<td>45078</td>
<td>CCS (black chert)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td>45080</td>
<td>Rose quartzite</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>No flake morphology</td>
</tr>
<tr>
<td></td>
<td>45086</td>
<td>Black argillite</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td>45087</td>
<td>Black argillite</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td>45092</td>
<td>CCS (black chert)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Distal end</td>
</tr>
<tr>
<td></td>
<td>45093</td>
<td>Metasediment</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>No flake morphology, thermal alteration</td>
</tr>
<tr>
<td></td>
<td>45094</td>
<td>CCS (pink chert)</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>No flake morphology, thermal alteration</td>
</tr>
<tr>
<td></td>
<td>45095</td>
<td>CCS (black chert)</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td>45096</td>
<td>CCS (black chert)</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td>45097</td>
<td>CCS (green chert)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td>45100</td>
<td>CCS (red chert)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Proximal end, retouched</td>
</tr>
<tr>
<td></td>
<td>45104</td>
<td>CCS (red chert)</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>Distal end, use wear</td>
</tr>
<tr>
<td><strong>OP-3</strong></td>
<td>45016</td>
<td>Black argillite</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>Proximal end</td>
</tr>
<tr>
<td></td>
<td>45017</td>
<td>CCS – brown chert</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>Proximal end</td>
</tr>
<tr>
<td></td>
<td>45018</td>
<td>Black argillite</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>Proximal end</td>
</tr>
<tr>
<td></td>
<td>45020</td>
<td>Quartzite</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td>45036</td>
<td>CCS (gray chert)</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>No flake morphology, thermal alteration</td>
</tr>
</tbody>
</table>
Table 15. Lithic Debitage from All Sites and Operation Areas by Manufacturing Stage

<table>
<thead>
<tr>
<th>Site and OP Area</th>
<th>LC#</th>
<th>Material</th>
<th>Primary</th>
<th>Secondary</th>
<th>Tertiary</th>
<th>Pressure</th>
<th>Shatter</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>45039</td>
<td>Black argillite</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>Midsection</td>
</tr>
<tr>
<td></td>
<td>45106</td>
<td>CCS (brown chert)</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>Distal end, retouched</td>
</tr>
<tr>
<td>10BR978 Total</td>
<td></td>
<td></td>
<td>7</td>
<td>19</td>
<td>15</td>
<td>15</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10BR977</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OP-1</td>
<td>45127 CCS (gray chert)</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Complete, retouched (spokeshave)</td>
</tr>
<tr>
<td>10BR1026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45146</td>
<td>CCS (gray chert)</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td>45147</td>
<td>CCS (brown chert)</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td>45148</td>
<td>Metasediment</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>No flake morphology</td>
</tr>
<tr>
<td></td>
<td>45149</td>
<td>CCS (chert)</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td>45150</td>
<td>Quartz</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>Distal end</td>
</tr>
<tr>
<td></td>
<td>45151</td>
<td>CCS (red chert)</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>Fragment</td>
</tr>
<tr>
<td></td>
<td>45156</td>
<td>Quartzite</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45158</td>
<td>CCS (chert)</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>Complete flake of tan chert, shatter of red chert</td>
</tr>
<tr>
<td></td>
<td>45160</td>
<td>CCS (brown chert)</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>Two articulating fragments, use wear</td>
</tr>
<tr>
<td></td>
<td>45162</td>
<td>CCS (chert)</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td>45166</td>
<td>CCS (brown chert)</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>Proximal end</td>
</tr>
<tr>
<td>10BR1026 Total</td>
<td></td>
<td></td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Worker Housing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>45123</td>
<td>CCS (brown chert)</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>Complete, use wear</td>
</tr>
</tbody>
</table>

Fire Modified Rock

FMR was recovered from all sites and most operations in the project area (Table 16). The term FMR is used to describe lithic material, generally cobble sized, that has been heated by cultural activities to the extent that evidence of thermal alteration is apparent in the stone (Samuels 2000:16.1).

Table 16. Fire Modified Rock by Site and Operation Area

<table>
<thead>
<tr>
<th>Site and OP Area</th>
<th>Material</th>
<th>Other</th>
<th>Weight (grams)</th>
<th>FMR Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rose Quartzite</td>
<td>0</td>
<td>2</td>
<td>132.5</td>
</tr>
<tr>
<td></td>
<td>Quartzite</td>
<td>10</td>
<td>24</td>
<td>4,517.8</td>
</tr>
<tr>
<td></td>
<td>Trench 53-S</td>
<td>7</td>
<td>7</td>
<td>984.9</td>
</tr>
<tr>
<td></td>
<td>10BR859 OP-2</td>
<td>0</td>
<td>0</td>
<td>196.1</td>
</tr>
<tr>
<td></td>
<td>10BR859 OP-5</td>
<td>0</td>
<td>2</td>
<td>418.6</td>
</tr>
<tr>
<td>RR Worker Housing</td>
<td>0</td>
<td>1</td>
<td>39.7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>10BR977 OP-1</td>
<td>1</td>
<td>0</td>
<td>277.6</td>
</tr>
<tr>
<td></td>
<td>10BR1026</td>
<td>1</td>
<td>2</td>
<td>1,392</td>
</tr>
<tr>
<td>Total</td>
<td>27</td>
<td>18</td>
<td>52</td>
<td>8,006.4</td>
</tr>
</tbody>
</table>

FMR can also be created by natural processes (such as forest fires) or structure fires (such as those that occurred at the Sandpoint townsite). Abundant melted glass excavated from the Restricted District testifies to these early structure fires, and newspaper accounts from the period report devastating fires that destroyed much of the original Sandpoint townsite prior to 1905. There is also the possibility some FMR recovered may have resulted from historical burn piles. However, some, if not most, of the FMR recovered can probably be attributed to prehistoric use of river cobbles for “stone boiling” (Samuels...
No camas oven features were identified in the project area, and the number and density of FMR in the excavated areas does not reflect the amount of FMR that would likely be associated with one or more pits used prehistorically and into the contact period by the Kalispel and other tribes to bake camas. It is more likely the limited amount of FMR recovered from 10BR978 and other sites in the project area represents prehistoric- or early contact–period stone boiling or possibly sweat bath activity at seasonal camps.

Most FMR by both weight and the number of fragments was associated with the Chinatown area at 10BR978 OP-2 (see Table 16). This location produced 42 pieces (43 percent) of the thermally altered rock recovered. By weight 4,518 grams (56 percent) of the FMR was associated with the Chinatown area. The Courthouse/Jail area (OP-3) immediately north of the Chinatown area is essentially on the same landform as OP-2 at 10BR978, and if the number and weight of FMR from these adjacent locations is combined these two areas account for 61 pieces of FMR (63 percent) and 5,503 grams (69 percent) of the total FMR recovered from all operation areas (Table 16, Figure 77). FMR recovered from all other operation areas is inconsequential.

![Figure 77. Fire modified rock by site and operation area.](image)

FMR recovered from the CVAP was divided by raw material into the categories of quartzite, granite, metasediment, dark, and other, with quartzite the most frequent material type followed by granite (Samuels 2000:Table 16.1). Raw material categories for FMR used in this analysis consisted of quartzite, rose quartzite, and other, a category that included metasediment and unknown materials. Table 16 and Figures 77 and 78 present FMR recovered from the project area by raw material type, site, and operation area. Quartzite and rose quartzite account for just under half (46 percent) of the FMR recovered from the project area. Samuels (2000:Tables 16.1 and 16.4) breaks down the FMR recovered by the CVAP by material type and type of site differentiating between residential sites, camas processing sites, and special purpose sites. It would be inadvisable to compare FMR raw material type with Calispell Valley data presented by Samuels (2000) for two reasons. First, the sample size from the present project
Figure 78. Fire modified rock by site, operation area, and material type.

is small. Second, the FMR recovered by the Sandpoint Archaeology Project came from mixed cultural deposits dominated by historical material and not associated with identified prehistoric features.

Features

Some of the prehistoric artifacts recovered were noted on excavation level forms as being associated with pit and depression features, some of which contained angular rock, charcoal, or oxidized sediments. However, in every case it was apparent that prehistoric material became incorporated in fill or otherwise mixed with sediments containing historical artifacts and the prehistoric material was not in primary depositional context. No features were recorded in the project area as prehistoric features. The recorded historic features from which—or in the immediate vicinity of which—prehistoric artifacts or FMR were collected were all located in the OP-2 Chinatown area at 10BR978. These features are discussed individually below.

Feature 1. STU-2006-9/TU-2006-9/Unit N60 E50

This expanded 2006 STU encountered a pit feature that, once the Chinatown excavation grid was laid out, was positioned in the northwest corner of Unit N55 E50 and the southeast corner of Unit N60 E50. A pit feature measuring 40 cm wide by 80 cm deep was encountered in this test unit. This feature contained dark charcoal-stained sediment with large pieces of charcoal and historical artifacts (including concrete fragments) as well as angular rock and gravel. Evidence of this pit began at the Level 2/3 contact at approximately 10 cm below the surface. The pit was intrusive through Levels 3, 4, and 5 of the test to a depth of 82 cmbs. Within the feature and below the uppermost dark charcoal-rich fill (Level 3) was fill consisting of a compact fine yellow silt (Stratum 3A) grading into a light brown fine sand with pebbles and charcoal containing a few historical artifacts (Stratum 3B). The feature terminated in compact silty sand at a depth of 92 cmbs. Historical artifacts were recovered from Levels 1 through 4. Fragments of concrete with chicken wire protruding were encountered in Levels 2 and 3 along with
pieces of linoleum and artifacts of glass, ceramic, and metal. A few pieces of small mammal bone were also recovered from Levels 2 and 3. No historical artifacts were encountered below the Level 4/5 contact at approximately 70 cmbs.

A metasediment pressure flake (LC# 45028) was recovered in screened sediments from Level 4 above 63 cmbs. Two pieces of FMR were also recovered from this test unit, one from above 63 cmbs and one from below 83 cmbs in association with historical material. It is not clear from field notes whether the pressure flake and FMR came from the Feature 1 fill or the surrounding sediment matrix. It is apparent, however, that Feature 1 is an historical pit containing a fill deposit with historical artifacts and that the surrounding matrix is also an historical deposit. The lithic waste flake and FMR came from a mixed cultural deposit and were not associated with a prehistoric feature.

**Feature 3. Levels 5 and 6/Strata 3a and 3f**

Feature 3 is a large historic depression, apparently the basement of a structure, measuring approximately 25 feet long by 12 feet wide. It was located at the southern end of the Chinatown excavation area. This depression was filled with stratified historical debris deposited in the collapsed remains of an earlier structure. A large number of Chinese and Euro-American artifacts were recovered from Feature 3, at the bottom of which was plank flooring. Nineteen prehistoric artifacts were also recovered from Feature 3 fill, largely from Strata 3a and 3f in Levels 5 and 6 at the bottom of the depression, below most of the historical fill but above the plank flooring (Table 17).

**Table 17. Prehistoric Artifacts Recovered from Feature 3 at 10BR978 (OP-2) Chinatown**

<table>
<thead>
<tr>
<th>LC#</th>
<th>Unit/Level</th>
<th>Strata</th>
<th>Description</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>7708</td>
<td>N50 E40/L5</td>
<td>3a</td>
<td>Knife</td>
<td>Granite</td>
</tr>
<tr>
<td>7709</td>
<td>N50 E35/L6</td>
<td>3f</td>
<td>Utilized flake, unmodified flake</td>
<td>CCS (dark green chert); 2 flakes</td>
</tr>
<tr>
<td>8342</td>
<td>N50 E45/L6</td>
<td>3a/3f</td>
<td>Knife</td>
<td>Quartzite</td>
</tr>
<tr>
<td>45042</td>
<td>N45 E35/L5</td>
<td>3a</td>
<td>Net weight and knife</td>
<td>Quartzite</td>
</tr>
<tr>
<td>45043</td>
<td>N45 E35/L5</td>
<td>3a</td>
<td>Knife</td>
<td>Gray argillite</td>
</tr>
<tr>
<td>45045</td>
<td>N45 E35/L5</td>
<td>3a</td>
<td>Unmodified flake</td>
<td>CCS (black chert)</td>
</tr>
<tr>
<td>45046</td>
<td>N45 E35/L5</td>
<td>3a</td>
<td>Unmodified flake</td>
<td>CCS (dark green chert)</td>
</tr>
<tr>
<td>45047</td>
<td>N45 E35/L5</td>
<td>3a</td>
<td>Unmodified flake</td>
<td>CCS (olive green chert)</td>
</tr>
<tr>
<td>45048</td>
<td>N45 E35/L5</td>
<td>3a</td>
<td>Unmodified flake</td>
<td>CCS (red chert)</td>
</tr>
<tr>
<td>45049</td>
<td>N45 E35/L5</td>
<td>3a</td>
<td>Shatter</td>
<td>CCS (yellowish red chert)</td>
</tr>
<tr>
<td>45051</td>
<td>N45 E40/L5</td>
<td>3a</td>
<td>Unmodified flake</td>
<td>CCS (yellowish red chert)</td>
</tr>
<tr>
<td>45052</td>
<td>N50-45 E30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Westside</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45053</td>
<td>N50-45 E30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Westside</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45054</td>
<td>N50-45 E3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Westside</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45055</td>
<td>N50-45 E30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Westside</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45056</td>
<td>N50-45 E30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Westside</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45057</td>
<td>N50-45 E30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Westside</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45058</td>
<td>N50-45 E30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Westside</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prehistoric artifacts recovered from the Feature 3 historic fill included 10 unmodified flakes, one retouched flake, and two utilized flakes along with two pieces of lithic shatter. Three bifacially worked knives were also recovered, one each of granite (LC# 7708), quartzite (LC# 8342) and gray argillite (LC# 45043). A notched tabular quartzite cobble (LC# 45042), possibly a net weight later modified into a
bifacial knife, also came from Feature 3. Of the 15 pieces of lithic debitage and shatter recovered from this feature, 12 were of cryptocrystalline chert and three were of black argillite (see Table 16). All of the prehistoric material recovered from Feature 3 was from historical fill or disturbed cultural deposits containing historical artifacts and consequently cannot be considered to have come from primary depositional context.

**Feature 5. Unit N80 E70 Level 1**

Feature 5 was a small pit feature characterized by a darker stain in contrast to the yellowish brown sandy silt of the surrounding matrix. The feature was recorded in the eastern part of Unit N80 E70 and appeared in cross section in the eastern wall of this unit. The pit had a diameter of approximately 1.0 feet and it extended to a depth of approximately 1.6 feet below the ground surface from the Level 1/2 contact. Fill from within the pit was screened separately from the surrounding matrix.

A large number and variety of historical artifacts, including a Chinese gaming piece and a metal Stockholm Bar token reading GOOD FOR 5 CENTS, were recovered from the Level 1 matrix into which the pit was intrusive. Some bone (including calcined bone) was also recovered from the Level 1 matrix. Historical glass, ceramic, metal, rubber, and bone were also present in the Feature 5 fill from which a dark green chert secondary unmodified flake was also recovered. Feature 5 was clearly an historical feature, and the single prehistoric lithic artifact had been incorporated into this feature’s fill.

**Feature 7. Unit N70 E60 Level 2a**

Feature 7, encountered 0.8 foot below the ground surface in Level 2a and underlying the Level 1 Target Horizon, was as a shallow irregular-shaped depression within Level 2 characterized by a dark brown sandy matrix that was less compact than the surrounding Level 2 sediment. No charcoal or FMR was recovered from Feature 7, although angular rocks were associated with this feature. A few historical artifacts—probably from the overlying historic level—were also recovered from Feature 7, indicating a certain amount of disturbance and mixing. The Feature 7 depression was quite limited horizontally and extended only slightly outside the southwest limit of the unit. In vertical extent the depression was only 0.6 foot deep beginning at the Level 1/2 contact.

Artifacts recovered from this feature are discussed above under artifact LC# 45079. They include LC# 45079, which is a large semilunar tabular knife fragment made from micaceous quartzite recovered from Unit N70 E60, a quartzite knife (LC# 45081), a quartzite cobble chopper (LC# 45082), three chert and argillite waste flakes, and a piece of quartzite shatter from Level 2A in close association with Feature 7. Due to the mixing between historic and prehistoric material and lack of charcoal or FMR, Feature 7 was considered to be an historical depression and was not recorded as a prehistoric feature.

**Feature 9. Units N90 E40 and N90 E45 Level 2**

Feature 9 was recorded in the southeast corner of Unit N90 E40 and the southwest corner of Unit N90 E45 with the top of the feature at the Level 1/2 contact extending into Level 2 for 0.4 foot. The feature was a discrete concentration of reddish oxidized silty sand and charcoal that was apparent in cross section on the west wall of Unit N90 E45. This feature, which was intrusive into a compact yellow brown silty sand (Level 2), measured 1.0 feet in diameter and 0.4 foot in depth in the west wall profile. A charcoal sample (FC# 19) was collected from the bottom of the feature. Field notes indicate this feature is probably a fire pit or hearth.

A large number of historical artifacts and 20 or more pieces of bone were recovered from Level 1 above Feature 9. Separate screening of Feature 9 sediment in Unit N90 E45 produced only two historical artifacts (a piece of flat glass and a piece of wire) and no prehistoric material. A single piece of FMR (LC#
45101) was recovered from Unit N90 E45, but it is listed on the level form as being associated with the Level 1 Target Horizon, not with the Feature 9 fill. The presence of two historical artifacts in the Feature 9 fill and the fact that no prehistoric artifacts and apparently no FMR were directly associated with Feature 9 strongly suggests this is an historical feature.

**Archaeological Investigations at Indian Island Sites 10BR538 and 10BR1026**

Robert C. Betts

Archaeological testing was conducted in 2006 and 2007 along the right of way for the Sand Creek Byway south of Sand Creek and north of the Sandpoint Long Bridge in the area referred to by the present project as Indian Island (Betts 2006, 2007) (see Figures 9 and 10). Testing consisted primarily of a series of STUs supplemented by augering with a 6-inch-diameter bucket auger and, in 2007, by a controlled excavation unit at a location where testing in 2006 had produced prehistoric artifacts.

A sandy cove, locally popular as a swimming and dog-walking park located on the east side of US 95 at the north end of the Sandpoint Long Bridge, is locally known as Dog Beach. This beach, located at the point the highway and railroad bridges come together just south of Sand Creek, is accessible to the public by a paved path. Prior to the construction of Albeni Falls Dam on the Pend Oreille River in the mid-1950s a long sandbar extended into Lake Pend Oreille from the mouth of Sand Creek. This sandbar is clearly evident in a 1934 U.S. Forest Service aerial photograph of the town of Sandpoint (see Figure 10). Early historical photographs of this sandbar show the presence of trees, which would have provided shelter and a source of firewood that would have made this sandy peninsula extending into the lake a good place to camp. Ethnographic and historical information indicates this sandbar and the area in the vicinity of the mouth of Sand Creek were used in early historic times as a seasonal camp location by the Kalispel, and seasonal use of the Indian Island area by Native Americans almost certainly extended into the Prehistoric period as well.

**Previously Recorded Sites on Indian Island**

**Site 10BR538**

Two archaeological sites had been recorded on Indian Island by NWAA prior to archaeological testing in 2006 and 2007. In 1985, 10BR538 was recorded on the west side of Indian Island between the shoreline of the lake and the US 95 embankment (Miss 1985:Figure 2). This site was recorded as a low density scatter of FMR and historical glass 100 m wide that extended for 300 m along the sandy shoreline. The 1985 site form notes that the site is inundated at high water (Miss 1985). It is not evident from the site form whether any artifacts were observed above the modern high-water level of Lake Pend Oreille. No subsurface testing is noted on the site form.

**Site 10BR1026**

In 2003, 10BR1026 was recorded by NWAA on Indian Island at Dog Beach on the east side of US 95 and immediately adjacent to the southern limit of 10BR538 (Kincaid et al. 2003:Figure 2). The two sites are separated by US 95 and, prior to the construction of the highway, would probably have been considered a single site. 10BR1026 was recorded as covering an 80 × 120 m–area around the western and northern sides of the Dog Beach cove (Figure 79). The site was recorded as having both historical and prehistoric components. The historical artifacts noted included domestic and construction debris including metal, glass, wood, and faunal remains consisting mostly of mammal bone. The prehistoric component included surface observation of two quartzite and two metasediment cores, a granitic anvil stone, a
Figure 79. Northwest Archaeological Associates plan view of the Dog Beach area at Indian Island showing site boundary for 10BR1026 as determined in 2003 (Kincaid et al. 2003).
metasediment hammerstone, 10 quartzite flakes (two of which were edge-modified), and one metasediment flake. No artifacts were collected in 2003.

No subsurface testing was conducted at 10BR1026 in 2003. The artifacts observed were noted as “scattered across the sandy cove and are eroding out of a cutbank on the west edge of the site (Kincaid et al. 2003:1). Facing of the 1-m-high erosion cutbank at the west site of Dog Beach revealed stratified cultural horizons recorded in 2003 as Feature 1 (see Figure 79). The cultural horizons exposed in the Feature 1 cutbank are described on the 2003 site form:

The cutbank exhibits historic fill overlying two occupation levels, the first occupation level appears to be a mixture of historic debris and potentially prehistoric material while the lower-most level appears prehistoric in origin. Both occupation layers appear to be intact. The historic fill is a mixture of rock, sand, metal fragments and wood and is visible to approximately 25 centimeters below ground surface. The upper occupation level is approximately 10 centimeters thick and is comprised of charcoal stained sediments, faunal remains (primarily mammal bone) and fragments of metal, glass and wood. Directly under this occupation level is approximately 20 centimeters of beach sand and then another occupation level approximately 20 centimeters thick is present on top of more beach sand. The second occupation level is comprised of charcoal stained sediment and fire modified rock. Both occupation layers are visible in the cutbank for approximately 25 meters. (Kincaid et al. 2003:1)

Although the 2003 site form suggests that the lower of the two cultural horizons exposed in the faced cutbank may be a prehistoric component, apparently no prehistoric artifacts were noted in this lower horizon, and the charcoal-stained sediment and FMR could be an historical deposit. The 20 cm of beach sand separating the two cultural horizons could have been deposited during a single winter storm and may not represent a significant time interval between the two cultural horizons.

2006 Testing at Indian Island

Subsurface testing of the Dog Beach area of Indian Island was conducted by archaeologists Robert Betts, Dan Martin, and Pat Lyttle from June 19 to June 23, 2006. For recording purposes the area was divided into Indian Island East (east of US 95) and Indian Island West (west of US 95). All STUs were screened using both ¼-inch and ⅛-inch mesh screens.

Indian Island East (10BR1026)

Surface survey and testing began on June 19 in the vicinity of Dog Beach within the Indian Island East sub area. NWAA had recorded 10BR1026 at Dog Beach in 2003 where a bank profile at the west side of the Dog Beach cove revealed two cultural horizons (Figure 80). The 2003 NWAA site report (Kincaid et al. 2003) notes a number of surface lithic artifacts that had been observed (but not collected) in the vicinity of the bank profile. Surface survey of the Dog Beach area on June 19, 2006, noted a small scatter of FMR and a single fragment of green chert shatter near the high water line about 9 m south of the NWAA bank profile. A single ceramic rim fragment with a Chinese design was noted and collected just north of the NWAA bank profile near the high-water line. Several relatively recent railroad artifacts were noted on the surface near the northeast boundary of the site as determined by NWAA. The surface survey on June 19, 2006, was conducted at high water, and none of the surface lithic artifacts noted in the NWAA site report were re-located. The locations of the surface artifacts reported by NWAA in the fall of 2003 are not shown on the NWAA site map accompanying the site report, but it is likely that those artifacts were underwater at the time of the June 2006 surface survey.
Figure 80. Testing at Indian Island East (Dog Beach), June 19–23, 2006. 10BR1026 site map modified from Kincaid et al. (2003).
Expanded Shovel Test Unit 29

A 50 × 100 cm–STU (STU-29) was placed close to the edge of the cutbank in immediate proximity to the FMR scatter noted during the surface survey. STU-29 was located 11.9 m at 140 degrees true north from the park bench (NWAA 2003 site datum) near the location of the NWAA bank profile (see Figure 80). The STU-29 excavation was terminated at 46 cmbs when large concrete slabs blocked further excavation.

The concrete slabs, first encountered at 25 cmbs, were overlain by historical fill deposits containing glass, metal, nails, and wood. These slabs appear to be old riprap buried by fill deposits. The 2003 NWAA bank profile indicates the top 40 cm of sediment in this vicinity was considered to be historical fill. The terrain in this vicinity has the appearance of a leveled and landscaped ground surface between the Dog Beach high-water cutbank and the US 95 embankment. Craig Lewis, the ITD monitor for the June 2006 testing and a lifelong Sandpoint resident, remembered that the level area in the vicinity of the NWAA bank profile and STU-29 had once been used as a staging area for equipment brought in by barge for construction work on the Long Bridge. It is likely that fill was used to level the staging area and that in the process some of the older riprap was buried. This is probably the source of the historical fill deposits overlying the two cultural horizons noted by NWAA.

The 2003 NWAA bank profile was placed immediately in front of a park bench to use the edge of the cutbank and because further bank profiling at that location threatened to undercut the public bench. Because of this we were not able to profile the cutbank at exactly the same location to inspect and further document the two cultural horizons noted by NWAA. Instead, we faced the cutbank (Profile A) about 4 m north of the 2003 NWAA bank profile. Only the upper of the two cultural horizons (Cultural Stratum I) noted by NWAA was apparent in the profile. This 8 to 10 cm–thick dark cultural horizon was present 47 to 57 cmbs and was associated with historical metal artifacts exposed in the cutbank on either side of the 1-m-wide profile. The bank profile was taken to a depth of approximately 1 m without any evidence of the lower dark cultural horizon containing charcoal, mammal bone, and FMR noted in the NWAA bank profile at a depth of approximately 80 to 90 cmbs. This suggested that the lower cultural horizon (Cultural Stratum II) noted by NWAA was a fairly discrete feature of limited horizontal extent.

STU-29 was excavated near the NWAA site datum for 10BR1026 in the hope of examining the stratigraphy in the immediate vicinity of the cultural horizons noted in the NWAA bank profile and as a control to help correlate the stratigraphy of the STUs in the direct impact areas to the known site area. Unfortunately the concrete slabs encountered in STU-29 prevented that test from extending in depth below fill deposits, and the high lake level prevented facing the cutbank in the vicinity of STU-29 to a depth that would reveal the full stratigraphy to basal clay, coarse sand, or pebble and cobble deposits.

Two prehistoric lithic artifacts were recovered during screening of the historical fill deposit above the concrete slabs in STU-29 (Appendix B). A heavily water-worn artifact (LC# 45155) made from gray argillite and exhibiting unifacial retouch along two margins was recovered from Stratum A. This artifact likely functioned as a side scraper. The second lithic fragment collected from Stratum A in this test unit was a probable secondary flake of quartzite (LC# 45156) with a snap fracture at the proximal end. This piece of quartzite exhibited minimal flake morphology but is thought to probably be an unmodified waste flake. Both of these artifacts had clearly been redeposited and were not in their primary depositional context.

Direct Impact Area Testing North of Dog Beach

Testing of the byway right-of-way area east of US 95 began with STU-30 and continued north with STUs placed on or adjacent to a testing baseline at 10-m intervals (Appendix C). The datum for the STU
baseline at Indian Island East is a wooden park bench with a metal plaque flush with the ground surface at the east end of the bench. The plaque reads DONATED BY CAL, JUNE 2004. This datum is referred to as CAL Bench to differentiate it from other benches in the Dog Beach area.

Global positioning system (GPS) coordinates for CAL Bench were taken, and a metric baseline was taped northward at a compass bearing of 332 degrees TN using a magnetic declination of 19 degrees east. GPS coordinates were obtained for each STU, and the baseline distance of each STU north of the CAL Bench datum was measured by tape (Appendix D). For STUs not on the baseline the distance to the east or west (at a right angle) from a known point on the baseline was measured by tape. GPS accuracy error at the time of the testing was rarely less than 8 m and sometimes greater than 10 m due to tree cover and satellite availability. GPS computer plots of STU locations (see Appendix C) were adjusted using known baseline distances where the GPS location was clearly not accurate (such as an STU positioned by the GPS software on the railroad tracks where no testing was done).

Beginning at 10 m from CAL Bench with STU-30, 15 STUs (STUs 30–44) were dug along or adjacent to the primary testing baseline between the railroad embankment and the paved bike path immediately east of US 95. A high hump of fill for an east-west railroad access road located between STU-42 and STU-43 was not tested because the depth of the fill would have made it impossible to reach undisturbed ground surface. At 200 m the baseline was offset 12 m to the east to avoid dense brush, and seven additional STUs (STUs 45–51) were continued northward in marsh grass along the same compass bearing until standing water was reached at STU-51, 300 m north of the CAL Bench datum. From STU-51 for approximately 400 m northward, between the railroad embankment and US 95, standing water made subsurface testing impossible. Consequently, testing was terminated at STU-51 so that only the southern half of the direct impact area at Indian Island East was tested in June 2006. In total, 27 STUs were dug at Indian Island East, consisting of STUs 29 through 51, as well as four STUs on a 5-m grid placed around STU-33, which were numbered 33N, 33S, 33E, and 33W.

**Shovel Testing Results**

Most STUs south of STU-42 revealed what appeared to be fill deposits containing historical artifacts to a depth of approximately 50 cmbs, below which undisturbed sediments appeared to be present. STU-41, located west of the baseline revealed what appeared to be crushed and sorted gravel to a depth of 28 cmbs suggesting a gravel road may have been present at this location at one time. Augering of STUs below the depth reached by shovel testing south of STU-42 revealed increasingly coarse sand deposits with more gravel and pebbles. The depth of the water table in these tests ranged from 90 to 120 cmbs. From STU-43 northward, testing revealed a black organic A horizon about 20 cm thick overlaying gray sand or silty sand between about 20 to 50 cmbs and gray clay or silty clay below about 50 cmbs with the water table encountered between 60 to 90 cmbs becoming increasingly closer to the surface as the area of standing water was approached at STU-51.

Two baseline STUs (STU-33 and STU-35) produced prehistoric material. In addition, an STU (STU-33S) placed 5 m south of STU-33 produced a single utilized flake (LC# 45160) and an STU (STU-33E) placed 5 m east of STU-33 produced four pieces of probable FMR (LC# 45161).

---

51 UTM coordinates for CAL Bench datum are Easting 534364 and Northing 5345741 (North American Datum, 1927, Continental United States [NAD27 CONUS]).
Shovel Test Unit STU-33

STU-33 was located on the Indian Island East testing baseline 40 m north (grid north) of the CAL Bench datum (see Appendix C). Two lithic artifacts were recovered from the screen at STU-33, a tan chert pressure flake and a fragment of red chert shatter cataloged together as LC# 45158. These two artifacts appeared to be associated with a dark charcoal-stained cultural horizon located between 48 and 60 cmbs (Figure 81). STU-33 was shovel tested to 80 cmbs and then augered to 116 cmbs. The water table was reached at 90 cmbs. No other cultural horizons were encountered in STU-33.

The initial shovel test at STU-33 was expanded slightly into a 40 × 40 cm–test unit to better expose the stratigraphy (see Figure 81). Four additional STUs were placed to the grid north, south, east, and west of STU-33, each 5 m from the original STU-33. In STU-33W, tar paper fragments were encountered at 30 to 50 cmbs but no lithic debitage or evidence of the black cultural horizon observed in STU-33. In STU-33E, a black charcoal-stained horizon was encountered at approximately 40 to 66 cmbs below historical fill (containing a small railroad spike) and four fragments of probable FMR but no lithic debitage. STU-33N did not encounter a black cultural horizon or lithic artifacts. Screening STU-33S sediment did yield two conjoining pieces of a brown chert utilized flake (LC# 45160) from approximately 52 cmbs, but the black cultural horizon observed between 48 and 60 cmbs in STU-33 was not present in this STU. However, a thin charcoal horizon was present in STU-33S at a slightly lower depth (60–62 cmbs). Based on the expanded testing on a 5-m grid around STU-33, it appeared the subsurface charcoal horizon extended to the east and south of STU-33 with the cultural deposits between about 48 to 62 cmbs. No retouched

---

52 The GPS coordinates for STU 33 are Easting 534337 and Northing 5345783 (NAD27 CONUS).
flakes or tools were recovered, but the presence of CCS lithic material and the nature of the recovered artifacts (a pressure flake and utilized secondary flake), as well as FMR associated with charcoal-stained sediment, suggested a possible intact prehistoric feature or activity area at this location.

**Shovel Test Unit STU-35**

A single translucent chert pressure flake (LC# 45162) was recovered from STU-35, located on the testing baseline 10 m true north of STU-33. This artifact was associated with charcoal-stained sediment at 35 to 40 cmbs. No FMR or indication of an intact prehistoric feature was evident in this test unit, but the proximity of STU-35 to STU-33 and STU-33S suggested a low-density subsurface concentration of prehistoric artifacts in this vicinity.

In addition to the lithic artifacts from STU-33, STU-33S, and STU-35, a buried charcoal horizon was encountered at STU-34, and another dense charcoal concentration at 50 cmbs at STU-36, as well as an apparent FMR concentration at 50 to 85 cmbs in STU-37. During 2006 testing, no additional prehistoric cultural material, FMR, or evidence of buried cultural horizons was encountered from STU-37 through STU-51, at which point the water table prevented further testing along the 2006 baseline. It was suggested in the field report on the 2006 Indian Island testing (Betts 2006) that additional testing at a tighter 5-m interval be considered in the vicinity of STU-33 through STU-37 during a later field session.  

The initial STU was expanded to 40 × 40 cm. A CCS pressure flake and fragment of red chert shatter were recovered from the dark charcoal-stained cultural horizon visible at 48 to 60 cmbs near the bottom of the test.

**Indian Island West (10BR538)**

STU testing in 2006 to the west of US 95 began on June 22 and ended on June 23. The lake level was at or close to its maximum summer pool elevation when STU testing at Indian Island West was conducted. At that time, the sandbars along the west side of US 95 were submerged. Several flakes were observed on the exposed sandbars during the early May 2006 archaeological reconnaissance of 10BR538, but due to the high water in late June, systematic surface survey of the sandbars was not possible west of US 95.

Shovel testing west of US 95 started with STU-52, which was placed across the highway to the west of the NWAA datum and cutbank profile at 10BR1026. From STU-52, test units were placed northward along both sides of the dirt access road that runs parallel to the highway. A measured baseline was not used to the west of the highway, and testing was judgmental, with a slightly increased testing interval from the 10-m interval used in the Dog Beach area. This was largely a factor of the limited time available in the remaining two days of testing. The testing interval was decreased in the vicinity of the reported site area at 10BR538, and the interval between test units was increased as testing proceeded north away from the recorded site area (see Appendix C). The interval between STU-56 and STU-57 was occupied by a wet marsh at the time of testing, as was the interval between STU-59 and STU-60. GPS coordinates were obtained for all test units west of the highway, but the GPS accuracy error was rarely less than 8 m. Twelve STUs (STU-52–STU-63) covering about 200 m of linear distance were completed west of the highway in the day and a half available for testing.

The high lake level and deep mud holes significantly restricted vehicle access along the dirt road and reduced the effective survey time on the west side of the highway due to the need to carry screens and other equipment in on foot. The high lake level also resulted in a higher water table in the STUs than that encountered on the east side of the highway. In some STUs on the west side the water table was

---

53 Eventually ITD approved a single additional 1 × 1 m–test unit at STU-33 as a follow up to the 2006 Indian Island testing north of Dog Beach.
encountered above 40 cmbs. The testing on the west side revealed a fairly consistent stratigraphy of a very rooty black organic horizon (20–25 cm thick) overlying medium or coarse sand above gray clay or silty clay.

No prehistoric lithic material, FMR, or buried cultural features were encountered during testing in the Indian Island West sub area, nor was any historical material recovered from the STUs to the west of the highway.

2007 Testing at Indian Island

From March 19 through 25, 2007, archaeologists continued testing that had been initiated in June 2006 at the north end of the Sandpoint long bridge, between US 95 and the BNSF railroad embankment. There were two phases to the March 2007 archaeological testing. The first 2007 testing phase continued shovel and auger testing northward in the narrow wetland corridor on the east side of US 95 between the railroad embankment and a paved bike path leading to Dog Beach. This shovel testing had been carried as far north as possible in June 2006 before encountering standing water in the wetland corridor resulting from the summer high-water level of Lake Pend Oreille. Continuation of this shovel testing as far north in the wetland corridor as the limit of the direct project impact area at Sand Creek was rescheduled to begin on March 19, 2007, while the lake was still at the winter low-water level in order to complete the wetland testing begun in 2006.

The second phase of the March 2007 testing was to place a 1 × 1 m–controlled excavation unit adjacent to one of the 2006 STUs (STU-33) in the vicinity of Dog Beach where prehistoric lithic artifacts and charcoal were recovered from between 48 and 60 cmbs. The prehistoric artifacts recovered from screening sediment from STU-33 in 2006 appeared to be associated with a charcoal horizon thought to represent a hearth feature, but the small size of the STU (expanded in 2006 to 40 × 40 cm) did not provide adequate stratigraphic control or artifact provenience information to be certain that a prehistoric feature was present at this location. One brown glass fragment and one iron spike had also been recovered from STU-33, but the association of historical artifacts with prehistoric lithic debitage, the charcoal horizon, or both was uncertain due to the small size of the 2006 STU.

The four additional 2006 STUs (STU-33N, 33E, 33S, and 33W) placed 5 m from STU-33 in the cardinal directions suggested that the buried charcoal horizon was fairly extensive but did not reveal whether the prehistoric artifacts were directly associated with the buried charcoal horizon because all lithic artifacts recovered in 2006 had come from screened sediments. The objective of the 2007 test unit was to determine whether or not a subsurface lithic scatter and possibly an intact prehistoric feature was present at this location, and if so, to determine the nature and extent of the feature and obtain one or more charcoal samples for radiometric dating as well as a larger assemblage of prehistoric artifacts.

A crew of four archaeologists began testing in the Dog Beach area of Indian Island on March 19, 2007 and completed testing on March 22, 2007, for a total of four days. Testing consisted of shovel and auger testing in the wetland corridor between the Dog Beach bike path and the railroad embankment. The excavation unit adjacent to STU-33, which ended up as a 1.0 × 1.5 m–test unit, was begun on March 23 and completed on March 25.

2007 Shovel and Auger Testing Methods

Shovel and auger testing in the wetland corridor resumed along the same transect at the point where the 2006 testing ended, continuing the same measured systematic 10-m interval used in 2006. The first

54 Robert Betts (Vanguard Research), Dan Martin, David Sheldon, and Dylan Henderson.
2007 STU (2007-STU-1) was placed 10 m north of the last 2006 test unit (STU-51) located 270 m north of the CAL Bench datum at Dog Beach. Testing proceeded northward along the center of the narrow wetland corridor for an additional 420 m, ending with 2007 STU-42 at the limit of the direct project area as identified in the field on March 22, 2007, by an ITD project engineer. The total distance covered by shovel and auger testing at 10-m intervals from the Dog Beach datum to the northern end of the Indian Island direct impact area was 690 m. In addition to measuring the linear distance by metric tape, GPS coordinates were obtained for each STU location. GPS error ranged from 4 m to as much as 10 m depending on time of day and satellite positions. This error was corrected when plotted to be consistent with the known test locations based on the measured distance of STU locations north of the Dog Beach datum and terrain landmarks (see Appendix C).

STUs were approximately 35 cm in diameter and usually reached a depth of 50 to 60 cm. A completed STU was then augured to the water table or the maximum depth of our ability to auger. After the first day of testing, an auger extension was used, which allowed auger testing to a maximum depth of 210 cm. In some cases, rocks or the flow of supersaturated soil into the bottom of the auger hole required termination of the auger test above 210 cm. All sediment from the shovel and auger portions of each STU was passed through a ¼-inch mesh screen. Most artifacts that were clearly less than 50 years old were noted on the STU forms and placed back in the test during backfill. Collected artifacts were placed in zip-top bags labeled with the STU number, date, and other provenience information.

2007 Testing Results

In total, 42 STUs (2007-STU-1 through 2007-STU-42) were completed in March 2007. Testing encountered primarily coarse sandy deposits with lenses of clay or clay inclusions. The sediments were predominately medium to coarse sand resulting in high soil permeability, which explains the rapid disappearance of water from snowmelt in the spring as well as the rapid rise of the water table and appearance of standing water in the wetland channel corresponding to a rise in lake level. Finely laminated clay lenses and alternating coarse, medium, and fine sand lenses were noted in the walls of some STUs, indicating seasonal or episodic depositional events. These laminated clays or layered sand lenses were more apparent in proximity to where the wetland channel intersected with Sand Creek at the Sandpoint Marina, suggesting more frequent influxes of water and sediment deposition with changing lake level. The water table and supersaturated sandy clay or fine sandy silt were generally encountered in the vicinity of 170 to 190 cmbs.

Coal Waste Deposit

At the northern end of the area tested in 2007, an extensive 40-cm-thick deposit of coal waste containing coal, coke, slag, organics, and gravel was encountered between about 170 to 210 cmbs. This deposit was first encountered in test 2007-STU-24 and was present in all subsequent test units to where testing stopped at 2007-STU-42. This coal waste deposit of unknown width extends for at least 140 m (460 feet) parallel to the railroad tracks. In the few auger tests where it was possible to get below the coal waste, supersaturated sandy clay or fine sandy silt was encountered. The base of the coal waste deposit appeared to be around 200 to 210 cmbs. The presence of a deep coal waste deposit at near the maximum limit of auger testing indicates that, at least in the northern portion of the area tested in 2007, sediment deposition above about 200 cmbs post-dates the arrival of the NPRR in 1882, and most shovel testing did not get deep enough to reach older sediments.

Artifact Recovery

Artifacts were collected from three STUs but only 2007-STU-29 produced artifacts thought to be more than 50 years old. Three pieces of light purple amethyst vessel glass associated with the coal waste
deposit were recovered from a depth of approximately 195 cmbs in 2007-STU-29. This suggests the deep coal waste deposit encountered in the northern portion of the 2007 STU test area probably dates to the late 1800s or early 1900s. 2007-STU-36 produced a large thick fragment of greenish glass from 20 to 25 cmbs, in the upper portion of the STU. It has a raised relief design on the exterior surface that may represent a stylized tree. Although it is relatively recent in age, it was retained because of its uniqueness. The only other artifact collected during STU testing was a one-cent coin recovered from 15 cmbs in 2007-STU-41. It was hoped that, after careful cleaning, the date on the coin could be discerned, but the date was unreadable.

Methods for Additional Testing at 2006 Shovel Test Unit STU-33

A 1 × 1 m–excavation unit (2007-TU-1) was laid out approximately 50 cm east of the 2006 STU (STU-33) that produced prehistoric artifacts (Figure 82). Surface evidence of the 2006 test was still evident, and there was no trouble re-locating STU-33. The southwest corner of 2007-TU-1 was located 39.05 m at 329 degrees TN from the CAL Bench datum.55

Excavation proceeded by natural stratigraphy with artifacts collected by arbitrary 10-cm increments within strata more than 10 cm thick. The 1 × 1 m–excavation unit was excavated and screened in 25 cm quadrants. Excavated sediments were screened first through ¼-inch mesh screen and then through ⅛-inch mesh screen. Artifacts, FMR, calcined bone, and samples of coal waste were bagged and labeled by natural stratigraphy and by 10-cm arbitrary levels within stratum. A level form was filled out for each level excavated. Plan view drawings and photographs were taken at the top of each stratum, and north

---

55 The GPS coordinates for 2007-TU-1 are Zone 11 Easting 0534262 Northing 5345982 (NAD27 CONUS).
and south wall profile drawings were made before the excavation was backfilled. Lithic artifacts and calcined bone were recovered during screening. Some historical artifacts and FMR were recorded in plan view drawings on level forms, but most were collected and recorded only by quadrant, stratum, and arbitrary 10-cm levels within strata. 2007-TU-1 was excavated to sterile sand at a depth of 100 cm and then augured through sterile sand from 100 cmbs to a maximum depth of 255 cmbs.

Following completion of 2007-TU-1, the initial 1 × 1 m–excavation was extended north 50 cm to explore a possible feature containing a large cobble exposed in the north wall to confirm that it was an historical deposit, rather than a prehistoric feature. Excavation of 2007-TU-2, the southern half of the 1 × 1 m–unit immediately north of 2007-TU-1, focused only on the charcoal horizon from 40 to 76 cmbs identified as Level 3 in 2007-TU-1. The top 40 cm of sediment in 2007-TU-2 was rapidly skim-shoveled to the top of Level 3 without screening. Level 3 was then taken out and screened as a stratigraphic unit. Level 3 sediment was screened only through ¼-inch mesh screen, and the provenience of collected artifacts was noted only as Level 3 due to time constraints. While it was clear that tiny pressure flakes might be missed using only a ¼-inch screen, we already knew that a small number of pressure flakes and calcined bone fragments were present in level 3 and it was deemed more important to screen for larger lithic artifacts and bone in the small amount of time remaining. Excavation of TU-2007-2 did not continue below the bottom of Level 3 at 76 cmbs.

**Testing Results at 2007-TU-1 and 2007-TU-2**

Excavation of 2007-TU-1 encountered four primary stratigraphic levels with recent historical artifacts recovered from all levels (Table 18). Level 1 consisted of a 7-cm-thick deposit of fine gray silty sand with inclusions of gray clayey silt capped by a very thin (approximately 2 cm) surface organic A horizon. Level 2 consisted of a 30-cm-thick coarse yellow sand that was essentially sterile, although one piece of colorless vessel glass was recovered in the screen from 9 to 20 cm in Level 2. Level 3, which extended from 40 cmbs to 76–80 cmbs, was a cultural deposit (36–40 cm thick) of charcoal-stained coarse yellow sand containing historical and prehistoric artifacts, angular rock (probably railroad ballast), coal waste (including charcoal, coke, and slag), melted glass, and burned wood. Recent historical artifacts included heavily rusted round wire nails, wire, a crown bottle cap, recent bottle and vessel glass (amber and colorless), plastic, fiberglass, plywood fragments, a piece of lead shot, and a fiberglass cigarette filter. Historical artifacts were mixed throughout Level 3 and the contact zone between Levels 3 and 4. Level 3 also produced prehistoric lithic material.

**Table 18. Generalized Stratigraphy of Indian Island Test Unit 2007-TU-1**

<table>
<thead>
<tr>
<th>Level</th>
<th>Depth Below Surface (cm)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1</td>
<td>0–9</td>
<td>Silty fine sand below very thin surface organics. Inclusions of gray clayey silt and rootlets. Gray. 10YR 4/4. Gradational contact with Level 2. Very little recent cultural debris.</td>
</tr>
<tr>
<td>Level 3</td>
<td>40–76</td>
<td>Charcoal-stained horizon with pockets and lenses of coarse yellow sand. Contains coal waste, coke, slag, angular rock (possible railroad ballast), FMR, historic and prehistoric artifacts, and calcined bone. Thin gray medium sand lenses at contact with Level 4. Black. 10YR 5/6. Sharp contact with Level 4a. Recent historical artifacts with some prehistoric material present (probably intrusive).</td>
</tr>
<tr>
<td>Level 4a</td>
<td>76–96</td>
<td>Medium to coarse sand. Yellow. 10YR 6/3. Gradational contact with Level 4b. Historical material from Level 3 occurs in vicinity of Level 3/4 contact (76–84 cm). Sterile below 84 cmbs.</td>
</tr>
</tbody>
</table>
Interpretation of Stratigraphy and Artifact Distribution

Level 1 was the modern land surface, a thin stratum (9 cm thick) of very recently deposited silty sandy sediment with clay inclusions and rootlets containing a small amount of recent historical material. One piece of amber bottle glass and the distal end of a black plastic wire brush were recovered from Level 1.

Level 2 consisted of a 30-cm-thick coarse yellow sand culturally sterile fill that probably post-dated the early 1960s. A colorless glass fragment was recovered from between 9 and 20 cmbs near the top of Level 2. Level 3 was a 40-cm-thick cultural deposit between 40 to 80 cmbs that contained both recent historical artifacts and a small amount of prehistoric material. Level 3 contained a large amount of charcoal and coal waste along with angular rock railroad ballast. In plan view, at the top of Level 3 and at each 10-cm arbitrary level within this stratum, the charcoal-stained sand appeared swirled or marbled and was mixed with unstained coarse yellow sand, suggesting a highly disturbed deposit (Figure 83).

In stratigraphic profile numerous charcoal lenses were layered horizontally and interbedded with coarse yellow sand pockets and lenses (Figures 84 and 85). Recent historical artifacts, FMR, angular rock, and coal waste were mixed throughout Level 3, also suggesting a disturbed deposit. Two of the historical artifacts recovered from Level 3 (a piece of amber bottle glass with a stippling pattern and a fiberglass cigarette filter) likely date to the 1950s or possibly the early 1960s. During construction and repair of the concrete foundations of the railroad bridge across Lake Pend Oreille about 1960, a construction camp and equipment storage yard was located in the vicinity of the location of STU-33 and 2007-TU-1 (personal communication, Gary Weisz, March 23, 2007). It is likely that the subsurface charcoal and coal waste deposit containing recent historical artifacts is associated with this 1960s-era railroad construction camp and may represent the remains of a burn pile or shallow burn pit into which some prehistoric material became incorporated.
Prehistoric Archaeology

Figure 84. North wall profile of 2007-TU-1 at 100 cmbs showing large cobble in Level 3 and lenses of charcoal staining. Metal can be seen in the north wall just to the right of the cobble and below and to the left of the cobble in Level 4 near the Level 3/4 contact.

Figure 85. West wall of 2007-TU-1 and 2007-TU-2 showing horizontal pattern of charcoal-stained sediment in Level 3, possibly representing a shallow historic burn pit feature.
Level 4 consisted of a massive medium to coarse sand deposit that extended from approximately 76 to 80 cmbs to at least 206 cmbs (the maximum possible auger depth). A gray medium sand lens (1–2 cm thick) without charcoal staining (excavated as part of Level 4), separated Level 3 from Level 4, which was only recognized during wall profiling after the excavation was completed. In the wall profiles, Level 4 was subdivided into Level 4a (a coarse yellow sand) and Level 4b (a medium gray sand), but no distinction between Level 4a and 4b was made during excavation. The deepest artifacts recovered (from 80 to 90 cmbs) were associated with Level 4a near the contact between Level 4 and Level 3. Level 4 below approximately 84 cmbs was sterile. No prehistoric artifacts, FMR, or burned bone was recovered from Level 4.

The extension of 2007-TU-1 by 50 cm to the north (as described above and excavated as the south half of 2007-TU-2) to further excavate Level 3 did not produce additional lithic artifacts or calcined bone, although five additional fragments of FMR were recovered from Level 3 in 2007-TU-2, along with additional historical material. These historical artifacts included recent glass, melted plastic, a piece of tin foil, a length of wire, another crown bottle cap, and coal waste. Excavation of Level 3 in the south half of 2007-TU-2 did not change our understanding of the nature of the stratigraphy or distribution of historic and prehistoric artifacts resulting from the excavation of 2007-TU-1.

### Prehistoric Artifacts

The prehistoric lithic material recovered from 40 to 80 cmbs in 2007-TU-1 was all associated with Level 3 and with recent historical material and charcoal that included coal waste. Four CCS pressure flakes (LC# 45146, 45147, 45149, and 45151) and a bifacial thinning flake (LC# 45148) were recovered from Level 3 sediment passed through the ¼-inch screen. The chert pressure flakes have distinct color variations: red, brown, gray, and translucent. The bifacial thinning flake is of a dark metasediment material. No primary cortex flakes, flake cores, formed tools, or tool fragments were recovered.

Eighteen pieces of FMR and a thermally split cobble spall (LC# 45145) were collected from between 40 to 76 cmbs in 2007-TU-1 and 2007-TU-2. This FMR came from different depths below the surface and did not appear to be part of a discrete hearth or feature. In addition, eight fragments of very small calcined bone were recovered from screened sediment between 50 to 80 cmbs in 2007-TU-1. The distribution of flakes, FMR, and calcined bone is presented in Table 19.


<table>
<thead>
<tr>
<th>Unit</th>
<th>Level</th>
<th>Depth (cmbs)</th>
<th>Lithic Artifacts</th>
<th>FMR</th>
<th>Calcined Bone</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007-TU-1</td>
<td>1</td>
<td>0–9</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>2007-TU-2</td>
<td>1</td>
<td>Not excavated</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>2007-TU-1</td>
<td>2</td>
<td>10–40</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>2007-TU-2</td>
<td>2</td>
<td>Not excavated</td>
<td></td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>2007-TU-1</td>
<td>3</td>
<td>40–50</td>
<td>Pressure flake, yellow CCS</td>
<td>6 pieces</td>
<td>None</td>
</tr>
<tr>
<td>2007-TU-3</td>
<td>3</td>
<td>50–60</td>
<td>Pressure flakes (2), CCS (1), metasediment (1)</td>
<td>8 pieces</td>
<td>2 very small fragments</td>
</tr>
<tr>
<td>2007-TU-2</td>
<td>3</td>
<td>60–70</td>
<td>Pressure flake, CCS</td>
<td>None</td>
<td>5 very small fragments</td>
</tr>
<tr>
<td>2007-TU-2</td>
<td>3</td>
<td>70–80 (Level 3/4 contact)</td>
<td>Pressure flake, CCS</td>
<td>1 fragment</td>
<td></td>
</tr>
<tr>
<td>2007-TU-3</td>
<td>3</td>
<td>40–76</td>
<td>None</td>
<td>5 pieces</td>
<td>None</td>
</tr>
</tbody>
</table>

### Summary of 2007 Testing at STU-33

The best interpretation of the Level 3 cultural material is that it represents a disturbed historical deposit. The deposit could have been from a construction camp burn pile or burn pit likely dating to the 1950s or early 1960s. Intrusive prehistoric material is likely representative of the accumulations of prehistoric or
protohistoric artifacts, FMR, and burned bone that is present in the Indian Island area, some of which may represent Native American use of the area as recently as the 1950s.

It does not appear that historical ground disturbance associated with Level 3 mixed in artifacts and material from an intact prehistoric feature below Level 3. Excavation of the Level 3/4 contact zone at 76 to 80 cmbs and Level 4 to a depth of 100 cmbs and auguring of Level 4 sediments to a depth of 255 cmbs did not produce lithic artifacts, FMR, or burned bone. A few historical artifacts, including rusted metal and a center-fire WESTERN AUTO 45 pistol cartridge, were recovered from 80–90 cmbs in Level 4, just below the Level 3/4 contact. No historical artifacts were recovered from below 90 cmbs in Level 4.

The cultural deposit excavated as Level 3 in 2007-TU-1 and 2007-TU-2 probably represents a recent historical burn pile or shallow burn pit. This deposit was perhaps associated with a railroad bridge construction camp reportedly located at or near this location around 1960. Some prehistoric lithic material, FMR, and calcined bone, accumulated from the long use of the area as a camp location by Native Americans up until the early 1900s, has most likely been mixed into this historical deposit. Subsurface prehistoric hearths or other features may be present in the vicinity of Dog Beach, but there is no evidence that the prehistoric material encountered in STU-33 or 2007-TU-1 is derived from an intact prehistoric feature adjacent to or below the area tested.
CONCLUSIONS AND Recapitulation

Robert C. Betts and James C. Bard

Research Questions Answered

The number of prehistoric artifacts recovered during the project testing and data recovery phases was limited. Nevertheless, these artifacts allowed several research questions to be addressed, at least partially.

Of the sites investigated, only 10BR978 yielded evidence of extensive prehistoric activity. Most of the recovered prehistoric artifacts came from the Chinatown (OP-2) area at 10BR978. All the projectile points recovered from the project sites came from 10BR978.

Too few prehistoric artifacts were recovered to make any generalizations about the prehistoric assemblage even when combining the lithic artifacts from all sites and operations areas. The absence or scarcity of certain types of artifacts (e.g., drills, awls, or grooved net weights) may reflect the small sample size rather than the absence of activities that might be represented by such artifacts.

Intact prehistoric features were not encountered. No radiocarbon datable materials were found in a direct, primary depositional context association, with prehistoric artifacts. No chronologically useful stratigraphic deposits, such as Mt. Mazama or Mt. St. Helens ash fall tephra horizons, were identified.

All or almost all prehistoric artifacts were recovered from secondary depositional contexts; the prehistoric artifacts were recovered from mixed cultural deposits containing historical artifacts. Possible exceptions are a gray chert lanceolate projectile point (LC# 45019) and a black argillite pressure flake (LC# 45018) recovered from STU-2006-2 at 10BR978 (OP-3). These artifacts were recovered from a depth of between 55 and 64 cmbs, from at or just above the Level 4/5 contact zone. These artifacts were associated with an abrupt stratigraphic break between a dark brown fine sand containing some charcoal (Level 4) and a fine yellow sand lacking charcoal (Level 5) that appeared to be a Precontact period ground surface. These two artifacts may have once been in primary depositional context, although historical material was mixed through all upper four levels of this STU.

Both local and non-local raw lithic material is represented in the artifact assemblage. The presence of obsidian, Kootenay Argillite, and nephrite demonstrate long distance prehistoric trade/contacts with other regions. The presence of CCS also suggests either the raw material or artifacts made from this material were brought into the project area from elsewhere.

The lack of intact stratigraphic contexts for the recovered prehistoric materials presents difficulties in analysis. Under these circumstances, it is impossible to identify different archaeological components or to address temporal changes in lithic assemblages.

The morphology of the recovered projectile points indicates prehistoric use of the project area that extends back beyond 5,000 B.P., although the majority of the recovered points appear to be younger than 4,500 years old. Although only two small side-notched arrow points were recovered, ethnographic data indicate prehistoric use of the project area continued up to Euro-American contact in 1809.

Thirteen percent of all recovered artifacts were projectile points; most were complete or almost complete. Several had a missing distal tip or evidence of impact fracturing of the distal end. Of the 16 artifacts classified as projectile points, only three point bases were recovered (LC# 40307, 45015, and 45006). Projectile point bases are often more plentiful at campsite locations where broken points were discarded and dart or arrow shafts re-armed. The paucity of point bases in comparison to intact points
might indicate limited seasonal resource based activities conducted at 10BR978 as opposed to this site having been used as a longer-term camp or winter village occupation site.

There were no faunal or botanical remains that could be associated with prehistoric activity. This lack prevents speculation on the seasonality of prehistoric occupation(s) based on the archaeological excavations.

No evidence of camas ovens was found. The minimal quantity of recovered FMR suggests that camas processing was probably not an activity undertaken within the immediate project area.

Based on the location of the project area (at the mouth of Sand Creek), it is surprising that only a single net weight (LC# 45042) was recovered. However, some of the bifacial knives, especially the micaceous quartzite knife fragment (LC# 45079) may have been expedient fish knives.

The recovered chopping tools, knives, and scraping tools along with the surprisingly large number of complete or partial projectile points in relation to the total number of recovered artifacts, suggest hunting, bone marrow extraction, and hide preparation activities were more prevalent than plant processing. Plant processing might be reflected by pestles, grinding stones, and the large concentrations of FMR associated with camas pits.

The small proportions of certain artifact type suggest that tool manufacture was a much less significant activity than was biface thinning, tool resharpening, or the utilization of expedient quartzite or argillite knives or scrapers for specific extractive or processing tasks. Flake cores are almost completely absent, and a minimal number of hammerstones was recovered. Similarly, the number of primary and secondary flakes in comparison to tertiay and pressure flakes was limited.

In general, due to historic and modern ground disturbance in the project area, the prehistoric artifacts recovered in association with historical artifacts are without meaningful stratigraphic context. Therefore, the recovered prehistoric artifacts can provide very limited information on the prehistoric activity or temporal range of occupation of the project area prehistorically.

The narrow range of artifact types recovered is more characteristic of seasonal resource-based camps than of village sites. Although possibly a result of small sample size, the limited number of pestles and other ground stone tools, lack of grinding stones, and absence of lithic drills and awls also suggests seasonal task specific activities rather than a more permanent occupation. The small amount of FMR also indicates small seasonal camps rather than longer-term occupation.

**RESEARCH QUESTIONS UNADDRESSED**

Because the prehistoric artifacts recovered during the project represent a small sample size and virtually all of them came from mixed deposits, several research questions could not be addressed. These are briefly described here.

**Chronology**

- Can distinct single-component loci be identified within the multicomponent sites? Can these loci be placed in chronological order using available data?
- Do the temporally diagnostic artifacts correlate with the absolute chronology?
- Do the temporally diagnostic artifacts correlate with the site stratigraphy to provide a rate of deposition and a determination of site integrity?
Conclusions and Recapitulation

- Is occupation continuous or are distinct periods of disuse or abandonment present?
- Is there a protohistoric component present that can help address research issues related to the impact of the fur trade on local Kalispel Indians?
- Do the data obtained from debitage and non-diagnostic artifacts produce a chronology? (Do these data compare to other data, diagnostic artifacts, radiocarbon dates?)
- Do the chronological data and radiocarbon dating allow an assessment of the stratigraphic integrity of the site deposits?

Lithic Technology

- Do the lithic assemblages(s) and manufacturing techniques change through time?
- If chronological variation in lithic manufacturing techniques and raw material preference is present, do the metric and nonmetric (primary versus secondary flakes, etc.) attributes of whole flakes change over time?

Settlement, Subsistence, and Seasonality

- If macroscale mobility is indicated, is this correlated with climatic change?
- What are the predominant faunal and vegetal resources? Can their ecological zones be determined? Are there changes in species exploitation over time?
- Do the results of faunal, palynological, and macrobotanical studies suggest substantive differences in resource exploitation between different site types?
- Do the results of the paleoenvironmental studies indicate relationships between the populations of the various sites (i.e., macroscale mobility on either a seasonal, annual, or multiannual basis)?

Trade and Exchange

- Do the lithic sources change over time in terms of absence/preference and quantity? Can any changes be correlated with artifact style changes?
- Can any site be identified as a center for exchange or manufacturing of trade items or raw materials? How does the trade network represented at a site compare with other sites in the area?
- If Protohistoric period sites can be identified, are any materials or sources unique to the territories of a specific cultural group or groups?

Prehistoric Demography

- Do the burials and their grave associations exhibit change through time (e.g., position, orientation, grave offerings) in a manner that would indicate cultural change rather than a change in genetic or physical type?
- Do the skeletal attributes of the prehistoric population change through time? Do the skeletal remains indicate population replacement or displacement by another group?
- What was the age/sex composition of the site’s population? Can inferences on the demographic structure of the site’s occupants be extrapolated? Is there evidence of change through time (i.e., life tables?)
Conclusions and Recapitulation

- What was the relative health of the site’s population? Do particular physical types have a propensity to certain pathological conditions? Were there periods of time when individuals suffered from pathologies?
- Can the prehistoric population be assigned to a specific physical type (genetic pool)? Were they of the same physical type as the people in other geographical areas? Does the physical type change through time as documented by mitochondrial DNA analysis?
- Can a reasonable estimate of the population of each site and the region through time be derived from the available data?
REFERENCES

Ames, Kenneth M.

Ames, Kenneth M., Don E. Dumond, Jerry R. Galm, and Rick Minor

Anastasio, Angelo

Andrefsky, William, Jr., Greg C. Burtchard, Kira M. Presler, Stephan R. Samuels, Paul H. Sanders, and Alston Thoms

Andrews, J. T.

Archives of Canada

Ashley, Ethel M.

Atwater, B. F.

Baillie-Grohman, W. A.

Belyea, Barbara

Betts, Robert C.
Betts, Robert C., and Kevin J. Lyons

Bigart, Robert, and Clarence Woodcock (editors)
1996 In the Name of the Salish & Kootenai Nation: The 1855 Hell Gate Treaty and the Origin of the Flathead Indian Reservation. Salish Kootenai College Press. Pablo, Montana.

Bonner County Planning Department
2003 Natural Resources Component, Bonner County Comprehensive Plan. Bonner County Planning Department, Sandpoint, Idaho.

Boreson, Keo

Boreson, Keo, and W. R. (Chuck) Peterson

Brunton, Bill B.

Burtchard, Greg C., Maureen King, John A. Draper, and Stephan R. Samuels

Campbell, Sarah K. (editor)

Carriker, Robert C.

Chalfant, Stuart A.

Chance, David H.

1993 *An Ethnographic Review of the Sylvis Trail*. Commissioned by the Plum Creek Timber Co. 58 pp., 34 illustrations. Evidence of ancient trails and sacred activities of the Kalispel Indians along the crest of the Selkirks. Combines surveys, Kalispel informant data, ethnographic notes, and data from the National Archives.

Chance, David H., and Jennifer V. Chance


Chance, David H., Jennifer V. Chance, and John L. Fagan

Chatters, James C.

Chittenden, Hiram Martin, and Alfred Talbot Richardson (editors)

Choquette, Wayne


References


Diomedi, Alexander  


Donelson, A. J.  

Dunbar, Seymour, and Paul C. Phillips (editors)  
1927 *The Journals and Letters of Major John Owen, Pioneer of the Northwest, 1850-1871; Embracing His Purchase of St. Mary’s Mission, the Building of Fort Owen, His Travels, His Relation with the Indians, His Work for the Government, and His Activities as a Western Empire Builder for Twenty Years*. Transcribed and edited [...] by Seymour Dunbar; and with Notes [...] by Paul C. Phillips. 2 vols. New York: Edward Eberstadt.

Elliott, T. C.  


Evans, Lucylle H.  

Farr, William E.  

Ferris, Warren Angus  

Flint, Patricia Robins  

Frison, George C.  
References

Fritz, Jane

Fulton, Leonard A.

Gardner, George Clinton

Gough, Stan (editor)

Gough, Stan and Keo Boreson

Green, Robert

Grinnell, George Bird

Gunter, Bob

Hahn, Margie E.

Hohl, Norma T.


References

Leiberg, John B.

Leonhardt, F. C., and D. G. Rice

Lewty, Peter J.

Lohse, E. S.

Lohse, E. S. and C. Schou

Lord, John Keast

Lucas, Steven W.

Lyons, Kevin J.
2001 A Cultural Resources Inventory of the Pend Oreille County Public Utility District Number One’s Bryan Property Acquisition, Pend Oreille County, Washington. Kalispel Natural Resources Department, Kalispel Tribe of Indians, Usk, Washington.
Malouf, Carling I.  

Mattison, David  

Matz, Stephan  

Mehringer, P. J., Jr., S. F. Arno, and K. L. Petersen  

Mehringer, P. J., Jr., and F. F. Foit, Jr.  

Melton, D. A.  

Meyers, A. J.  

Mierendorf, Robert R.  

Miller, Tom O., Jr.  
References

Miss, Christian J.


Miss, Christian J., Stan Gough, Kenneth E. Juell, Margaret A. Nelson, Deborah Olson, Nancy A. Stenholm, and James C. Chatters.


Miss, Christian J., and Lorelea Hudson


Miss, Christian J., Michele Parvey, and Lorelea Hudson

Mitchell, Lori (editor)  

Mullan, Captain John  

Mulloy, William  

Munsell, David, and Lawr Salo  

Nelson, Margaret A. and Christian J. Miss  

Nesbitt, Mel  

Nisbet, Jack  

Northwest Power and Conservation Council, Public Affairs Division  

Palmer, Gary B.  

Parsons, Jim  

*Pend D’Oreille Review*  

Perry, Madeline  
References

Peterson, Chuck

Phillips, Paul Chrisler
1927 The Journals and Letters of Major John Owen, Pioneer of the Northwest, 1850-1871: Embracing His Purchase of St. Mary’s Mission; the Building of Fort Owen; His Travels; His Relation with the Indians; His Work for the Government; and His Activities as a Western Empire Builder for Twenty Years. Edited by Seymour Dunbar. E. Eberstadt publisher. [30 pages]

Prete, Grace

Ray, Verne F.

Reeves, B. O. K.

Rice, David G.

Richards, Kent D.

Roll, Tom E. (editor)
Roll, Tom E., and Steven Hackenberger

Ruen, Tillie

Rust, Henry J.

Salo, Lawr V.


Samuels, Stephan R.

Sands, Mary E.

Sappington, Robert Lee


Saxton, B.
References

Schalk, R. F.

Schoenberg, Wilfred P.

Schultz, John L.

Shiner, Joel L.

Skinner, Craig E., and Jennifer J. Thatcher

Smith, Allan Hathorn
1936–1938 Unpublished field notes on the Kalispel collected from informants from 1936 through 1938 Field notes on file with the Kalispel Tribe of Indians, Usk, Washington.
1941 *Dynamics of Cultural Diffusion in the Plateau Area of North America.* Ph.D. Dissertation, Department of Anthropology, Yale University, New Haven. [studies among the Kalispel 1936–1938]

Smith, Dwight L.
References

Snedden, Evelyn
1990 Sandpoint History. Manuscript prepared for the Bonner County Historical Society

Stenzel, Franz

Stevens, Isaac

Stidwell, Charlie

Suckley, George

Swanson, Earl H., Jr.

Taylor, D. C.

Teit, James A.

Thibodo, Augustus J.

Thoms, Alston V. (editor)
References

Thoms, Alston V., and Greg C. Burtchard (editors)

Trimble, Louis

Tunney-High, Harry H.

Tuohy, Donald R.

Tyrrell, J. B.
1916 David Thompson’s Narrative of His Explorations in Western America 1784-1812. Champlain Society. Toronto, Canada.

U.S. Army Corps of Engineers (USACE)

Walker, Deward E. Jr.

Walla Walla Statesman

Watt, James W.

Weaver, Robert M., James C. Bard, and James J. Sharpe

Weisz, Gary J.
Wilson, Charles

Yohe, Robert M., and James C. Woods
APPENDIX A: DISCUSSION OF KALISPELL SUMMER VILLAGE SITE DISCREPANCIES

Discrepancies found in the body of the document titled *A Kalispel Cultural Geography* pertain to proper citation in the “References Cited” section of that document (pages RC.1–RC.2). Table 1 confuses references cited for sites 150 and 151 and other sites. The compiler extensively cites Smith using the following dates: 1983, 1985a, 1988 and 1974. In the “References Cited” section the dates cited for Smith’s work are 1985, 1988 and 1974. The 1974 date corresponds to Smith 1950 (1950 is the date of the original ICC report and the 1974 date it was reprinted by Garland Press). The citation of Smith using a 1983 and 1985a do not appear in the bibliography but there is a 1985 date.

Another document dated September 2000, prepared for the Kalispel Tribe Department of Natural Resources, titled *A Kalispel Indian Cultural History* was found during our research. We were able to determine that the document titled *A Kalispel Cultural Geography* (dated September 2000) was most likely derived from this larger document because a section of this report is titled Part 4-A Kalispel Cultural Geography. In the “References Cited” section on page RC.19 and RC.20 there are two Smith dates of 1985a and 1985b. The 1985b citation was not used in the *A Kalispel Cultural Geography* so there should only be a 1985 reference and is the one discussed above. Table 1 needs to have the “a” deleted from all 1985 Smith dates. In addition, the following Smith citation: 1983 Traditional Kalispel Fishing Localities. Manuscript of file, Kalispel Natural Resources Department, Usk, WA is found on page RC.19 of the larger document and needs to be included in the References Cited section of *A Kalispel Cultural Geography* on page RC.2 under Smith’s name.

The figure that illustrates Kalispel territory on the first interior page of the 2000 document *A Kalispel Cultural Geography* states that it is “Adapted from A. H. Smith 1950:13” and on page 3, Figure 1 also cites Smith 1950:13. There is no 1950 Smith entry in either of the References Cited sections of these two documents.

The citation of Ray 1939 page 129 is correct, but the pages used in the References Cited section, on page RC1 shows pages 1–54 which is incorrect; it should be pages 99–152.

These citation errors create considerable confusion for researchers. Until the citation confusion is addressed and the sites verified it should be considered, by any future researcher, as a draft version rather than a final product.
### Appendix B: Sandpoint Archaeology Project Indian Island

**10BR1026 Prehistoric Catalog**

<table>
<thead>
<tr>
<th>Site #</th>
<th>Target</th>
<th>Provenience</th>
<th>Level/Order</th>
<th>Goal</th>
<th>Field</th>
<th>Date Excavation</th>
<th>Artif Class</th>
<th>Lab Code</th>
<th>Weight (grams)</th>
<th>Thickness (mm)</th>
<th>Total Length (cm)</th>
<th>Max Width (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>45181</td>
<td>10BR1026</td>
<td>Indian Island Beach</td>
<td>3</td>
<td>14-20 sm units</td>
<td>3-24-2001</td>
<td>110</td>
<td>541</td>
<td>3.2</td>
<td>0.16</td>
<td>1.50</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>45182</td>
<td>10BR1026</td>
<td>Indian Island Beach</td>
<td>3</td>
<td>14-20 sm units</td>
<td>3-24-2001</td>
<td>110</td>
<td>541</td>
<td>3.2</td>
<td>0.16</td>
<td>1.50</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>45183</td>
<td>10BR1026</td>
<td>Indian Island Beach</td>
<td>3</td>
<td>14-20 sm units</td>
<td>3-24-2001</td>
<td>110</td>
<td>541</td>
<td>3.2</td>
<td>0.16</td>
<td>1.50</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>45184</td>
<td>10BR1026</td>
<td>Indian Island Beach</td>
<td>3</td>
<td>14-20 sm units</td>
<td>3-24-2001</td>
<td>110</td>
<td>541</td>
<td>3.2</td>
<td>0.16</td>
<td>1.50</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>45185</td>
<td>10BR1026</td>
<td>Indian Island Beach</td>
<td>3</td>
<td>14-20 sm units</td>
<td>3-24-2001</td>
<td>110</td>
<td>541</td>
<td>3.2</td>
<td>0.16</td>
<td>1.50</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>45186</td>
<td>10BR1026</td>
<td>Indian Island Beach</td>
<td>3</td>
<td>14-20 sm units</td>
<td>3-24-2001</td>
<td>110</td>
<td>541</td>
<td>3.2</td>
<td>0.16</td>
<td>1.50</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>45187</td>
<td>10BR1026</td>
<td>Indian Island Beach</td>
<td>3</td>
<td>14-20 sm units</td>
<td>3-24-2001</td>
<td>110</td>
<td>541</td>
<td>3.2</td>
<td>0.16</td>
<td>1.50</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>45188</td>
<td>10BR1026</td>
<td>Indian Island Beach</td>
<td>3</td>
<td>14-20 sm units</td>
<td>3-24-2001</td>
<td>110</td>
<td>541</td>
<td>3.2</td>
<td>0.16</td>
<td>1.50</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>45189</td>
<td>10BR1026</td>
<td>Indian Island Beach</td>
<td>3</td>
<td>14-20 sm units</td>
<td>3-24-2001</td>
<td>110</td>
<td>541</td>
<td>3.2</td>
<td>0.16</td>
<td>1.50</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>45190</td>
<td>10BR1026</td>
<td>Indian Island Beach</td>
<td>3</td>
<td>14-20 sm units</td>
<td>3-24-2001</td>
<td>110</td>
<td>541</td>
<td>3.2</td>
<td>0.16</td>
<td>1.50</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>45191</td>
<td>10BR1026</td>
<td>Indian Island Beach</td>
<td>3</td>
<td>14-20 sm units</td>
<td>3-24-2001</td>
<td>110</td>
<td>541</td>
<td>3.2</td>
<td>0.16</td>
<td>1.50</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>45192</td>
<td>10BR1026</td>
<td>Indian Island Beach</td>
<td>3</td>
<td>14-20 sm units</td>
<td>3-24-2001</td>
<td>110</td>
<td>541</td>
<td>3.2</td>
<td>0.16</td>
<td>1.50</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>45193</td>
<td>10BR1026</td>
<td>Indian Island Beach</td>
<td>3</td>
<td>14-20 sm units</td>
<td>3-24-2001</td>
<td>110</td>
<td>541</td>
<td>3.2</td>
<td>0.16</td>
<td>1.50</td>
<td>0.70</td>
<td></td>
</tr>
<tr>
<td>45194</td>
<td>10BR1026</td>
<td>Indian Island Beach</td>
<td>3</td>
<td>14-20 sm units</td>
<td>3-24-2001</td>
<td>110</td>
<td>541</td>
<td>3.2</td>
<td>0.16</td>
<td>1.50</td>
<td>0.70</td>
<td></td>
</tr>
</tbody>
</table>
### Appendix B

#### Sandpoint Archaeology Project 2006-2013

<table>
<thead>
<tr>
<th>Material Type</th>
<th>Description</th>
<th>Comments</th>
<th>Additional Comments</th>
<th>Literature Citations</th>
</tr>
</thead>
<tbody>
<tr>
<td>45144 gray sherd</td>
<td>certain or probable FUR (+); possible FUR (hat); square base (no +); angular rock (no +)</td>
<td>three fragments show unusual fracture patterns typical of FUR, but show recent thermal discoloration; Coarse sand porous; frost cracking.</td>
<td>Associated with marine shell, marine debris, pressure flake, 44S UL-024, Kauai.</td>
<td></td>
</tr>
<tr>
<td>45147 brown sherd</td>
<td>pressure flake</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45148 red sherd</td>
<td>pressure flake</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45150 slate</td>
<td>no evident flake morphology</td>
<td>possible thermal alteration but not clearly cultural</td>
<td>TU-2007-1 (SL-DTU-2007-3)</td>
<td></td>
</tr>
<tr>
<td>45151 red stone</td>
<td>pressure flake</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45152 greystone</td>
<td>angular rock</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45153 slate</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45154 slate</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45155 slate</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45156 quartz</td>
<td>secondary flake, sharp fracture at bottom and</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45157 quartz</td>
<td>angular rock with cortex</td>
<td>no evidence of cultural modification</td>
<td>This flint was found at Mauka Stream at the northern end of the site.</td>
<td></td>
</tr>
<tr>
<td>45158 red</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45159 red</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45160 red</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45161 grey sherd</td>
<td>secondary flake, square base</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45162 grey sherd</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45163 quartz</td>
<td>angular rock</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45164 quartz</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45165 quartz</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45166 quartz</td>
<td>n/a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45167 brown sherd</td>
<td>pressure flake, date on bottom</td>
<td></td>
<td></td>
<td>52Cross</td>
</tr>
</tbody>
</table>

---

220 Sandpoint Archaeology Project 2006-2013
<table>
<thead>
<tr>
<th>Analysis / Photo</th>
<th>Prehistoric Box Storage Location</th>
<th>Total Artifact Count</th>
<th>Projectile Points</th>
<th>Non-cultural Count</th>
<th>FNR Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>45140</td>
<td>Box 1 / Bag 1</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>45141</td>
<td>Box 2 / Bag 3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45142</td>
<td>Box 2 / Bag 2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45143</td>
<td>Box 2 / Bag 3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45144</td>
<td>Box 2 / Bag 3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45145</td>
<td>Box 2 / Bag 3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45151</td>
<td>Box 2 / Bag 3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45152</td>
<td>Box 2 / Bag 3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45153</td>
<td>Box 2 / Bag 3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45154</td>
<td>Box 1 / Bag 1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45155</td>
<td>Photo</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45156</td>
<td>Box 2 / Bag 3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45157</td>
<td>Box 1 / Bag 1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45158</td>
<td>Box 2 / Bag 3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45159</td>
<td>Box 2 / Bag 3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45160</td>
<td>Box 2 / Bag 3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45161</td>
<td>Box 1 / Bag 1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45162</td>
<td>Box 2 / Bag 3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45163</td>
<td>Box 1 / Bag 1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45164</td>
<td>Box 1 / Bag 1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45165</td>
<td>Box 1 / Bag 1</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Appendix B

Volume 3: The Ethnography and Prehistory of Sandpoint 221
APPENDIX C: GPS PLOTS FOR INDIAN ISLAND TESTING IN 2006 AND 2007
### APPENDIX D: SANDPOINT ARCHAEOLOGY PROJECT GPS DATA FOR 2006 AND 2007 TESTING AT INDIAN ISLAND

<table>
<thead>
<tr>
<th>Waypoint Name</th>
<th>Zone</th>
<th>Easting</th>
<th>Northing</th>
<th>Symbol--</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANKOUT A</td>
<td>11U</td>
<td>S34272</td>
<td>S345849</td>
<td>Wapoint</td>
<td>WIAA 2002 BANK PROFILE BY BENCH AT 128R1026 DOG BEACH</td>
</tr>
<tr>
<td>CAL BRANCH</td>
<td>11U</td>
<td>S34285</td>
<td>S345826</td>
<td>Wapoint</td>
<td>BENCH BY CAL BRANCH - 5 M E OF STU BASELINE</td>
</tr>
<tr>
<td>DOG BEACH</td>
<td>11U</td>
<td>S34274</td>
<td>S345822</td>
<td>Wapoint</td>
<td>2006 SITE DATUM FOR 128R1026 - BENCH</td>
</tr>
<tr>
<td>DOG E 1020</td>
<td>11U</td>
<td>S34147</td>
<td>S346178</td>
<td>Wapoint</td>
<td>STANDING WATER END OF JUNE 2006 TESTING</td>
</tr>
<tr>
<td>STU 29</td>
<td>11U</td>
<td>S34277</td>
<td>S346032</td>
<td>Wapoint</td>
<td>100 M X 100 ON &quot;REST&quot; - STU 29</td>
</tr>
<tr>
<td>STU 30</td>
<td>11U</td>
<td>S34251</td>
<td>S345939</td>
<td>Wapoint</td>
<td>10 M ON BASELINE - INDIAN ISLAND E</td>
</tr>
<tr>
<td>STU 31</td>
<td>11U</td>
<td>S34267</td>
<td>S345997</td>
<td>Wapoint</td>
<td>20 M ON BASELINE - INDIAN ISLAND E</td>
</tr>
<tr>
<td>STU 32</td>
<td>11U</td>
<td>S34247</td>
<td>S345999</td>
<td>Wapoint</td>
<td>30 M ON BASELINE - INDIAN ISLAND E</td>
</tr>
<tr>
<td>STU 33</td>
<td>11U</td>
<td>S34257</td>
<td>S346007</td>
<td>Wapoint</td>
<td>40 M ON BASELINE INDIAN ISLAND E - PREHISTORIC SITE</td>
</tr>
<tr>
<td>STU 34</td>
<td>11U</td>
<td>S34242</td>
<td>S346580</td>
<td>Wapoint</td>
<td>50 M BASELINE - OFFSET 15 M W - BURIED CHARCOAL HORIZON</td>
</tr>
<tr>
<td>STU 35</td>
<td>11U</td>
<td>S34293</td>
<td>S346520</td>
<td>Wapoint</td>
<td>60 M ON BASELINE INDIAN ISLAND E - QUARTZ PLATE</td>
</tr>
<tr>
<td>STU 36</td>
<td>11U</td>
<td>S34263</td>
<td>S346017</td>
<td>Wapoint</td>
<td>70 M BASELINE - OFFSET 6 M E IN DENSE CHARCOAL, 50 CMBS</td>
</tr>
<tr>
<td>STU 37</td>
<td>11U</td>
<td>S34237</td>
<td>S346017</td>
<td>Wapoint</td>
<td>80 M ON BASELINE - POSSIBLE FMAT AT 50-65 CMBS</td>
</tr>
<tr>
<td>STU 38</td>
<td>11U</td>
<td>S34241</td>
<td>S346024</td>
<td>Wapoint</td>
<td>90 M BASELINE - OFFSET 12 M EAST 30 TIMBER CASING</td>
</tr>
<tr>
<td>STU 39</td>
<td>11U</td>
<td>S34234</td>
<td>S346033</td>
<td>Wapoint</td>
<td>100 M BASELINE - OFFSET 3 M TO EAST</td>
</tr>
<tr>
<td>STU 40</td>
<td>11U</td>
<td>S34212</td>
<td>S346051</td>
<td>Wapoint</td>
<td>120 M BASELINE - OFFSET 7 M TO WEST</td>
</tr>
<tr>
<td>STU 41</td>
<td>11U</td>
<td>S34216</td>
<td>S346046</td>
<td>Wapoint</td>
<td>130 M BASELINE - OFFSET 5 M EAST - CLUNKER 140 CMBS</td>
</tr>
<tr>
<td>STU 42</td>
<td>11U</td>
<td>S34222</td>
<td>S346004</td>
<td>Wapoint</td>
<td>150 M ON BASELINE INDIAN ISLAND E</td>
</tr>
<tr>
<td>STU 43</td>
<td>11U</td>
<td>S34170</td>
<td>S346051</td>
<td>Wapoint</td>
<td>164 M BASELINE - OFFSET 8 M EAST NW CORNER POND</td>
</tr>
<tr>
<td>STU 44</td>
<td>11U</td>
<td>S34184</td>
<td>S346115</td>
<td>Wapoint</td>
<td>175 M ON OFFSET BASELINE 12 M EAST OF BASELINE</td>
</tr>
<tr>
<td>STU 45</td>
<td>11U</td>
<td>S34176</td>
<td>S346132</td>
<td>Wapoint</td>
<td>195 M ON OFFSET BASELINE 12 M EAST OF BASELINE</td>
</tr>
<tr>
<td>STU 46</td>
<td>11U</td>
<td>S34174</td>
<td>S346144</td>
<td>Wapoint</td>
<td>SHOVEL TEST 45 ON OFFSET BASELINE - NAXPH</td>
</tr>
<tr>
<td>STU 47</td>
<td>11U</td>
<td>S34176</td>
<td>S346140</td>
<td>Wapoint</td>
<td>SHOVEL TEST 46 ON OFFSET BASELINE - NAXPH</td>
</tr>
<tr>
<td>STU 48</td>
<td>11U</td>
<td>S34176</td>
<td>S346151</td>
<td>Wapoint</td>
<td>SHOVEL TEST 47 ON OFFSET BASELINE - NAXPH</td>
</tr>
<tr>
<td>STU 49</td>
<td>11U</td>
<td>S34153</td>
<td>S346154</td>
<td>Wapoint</td>
<td>SHOVEL TEST 48 ON OFFSET BASELINE - NAXPH</td>
</tr>
<tr>
<td>STU 50</td>
<td>11U</td>
<td>S34145</td>
<td>S346165</td>
<td>Wapoint</td>
<td>SHOVEL TEST 49 ON OFFSET BASELINE - NAXPH</td>
</tr>
<tr>
<td>STU 51</td>
<td>11U</td>
<td>S34144</td>
<td>S346176</td>
<td>Wapoint</td>
<td>SHOVEL TEST 50 ON OFFSET BASELINE - NAXPH</td>
</tr>
<tr>
<td>STU 52</td>
<td>11U</td>
<td>S34227</td>
<td>S346188</td>
<td>Wapoint</td>
<td>SHOVEL TEST 51 ON OFFSET BASELINE - NAXPH</td>
</tr>
<tr>
<td>STU 53</td>
<td>11U</td>
<td>S34221</td>
<td>S34631</td>
<td>Wapoint</td>
<td>SHOVEL TEST 52 INDIAN ISLAND W 10 BR 133</td>
</tr>
<tr>
<td>STU 54</td>
<td>11U</td>
<td>S34219</td>
<td>S346061</td>
<td>Wapoint</td>
<td>SHOVEL TEST 54 INDIAN ISLAND W 10 DF 535</td>
</tr>
<tr>
<td>STU 55</td>
<td>11U</td>
<td>S34219</td>
<td>S345951</td>
<td>Wapoint</td>
<td>SHOVEL TEST 55 INDIAN ISLAND W 10 DF 538</td>
</tr>
<tr>
<td>STU 56</td>
<td>11U</td>
<td>S34207</td>
<td>S345905</td>
<td>Wapoint</td>
<td>SHOVEL TEST 56 INDIAN ISLAND W 10 DF 538</td>
</tr>
<tr>
<td>STU 57</td>
<td>11U</td>
<td>S34171</td>
<td>S345970</td>
<td>Wapoint</td>
<td>SHOVEL TEST 57 INDIAN ISLAND W 10 DF 538 (MORE ACCURATE)</td>
</tr>
<tr>
<td>STU 58</td>
<td>11U</td>
<td>S34183</td>
<td>S345930</td>
<td>Wapoint</td>
<td>SHOVEL TEST 58 INDIAN ISLAND W 10 DF 538</td>
</tr>
<tr>
<td>STU 59</td>
<td>11U</td>
<td>S34175</td>
<td>S345898</td>
<td>Wapoint</td>
<td>SHOVEL TEST 59 INDIAN ISLAND W 10 BR 538</td>
</tr>
<tr>
<td>STU 60</td>
<td>11U</td>
<td>S34182</td>
<td>S346041</td>
<td>Wapoint</td>
<td>SHOVEL TEST 60 INDIAN ISLAND W</td>
</tr>
<tr>
<td>STU 61</td>
<td>11U</td>
<td>S34137</td>
<td>S346007</td>
<td>Wapoint</td>
<td>SHOVEL TEST 61 INDIAN ISLAND W</td>
</tr>
<tr>
<td>STU 62</td>
<td>11U</td>
<td>S34131</td>
<td>S346023</td>
<td>Wapoint</td>
<td>SHOVEL TEST 62 INDIAN ISLAND W</td>
</tr>
<tr>
<td>STU 63</td>
<td>11U</td>
<td>S34122</td>
<td>S346118</td>
<td>Wapoint</td>
<td>SHOVEL TEST 63 INDIAN ISLAND W</td>
</tr>
<tr>
<td>WEST START</td>
<td>11U</td>
<td>S34355</td>
<td>S346476</td>
<td>Wapoint</td>
<td>S8000 STATION DIRT ROAD ON HWY 95</td>
</tr>
</tbody>
</table>

**Note:** GPS by Bob Betts June 13-22, 2006 / GPS Mapping Datum - NAD87 CONUS

Cal. bench baseline starts at dog beach bench and runs 335 degrees T for 100 M then is offset 17 M to the East. The compass bearing read to 10 degrees east.
## RAW GPS DATA - DOG BEACH JUNE 06.txt

<table>
<thead>
<tr>
<th>ID</th>
<th>Zn</th>
<th>Easting</th>
<th>Northing</th>
<th>Symbol</th>
<th>T Alt(m)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>BANKCUT A</td>
<td>11U</td>
<td>534272</td>
<td>5345849</td>
<td>Waypoint</td>
<td></td>
<td>I 629.3</td>
</tr>
<tr>
<td>CAL BENCH</td>
<td>11U</td>
<td>534265</td>
<td>5345943</td>
<td>Waypoint</td>
<td></td>
<td>I 639.6</td>
</tr>
<tr>
<td>DOG BEACH</td>
<td>11U</td>
<td>534274</td>
<td>5345842</td>
<td>Waypoint</td>
<td></td>
<td>I 634.1</td>
</tr>
<tr>
<td>DOG E H2O</td>
<td>11U</td>
<td>534147</td>
<td>5346178</td>
<td>Waypoint</td>
<td></td>
<td>I 626.4</td>
</tr>
<tr>
<td>H2O NEND</td>
<td>11U</td>
<td>533619</td>
<td>5346611</td>
<td>Waypoint</td>
<td></td>
<td>I 634.1</td>
</tr>
<tr>
<td>STU 27</td>
<td>11U</td>
<td>533766</td>
<td>5346773</td>
<td>Waypoint</td>
<td></td>
<td>I 645.2</td>
</tr>
<tr>
<td>STU 31</td>
<td>11U</td>
<td>534267</td>
<td>5345967</td>
<td>Waypoint</td>
<td></td>
<td>I 637.5</td>
</tr>
<tr>
<td>STU 32</td>
<td>11U</td>
<td>534247</td>
<td>5345969</td>
<td>Waypoint</td>
<td></td>
<td>I 628.6</td>
</tr>
<tr>
<td>STU 33</td>
<td>11U</td>
<td>534257</td>
<td>5345987</td>
<td>Waypoint</td>
<td></td>
<td>I 635.1</td>
</tr>
<tr>
<td>STU 34</td>
<td>11U</td>
<td>534242</td>
<td>5345980</td>
<td>Waypoint</td>
<td></td>
<td>I 636.0</td>
</tr>
<tr>
<td>STU 35</td>
<td>11U</td>
<td>534252</td>
<td>5346002</td>
<td>Waypoint</td>
<td></td>
<td>I 633.1</td>
</tr>
<tr>
<td>STU 36</td>
<td>11U</td>
<td>534253</td>
<td>5346017</td>
<td>Waypoint</td>
<td></td>
<td>I 631.5</td>
</tr>
<tr>
<td>STU 37</td>
<td>11U</td>
<td>534237</td>
<td>5346017</td>
<td>Waypoint</td>
<td></td>
<td>I 628.8</td>
</tr>
<tr>
<td>STU 38</td>
<td>11U</td>
<td>534244</td>
<td>5346024</td>
<td>Waypoint</td>
<td></td>
<td>I 643.0</td>
</tr>
<tr>
<td>STU 39</td>
<td>11U</td>
<td>534234</td>
<td>5346023</td>
<td>Waypoint</td>
<td></td>
<td>I 636.8</td>
</tr>
<tr>
<td>STU 40</td>
<td>11U</td>
<td>534212</td>
<td>5346051</td>
<td>Waypoint</td>
<td></td>
<td>I 651.9</td>
</tr>
<tr>
<td>STU 41</td>
<td>11U</td>
<td>534216</td>
<td>5346046</td>
<td>Waypoint</td>
<td></td>
<td>I 642.8</td>
</tr>
<tr>
<td>STU 42</td>
<td>11U</td>
<td>534222</td>
<td>5346064</td>
<td>Waypoint</td>
<td></td>
<td>I 644.9</td>
</tr>
<tr>
<td>STU 44</td>
<td>11U</td>
<td>534184</td>
<td>5346115</td>
<td>Waypoint</td>
<td></td>
<td>I 631.7</td>
</tr>
<tr>
<td>STU 45</td>
<td>11U</td>
<td>534176</td>
<td>5346112</td>
<td>Waypoint</td>
<td></td>
<td>I 634.4</td>
</tr>
<tr>
<td>STU 46</td>
<td>11U</td>
<td>534174</td>
<td>5346144</td>
<td>Waypoint</td>
<td></td>
<td>I 637.0</td>
</tr>
<tr>
<td>STU 47</td>
<td>11U</td>
<td>534175</td>
<td>5346140</td>
<td>Waypoint</td>
<td></td>
<td>I 633.9</td>
</tr>
<tr>
<td>STU 48</td>
<td>11U</td>
<td>534156</td>
<td>5346151</td>
<td>Waypoint</td>
<td></td>
<td>I 634.6</td>
</tr>
<tr>
<td>STU 49</td>
<td>11U</td>
<td>534153</td>
<td>5346164</td>
<td>Waypoint</td>
<td></td>
<td>I 635.3</td>
</tr>
<tr>
<td>STU 50</td>
<td>11U</td>
<td>534160</td>
<td>5346166</td>
<td>Waypoint</td>
<td></td>
<td>I 630.7</td>
</tr>
<tr>
<td>STU 51</td>
<td>11U</td>
<td>534144</td>
<td>5346176</td>
<td>Waypoint</td>
<td></td>
<td>I 636.0</td>
</tr>
<tr>
<td>STU 52</td>
<td>11U</td>
<td>534227</td>
<td>5345818</td>
<td>Waypoint</td>
<td></td>
<td>I 631.5</td>
</tr>
<tr>
<td>STU 53</td>
<td>11U</td>
<td>534221</td>
<td>5345831</td>
<td>Waypoint</td>
<td></td>
<td>I 631.7</td>
</tr>
<tr>
<td>STU 54</td>
<td>11U</td>
<td>534219</td>
<td>5345861</td>
<td>Waypoint</td>
<td></td>
<td>I 634.1</td>
</tr>
<tr>
<td>STU 55</td>
<td>11U</td>
<td>534219</td>
<td>5345867</td>
<td>Waypoint</td>
<td></td>
<td>I 635.8</td>
</tr>
<tr>
<td>STU 56</td>
<td>11U</td>
<td>534207</td>
<td>5345866</td>
<td>Waypoint</td>
<td></td>
<td>I 633.1</td>
</tr>
<tr>
<td>STU 57</td>
<td>11U</td>
<td>534215</td>
<td>5345883</td>
<td>Waypoint</td>
<td></td>
<td>I 631.2</td>
</tr>
<tr>
<td>STU 58</td>
<td>11U</td>
<td>534183</td>
<td>5345980</td>
<td>Waypoint</td>
<td></td>
<td>I 646.6</td>
</tr>
<tr>
<td>STU 59</td>
<td>11U</td>
<td>534179</td>
<td>5345998</td>
<td>Waypoint</td>
<td></td>
<td>I 637.7</td>
</tr>
<tr>
<td>STU 60</td>
<td>11U</td>
<td>534152</td>
<td>5346041</td>
<td>Waypoint</td>
<td></td>
<td>I 635.8</td>
</tr>
<tr>
<td>STU 61</td>
<td>11U</td>
<td>534137</td>
<td>5346097</td>
<td>Waypoint</td>
<td></td>
<td>I 649.5</td>
</tr>
<tr>
<td>STU 62</td>
<td>11U</td>
<td>534131</td>
<td>5346093</td>
<td>Waypoint</td>
<td></td>
<td>I 641.6</td>
</tr>
<tr>
<td>STU 63</td>
<td>11U</td>
<td>534222</td>
<td>5346118</td>
<td>Waypoint</td>
<td></td>
<td>I 654.5</td>
</tr>
<tr>
<td>STU 29</td>
<td>11U</td>
<td>534277</td>
<td>5345833</td>
<td>Waypoint</td>
<td></td>
<td>I 631.7</td>
</tr>
<tr>
<td>STU 30</td>
<td>11U</td>
<td>534261</td>
<td>5345959</td>
<td>Waypoint</td>
<td></td>
<td>I 632.9</td>
</tr>
<tr>
<td>STU 43</td>
<td>11U</td>
<td>534179</td>
<td>5346091</td>
<td>Waypoint</td>
<td></td>
<td>I 635.6</td>
</tr>
<tr>
<td>STU 57</td>
<td>11U</td>
<td>534179</td>
<td>5345970</td>
<td>Waypoint</td>
<td></td>
<td>I 636.5</td>
</tr>
<tr>
<td>WEST START</td>
<td>11U</td>
<td>533785</td>
<td>5346476</td>
<td>Waypoint</td>
<td></td>
<td>I 631.2</td>
</tr>
</tbody>
</table>

## TRACK SUMMARY

<table>
<thead>
<tr>
<th>Track</th>
<th>Pnts</th>
<th>Date</th>
<th>Time</th>
<th>StopTime</th>
<th>seconds</th>
<th>m/s</th>
</tr>
</thead>
</table>

Page 1