Idaho Statewide Freight Study

Prepared for the
Idaho Transportation Department

Project No. A013(337)
Key No. 13337

February 5, 2013
List of Tables

Table 2-1. Top Idaho Commodities Transported by Truck, 2010, Thousands of Tons2-9
Table 2-2. Basic Allowable Unit Weight on Idaho Highways, LBS ..2-12
Table 2-3. Idaho Railroad Mileage and Trackage Rights ..2-16
Table 2-4. Freight Tonnage by Origin Railroad ..2-19
Table 2-5. Freight Tonnage by Destination Railroad ..2-19
Table 2-6. Commodity Flows by Destination ..2-20
Table 2-7. Boise Airport’s Top Export Commodities, by Weight (2011) ..2-22
Table 2-8. Idaho Commodities Transported by Pipeline, 2010, Thousands of Tons2-26
Table 2-9. Idaho’s Top Ten Freight Commodities by Value ...2-28
Table 2-10. Idaho’s Top Ten Freight Commodities by Weight ..2-29
Table 2-11. Key Idaho Commodities by Region ..2-29
Table 2-12. Freight Modal Split by Weight by Direction, 2010, Thousands of Tons (Port of Lewiston shipments are listed under Multiple Modes & Mail) ..2-30
Table 2-13. Freight Modal Split by Value by Direction, 2010, Millions of Dollars2-32
Table 2-14. Top State Trading Partners with Idaho by Direction – All Modes, 20102-39
Table 2-15. Top FAF Zone Trading Partners with Idaho by Direction – All Modes, 20102-40
Table 2-16. Top 10 Ports of Entry for Idaho Imports and Exports by Value, 2010, Dollars2-42
Table 2-17. Legal Size and Weight Limitations for a Standard Truck and Trailer Combination2-50
Table 2-18. Size and Weight Limitations for Non-Divisible OS/OW Loads Under a Multi-trip Permit ...2-52
Table 3-1. Freight Summit Themes ...3-2
Table 3-2. Vision for Idaho’s Freight Network ..3-4
Table 3-3. Summary of Pavement Ratings by Mileage ...3-30
Table 3-4. Summary of Bridge Ratings ..3-31
Table 3-5. US-95 Bridges with Sufficiency Rating <50 ..3-34
Table 3-6. I-90 Bridges with Sufficiency Rating <50 ..3-35
Table 3-7. SH-55 Bridges with Sufficiency Rating <50 ..3-36
Table 4-1. Freight Demand Performance Measures ...4-5
Freight Powers Idaho’s Economy

Table 4-2. Freight Safety Performance Measures ...4-8
Table 4-3. Freight System Efficiency Performance Measures ...4-11
Table 4-4. Freight System Condition Performance Measures ..4-14
Table 4-5. Summary of Existing and Potential Freight System Performance Measures4-16
Table 4-6. Idaho Freight System Vision and Goals ...4-19
Table 4-7. Linkages between Freight Study Goals and Scenarios ..4-20
Table 4-8. Project "Levers" and Related Concepts for Each of Three Scenarios4-22
Table 4-9. Project Concepts Included or Excluded from All Scenarios4-26
Table 4-10. Qualitative Evaluation of the Three Scenarios Summary4-27
Table 4-11. Qualitative Evaluation of Scenario A: Business as Usual4-28
Table 4-12. Qualitative Evaluation of Scenario B: Agriculture / Rural Focus4-30
Table 4-13. Qualitative Evaluation of Scenario C: High Tech, Manufacturing / Urban Focus4-31
Table 4-14. Preferred Scenario Projects ..4-32
List of Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1-1</td>
<td>Freight Study's Relationship to Other Plans</td>
<td>1-4</td>
</tr>
<tr>
<td>Figure 2-1</td>
<td>Idaho Highway Network</td>
<td>2-7</td>
</tr>
<tr>
<td>Figure 2-2</td>
<td>Top Trading Partners with Idaho – Truck Mode (Tons)</td>
<td>2-8</td>
</tr>
<tr>
<td>Figure 2-3</td>
<td>Idaho Commercial Vehicle AADT, 2010</td>
<td>2-11</td>
</tr>
<tr>
<td>Figure 2-4</td>
<td>Route Capacity Limits on Idaho Highways</td>
<td>2-12</td>
</tr>
<tr>
<td>Figure 2-5</td>
<td>Route Capacity Limits on National Highways</td>
<td>2-13</td>
</tr>
<tr>
<td>Figure 2-6</td>
<td>Idaho Rail Network by Track Ownership</td>
<td>2-15</td>
</tr>
<tr>
<td>Figure 2-7</td>
<td>Idaho Rail Network Volume, Average Trains per Day</td>
<td>2-17</td>
</tr>
<tr>
<td>Figure 2-8</td>
<td>Top Trading Partners with Idaho – Rail Mode, Thousand Tons</td>
<td>2-18</td>
</tr>
<tr>
<td>Figure 2-9</td>
<td>Port of Lewiston Bulk Wheat Shipments</td>
<td>2-24</td>
</tr>
<tr>
<td>Figure 2-10</td>
<td>Port of Lewiston Container Shipments</td>
<td>2-24</td>
</tr>
<tr>
<td>Figure 2-11</td>
<td>Port of Lewiston container Shipment commodities, 2010</td>
<td>2-25</td>
</tr>
<tr>
<td>Figure 2-12</td>
<td>Idaho Rail Intermodal Network</td>
<td>2-27</td>
</tr>
<tr>
<td>Figure 2-13</td>
<td>Freight Modal Split by Weight by Direction, 2010, Thousands of Tons (Port of Lewiston shipments are listed under Multiple Modes & Mail)</td>
<td>2-30</td>
</tr>
<tr>
<td>Figure 2-14</td>
<td>Freight Modal Split by Value by Direction, 2010, Millions of Dollars, Not Including Port of Lewiston and Boise Airport</td>
<td>2-32</td>
</tr>
<tr>
<td>Figure 2-15</td>
<td>Idaho Population Density by Census Tract, 2010</td>
<td>2-34</td>
</tr>
<tr>
<td>Figure 2-16</td>
<td>Employment and GDP Trends of All industries in Idaho, 2002-2010</td>
<td>2-35</td>
</tr>
<tr>
<td>Figure 2-17</td>
<td>Employment and GDP Trends of Freight-Dependent Industries in Idaho, 2002-2010</td>
<td>2-36</td>
</tr>
<tr>
<td>Figure 2-18</td>
<td>Idaho GDP Distribution of Freight Dependent Sectors, 2010</td>
<td>2-37</td>
</tr>
<tr>
<td>Figure 2-19</td>
<td>Top Trading Partners with Idaho – All Modes, Thousands of Tons</td>
<td>2-39</td>
</tr>
<tr>
<td>Figure 2-20</td>
<td>Top 10 Ports of Entry for Idaho Imports and Exports by Value, 2010, Dollars</td>
<td>2-43</td>
</tr>
<tr>
<td>Figure 2-21</td>
<td>US-95/ SR-55 Corridor from Lewiston to Boise</td>
<td>2-49</td>
</tr>
<tr>
<td>Figure 3-1</td>
<td>Commercial Vehicle Average Annual Daily Traffic Volumes (CAADT), 2010</td>
<td>3-7</td>
</tr>
<tr>
<td>Figure 3-2</td>
<td>Projected Commercial Vehicle Average Annual Daily Traffic Volumes (CAADT), 2040</td>
<td>3-8</td>
</tr>
<tr>
<td>Figure 3-3</td>
<td>Idaho Rail Network Overview</td>
<td>3-12</td>
</tr>
<tr>
<td>Figure 3-4</td>
<td>Idaho Rail Network, Rail Safety</td>
<td>3-17</td>
</tr>
<tr>
<td>Figure 3-5</td>
<td>Railroad Crossing Predicted Fatality Rate</td>
<td>3-18</td>
</tr>
</tbody>
</table>
Figure 3-6. Railroad Crossing Predicted Casualty Rate ... 3-19
Figure 3-7. Public At-Grade Railroad Crossings, AADT of >10,000 ... 3-20
Figure 3-8. Volume to Capacity (VC) Ratio for Major Corridors in Idaho, 2010 3-24
Figure 3-9. Volume to Capacity Issues, Coeur d’Alene Metro Area, 2010 3-25
Figure 3-10. Volume to Capacity Issues in Lewiston Metro Area, 2010 3-26
Figure 3-11. Volume to Capacity Issues, Boise Metro Area .. 3-27
Figure 3-12. Volume to Capacity Issues, Pocatello Area ... 3-28
Figure 3-13. Volume to Capacity (VC) Ratio for Major Corridors in Idaho, 2040 3-29
Figure 3-14. Pavement Condition Rating, 2011 ... 3-32
Figure 3-15. Bridge Sufficiency Rating, Major Corridors .. 3-33
Figure 3-16. US-95 Conditions Summary .. 3-37
Figure 3-17. SH-12 Conditions Summary .. 3-38
Figure 3-18. I-90 Corridor Conditions Summary ... 3-39
Figure 3-19. I-84/I-86 Conditions Summary ... 3-40
Figure 3-20. I-15 Conditions Summary ... 3-41
Figure 3-21. SH-55 Conditions Summary .. 3-42
EXECUTIVE SUMMARY
The Idaho Transportation Department, in partnership with the Idaho Departments of Agriculture and Commerce, recently completed a statewide study of the multimodal freight network. The purpose of this study was to analyze all modes, strengthen the partnerships between private and public partners, and establish framework for more strategic investments that support Idaho’s economic future.

This effort relied heavily on involvement from key freight stakeholders including the system users, shippers, carriers, and Idaho commodity producers; network owners/operators; and public agencies/organizations. Input was gathered through several tools including a steering committee that guided the entire effort. Steering Committee members included representatives from the following organizations:

- AMTRAK
- BNSF
- Clearwater Economic Development Association
- Dairymen’s Association
- Idaho Cattle Association
- Idaho Grain Association
- Idaho Grain and Shippers Association
- Idaho Potato Commission
- Idaho Public Utilities
- Idaho Transportation Department
- Idaho Trucking Association
- McCall Airport
- Port of Lewiston
- Union Pacific
- WATCO
This effort resulted in the identification of recommendations and action steps that support consensus based goals for the movement of freight in, out and through Idaho. These overall goals include:

- Strategic investments in resources and capacity
- Seamless and safe multi-modal connections
- Effective partnerships

Success of the goals will be measured by analyzing the following outcomes over time:

- Idaho goods transported effectively
- Freight transportation costs are competitive
- Freight-related safety improves

The following table provides a summary of the six key recommendations and the various action steps that Idaho freight stakeholders can undertake to help reach the overall goals established in this report.

<table>
<thead>
<tr>
<th>Recommendation / Action Steps</th>
<th>Considerations</th>
</tr>
</thead>
</table>
| **Recommendation 1:** Create an Institutional Framework for Communication, Collaboration & Partnership (Goal 2) | Need to meet MAP-21 guidance
Coordinate membership with Trucking Council and Aero Board
Include private sector, industry, building/materials
Committee to report to Idaho Transportation Board
Work with state planning partners to define charter |
| Formalize a Freight Advisory Committee as a standing advisory committee to guide decisions regarding freight investments. | Does not need to be a “committee”
Coordination should occur with decision making processes
May need MOU/MOA (need to develop substance, forum authority, purpose)
Will provide technical expertise to Freight Committee |
| Formalize partnerships (include the Idaho Departments of Agriculture, Commerce, Labor, and Transportation, Idaho State Police) to enhance the movement of freight. | Work with EDD’s to expand participation |
| Coordinate at a regional level to identify needs, issues, and opportunities both inter- and intra- state. | |
| Encourage statewide coordination to communicate needs, issues, and opportunities | |
| Facilitate the understanding of economic benefits of freight movements through Idaho | Could include a media campaign highlighting economic benefits. |
Recommendation / Action Steps | Considerations
---|---
Recommendation 2: Align Transportation Policy and Projects with Economic Development Strategies (Goal 2)
Collaborate with local economic development entities. | Could include Chambers of Commerce
Participate in the Economic Development District annual planning process (SEDDs). | Current statewide initiative to develop a statewide Strategic Economic Development Plan
Collaborate with cities/counties on freight projects | Coordinate with EDD and Local EDO’s as they have city/county reps on their boards
Collaborate with local Chambers of Commerce. | Coordinate with IAC and AIC
Contribute to a database of public and private stakeholders to gather and distribute information. | List should classify stakeholder interest (i.e. shipper, carrier, owner, etc.)
Provide technical resources/tools for local communities on land use policies that support freight system investment. | Work with Aero Division on airport planning
Recommendation 3: Strategically Invest in a Freight Corridor Network and in New/Expanded Multi-Modal Facilities and Connections (Goal 1, 3)
Develop tool to assess applicability, opportunity, and potential feasibility for consolidating transportation facilities and infrastructure to meet regional demand (e.g. multi-modal facilities) | Include land use considerations
Conduct N-S pilot corridor study using the US-95 general corridor (not just highway) to establish process for modal connections identification, benefit/cost methodology, and data needs. | Consider potential freight route via N-S rail line, to include needed inter- and/or multi-modal facilities.
Consider cost/benefit of market driven multi-modal freight investments along corridor including modal shift analysis
Methodology and findings of the pilot study can frame approach for identifying improvements for other multi-modal freight corridors and investments in subsequent Freight Plan. | Use TREDIS
<table>
<thead>
<tr>
<th>Recommendation / Action Steps</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prioritize public project funding to strategic investments identified in planning process</td>
<td>Use Rail Plan to prioritize rail capacity improvements to receive federal funding</td>
</tr>
<tr>
<td></td>
<td>Use Freight Committee as review committee</td>
</tr>
<tr>
<td>Identify priority freight corridors for improvements in a data driven manner.</td>
<td>Link to National Freight Network designation (2013)</td>
</tr>
<tr>
<td></td>
<td>Traffic volumes, permits, and user surveys</td>
</tr>
<tr>
<td></td>
<td>Consider linking to highways used by key commodities</td>
</tr>
<tr>
<td>Develop a Freight Plan, utilizing methodology and findings of pilot N-S Freight Corridor Study and the priority freight network.</td>
<td>Update Freight Study as integral element of future long range transportation plan and use a travel demand model</td>
</tr>
<tr>
<td>Create and implement process to continually identify needs/ opportunities for strategic freight corridors and investments in each region including multi-modal facilities.</td>
<td></td>
</tr>
</tbody>
</table>

Recommendation 4: Facilitate the Efficient Movement of Freight (Goal 1, 3)

<p>| Implement freight-friendly best practices at the local, state, and federal level including design and maintenance standards and tie to freight specific network. | Coordinate with Association of Highway Districts and Local Highway Technical Assistance Council |
| Promote consistent weight allowances on public highways for intra- and inter- state multimodal freight movement. | Consider weight per axle versus overall weight restrictions. Will require coordination with local highway districts. Consider benefit/cost where implementing (safer, more efficient, damage/system condition) Analysis should be triggered by industry Axle and overall restriction/consistency |
| Reduce border crossing delays | State and international |
| Collaborate with other northwestern states and FHWA to identify and implement uniformity in weight allowances, at least in the Pacific Northwest region. | Promote consistency across states Assess tools used in other states for applicability throughout NW |</p>
<table>
<thead>
<tr>
<th>Recommendation / Action Steps</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promote appropriate use of ITS technologies and applications</td>
<td>Weigh-in-motion technologies</td>
</tr>
<tr>
<td></td>
<td>Automated plate recognition</td>
</tr>
<tr>
<td></td>
<td>Transponders</td>
</tr>
<tr>
<td></td>
<td>GPS</td>
</tr>
<tr>
<td></td>
<td>Smart phone applications</td>
</tr>
<tr>
<td></td>
<td>Web-based applications</td>
</tr>
</tbody>
</table>

Recommendation 5: Expand Sources for Freight Infrastructure Funding (Goal 3)

<table>
<thead>
<tr>
<th>Identify appropriate new dedicated Idaho funding sources for strategic freight system investments.</th>
<th>Build on Governor’s Task Force on Funding report</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evaluate other potential funding sources for strategic freight system improvements.</td>
<td>Economic Development Grants</td>
</tr>
<tr>
<td></td>
<td>Dry Port Districts</td>
</tr>
<tr>
<td></td>
<td>Tax Increment Financing</td>
</tr>
<tr>
<td></td>
<td>Revenue Bonds</td>
</tr>
<tr>
<td></td>
<td>Community Improvement Districts</td>
</tr>
<tr>
<td></td>
<td>Transportation Improvement Districts</td>
</tr>
<tr>
<td></td>
<td>Others, as identified</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Identify benefits/costs/impacts for existing and new mechanism(s) for public-private financing partnerships.</th>
<th>TIFIA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dry Port Districts</td>
</tr>
<tr>
<td></td>
<td>Tax Increment Financing</td>
</tr>
<tr>
<td></td>
<td>Revenue Bonds</td>
</tr>
<tr>
<td></td>
<td>Community Improvement Districts</td>
</tr>
<tr>
<td></td>
<td>Others, as identified</td>
</tr>
</tbody>
</table>

| Support an online funding clearinghouse with funding sources and technical support to improve access to public and private resources. | Federal, state, local and non-traditional (same comment for next 3 action steps) |

<p>| Secure funding for outcome-based needs assessment/feasibility analyses to include modal shift analysis. | REDIFIT or other transportation, economic development, or commerce department grant, or funding through private industry councils and/or freight associations |</p>
<table>
<thead>
<tr>
<th>Recommendation / Action Steps</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recommendation 6: Collect and Analyze Data</td>
<td></td>
</tr>
<tr>
<td>Collect/purchase data</td>
<td>Assess: RIO</td>
</tr>
<tr>
<td></td>
<td>Benefit/cost of what to obtain/how usability</td>
</tr>
<tr>
<td>Align data with recommended performance measures</td>
<td></td>
</tr>
<tr>
<td>Develop glossary of terms/definitions</td>
<td></td>
</tr>
<tr>
<td>Prepare data collection plan</td>
<td>Identify data gaps/needs</td>
</tr>
<tr>
<td></td>
<td>Identify data collection tools/methodologies</td>
</tr>
<tr>
<td>Monitor/track performance measures, regularly update as</td>
<td></td>
</tr>
<tr>
<td>new data are available</td>
<td></td>
</tr>
<tr>
<td>Develop supporting tools</td>
<td></td>
</tr>
</tbody>
</table>
1 Introduction

1.1 Purpose
The Idaho Transportation Department (ITD) led the statewide freight analysis to:

- Establish common goals and vision for Idaho’s freight network
- Evaluate opportunities and strategies to integrate freight movement across all modes in Idaho including highway, rail, air, water, and pipeline;
- Strengthen partnerships between private and public entities;
- Establish a framework for policy implementation and future freight system investments.

This study identifies strategies, projects, policies, and programs to improve freight mobility, safety, and economic opportunity.

1.2 Process
The Freight Study used a process intended to: 1) deliberately and systematically engage stakeholders; 2) understand the context of Idaho freight network through collection and analysis of available data; 3) to identify goals and performance measures, as based upon stakeholder input and identified issues and opportunities; and, 4) to provide a framework for implementation as an outcome of a collaborative process.

Stakeholders were engaged throughout the study process through the use of a Project Steering Committee made up a broad cross section of rail and freight stakeholders, a Freight Summit, stakeholder interviews, regional Freight Forums, organizational briefings, and focus group meetings.

A Steering Committee was established to represent the interests of diverse freight stakeholders in providing feedback on freight mobility issues and study recommendations. The Steering Committee included agricultural producers representing a variety of commodities; other freight-intensive industries and manufacturers; owners and operators representing a variety of modes; and, federal, state, and local agencies supporting transportation services, economic development, and agriculture.

The Steering Committee worked collaboratively, helping to ensure that the study process and products balanced the varied interests of statewide stakeholders. They played a critical role in disseminating project information and collecting feedback from their networks of industry contacts and affiliated interest groups. The Steering Committee reviewed and provided recommendations on project products and deliverables, and played a key role in formulating study recommendations. Their input was provided through a series of full-day meetings, workshops, and facilitated discussions, along with a series of “homework assignments” used to inform the development of the vision statement, performance measures, scenarios development and evaluation, and ultimately, study recommendations.
A statewide Freight Summit, held in December of 2011, kicked off the freight study with over 80 stakeholders in attendance. The goal of the Summit was to identify key issues, opportunities, and challenges related to Idaho’s freight system.

Stakeholder interviews were also conducted with key informants early in the process to gather an in-depth understanding of the perspectives of owners, operators, and users from various industries and modes. A number of data- and/or issue-specific interviews were conducted to inform the team regarding particular freight issues and opportunities. In addition, numerous and frequent informal discussions were conducted by team members with industry groups and coalitions, freight- and transportation-related professional organizations, special-interest groups, and members of the general public through the course of the study.

Regional Freight Forums were held in each of Idaho’s six transportation districts in July and August of 2012, to provide a regional perspective on the freight issues and opportunities facing Idaho. These forums were attended by local transportation agencies, system users and operators, local economic development professionals, and the general public, and provided region-specific inputs on freight system goals, performance measures, infrastructure improvements, and project prioritization.

1.3 Policy and Legal Context

Map-21
Moving Ahead for Progress in the 21st Century Act (MAP-21) was signed into law in July of 2012. Funding surface transportation programs for fiscal years (FY) 2013 and 2014, MAP-21 is the first long-term highway authorization enacted since 2005. MAP-21 provides the policy and programmatic framework for federal transportation funding in Idaho. Under Map-21, requirements for a statewide long-range plan and a short-term transportation improvement plan (TIP) continue, with the long-range plan to incorporate performance plans required by the Act for specific programs. The long-range plan must describe the performance measures and targets used in assessing system performance and progress in achieving the performance targets.

MAP-21 includes a number of provisions designed to enhance freight movement in support of national goals. MAP-21 establishes national leadership in improving the condition and performance of a National Freight Network by identifying the components of the network, which will be designated by the US Department of Transportation (USDOT). It includes incentives to prioritize projects that advance freight performance targets. USDOT, in consultation with partners and stakeholders, will develop a national freight strategic plan. States are encouraged to develop individual freight plans and establish freight advisory committees.¹
Idaho’s Long Range Transportation Plan
Idaho’s Long Range Transportation Plan (LRTP), *Idaho on the Move*, adopted in 2010, is a high level planning document establishing long–range goals and objectives for Idaho’s Transportation System, generally. Those goals, and the associated objectives relevant to the freight system, are:

- **Improving Transportation Safety:**
 - Idaho is committed to the safe transport of people and goods; and,
 - Idaho includes safety considerations in all transportation activities and investments.

- **Enhancing Mobility:**
 - Idaho promotes accessible, affordable, and convenient transportation choices for the movement of people and goods;
 - Idaho keeps transport infrastructure in good repair to ensure uninterrupted service;
 - ITD is committed to the wise use of limited resources, turning to new technologies and developing intermodal strategies to keep Idaho on the move.

- **Supporting Idaho’s Economy:**
 - Resources will be applied to maintain, improve, and expand routes and services that contribute to economic vitality;
 - ITD supports the state’s economic vitality by enabling efficient movement of people and goods;
 - ITD seeks partnerships and cooperative initiatives to improve freight mobility and provide intermodal access to jobs and centers of commerce.²

Freight-Related System and Infrastructure Plan
Idaho’s Long Range Transportation Plan is a high level planning document providing general policy guidance to Idaho Transportation Department. System Plans are intended to provide a more detailed look at system elements, including infrastructure priorities and plans. System Plans include Idaho’s Airport Systems plan, which was adopted in 2010; Idaho’s Statewide Rail Plan, which is currently in the process of being updated; Port of Lewiston Strategic Plan Strategic Plan; and, the Freight System Strategic Plan, which is being recommended to be developed, consistent with Map-21 legislation.

Freight Study
This Freight Study is intended to provide a foundation and framework upon which to build in the development of multi-modal Freight Strategic Plan, consistent with Map-21 guidance, as well as basis for the freight component of the Idaho Statewide Freight Plan. The Freight Study establishes a basis for partnership and collaboration among diverse stakeholders in the freight system; to collect and analyze available freight system to create a common understanding of the freight network issues and opportunities facing Idaho; to create a vision and goals for Idaho’s freight network; to understand the gaps in available data that will be necessary to meet federal data centric performance measurement
Idaho Statewide Freight Study

requirements. The Freight Study was completed in concert with an update to the Statewide Freight and Passenger Rail Plan. The relationship between these two efforts as well as other planning efforts at ITD is detailed in Figure 1-1.

Figure 1-1. Freight Study’s Relationship to Other Plans

References:

2 Idaho Transportation Department. Idaho on the Move: A Long-Range Plan to Improve Safety, Mobility, and Economic Vitality, 2010.
2 Freight System Overview

2.1 Introduction
A freight system is comprised of three key elements including the physical network, the goods being transported, and the economic/institutional framework. This section provides an overview of each of these elements based on stakeholder input, gathered from the tools described in Section 3, and readily available datasets. Unfortunately, much of the datasets available for use in this effort is not collected or defined consistently. Therefore a discussion of the available datasets is provided below, before the description of the freight network.

Freight Data Considered in this Report Considerations

Freight Analysis Framework, Version 3 (FAF3)
Freight Analysis Framework, version 3.0 (FAF3) is a commodity flow database developed by the FHWA that contains freight flow information by mode, commodity, and different zones. The FAF3 endeavors to provide a complete view of goods movement, using the Commodity Flow Survey (CFS) as the foundation and incorporating other data sources, including the Public Use version of the WB, FAA air cargo, international trade, and US Army Corps of Engineers Waterborne Commerce data. Released in July 2010, the current FAF3 is based on the 2007 CFS, and other data. Activity is reported by FAF Analysis Zone, of which the US is divided into 123 regions. Since its initial rollout, FAF has been updated several times, with the most recent update to version 3.2 released in December 2011. These iterations have incorporated improvements in processing methodology, and in the December 2011 release, data for 2008-2010 was added. Using a “back-casting” process to estimate changes in transportation demand, data for these additional years was created using historical economic and transportation system performance indicators.

Since the FAF3 uses data from the CFS surveys of shippers, movements captured and reported in the FAF3 can be between original origins and final destinations or between distribution centers or transfer points. The FAF3 uses the Standard Classification of Transported Goods (SCTG) system to classify commodities. The FAF3 also provides forecasts for future freight movements and commodity volumes. The relationship of FAF3 and Surface Transportation Board (STB) waybill (WB) samples for rail data is discussed in more detail in the Rail System Inventory Report. The CFS which is the basis for the FAF3 does not develop data on freight movements through a state (shipments not originating or destined for the state).

It is important to note that, within FAF3, the movements on container barges associated with the Port of Lewiston are aggregated into the multiple modes and mail category, which includes all shipments reported involving one or more end-to-end transfer of cargo between two different modes. Because of the data aggregation, it is impossible to isolate freight movement specifically associated with container
barges and grain movement on barges. As such, FAF3’s marine modal data for Idaho is significantly understated, thus requiring supplemental data from the Port of Lewiston to provide a valid understanding of the marine mode within the Idaho freight system.

BTS Transborder Freight Data

The North American Transborder Freight Database contains freight flow data by commodity type and by mode of transportation (rail, truck, pipeline, air, vessel, and other) for U.S. exports to and imports from Canada and Mexico. The database includes two sets of tables; one is commodity based while the other provides geographic detail. The purpose of the database is to monitor changes in freight flows since the North American Free Trade Agreement (NAFTA) took effect in 1994. The database is also valuable for trade corridor studies, transportation infrastructure planning, marketing and logistics plans and other purposes. It allows users to analyze movement of merchandise by all land modes, waterborne vessels, and by air carriers to and from Canada and Mexico. While a valuable source of data for import/export traffic to and from Canada and Mexico, it provides little information related to intra-national freight movement, and no information regarding imports and exports to markets outside of North America.

The North American Transborder Freight Dataset is extracted from the Census Foreign Trade Statistics Program. Import and export data are captured from administrative records required by the Departments of Commerce and Treasury. Historically, these data are obtained from import and export documents collected by the U.S. Customs Service (Customs).

- **Imports**
 For imports from Canada and Mexico, over 96 percent of entries are collected electronically. Data for U.S. imports of merchandise are compiled primarily from automated data submitted through the U.S. Customs' Automated Commercial System, as well as from import entry summary forms, warehouse withdrawal forms, and Foreign Trade Zone documents required by law to be filed with the U.S. Customs and Border Protection. Data on imports of electricity and natural gas from Canada are obtained from Canadian sources.

- **Exports**
 U.S exports of merchandise are compiled primarily from the Automated Export System (AES), paper Shipper's Export Declarations (SEDS), and Canadian data provided by Statistics Canada. This data exchange includes only U.S. exports destined for Canada and does not include shipments destined for third countries by routes passing through Canada.

While quality assurance procedures are performed at every stage of collection, processing, and tabulation, the data are subject to errors, including reporting errors, undocumented shipments, timeliness, data capture errors, transiting goods, and underestimation of low-valued transactions. Trade data fields (such as value, commodity classification) are typically more rigorously reviewed than transportation data fields (i.e., mode of transportation and port of entry/exit). This dataset provides
Idaho Statewide Freight Study

surface transportation information for individual Customs districts and ports on the northern and southern borders. Because of filing procedures for trade documents, these ports may or may not reflect where goods physically crossed the border. This is because the filer of information may choose to file trade documents at one port, while shipments actually enter or exit at another port. Accuracy does vary by direction of trade and individual data field. For example, import data are generally more accurate than export data. This is primarily due to the fact that Customs uses import documents for enforcement purposes while it performs no similar function for exports.²

Rail Commodity Data Sources

2010 Carload Waybill Sample (WB) data from the Surface Transportation Board (STB) provides a good source of relatively detailed data regarding freight rail for a single year; however, it does not provide the data on trends that are necessary for forecasting future demand, nor does it provide data for other modes. The WB is produced from stratified statistical sample of rail traffic that is transported at some point over the U.S. rail network. A minimum sampling rate of 2.5% is applied to all rail traffic, with carriers terminating at least 4,500 carloads required to report these shipments to the Surface Transportation Board. Each record contains information on various aspects of a specific move, including the actual rate billed by the railroad and its tariff or contract authority, the commodity shipped, the volume in weight, the origin railroad station and destination railroad station, the designated sequence of rail carriers transporting the shipment from origin to destination [routing], and the type of equipment used to carry the freight. To maintain the commercial confidentiality of the parties involved, shippers and consignees are not recorded.

The WB is released in two versions, “Full” or “Confidential,” and “Public Use.” The former retains the geographic, commodity and carrier specificity provided in a waybill, while the latter is aggregated at minimum to BEA-level geography and 5-digit Standard Transportation Commodity Code (STCC). Furthermore, data elements must be geographically aggregated to contain at least three shippers and to prevent identification of an individual railroad. Thus, for some commodities confidentiality requirements cause reporting to occur at a national level only. As the name states, the Public Use version of the WB is available to anyone, while the Confidential version is only available for uses approved by the STB, with public release of information subject to confidentiality requirements specified by the STB.

The FHWA’s Freight Analysis Framework endeavors to provide a complete view of goods movement for all modes, using the Commodity Flow Survey (CFS) as the foundation and incorporating other data sources, including the Public Use version of the WB, FAA air cargo, international trade, and U.S. Army Corps of Engineers Waterborne Commerce data. Figures reported in the FAF3 rail data differ from the confidential “full” WB in two ways:
Idaho Statewide Freight Study

- FAF3 relies on the Public Use WB, which results in aggregation of traffic for some commodities at geographic levels that are far larger than the FAF zones; and,
- The use of forecast-derived estimates for years other than the base year.

While the FAF3 uses a disaggregation process to allocate aggregated waybill data to the appropriate FAF Analysis Zone, it is of necessity, not a wholly accurate process. It is further worth noting that the FAF and WB use different commodity classifications schemes (Standard Classification of Transported Goods [SCTG] in the case of FAF, STCC for the WB), that make direct comparisons difficult for some commodity types.

The Association of American Railroads (AAR) also provides a summary of rail activity in its State Fact Sheets. The AAR utilizes the Confidential WB to develop the state fact sheets. Thus, the total traffic volumes listed in the Fact Sheets should line up with the corresponding WB for a given year. A known issue with the WB is the underreporting of traffic handled by small railroads. Although the AAR is well aware of this issue, a straightforward methodology to correct for this error has not yet been developed. The FAF does not correct for this error either.

Port of Lewiston Data

As previously noted, because of the method by which data is aggregated within FAF3, it is impossible to isolate freight movement specifically associated with container barges and grain movement on barges for the Port of Lewiston, thereby resulting in an underreporting of marine modal data in FAF3. Therefore, Port of Lewiston shipping data was provided directly by the Port to supplement other data sources. It should be noted that categories used by the Port for aggregating shipping data do not correspond precisely with categories used for aggregation by FAF3. The Port of Lewiston data for wheat is available only in tons, not value. Container shipments are provided by the number of container twenty-foot equivalent units (TEUs), rather than weight or value.

Idaho Agricultural Export Data

Idaho Department of Agriculture subscribes to a data source provided by Global Trade Information Services (GTIS) which compiles import and export trade data published by more than 80 countries and regions worldwide. Data is provided for most products by 2-digit, 4-digit, and 6-digit industry code, using the Harmonized System (HS) for classification. Data provided for aggregated goods generally includes value, quantity, unit price, reporting country, and trading partner country. Shortcomings of the data include that the data is aggregated differently than some other data sources, making comparisons difficult, and that import export data may inaccurately reflect origin of commodities from multiple producers and/or with multiple processors within the United States. Also, data may be skewed based upon the location of the corporate offices, rather than the location of the producer, processor, and/or shipper. The data provided addressed agricultural commodities only.

The following chapter provides an overview of each of these elements.
2.2 Freight Network

Physical Network
Roads, railroads, waterways, pipeline, and airport infrastructure each play key and distinct roles in the multimodal freight system, and must work together to create an efficient system necessary to serve the needs of the region’s economy.

Highway Network
Highways are perhaps the most used transportation asset in Idaho for both passenger and freight travel, as 64 percent of all freight moves by truck in Idaho. Idaho’s roadway network is comprised of more than 60,000 miles of roadways and about 4,000 bridges. Of these 60,000 miles of roadways, 5,000 miles (8.3%) are maintained by the state (ITD), and this 8.3% of total roadway miles carries 54% of the state’s total vehicle miles traveled (VMT). Interstate highways represent 12% of state maintained roadways but carry 41% of total VMT.

Trucks moving on highways provide vital connections between modes, consumers and producers, and various freight hubs. The different highway networks are like blood vessels and if they do not work properly, the rest of the system will break down as well. This section inventories and describes the characteristics and conditions of the state’s highway network from a freight perspective. It provides an overview of the major trading partners with Idaho by truck, top truck commodities carried, truck volumes on the highways, roadway truck capacity, pavement conditions, and bridge conditions.

Highway Infrastructure in Idaho
The highway network in Idaho consists primarily of two regions of activity: the belt-shaped region in the high desert south from Nampa to Idaho Falls and beyond, and the panhandle region in the north. As shown on Figure 2-1, the primary interstates in the south include I-84 from Washington, traversing through all major cities in the state, and then splitting into I-86 and I-84, where I-86 joins with I-15 near
Idaho Falls to go on to Montana, and I-84 goes towards Salt Lake City. In the north, I-90 traverses the state in an east-west alignment. Among these interstates, I-15 is especially important, serving as a CANAMEX corridor that connects Pocatello, Blackfoot, and Idaho Falls with Canada and Mexico.

A significant network of US and State highways also exist around the interstates, serving smaller cities and connecting them to other key locations. US-95 lies within the state on the western border connecting I-90 with I-84, and providing the only north-south corridor spanning Idaho from Utah to Canada. It has been identified as inadequate by stakeholders as part of this project, and its winding alignment makes travel more difficult. There is existing pressure for Idaho to upgrade the route to provide better north-south connectivity. Highway infrastructure is nearly non-existent in the belly region of the state due to the limited population base and the presence of large national forests.

Another important aspect of the highway infrastructure is port of entry (POE) facilities. These are truck weigh stations that serve law enforcement purposes including issuing temporary permits for vehicles not registered in Idaho, temporary weight increase permits, hazardous materials endorsements, and hazardous waste permits to vehicles. They issue annual overweight and oversize permits as well as register vehicles. All vehicles with gross weight of 26,001 lbs or more, or carrying hazardous material or livestock with a weight of 10,001 lbs or more, must stop at a port of entry. Clearly, the ports of entry are significant assets because they regulate commercial vehicle activity on the highway and thus help maintain a state of good repair as well as safety and security on highway systems in Idaho. From Figure 2-1 we can see that all of the major access routes are located with a POE facility.

One of the drawbacks of the POEs is delay. At traditional weigh stations trucks must stop at the weigh station to be weighed, and this can cause congestion at the weigh station since usually only one truck can be weighed at a time and other trucks have to wait. To mitigate the issue, two Idaho POEs employ a weigh-in-motion technology called NORPASS, where a truck can bypass weigh stations by electronically verifying its weight and other credentials when it passes by the POEs, using a transponder. The service is free of charge and currently the Lewiston POE and the East Boise POE use this technology.
Figure 2-1. Idaho Highway Network

Source: Idaho Transportation Department Data

Truck Trading Partners
The highway network offers connections to some key trading partners with Idaho including Montana, Seattle, and Salt Lake City, as shown in **Figure 2-2**. There are some significant truck trade flows between Idaho and other large metropolitan areas including Los Angeles and Minneapolis, but truck flows are
Idaho Statewide Freight Study

predominantly limited to a 1-day truck trip distance from Idaho. Cost and the nature of commodities play a key role in determining the attractiveness of truck shipping, which usually means they have to be reserved for shorter distances unless no other modes of travel are available.

Figure 2-2. Top Trading Partners with Idaho – Truck Mode (Tons)

Top Truck Commodities
As shown in Table 2-1, the number one group of commodities moved by trucks is agriculture products which include cereal grains and other animal feed. Together, they make up about 42 percent of all commodities moved by trucks for the state. The overwhelming majority of these are moved within the state, even though there are also significant inbound and outbound movements. In addition to agriculture products, building materials including gravel, wood products, and logs also generate significant truck traffic. Gravel and logs are primarily moved within the state, while wood products are mostly moved into the state to widely-distributed wood product processing and manufacturing plants.

Source: FAF3
Table 2-1. Top Idaho Commodities Transported by Truck, 2010, Thousands of Tons

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Inbound</th>
<th>Outbound</th>
<th>Intra-State</th>
<th>Total</th>
<th>% Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cereal grains</td>
<td>9,386</td>
<td>4,540</td>
<td>25,345</td>
<td>39,271</td>
<td>34.1%</td>
</tr>
<tr>
<td>Other ag prods.</td>
<td>891</td>
<td>2,303</td>
<td>7,033</td>
<td>10,227</td>
<td>8.9%</td>
</tr>
<tr>
<td>Gravel</td>
<td>1,323</td>
<td>931</td>
<td>6,775</td>
<td>9,029</td>
<td>7.8%</td>
</tr>
<tr>
<td>Wood prods.</td>
<td>4,831</td>
<td>2,045</td>
<td>2,065</td>
<td>8,941</td>
<td>7.8%</td>
</tr>
<tr>
<td>Logs</td>
<td>21</td>
<td>12</td>
<td>7,443</td>
<td>7,476</td>
<td>6.5%</td>
</tr>
<tr>
<td>Nonmetal min. prods.</td>
<td>1,293</td>
<td>344</td>
<td>4,236</td>
<td>5,873</td>
<td>5.1%</td>
</tr>
<tr>
<td>Waste/scrap</td>
<td>267</td>
<td>800</td>
<td>3,960</td>
<td>5,027</td>
<td>4.4%</td>
</tr>
<tr>
<td>Animal feed</td>
<td>382</td>
<td>221</td>
<td>2,856</td>
<td>3,460</td>
<td>3.0%</td>
</tr>
<tr>
<td>Fertilizers</td>
<td>441</td>
<td>996</td>
<td>1,886</td>
<td>3,322</td>
<td>2.9%</td>
</tr>
<tr>
<td>Other foodstuffs</td>
<td>601</td>
<td>1,557</td>
<td>1,034</td>
<td>3,193</td>
<td>2.8%</td>
</tr>
<tr>
<td>Mixed freight</td>
<td>1,471</td>
<td>444</td>
<td>325</td>
<td>2,240</td>
<td>1.9%</td>
</tr>
<tr>
<td>Natural sands</td>
<td>88</td>
<td>1,131</td>
<td>931</td>
<td>2,150</td>
<td>1.9%</td>
</tr>
<tr>
<td>Live animals/fish</td>
<td>876</td>
<td>294</td>
<td>844</td>
<td>2,013</td>
<td>1.7%</td>
</tr>
<tr>
<td>Coal-n.e.c.</td>
<td>516</td>
<td>199</td>
<td>662</td>
<td>1,377</td>
<td>1.2%</td>
</tr>
<tr>
<td>Fuel oils</td>
<td>241</td>
<td>23</td>
<td>897</td>
<td>1,161</td>
<td>1.0%</td>
</tr>
<tr>
<td>Other</td>
<td>4,140</td>
<td>1,765</td>
<td>4,471</td>
<td>10,377</td>
<td>9.0%</td>
</tr>
<tr>
<td>Total</td>
<td>26,768</td>
<td>17,605</td>
<td>70,763</td>
<td>115,136</td>
<td>100.0%</td>
</tr>
</tbody>
</table>

Source: FAF3

Truck Volumes

The most common measure of truck volume is average annual daily truck traffic (AADTT). It refers to the average number of trucks using a given roadway segment per day and it indicates the level of freight demand being placed on the various state highways. While the definition of a truck varies, the standard measure to determine a freight truck is its Gross Vehicle Weight Rating (GVWR), which usually should exceed 26,000 lbs. For Idaho, a vehicle with a GVWR of 10,000 lbs is considered a “commercial” vehicle which includes some light duty, all medium duty, and all heavy duty vehicles. Even though this categorization seems to include more trucks than standard, it is still useful for understanding the volumes of trucks on highways.

Figure 2-3 shows the Commercial Truck AADT on Idaho’s public roadway system, which includes through traffic as well as originating and terminating traffic within Idaho. The data indicates that the highest volumes of truck traffic occur on the interstates, especially I-84 near Boise City and before the split with I-86, where more than 5,000 truck per day traverse through those sections of highway. Some state highways also experience significant truck volumes of more than 1,000 trucks a day, but the majority of state roads do not experience significant truck traffic.
Truck Route Designations
Closely related to the truck volumes are the route capacity limits allowed on highway segments without additional permitting. ITD publishes a route capacity map that lists seven different groups of weight limits for highways. The route capacity groups used in Figure 2-4 correspond to the weight restrictions listed on Table 2-2 for each axle category. Interstate highways have the highest weight limit, followed by a majority of U.S. and State highways. High truck volume locations correspond to high weight limit locations confirming that truck weight limits can be a deciding factor for trucks to take particular routes.

Truck capacity limits provide us an indication of corridors conducive to serving freight in Idaho, but there are no designated freight corridors in the state. Because freight movements are usually dominated by long-haul movements, it is important to look at freight corridors from a national perspective. Figure 2-5 shows the major freight corridors in the US determined by connecting segments with high truck volumes. In the case of Idaho, the only major freight corridor identified is I-84 that connects Salt Lake City, Utah to Portland, Oregon.
Figure 2-3. Idaho Commercial Vehicle AADT, 2010

Source: Idaho Transportation Department Data
Table 2-2. Basic Allowable Unit Weight on Idaho Highways, LBS

<table>
<thead>
<tr>
<th>Category</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Axle</td>
<td>33,000</td>
<td>30,000</td>
<td>27,000</td>
<td>25,500</td>
<td>24,000</td>
<td>22,500</td>
<td>Posted Bridges</td>
<td>Unk.</td>
</tr>
<tr>
<td>Two-Axle Tandem</td>
<td>56,000</td>
<td>51,500</td>
<td>46,000</td>
<td>43,500</td>
<td>41,000</td>
<td>38,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Three-Axle Tandem</td>
<td>70,500</td>
<td>64,500</td>
<td>57,500</td>
<td>54,500</td>
<td>51,500</td>
<td>48,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Source: Idaho Transportation Department Data

Figure 2-4. Route Capacity Limits on Idaho Highways

Source: Idaho Transportation Department Data
With total freight tonnage in Idaho anticipated to increase by nearly 72% by 2040, cost effectiveness and efficiency of transport will become important considerations in modal choice and modal investment in the future. Freight rail is a good transportation option, particularly for low value, bulk product transport, because of its efficiency. From a fuel efficiency standpoint, rail can transport one ton of freight 469 miles per gallon of fuel, and is four (4) times more fuel efficient than truck, on average. One train can haul the freight of several hundred trucks, which means less highway gridlock and reduced impact on highway maintenance and capacity expansion investments. The U.S. rail industry transports 40 percent of the nation’s goods, in terms of distance and value, for only 10% of the intercity freight revenue. Rail is a critical component of Idaho’s freight system for hauling bulk commodities, including agricultural products, basic chemicals (serving the food processing, wood, and chemical industries), fertilizers, cereal grains, and other agricultural products. The rail system in Idaho consists of a network of railroads, rail hubs and yards, and truck to rail transfer facilities. Idaho currently has a total 1,710 miles of active
track, 996 miles of which are Class I railways owned by Union Pacific Railroad (UPRR) and Burlington Northern Santa Fe Railway (BNSF).

UPRR has the far greater presence in Idaho, with 877 miles of active rail lines, trackage rights for 89% of all lines in the state, and several feeder lines leased to smaller local railroads. It connects all the major southern cities in the state, and also serves north Idaho, with its line connecting to Spokane, Washington, and to the Canadian rail system at Eastport. It also owns a line running between Pocatello and Silver Bow, Montana, where connections are made with other carriers. UPRR also operates rail hubs in Pocatello and Nampa, with branch line connections.

BNSF owns 118 miles of active rail line in Idaho, with trackage rights on 458 miles of rail line. It offers east-west connectivity in north Idaho, between Washington and Montana. BNSF also operates a refueling center in Hauser. Approximately 30 trains are serviced daily, with locomotives receiving fuel and other services.7

Idaho has one Class II, or regional rail provider, Montana Rail Link, which owns 33 miles of rail line, and has trackage rights on 88 miles of rail line in Idaho. The balance of rail in Idaho is owned by nine (9) Class III, or short line providers, owning 680 miles of rail line and with trackage rights on 761 miles of rail line in Idaho.8 Figure 2-6 provides an overview of the rail network in Idaho, and Table 2-3 provides a summary of railroad mileage and trackage right by company.

The emphasis of Idaho’s railroad operations is two-fold: 1) the transcontinental system moving mostly containerized goods or single-unit trains through the state; and 2) the feeder lines for that system, which connects Idaho’s agricultural products and raw materials to the transcontinental system for delivery anywhere in the world. The profile of Idaho’s freight rail traffic confirms the network analysis. Most of Idaho’s freight rail traffic consists of through movements. According to 2010 Carload Waybill Sample (WB) data from the Surface Transportation Board (STB), 87% of all Idaho freight tonnage moving through the state neither originates nor terminates in Idaho.9 This amounts to 101,000 kilotons of freight in 2010 and, as described in Tables 2.4 and 2.5, 83 of the state’s 94 daily trains. Traffic which either originates or terminates in Idaho each encompass roughly 5% of all freight tonnage, with intra local traffic comprising 2%, reflecting the poor rail connectivity between northern Idaho and the southern valleys. This means that 98% of all freight traveling via rail in Idaho is moving either through, into, or out of the state10.
Figure 2-6. Idaho Rail Network by Track Ownership

Source: ITD, FRA, Oak Ridge Nat’l Lab., Railroads
Table 2-3. Idaho Railroad Mileage and Trackage Rights

<table>
<thead>
<tr>
<th>Company</th>
<th>Trackage Owned (mi.)</th>
<th>Trackage Rights (mi.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNSF Railway Company</td>
<td>118.4</td>
<td>457.9</td>
</tr>
<tr>
<td>BNSF sub tot. - Transcontinental</td>
<td>101.1</td>
<td>101.1</td>
</tr>
<tr>
<td>Union Pacific Railroad (UPRR)</td>
<td>877.4</td>
<td>1,520.4</td>
</tr>
<tr>
<td>UPRR sub tot. - Transcontinental</td>
<td>438</td>
<td>438</td>
</tr>
<tr>
<td>Class I sub tot. - Transcontinental</td>
<td>539.6</td>
<td>539.6</td>
</tr>
<tr>
<td>Class I Total</td>
<td>995.8</td>
<td>1,978.3</td>
</tr>
<tr>
<td>Montana Rail Link (MRL)</td>
<td>33.5</td>
<td>82</td>
</tr>
<tr>
<td>Class II Total</td>
<td>33.5</td>
<td>82</td>
</tr>
<tr>
<td>Bountiful Grain and Craig Mountain Railroad (BGCM)</td>
<td>126.6</td>
<td>128.2</td>
</tr>
<tr>
<td>St. Maries River Railroad (STMA)</td>
<td>72.3</td>
<td>72.3</td>
</tr>
<tr>
<td>Class III sub tot. - Switching/Terminal Railroads</td>
<td>198.9</td>
<td>200.5</td>
</tr>
<tr>
<td>Boise Valley Railroad (BVRR)</td>
<td>42.1</td>
<td>60.6</td>
</tr>
<tr>
<td>Eastern Idaho Railroad (EIRR)</td>
<td>264.5</td>
<td>266.1</td>
</tr>
<tr>
<td>Great Northwest Railroad (GNRR)</td>
<td>4.3</td>
<td>4.3</td>
</tr>
<tr>
<td>Idaho Northern and Pacific Railroad (INPR)</td>
<td>101.3</td>
<td>157.8</td>
</tr>
<tr>
<td>Pend Oreille Valley Railroad (POVA)</td>
<td>25.7</td>
<td>28.7</td>
</tr>
<tr>
<td>United States Government (USG)</td>
<td>24.3</td>
<td>24.3</td>
</tr>
<tr>
<td>Washington & Idaho Railway (WIR)</td>
<td>19.1</td>
<td>19.1</td>
</tr>
<tr>
<td>Class III sub tot. - Local Railroads</td>
<td>481.3</td>
<td>560.9</td>
</tr>
<tr>
<td>Class III Total</td>
<td>680.2</td>
<td>761.4</td>
</tr>
<tr>
<td>Total Idaho Track</td>
<td>1,709.5</td>
<td></td>
</tr>
</tbody>
</table>

The average number of daily trains on each Class I line was analyzed based on information from BNSF and UPRR. Train volume values for the Class II and Class III lines were generated by using a combination of railroad company data, Class I company data, federal and local data, and railroad crossing data from the Federal Railroad Administration. As [Figure 2-7](#) illustrates, the busiest corridor in the state is in northern Idaho, where the BNSF Kootenai River Subdivision handles transcontinental traffic between the West Coast and Chicago. The corridor also contains the Montana Rail Link’s Fourth Subdivision, which works in concert with the BNSF Kootenai River Subdivision, and the UPRR’s international service to Canada via the Spokane Subdivision.

The UPRR Northwest Corridor operates a large number of trains, as does its north-south core service in the state on the UPRR Ogden and Montana Subdivisions. A majority of the short lines see less than a few daily trains, with the exception of portions the EIRR lines from Rupert to Minidoka and in central Idaho Falls, the BVRR, and Pend Oreille Valley line west of Sandpoint.
Rail Trading Partners

Rail provides a relatively inexpensive means of transporting large quantities of goods over long distances, and therefore can help Idaho reach markets that are economically unattractive for trucks. As Figure 2-8 shows, according to the FAF3 data, the key rail trading partners with Idaho include Salt Lake City, Nebraska, Los Angeles, and Oregon. There are also significant rail movements to and from farther away places like New York and Jacksonville, Florida. It is important to note the map would look significantly different had through traffic been included (FAF3 data limitations were discussed earlier in
Idaho Statewide Freight Study

this Report). Rail cars carrying heavy volumes of coal from Powder River Basin, for instance, will add greatly to rail traffic within Idaho. While through traffic does not contribute to Idaho’s economy, it does significantly affect the operation of the rail lines.

Figure 2-8. Top Trading Partners with Idaho – Rail Mode, Thousand Tons

Source: FAF3

Freight Flows by Railroad Class
The role of Class I railroads is magnified due to the manner in which Idaho’s rail network developed, as has been discussed. In every analysis, the presence of Class I transcontinental service is emphasized in the data. Tables 2.4 and 2.5 attempt to detail how these railroads move freight across the state. According to the STB WB, BNSF’s presence is almost exclusively through traffic without robust local services of any kind. Only 2% of the railroad’s freight tonnage either originates or terminates in Idaho. Its services are comprised nearly exclusively to move traffic through Idaho on its transcontinental line.

UPRR’s service, conversely, is more balanced. Despite also operating a transcontinental service, a core north-south route in the state, and a significant international connection, at most 65% of its traffic is not Idaho-bound or Idaho-generated. With strong local feeder lines such as the UPRR Dry Valley Subdivision
and the connections with the EIRR and BVRR, two short lines with strong local services, this distribution of its tonnage is logical.

The data from the waybill for the short lines is less logical, however. Most of the short line tonnage appears as through traffic, which is impossible given Idaho’s network. As a result, the WB may be adequate for outlining the role of Class I and Class II railroads in the state, but may not be accurate for Class III operators. The zeros in the columns for the Other Class I and Other classifications in the data indicate that these niche services are not available in Idaho and that any allocation of tonnage in their columns under through traffic could indicate trackage rights or errors.

Table 2-4. Freight Tonnage by Origin Railroad

<table>
<thead>
<tr>
<th>Railroad</th>
<th>Inbound</th>
<th>Outbound</th>
<th>Intra</th>
<th>Through</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNSF</td>
<td>267</td>
<td>317</td>
<td>4</td>
<td>72,782</td>
<td>73,370</td>
</tr>
<tr>
<td>UP</td>
<td>4,804</td>
<td>5,889</td>
<td>2,341</td>
<td>17,256</td>
<td>30,291</td>
</tr>
<tr>
<td>Other Class I</td>
<td>985</td>
<td>16</td>
<td>0</td>
<td>10,691</td>
<td>11,692</td>
</tr>
<tr>
<td>Other</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>632</td>
<td>732</td>
</tr>
<tr>
<td>MRL</td>
<td>91</td>
<td>0</td>
<td>0</td>
<td>42</td>
<td>133</td>
</tr>
<tr>
<td>Total</td>
<td>6,248</td>
<td>6,222</td>
<td>2,345</td>
<td>101,403</td>
<td>116,218</td>
</tr>
</tbody>
</table>

Source: STB Waybill 2010

Table 2-5. Freight Tonnage by Destination Railroad

<table>
<thead>
<tr>
<th>Railroad</th>
<th>Inbound</th>
<th>Outbound</th>
<th>Intra</th>
<th>Through</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNSF</td>
<td>308</td>
<td>592</td>
<td>4</td>
<td>73,889</td>
<td>74,793</td>
</tr>
<tr>
<td>UP</td>
<td>5,932</td>
<td>4,748</td>
<td>2,341</td>
<td>24,845</td>
<td>37,867</td>
</tr>
<tr>
<td>Other Class I</td>
<td>7</td>
<td>824</td>
<td>0</td>
<td>2,472</td>
<td>3,302</td>
</tr>
<tr>
<td>Other</td>
<td>0</td>
<td>59</td>
<td>0</td>
<td>196</td>
<td>255</td>
</tr>
<tr>
<td>Total</td>
<td>6,248</td>
<td>6,222</td>
<td>2,345</td>
<td>101,402</td>
<td>116,217</td>
</tr>
</tbody>
</table>

Source: STB Waybill 2010

Commodity Flow

According to the STB Waybill 2010 Data, cereal grains and non-metallic minerals comprise the top two non-through commodities flowing in Idaho over rail, with significant movements of other agricultural products and raw materials, such as wood products. These findings confirm the overall pattern found in the analyses of Idaho’s rail network and rail traffic profile. Those findings suggest that the state’s two transcontinental services are dominant in terms of network distribution and traffic flows, yet the local lines which feed the transcontinental system carries Idaho’s agricultural bounty and raw materials onto system. When through traffic is added back into the commodity flow numbers, cereal grains remain predominant, but the other changes echo the overall pattern. For instance, mixed freight increases as a share of traffic from 0% to 10% and coal, of which Idaho has very little, increases to 14% when through traffic numbers are considered. Moreover, fertilizers, wood products, foodstuffs, and non-metallic minerals drop significantly when through train traffic is considered. Non-metallic minerals are the top
intra-Idaho commodity, while cereal grains are the most important inbound and outbound Idaho commodity in terms of tonnage. Table 2-6 goes into additional detail regarding commodity flows.

Table 2-6. Commodity Flows by Destination

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Inbound</th>
<th>Intra</th>
<th>Outbound</th>
<th>Through</th>
<th>Grand Total</th>
<th>Percent Total</th>
<th>% Total w/o Thru</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cereal Grains (including seed)</td>
<td>1,409</td>
<td>54</td>
<td>1,231</td>
<td>24,161</td>
<td>26,855</td>
<td>23%</td>
<td>18%</td>
</tr>
<tr>
<td>Coal</td>
<td>502</td>
<td></td>
<td>15,781</td>
<td>16,283</td>
<td></td>
<td>14%</td>
<td>3%</td>
</tr>
<tr>
<td>Other Agricultural Products, except for Animal Feed</td>
<td>272</td>
<td>465</td>
<td>15,431</td>
<td>16,168</td>
<td></td>
<td>14%</td>
<td>5%</td>
</tr>
<tr>
<td>Mixed Freight</td>
<td>03</td>
<td>02</td>
<td>12,008</td>
<td>12,012</td>
<td></td>
<td>10%</td>
<td>0%</td>
</tr>
<tr>
<td>Wood Products</td>
<td>76</td>
<td>46</td>
<td>932</td>
<td>5,102</td>
<td>6,168</td>
<td>5%</td>
<td>7%</td>
</tr>
<tr>
<td>Animal Feed and Products of Animal Origin, n.e.c.</td>
<td>730</td>
<td>160</td>
<td>4,997</td>
<td>5,887</td>
<td></td>
<td>5%</td>
<td>6%</td>
</tr>
<tr>
<td>Basic Chemicals</td>
<td>920</td>
<td>12</td>
<td>167</td>
<td>3,809</td>
<td>4,909</td>
<td>4%</td>
<td>7%</td>
</tr>
<tr>
<td>Fertilizers</td>
<td>416</td>
<td>12</td>
<td>755</td>
<td>3,427</td>
<td>4,610</td>
<td>4%</td>
<td>8%</td>
</tr>
<tr>
<td>Other Prepared Foodstuffs, and Fats and Oils</td>
<td>214</td>
<td>66</td>
<td>1,085</td>
<td>2,392</td>
<td>3,757</td>
<td>3%</td>
<td>9%</td>
</tr>
<tr>
<td>Non-Metallic Minerals, n.e.c.</td>
<td>221</td>
<td>2,140</td>
<td>67</td>
<td>900</td>
<td>3,329</td>
<td>3%</td>
<td>16%</td>
</tr>
<tr>
<td>Pulp, Newsprint, Paper, and Paperboard</td>
<td>273</td>
<td>196</td>
<td>1,712</td>
<td>2,181</td>
<td></td>
<td>2%</td>
<td>3%</td>
</tr>
<tr>
<td>Coal and Petroleum Products, n.e.c.</td>
<td>231</td>
<td>21</td>
<td>1,502</td>
<td>1,754</td>
<td></td>
<td>2%</td>
<td>2%</td>
</tr>
<tr>
<td>Alcoholic Beverages</td>
<td>27</td>
<td>17</td>
<td>1,422</td>
<td>1,465</td>
<td></td>
<td>1%</td>
<td>0%</td>
</tr>
<tr>
<td>Waste and Scrap</td>
<td>87</td>
<td>379</td>
<td>928</td>
<td>1,394</td>
<td></td>
<td>1%</td>
<td>3%</td>
</tr>
<tr>
<td>Motorized and Other Vehicles (including parts)</td>
<td>07</td>
<td>1,214</td>
<td>1,221</td>
<td></td>
<td></td>
<td>1%</td>
<td>0%</td>
</tr>
<tr>
<td>Other</td>
<td>861</td>
<td>14</td>
<td>744</td>
<td>6,619</td>
<td>8,238</td>
<td>7%</td>
<td>11%</td>
</tr>
<tr>
<td>Total</td>
<td>6,248</td>
<td>2,345</td>
<td>6,222</td>
<td>101,403</td>
<td>116,218</td>
<td>100%</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: STB Waybill 2010

Air Cargo

Air cargo is a small but critical component of the freight system in Idaho, making up less than one percent (1%) of total freight flows by weight, and two percent (2%) of freight flows by value. Air cargo services provide expedited services for high-value shipments that many businesses and industries rely on to remain competitive.

According to the 2010 Idaho Airport System Plan (IASP), while scheduled and/or charter air cargo flight services are not a system plan objective for any airport, this type of activity is still recognized as having significant economic value. Of the 75 airports included in the IASP, 27% report some type of air cargo activity. Four types of air cargo carriers include integrated express carriers, all-cargo operators, commercial air carriers, and ad hoc cargo operators. Integrated express carriers (such as UPS and Fed-
Ex) operate a fleet of aircraft, trucks, and couriers. All cargo operators such as Atlas Air Cargo offer wide-body jet service from one airport to another. Commercial air carriers such as Delta and United are passenger airlines that move cargo in the bellies of their aircraft. Ad hoc carriers offer unscheduled, charter freight operations between cities. According to the IASP, air cargo/freight activities in Idaho are provided by the following carriers:

- Ameriflight (UPS feeder) serving Boise, Idaho Falls, Lewiston, Pocatello, and Twin Falls;
- Empire Airways (Fed-Ex feeder) serving Idaho Falls and Lewiston;
- Fed-Ex serving Boise;
- UPS serving Boise; and,
- Worldwide Flight Express (Fed-Ex feeder) serving Boise, Coeur d’Alene, Idaho Falls, Lewiston, Pocatello, and Twin Falls.14

Boise Airport is the primary provider of air cargo service in Idaho, with six (6) main line and regional airlines providing service through the airport, as well as nearly 50 motor freight trucking companies, 30 air freight and package express companies, and several air courier services monthly. According to the airport, the air cargo market has coincided with the high tech manufacturing that has found a home in Boise Valley. Major freight carriers providing service to and through the Boise airport include Fed Ex, UPS, and Western Air Express.15 In 2011, approximately 41,500 tons of cargo freight were shipped through the Boise Airport, with approximately 54% inbound, vs. 46% outbound. Of that, approximately 6,750 tons were air exports, representing about 16% of all air cargo shipped through Boise Airport.16

Major Air Trading Partners
Because the air cargo operations form only a small amount of total freight movement in the state, it is only reasonable to assume that most cargo is destined for a few locations, and vice versa. The FAF3 data shows that on the inbound side, almost 70 percent of all air cargo originated from Louisiana, and another 10 percent originated from Arizona. On the outbound side more than 50 percent of all air cargo is destined for Hawaii, with another 10 percent destined for Mississippi.

In terms of air cargo exports, Boise Airport reports that the major export markets are in Asia and Australia. Over 70% of Boise’s air cargo exports leave the country via San Francisco International Airport, Los Angeles International Airport, New Orleans, Seattle-Tacoma International Airport, and Anchorage, Alaska.17

Top Air Commodities
According to the FAF3 data, some of the top commodities moved by air statewide include wood products (26%), miscellaneous manufacturing products (22%), other agricultural products (14%), and electronics (13%). All wood products and the majority of manufacturing products are transported inbound by air. Other agricultural products and electronics are mostly outbound and represent the products of the agriculture and manufacturing industry within the state.
Boise Airport provided data regarding its top exports commodities, as summarized in Table 2-7.

Table 2-7. Boise Airport’s Top Export Commodities, by Weight (2011)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Description</th>
<th>Tons</th>
<th>% Share</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Industrial Machinery, including Computers</td>
<td>1,189</td>
<td>17.6%</td>
</tr>
<tr>
<td>2</td>
<td>Electrical Machinery, e.g. sound equipment, TV equipment, parts</td>
<td>1,076</td>
<td>15.9%</td>
</tr>
<tr>
<td>3</td>
<td>Oil, seeds, miscellaneous grain, fruit, plant, etc.</td>
<td>763</td>
<td>11.3%</td>
</tr>
<tr>
<td>4</td>
<td>Beverages, spirits and vinegar</td>
<td>406</td>
<td>6.0%</td>
</tr>
<tr>
<td>5</td>
<td>Optic, photo, medical or surgical instruments</td>
<td>385</td>
<td>5.7%</td>
</tr>
<tr>
<td>6</td>
<td>Dairy products, birds eggs, honey, edible animal parts</td>
<td>307</td>
<td>4.6%</td>
</tr>
<tr>
<td>7</td>
<td>Edible vegetables & certain roots and tubers</td>
<td>259</td>
<td>3.8%</td>
</tr>
<tr>
<td>8</td>
<td>Prepared vegetables, fruit, nuts or other plant parts</td>
<td>252</td>
<td>3.7%</td>
</tr>
<tr>
<td>9</td>
<td>Photographic or cinematographic goods</td>
<td>161</td>
<td>2.4%</td>
</tr>
<tr>
<td>10</td>
<td>Paper & paperboard articles, including paper pulp articles</td>
<td>143</td>
<td>2.1%</td>
</tr>
<tr>
<td></td>
<td>Other</td>
<td>1,811</td>
<td>26.8%</td>
</tr>
<tr>
<td></td>
<td>Total, All Commodities</td>
<td>6,751</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: Boise Airport

Port of Lewiston

Located at the confluence of the Snake and Clearwater Rivers, the Port of Lewistown is located 465 miles upriver from the Pacific Ocean. It is the most inland sea port on the west coast, and Idaho’s only water port. The Port of Lewiston provides essential intermodal transportation options, particularly for the transportation-challenged agribusinesses located in central Idaho.

Barge transport is an excellent means of freight transport, particularly for low-value, bulk commodities such as timber, grain, and other agricultural products, because of its cost effectiveness, and for oversized cargo, because of the logistical challenges. From a fuel efficiency standpoint, a ton of commodity can be moved 514 miles on one gallon of fuel on a loaded barge, nearly five times as fuel efficient as truck transport. From an emissions standpoint, barge navigation produces only 20 percent of the hydrocarbon emissions of rail, and only 14 percent of hydrocarbon emissions of trucking. For carbon monoxide emissions, barge navigation is 31 percent of the emissions of rail transport, and only 11 percent of the emissions of truck transport. Barge navigation produces only 29 percent of nitrous oxide emissions that rail transport produces, and only 5 percent of truck.

The port offers intermodal freight service via barge, rail, and truck. The Port is served by both barge and tug lines, and offers container and bulk services from the Port of Portland via the Snake and Columbia Rivers. The Port is served by five truck lines, with truck transport provided via US-12 to the east, and US-95 for north-south freight shipment. Great Northern Short Line connects the Port to UPRR and BNSF main lines.
Idaho Statewide Freight Study

The Port hosts a 150,000 square foot distribution center with 10 truck bays and 5 rail bays, and offers indoor and outdoor warehousing and storage for forest and paper products, manufactured goods, and other agricultural products. It operates a container yard and offers facilities for loading and unloading both general and containerized (20’ and 40’ containers) cargo from barges. The Port can handle oversized, heavy roll-on/roll-off (RO-RO) barge cargo, and can serve as an RO-RO interchange. With a permit, the oversized cargo can move along US-12 through Idaho into Montana without height restrictions. Grain is the Port’s chief commodity, and the Port is partnered with two grain facilities, Lewis Clark Terminal and CLD Pacific Grain, LLC, with a combined grain storage capability of 6.2 million bushels.\(^{18}\)

Between 7,000 and 10,000 containers of exports are shipped from the Port of Lewiston to the Port of Portland by barge each year.\(^ {19}\) Containerized traffic is dependent upon the availability of loading at the Port of Portland. When container space in Portland is not available, truck drayage to Seattle/Tacoma is required. The recently completed dredging of the Snake River to 43 feet will allow larger containerships to reach Portland, increasing the number of container slots available for loading. This will allow for an increase in containerized freight moving out of Lewiston.\(^ {20}\)

According to Port of Lewiston shipping records, in 2010, bulk wheat shipments from Idaho’s only water port totaled 585,373 tons. In addition, 4,061 TEUs were shipped in 2010, though no weight (or value) was available for those container shipments. Figure 2-9 provides historical data on bulk grain shipments from the Port of Lewiston, Figure 2-10 shows the historical container shipments by TEU, and Figure 2-11 shows the breakdown of commodities shipped via container through the port.\(^ {21}\)
Figure 2-9. Port of Lewiston Bulk Wheat Shipments

![Port of Lewiston Bulk Wheat Shipments 2005 - 2011]

Figure 2-10. Port of Lewiston Container Shipments

![Port of Lewiston TEU Container Shipments 2005 - 2011]
Pipeline Overview
Pipelines carry crude oil, oil products, coal, natural gas, and other forms of energy source in large quantities underground. In Idaho, pipelines make up 19 percent of total freight flows by volume and 12 percent by value, and therefore constitute a significant mode of transportation for the state. While it is not common to think of pipelines as a carrier of coal products, they are used to carry coal slurry, as well as lubricating oils and greases, kerosene, other refined petroleum oils, liquefied natural gas, propane, butane, and other liquefied and gaseous hydrocarbons, which fall within the same commodity classification as coal. Some of the key origin-destinations of commodities moved by pipelines, as well as the key commodities themselves are analyzed using FAF3 data and discussed below.

Major Pipeline Trading Partners
Since pipelines carry energy sources, the key inbound and outbound regions of pipeline traffic are located along the Gulf Coast that house major oil processing centers. Texas is responsible for more than 35 percent of all pipeline commodities moved into Idaho, with the remaining flows coming from Louisiana, Oklahoma, and New York. On the outbound side about 21 percent of all flows are destined for Texas, with the remainder going to Louisiana, New York, and Florida.

Top Pipeline Commodities
Pipelines in Idaho carry almost exclusively “coal, not elsewhere classified”, a catch-all category that includes lubricating oils and greases, kerosene, other refined petroleum oils, liquefied natural gas,
propane, butane, other liquefied and gaseous hydrocarbons, coke and semi coke, petroleum asphalt, other asphaltic mixtures, and other coal products. Some of the other commodities moved in pipelines include outbound crude petroleum, inbound fuel oils, and inbound gasoline for use by vehicles.

Table 2-8. Idaho Commodities Transported by Pipeline, 2010, Thousands of Tons

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Inbound</th>
<th>Outbound</th>
<th>Intra</th>
<th>Total</th>
<th>Percent Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal - n.e.c.¹</td>
<td>1,583</td>
<td>16,913</td>
<td>15,060</td>
<td>33,555</td>
<td>99.8%</td>
</tr>
<tr>
<td>Crude petroleum</td>
<td>-</td>
<td>12</td>
<td>-</td>
<td>12</td>
<td>0.04%</td>
</tr>
<tr>
<td>Fuel oils</td>
<td>7</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>0.02%</td>
</tr>
<tr>
<td>Gasoline</td>
<td>36</td>
<td>-</td>
<td>-</td>
<td>36</td>
<td>0.1%</td>
</tr>
<tr>
<td>Total</td>
<td>1,625</td>
<td>16,925</td>
<td>15,060</td>
<td>33,610</td>
<td>100%</td>
</tr>
</tbody>
</table>

Source: FAF3

Other Intermodal Facilities

The state does not contain any large rail classification yards or intermodal container yards. The majority of intermodal terminals in Idaho consist of grain companies that use rail transport, in both northern and southern Idaho, and several truck terminals providing logistics services located in southern Idaho. Existing intermodal facilities in Idaho are identified in Figure 2-12. Other notable intermodal facilities in neighboring states include:

Spokane – Inland Empire Distribution Systems, Inc. (IEDS)

The closest intermodal facility to Class I rail lines in north Idaho is Inland Empire Distribution System, Inc. (IEDS), a transloading facility located in the Spokane Industrial Park, approximately 2 miles north of I-90, and immediately south of SR-290 (which becomes SH-53 in Idaho). The IEDS facility, which includes 400,000 sq. ft. of warehouse space, 120,000 sq. ft of uncovered space, an overhead crane, a 16-ton forklift, and segregated facilities for consumer, chemical, industrial, and forest products. Both BNSF and UPPR provide service to facility.²²

Salt Lake City Intermodal Facility

In southern Idaho, the closest intermodal terminal is located in over 300 miles from Boise, in Salt Lake City. The Salt Lake City Intermodal Terminal is owned and operated by UPRR. The facility provides four (4) loading/unloading tracks, with capacity to handle 60 intermodal double stack rail cars. Five storage tracks were built to stage up to 90 additional intermodal double-stack rail cars and one mobile packer to lift containers.²³

¹ “Coal, not elsewhere classified” includes lubricating oils and greases, kerosene, other refined petroleum oils, liquefied natural gas, propane, butane, other liquefied and gaseous hydrocarbons, coke and semi coke, petroleum asphalt, other asphaltic mixtures, and other coal products.
Figure 2-12: Idaho Rail Intermodal Network

Source: Consultant Analysis of NTAD Intermodal Facilities Database
2.3 Transported Goods

Idaho's Top Commodities

In terms of revenue generated, Idaho’s top five agricultural products are dairy products, cattle and calves, potatoes, wheat, and hay. Electrical equipment is Idaho’s top manufactured product, with food processing ranking second. Other leading manufactured products are lumber and wood products, machinery, chemicals, printed materials and fabricated metal products. The mining sector is supported by silver, phosphate rock, and gold. Service industries make up the largest portion of Idaho’s economy with the wholesale (groceries, petroleum and wood products) and retail (automobile dealerships, food stores and restaurants) trade industries leading in the service sector.24 Table 2-9 shows Idaho’s top ten freight commodities by value, as based upon Commodity Flow Survey data reported as part of FAF3. Table 2-10 shows Idaho’s top ten freight commodities by weight.

Table 2-9. Idaho’s Top Ten Freight Commodities by Value

<table>
<thead>
<tr>
<th>Commodity</th>
<th>Within</th>
<th>From</th>
<th>To</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coal-not elsewhere classifiedii</td>
<td>$5,086</td>
<td>$6,266</td>
<td>$3,862</td>
</tr>
<tr>
<td>Machinery</td>
<td>$4,767</td>
<td>$4,161</td>
<td>$2,488</td>
</tr>
<tr>
<td>Cereal grains</td>
<td>$2,572</td>
<td>$3,003</td>
<td>$2,539</td>
</tr>
<tr>
<td>Other agricultural productsiii</td>
<td>$2,374</td>
<td>$2,777</td>
<td>$2,089</td>
</tr>
<tr>
<td>Electronics</td>
<td>$1,831</td>
<td>$1,860</td>
<td>$1,994</td>
</tr>
<tr>
<td>Other foodstuffsiv</td>
<td>$1,495</td>
<td>$1,499</td>
<td>$1,551</td>
</tr>
<tr>
<td>Live animals/fish</td>
<td>$1,397</td>
<td>$1,137</td>
<td>$1,430</td>
</tr>
<tr>
<td>Motorized vehicles</td>
<td>$1,323</td>
<td>$1,028</td>
<td>$1,178</td>
</tr>
<tr>
<td>Wood products</td>
<td>$1,171</td>
<td>$857</td>
<td>$1,150</td>
</tr>
<tr>
<td>Mixed freight</td>
<td>$1,064</td>
<td>$783</td>
<td>$1,103</td>
</tr>
</tbody>
</table>

Source: FAF3

ii Aka “Other Coal and Petroleum Products” category in the commodity classification of Standard Classification of Transported Goods (STCG). Coal - n.e.c. includes lubricating oils and greases, kerosene, other refined petroleum oils, liquefied natural gas, propane, butane, other liquefied and gaseous hydrocarbons, coke and semi coke, petroleum asphalt, other asphaltic mixtures, and other coal products.

iii Other agricultural products includes vegetables (fresh, chilled or dried), fruit and nuts (fresh, chilled or dried), other agricultural products

iv Other foodstuff includes dairy products; processed or prepared vegetables, fruits, nuts and juices; coffee, tea and spices; animal and vegetable fats and oils; sugars, confectionery, cocoa; other edible preparations; and, non-alcoholic beverages and ice.
Table 2-10. Idaho’s Top Ten Freight Commodities by Weight

<table>
<thead>
<tr>
<th>Idaho’s 2010 Top Ten Commodities by Weight, All Modes</th>
<th>In Thousand Tons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commodity</td>
<td>Within</td>
</tr>
<tr>
<td>Cereal grains</td>
<td>25,891</td>
</tr>
<tr>
<td>Coal-not elsewhere classified</td>
<td>15,825</td>
</tr>
<tr>
<td>Logs</td>
<td>7,443</td>
</tr>
<tr>
<td>Other agricultural products</td>
<td>7,044</td>
</tr>
<tr>
<td>Gravel</td>
<td>6,819</td>
</tr>
<tr>
<td>Nonmetal mineral products</td>
<td>4,271</td>
</tr>
<tr>
<td>Waste/scrap</td>
<td>3,960</td>
</tr>
<tr>
<td>Animal feed</td>
<td>3,016</td>
</tr>
<tr>
<td>Nonmetallic minerals</td>
<td>2,919</td>
</tr>
<tr>
<td>Wood products</td>
<td>2,154</td>
</tr>
</tbody>
</table>

Source: FAF3

Table 2-11 lists the key commodities that were identified by stakeholders at regional forums held in each of ITD’s six districts.

Table 2-11. Key Idaho Commodities by Region

<table>
<thead>
<tr>
<th>Key Commodities in Idaho’s Transportation Districts</th>
</tr>
</thead>
<tbody>
<tr>
<td>District 1 – North Idaho</td>
</tr>
<tr>
<td>District 2 – North Central Idaho</td>
</tr>
<tr>
<td>District 3 – Southwest Idaho</td>
</tr>
<tr>
<td>District 4 – South Central Idaho</td>
</tr>
<tr>
<td>District 5 – Southeast Idaho</td>
</tr>
<tr>
<td>District 6 – East Idaho</td>
</tr>
</tbody>
</table>

Freight System Total Tons by Direction and Mode

Figure 2-13 shows total freight flows by weight, direction, and mode in Idaho, as based upon FAF3 data. *Table 2-12* shows the same information, along with percent shares. In terms of mode, truck is the dominant mode of transportation, carrying about 64 percent of freight by weight into, out of, and within Idaho. Pipelines are a key freight mode as well, carrying about 19 percent of all freight moved, with rail following with 14 percent.
In terms of directions, about half of all freight volumes are dominated by intra-state freight. Because freight movement within the state is expected to be short-distance, the majority of the freight is carried by trucks with most of the remainder transferred by pipelines and other modes. It is important to note that due to data limitations mentioned above, all FAF3 analysis does not include through-freight flows, that is, freight flows that neither originate nor end in Idaho. Through freight flows do not contribute or affect a state’s economy, they contribute significantly to transportation systems performance and the formation of bottlenecks.

Figure 2-13. Freight Modal Split by Weight by Direction, 2010, Thousands of Tons (Port of Lewiston shipments are listed under Multiple Modes & Mail)

<table>
<thead>
<tr>
<th>Mode</th>
<th>Inbound</th>
<th>Intra-State</th>
<th>Outbound</th>
<th>Total</th>
<th>% Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>8</td>
<td>0</td>
<td>5</td>
<td>12</td>
<td>0%</td>
</tr>
<tr>
<td>Multiple modes & mail</td>
<td>1,444</td>
<td>92</td>
<td>1,557</td>
<td>3,094</td>
<td>2%</td>
</tr>
<tr>
<td>Other and unknown</td>
<td>1,189</td>
<td>3,314</td>
<td>123</td>
<td>4,626</td>
<td>3%</td>
</tr>
<tr>
<td>Pipeline</td>
<td>1,625</td>
<td>15,060</td>
<td>16,925</td>
<td>33,610</td>
<td>19%</td>
</tr>
<tr>
<td>Rail</td>
<td>12,489</td>
<td>968</td>
<td>11,080</td>
<td>24,537</td>
<td>14%</td>
</tr>
<tr>
<td>Truck</td>
<td>26,768</td>
<td>70,763</td>
<td>17,605</td>
<td>115,136</td>
<td>64%</td>
</tr>
<tr>
<td>Water</td>
<td>14</td>
<td>33</td>
<td>47</td>
<td>94</td>
<td>0%</td>
</tr>
<tr>
<td>Total (Tons)</td>
<td>43,538</td>
<td>90,197</td>
<td>47,328</td>
<td>181,063</td>
<td>100%</td>
</tr>
<tr>
<td>Total (%)</td>
<td>24%</td>
<td>50%</td>
<td>26%</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Source: FAF3

February 5, 2013 Page 2-30
One of the shortcomings of the FAF3 data is that much of Idaho’s water mode data is actually aggregated in the category of “multiple modes & mail”. According to Port of Lewiston shipping records, in 2010, bulk wheat shipments from Idaho’s only water port totaled 585,373 tons, more than 10-fold the volume reported in FAF3 data for all water shipments. In addition, 4,061 TEUs were shipped, with 84% of those carrying pulses, 14% carrying paper products, and the balance carrying grains. No weight (or value) was available for the container shipments.25

Similarly, the air mode also appears to be under-represented, with a portion of the air freight reflected as “multiple modes and mail”. According to Boise Airport, in 2010, just over 80 million pounds, or 40,000 tons of air freight came through Boise Airport, four fold the volume reported in FAF3 for air freight statewide.26

In addition to looking at freight flows by weight, freight flows can be examined by value. While weight translates to the conditions of the infrastructure (e.g. due to wear and tear by heavy loads), the value relates more to systems performance (e.g. time savings). High value goods are typically carried by modes that offer faster service in small quantities (air, truck, intermodal); while low value goods are carried in large quantities by modes that offer relatively slower service (carload rail and barge).

Within the FAF framework, the multiple modes and mail category includes shipments by intermodal rail, intermodal water, and mail. Intermodal rail shipments include containers and trailer-on-flatcar shipments, while intermodal water includes all container shipments by barge, and mail includes parcel delivery, US Postal Service, and couriers. Intermodal container service is one of the most important aspects of freight transportation today. Intermodal containers allow for seamless transfer of goods, especially high value consumer goods between ship, rail, and truck efficiently, in less time and for less money, and therefore have created significant transformations along the logistics supply chain. Even though our dataset cannot capture intermodal freight activities exclusively, the multiple modes and mail category offers sufficient information for us to draw conclusions, since mail is understood to make up a small part of the category.

As shown on Figure 2-14 and Table 2-13, the relative share of intermodal container in terms of value is greater than that based on weight, at 12 percent. Truck share increased slightly, while shares of freight included in water, pipeline, and rail modes are proportionally less. From a value perspective, almost all inbound movements are made by truck and intermodal rail, outbound movements are made by truck, pipeline, and intermodal rail, and intra-states movements are made almost exclusively by truck and some pipeline.
Table 2-13. Freight Modal Split by Value by Direction, 2010, Millions of Dollars

<table>
<thead>
<tr>
<th>Mode</th>
<th>Inbound</th>
<th>Intra-State</th>
<th>Outbound</th>
<th>Total</th>
<th>% Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air (include truck-air)</td>
<td>942</td>
<td>8</td>
<td>1,118</td>
<td>2,068</td>
<td>2%</td>
</tr>
<tr>
<td>Multiple modes & mail</td>
<td>6,456</td>
<td>1,022</td>
<td>4,402</td>
<td>11,880</td>
<td>12%</td>
</tr>
<tr>
<td>Other and unknown</td>
<td>815</td>
<td>646</td>
<td>503</td>
<td>1,964</td>
<td>2%</td>
</tr>
<tr>
<td>Pipeline</td>
<td>596</td>
<td>4,517</td>
<td>6,102</td>
<td>11,215</td>
<td>12%</td>
</tr>
<tr>
<td>Rail</td>
<td>1,373</td>
<td>161</td>
<td>3,177</td>
<td>4,711</td>
<td>5%</td>
</tr>
<tr>
<td>Truck</td>
<td>21,710</td>
<td>26,720</td>
<td>15,175</td>
<td>63,605</td>
<td>67%</td>
</tr>
<tr>
<td>Water</td>
<td>5</td>
<td>12</td>
<td>17</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Total (Tons)</td>
<td>31,897</td>
<td>33,075</td>
<td>30,488</td>
<td>95,460</td>
<td>100%</td>
</tr>
<tr>
<td>Total (%)</td>
<td>33%</td>
<td>35%</td>
<td>32%</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>

Source: FAF3

Multiple modes and Mail includes Port of Lewiston shipments

Figure 2-14. Freight Modal Split by Value by Direction, 2010, Millions of Dollars, Not Including Port of Lewiston and Boise Airport

Source: FAF3

Multiple modes and Mail includes Port of Lewiston shipments

2.4 Economic/Institutional Framework

Idaho’s Economic Environment

Economic growth, as measured by population changes, as well as the growth of industries and businesses, provides an indication of long-term freight transportation demand. Idaho ranks fourth
nationally in percentage of population growth, experiencing a 21 percent increase between April 2000 and April 2010. Understanding how the freight network powers the Idaho economy will assist decision-makers in identifying how freight needs and issues impact local industries, and enable them to develop effective solutions to freight transportation problems. Moreover, the institutional environment in which freight operates can significantly affect freight demand, but also how and what investment are made to the freight system.

Population growth implies more economic activity, and hence more freight activity. As Figure 2-15 shows, within Idaho, the key population centers are located around the interstate corridors in southern Idaho, and in the northern panhandle. These areas contain key freight generators and activity centers that are closely linked to, and rely upon, freight transportation for success. In addition, Spokane, Washington, which borders Idaho, is a significant population center that influences freight movement in northern Idaho. According to US Census, in 2010, Spokane County had a population of 417,939; notably higher than the population of Ada County (300,904), which is the most populous county in Idaho.

In addition to overall population growth, the migration from rural to urban Idaho continued between 2000 and 2010. Eighty percent of the state’s population growth over the decade occurred in eleven Idaho counties: Idaho, Ada, Canyon, Kootenai, Bonneville, Twin Falls, Madison, Bannock, Jefferson, Teton, and Bonner. This may impact the freight and supply chain system in the state in ways such as shifting goods movement patterns and consolidating distribution centers.

In addition to population, employment and Gross Domestic Product (GDP) are key economic indicators. Gross Domestic Product (GDP) for Idaho is a measure of total economic output for sectors; this output is calculated as the sum of incomes earned by labor and capital and the costs incurred in the production of goods and services. Employment changes are generally proportional to economic changes in that as industries expand or contract, they need to either employ additional people to accommodate growth or shed jobs to try to make up for economic loss. However, using employment figures alone can mask important trends such as increased productivity and efficiency. Therefore, our freight system overview considers both indicators.
As shown in Figure 2-16, Idaho’s GDP has experienced varying degrees of change. Between 2002 and 2010 the GDP grew from about $40,000 million to $55,000 million. The GDP took a hit in 2009 but quickly recovered in 2010. Adjusted for inflation, Idaho’s GDP was up 2 percent in 2010 after a 3.4 percent decline in 2009. Despite the recession, Idaho’s real GDP (adjusted for inflation), grew 28.6
percent over the last decade, the eighth highest growth rate in the nation and 12 points higher than the national growth.

On the other hand, employment has been volatile over the past decade. After a steady increase in employment from 2002 to 2007, it took a hit in 2008 and 2009, dropping nearly 6 percent, and continued to decline in 2010. Two industries contributed most significantly to the decline in employment from 2007 to 2009: Construction and manufacturing. The construction industry experienced a 33.5 percent decline and the manufacturing sector experienced an 18 percent decline, significantly more than any other sector in Idaho.

It is not surprising that these two sectors are the ones most affected by the recession. Construction industries are usually the first to get into a recession and the last to get out. This is especially true for this recession, as it is tied to a boom and bust housing market. For the manufacturing sector, while many possible explanations exist for the decline in employment, one explanation can be due to efficiency gains. As the recession hit, it is likely that companies improved their business processes so that more automation, and less workers, are required. Despite these declining trends in these two sectors; Idaho’s steady growth in GDP in the past decade reveals a healthy economy, which will affect the demand for freight services.

Figure 2-16. Employment and GDP Trends of All Industries in Idaho, 2002-2010

![Employment and GDP Trends of All Industries in Idaho, 2002-2010](image)

Figure 2-17 corroborates the connection between freight activity and economic activity above; as it shows that freight dependent industries (those industries that rely on transportation to receive raw supplies, to send refined or finished products to markets, or to provide a service; many are resource-intensive industries or transportation services) experienced a higher percentage decline in employment than other industries. The 2010 employment levels shown on the figure is even lower than 2002 levels.
One important question to ask is how much each freight-dependent sector contributes to Idaho’s economy. To do this we can breakdown GDP (output) by service-providing and freight-dependent sectors. Service-providing sectors are those sectors that rely primarily on providing services to make profits, and therefore they do not use the freight system significantly. Freight-dependent sectors are those that rely on transportation to receive raw supplies and to send their finished product to market. Therefore, from a freight transportation system point of view, the freight-dependent industries are more relevant.

The pie charts shown in Figure 2-18 details the total output by industry sectors, and freight-dependent vs. service sectors. As we can see, freight-dependent sectors make up about 42 percent of the total output, which is on par with national averages. Within the freight-dependent sector, manufacturing, retail trade, and wholesale contributes the most to the state’s GDP. Some of the key manufacturing sectors include wood products, computer and electronic products, and food product manufacturing.

In addition, the agriculture sector in Idaho contributes significantly more to the state’s GDP than in most other US states, indicating that Idaho is a highly agriculture-centric state.
Idaho’s Economic Development Goals
Understanding Idaho’s vision for economic growth is essential to aligning Idaho’s freight system with the broader goal of economic vitality.

Project 60
Project 60 is a comprehensive initiative to grow Idaho’s Gross Domestic Product from $51.5 billion to $60 billion. Project 60 focuses on three key goals:

- Fostering systemic growth;
- Recruiting new companies to Idaho; and,
- Encouraging foreign investment in Idaho.

Among the strategies identified to foster growth, Project 60 identifies the need to support business with infrastructure, including transportation and technical. Targeted foreign markets for expansion include Canada, Asia, and Mexico. In general, targeted industries for growth and recruitment include:

- Energy;
- Recreation Technology;
- Manufacturing;
- Aeronautics; and,
- Technology.30
Strategic planning for Project 60, including identification of specific target industries, is just getting underway. In the future, transportation decisions and investments in support of the goals of Project 60 may be based on the needs of target industries seeking to relocate and/or expand operations in Idaho.

Agriculture

Agribusiness is a critical component of Idaho’s economy, both now and in the future, and a major stakeholder in the freight system. By weight, agricultural products, including cereal grains and animal feed, represent approximately 42% of all commodities moved by trucks in Idaho, and 38% of all outbound truck shipments in 2010.

In its 2010 Annual Report, the Idaho Department of Agriculture recognizes that Idaho’s economic well-being is “forever tied to the health of its farming and ranching”. Goals listed for the agency that are relevant to the Freight Study include:

- Improving domestic and international transportation systems for agricultural products; and,
- Increasing agricultural exports through particularly to markets in Mexico, Taiwan, and China.

Trading Partners – Domestic

In addition to understanding inbound and outbound traffic flows, it is important to understand where goods are coming from and flowing to within the Freight network. FAF3 data was used to identify the key domestic trading partners with Idaho. Figure 2-19 shows the top trading partners graphically while Tables 2-14 and 2-15 provide more detailed information on the top trading states and FAF zones respectively.

On the outbound side, the key trading partner states include Oregon and Washington, each making up more than 10 percent of the total trading volumes. Other top outbound states include Montana, Texas, and California. The key outbound FAF metro regions include the remainder of Washington (excluding Seattle) and Portland, Oregon. Some of the top outbound commodities to Montana include cereal grains, other agriculture products, and fertilizers; commodities to Washington include natural sands, gravel, and cereal grains; commodities to Portland include fertilizers and cereal grains; and commodities to the remainder of Oregon include fertilizers, waste, and scrap.

On the inbound side, the key trading partner states include Montana, Utah, and Washington, each making up more than 20 percent of total inbound commodities. The key FAF metro regions include Salt Lake City and the remainder of Washington. Top inbound commodities from Montana include cereal grains, followed by live animals and fish; the top commodity from Salt Lake City is basic chemicals; and the top commodity from the remainder of Washington is wood products.

Combining inbound and outbound as shown in Figure 2-19, we can see that a majority of trade occurs between Idaho and its neighboring states that have an agricultural base. Significant commodities also flow to and from metro areas with large consuming markets such as Los Angeles, Houston, and Dallas.
Figure 2-19. Top Trading Partners with Idaho – All Modes, Thousands of Tons

Table 2-14. Top State Trading Partners with Idaho by Direction – All Modes, 2010

<table>
<thead>
<tr>
<th>Destination State</th>
<th>Tons (000’s)</th>
<th>% Total</th>
<th>Origin State</th>
<th>Tons (000’s)</th>
<th>% Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oregon</td>
<td>6,972</td>
<td>15%</td>
<td>Montana</td>
<td>11,134</td>
<td>26%</td>
</tr>
<tr>
<td>Washington</td>
<td>5,215</td>
<td>11%</td>
<td>Utah</td>
<td>10,321</td>
<td>24%</td>
</tr>
<tr>
<td>Montana</td>
<td>4,483</td>
<td>9%</td>
<td>Washington</td>
<td>9,090</td>
<td>21%</td>
</tr>
<tr>
<td>Texas</td>
<td>4,324</td>
<td>9%</td>
<td>Oregon</td>
<td>4,052</td>
<td>9%</td>
</tr>
<tr>
<td>California</td>
<td>4,068</td>
<td>9%</td>
<td>California</td>
<td>1,068</td>
<td>2%</td>
</tr>
<tr>
<td>Utah</td>
<td>2,050</td>
<td>4%</td>
<td>Minnesota</td>
<td>1,027</td>
<td>2%</td>
</tr>
<tr>
<td>Louisiana</td>
<td>1,491</td>
<td>3%</td>
<td>Nebraska</td>
<td>859</td>
<td>2%</td>
</tr>
<tr>
<td>Illinois</td>
<td>1,480</td>
<td>3%</td>
<td>Texas</td>
<td>825</td>
<td>2%</td>
</tr>
<tr>
<td>New York</td>
<td>1,399</td>
<td>3%</td>
<td>Wyoming</td>
<td>790</td>
<td>2%</td>
</tr>
<tr>
<td>Florida</td>
<td>1,247</td>
<td>3%</td>
<td>Iowa</td>
<td>640</td>
<td>1%</td>
</tr>
<tr>
<td>Michigan</td>
<td>1,037</td>
<td>2%</td>
<td>Illinois</td>
<td>360</td>
<td>1%</td>
</tr>
<tr>
<td>Colorado</td>
<td>987</td>
<td>2%</td>
<td>Colorado</td>
<td>345</td>
<td>1%</td>
</tr>
<tr>
<td>Ohio</td>
<td>906</td>
<td>2%</td>
<td>North Dakota</td>
<td>253</td>
<td>1%</td>
</tr>
<tr>
<td>Other</td>
<td>11,668</td>
<td>25%</td>
<td>Other</td>
<td>2,775</td>
<td>6%</td>
</tr>
</tbody>
</table>

Source: FAF3
Table 2-15. Top FAF Zone Trading Partners with Idaho by Direction – All Modes, 2010

<table>
<thead>
<tr>
<th>Rank</th>
<th>Outbound</th>
<th>Inbound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Destination</td>
<td>Tons (000's)</td>
</tr>
<tr>
<td>1</td>
<td>Montana</td>
<td>4,483</td>
</tr>
<tr>
<td>2</td>
<td>Remainder of Washington</td>
<td>4,173</td>
</tr>
<tr>
<td>3</td>
<td>Portland OR-WA MSA (OR Part)</td>
<td>3,888</td>
</tr>
<tr>
<td>4</td>
<td>Remainder of Oregon</td>
<td>3,084</td>
</tr>
<tr>
<td>5</td>
<td>Los Angeles CA CSA</td>
<td>2,227</td>
</tr>
<tr>
<td>6</td>
<td>Salt Lake City UT CSA</td>
<td>1,667</td>
</tr>
<tr>
<td>7</td>
<td>Dallas-Fort Worth TX CSA</td>
<td>1,592</td>
</tr>
<tr>
<td>8</td>
<td>Houston TX CSA</td>
<td>1,218</td>
</tr>
<tr>
<td>9</td>
<td>Seattle WA CSA</td>
<td>1,043</td>
</tr>
<tr>
<td>10</td>
<td>Chicago IL-IN-WI CSA (IL Part)</td>
<td>1,037</td>
</tr>
<tr>
<td>11</td>
<td>New York NY-NJ-CT-PA CSA (NY Part)</td>
<td>1,023</td>
</tr>
<tr>
<td>12</td>
<td>Denver CO CSA</td>
<td>755</td>
</tr>
<tr>
<td>13</td>
<td>Remainder of California</td>
<td>753</td>
</tr>
<tr>
<td>14</td>
<td>San Francisco CA CSA</td>
<td>752</td>
</tr>
<tr>
<td>15</td>
<td>Detroit MI CSA</td>
<td>607</td>
</tr>
<tr>
<td>16</td>
<td>Remainder of Louisiana</td>
<td>580</td>
</tr>
<tr>
<td>17</td>
<td>Remainder of Texas</td>
<td>569</td>
</tr>
<tr>
<td>18</td>
<td>New Orleans LA CSA</td>
<td>560</td>
</tr>
<tr>
<td>19</td>
<td>New York NY-NJ-CT-PA CSA (NJ Part)</td>
<td>510</td>
</tr>
<tr>
<td>20</td>
<td>Phoenix AZ MSA</td>
<td>503</td>
</tr>
<tr>
<td>21</td>
<td>Atlanta GA-AL CSA (GA Part)</td>
<td>478</td>
</tr>
<tr>
<td>22</td>
<td>Mississippi</td>
<td>397</td>
</tr>
<tr>
<td>23</td>
<td>Remainder of Illinois</td>
<td>392</td>
</tr>
<tr>
<td>24</td>
<td>Iowa</td>
<td>391</td>
</tr>
<tr>
<td>25</td>
<td>Remainder of Utah</td>
<td>384</td>
</tr>
</tbody>
</table>
Trading Partners - International

Idaho Import Markets
In 2011, the U.S. Census Bureau identified Idaho’s top import markets as Singapore, Canada, Taiwan, China, and Japan. Top import commodities, by value, included electronic integrated circuits and circuit memories, parts and accessories for ADP machines, unwrought and semi-manufactured silver, precious metal ores and concentrates, and automatic data processing storage units.\(^{32}\)

Idaho Export Markets
According to the U.S. Census Bureau, in 2011, the top five export markets for Idaho were Canada, Taiwan, Singapore, South Korea, and China. By value, the top export commodities for Idaho were electronic integrated circuits and circuit memories, silver, lead ores, parts, and accessories for ADP machines, fertilizer, whey, milk and other milk products, photo plates and films, and pre-fabricated buildings.\(^{33}\) For the agricultural sector in Idaho, international exports represent a significant market share. In 2011, cash receipts for Idaho’s agricultural commodities totaled nearly $7.4 billion\(^{34}\), and of that, nearly $835 million were receipts from international exports, representing 11% of the total.\(^{35}\) Canada, Mexico, Japan, China, and Indonesia were Idaho’s top export markets for agriculture products and commodities.

NAFTA
It is also useful to look at the role Idaho plays in the North American trade, under the North American Free Trade Agreement (NAFTA). Knowing the top land ports of entry (this is a term used to describe international trade into and from the United States, not a functional term for a transportation facility) used by Idaho for exports and imports can be relevant for identifying key trading corridors and potential system performance issues.

<table>
<thead>
<tr>
<th>Rank</th>
<th>Outbound</th>
<th>Inbound</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Destination</td>
<td>Tons (000’s)</td>
</tr>
<tr>
<td>26</td>
<td>Remainder of Wisconsin</td>
<td>380</td>
</tr>
<tr>
<td>27</td>
<td>Minneapolis-St. Paul MN-WI CSA (MN Part)</td>
<td>361</td>
</tr>
<tr>
<td>28</td>
<td>Wyoming</td>
<td>351</td>
</tr>
<tr>
<td>29</td>
<td>Boston MA-NH CSA (MA Part)</td>
<td>349</td>
</tr>
<tr>
<td>30</td>
<td>Remainder of Michigan</td>
<td>345</td>
</tr>
<tr>
<td>Other</td>
<td>12,477</td>
<td>20.9%</td>
</tr>
</tbody>
</table>

Source: FAF3
The data for this analysis is obtained from the Bureau of Transportation Statistics’ Transborder Freight Data database. State level information can be extracted to include all ports of entry, commodity, and origin/destination information. For this analysis, ports of entries that either imported Idaho-bound goods, or exported Idaho-originating goods were extracted. The dollar values of trade associated with the top ports are displayed in Table 2-16 and Figure 2-20. As we can see, the top ports of entry of Idaho commodities include Eastport, Idaho, Port Huron, Michigan, and Sweetgrass, Montana. These three ports alone are responsible for about half of all freight flows. It is also interesting to note that while most of the goods through the ports are carried on trucks, the majority of goods from Eastport are carried by rail. Clearly most goods move through ports near the Great Lakes region, and relatively few are moved through ports to the west of Idaho. Apart from ports on the Canadian border, significant freight volumes are also moved between ports near the Mexican border, in Laredo and El Paso, Texas, and Nogales, Arizona.

Table 2-16. Top 10 Ports of Entry for Idaho Imports and Exports by Value, 2010, Dollars

<table>
<thead>
<tr>
<th>Port of Entry</th>
<th>Air</th>
<th>Rail</th>
<th>Truck</th>
<th>Total</th>
<th>% Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastport - Idaho</td>
<td>-</td>
<td>295,962,357</td>
<td>108,281,608</td>
<td>404,243,965</td>
<td>15.3%</td>
</tr>
<tr>
<td>Port Huron - Michigan</td>
<td>-</td>
<td>67,409,491</td>
<td>283,761,243</td>
<td>351,170,734</td>
<td>13.3%</td>
</tr>
<tr>
<td>Sweetgrass - Montana</td>
<td>-</td>
<td>9,266,796</td>
<td>337,540,678</td>
<td>346,807,474</td>
<td>13.1%</td>
</tr>
<tr>
<td>Detroit - Michigan</td>
<td>-</td>
<td>16,665,927</td>
<td>167,520,962</td>
<td>184,186,889</td>
<td>7.0%</td>
</tr>
<tr>
<td>Laredo - Texas</td>
<td>-</td>
<td>14,893,088</td>
<td>130,873,749</td>
<td>145,766,837</td>
<td>5.5%</td>
</tr>
<tr>
<td>Blaine - Washington</td>
<td>-</td>
<td>46,127,314</td>
<td>83,169,656</td>
<td>129,296,970</td>
<td>4.9%</td>
</tr>
<tr>
<td>Metaline Falls - Washington</td>
<td>-</td>
<td>-</td>
<td>127,216,875</td>
<td>127,216,875</td>
<td>4.8%</td>
</tr>
<tr>
<td>Nogales - Arizona</td>
<td>54,475</td>
<td>10,023,056</td>
<td>76,268,075</td>
<td>86,427,506</td>
<td>3.3%</td>
</tr>
<tr>
<td>El Paso - Texas</td>
<td>30,137</td>
<td>53,271,670</td>
<td>6,205,459</td>
<td>59,507,266</td>
<td>2.2%</td>
</tr>
<tr>
<td>Frontier - Washington</td>
<td>-</td>
<td>-</td>
<td>57,335,105</td>
<td>57,335,105</td>
<td>2.2%</td>
</tr>
<tr>
<td>Other</td>
<td>83,196,137</td>
<td>98,534,203</td>
<td>194,497,566</td>
<td>378,723,854</td>
<td>14.3%</td>
</tr>
</tbody>
</table>

Source: BTS Transborder Freight Data
 Idaho Statewide Freight Study

Figure 2-20. Top 10 Ports of Entry for Idaho Imports and Exports by Value, 2010, Dollars

Source: BTS Transborder Freight Data

Idaho’s Institutional Structure

Idaho Transportation Department

ITD is responsible for oversight of all modes within the statewide transportation system involved in moving interstate commerce, out-of-state visitors, and Idaho's 1.2 million people. ITD’s executive team, led by the director, includes the chief deputy officer, chief operations officer, chief administrative officer, and chief human resource officer. Collectively, they are responsible for six divisions: Administration, Aeronautics, Highways, Human Resources, Motor Vehicles, and Transportation Performance. Four other support offices also report to the director: Governmental Affairs, Communications, Internal Review, and Legal Affairs.

The Idaho Transportation Board, whose members are appointed by the Governor and confirmed by the Idaho Senate, establishes policy and provides direction for the department. The board consists of one representative from each of ITD’s six districts and a chairman who conducts meetings and votes on board resolutions in the event of a tie. The Transportation Board is vested with authority, control, supervision, and administration of the Idaho Transportation Department. One of the critical roles of the board is to select transportation projects statewide for funding, as based upon available federal funding, and state funding as established by the Idaho State Legislature.37
Idaho's Long Range Transportation Plan

Idaho’s Long Range Transportation Plan (LRTP), *Idaho on the Move*, adopted in 2010, identifies three long–range goals that are critical in supporting Idaho’s economic vitality. Those goals, and the associated objectives relevant to the freight system, are:

- **Improving Transportation Safety:**
 - Idaho is committed to the safe transport of people and goods; and,
 - Idaho includes safety considerations in all transportation activities and investments.

- **Enhancing Mobility:**
 - Idaho promotes accessible, affordable, and convenient transportation choices for the movement of people and goods;
 - Idaho keeps transport infrastructure in good repair to ensure uninterrupted service;
 - ITD is committed to the wise use of limited resources, turning to new technologies and developing intermodal strategies to keep Idaho on the move.

- **Supporting Idaho’s Economy:**
 - Resources will be applied to maintain, improve, and expand routes and services that contribute to economic vitality;
 - ITD supports the state’s economic vitality by enabling efficient movement of people and goods;
 - ITD seeks partnerships and cooperative initiatives to improve freight mobility and provide intermodal access to jobs and centers of commerce.38

Idaho’s Safety Goals

In stakeholder interviews conducted with economic development professionals around the state as part of Idaho’s 2010 LRTP, safety was identified as a top priority for the transportation system. Some interviewees understood and expressed a desire to balance safety with economic and mobility goals, and some contended that transportation safety, mobility and economic vitality are so closely linked that it is difficult to consider them separately. Nonetheless, the safety of the transportation system stood out as an unquestionable priority for the majority of interviewees. This is noteworthy given that individuals surveyed held professional positions that principally emphasized economic development.

Idaho’s Strategic Highway Safety Plan

Part of ITD’s Division of Highways, the Office of Highway Safety (OHS) mission is to reduce traffic deaths by focusing resources and efforts on infrastructure. In addition to conducting grant-funded programs to reduce traffic deaths, OHS maintains the statewide crash database, and is responsible for collecting and analyzing crash data to determine where resources need to be concentrated to improve safety on Idaho’s roadways.

In 2010, OHS, in cooperation with local, state, federal, and private sector safety stakeholders, developed the Idaho Strategic Highway Safety Plan (SHSP). The SHSP is a data-driven, statewide safety plan that
provides a comprehensive framework for reducing highway fatalities and serious injuries on all public roads. It established statewide goals related to reductions in traffic deaths, fatality rates, and serious injury, and targeted specific emphasis areas and strategies to achieve those goals. An emphasis area was commercial vehicles, including buses, and all types of trucks, truck-tractor and truck trailer-combinations exceeding 8,000 pounds gross vehicle weight used for transportation property and goods. The SHSP identified a goal of reducing the five (5)-year average number of fatalities involving commercial vehicles to 30 or fewer by 2012 by implementing the following strategies:

- Education
- Enforcement
- Engineering, including:
 - Additional mobile scales;
 - Improved signage for traffic congestion/detours and adverse weather conditions;
 - Improved railroad crossings and signage; and,
- Public Policy, including:
 - Developing recommendations regarding infrastructure policy;
 - Recommending changes to current CDL exemptions; and,
 - Review current speeding laws.\(^{39}\)

Idaho Department of Commerce

Idaho Department of Commerce is the lead economic development agency for the State of Idaho, with a mission to grow Idaho’s economy and strengthen Idaho communities. The Department of Commerce is the lead agency tasked with implementation of Governor Otter’s Project 60 Initiative, a strategy to grow Idaho’s gross domestic product by fostering systemic growth, recruiting new companies to Idaho, and selling Idaho’s trade and investment opportunities to the world.

Idaho’s transportation system is the backbone of the state’s economy. Safe and efficient roads, bridges, airports, railroads and ports promote the expansion of Idaho’s economy. As such, the efficiency and effectiveness of the transportation network is an economic development issue, with the cost of doing business in Idaho clearly affected by how well goods and people can be moved across town, across the country and around the world.

Idaho Department of Agriculture

The Idaho Legislature created the Idaho State Department of Agriculture (ISDA) in 1919 to assist and regulate the state’s fast-growing agricultural industry. The primary purposes for establishment were to protect Idaho’s crops and livestock from the introduction and spread of pests and transmittable diseases, to help provide the industry with a system for the orderly marketing of agricultural commodities, and to protect consumers from contaminated products or fraudulent marketing practices. Today, agriculture is one of the fastest growing export markets for Idaho, and clearly a significant element in Idaho’s economic development strategy.
The Department of Agriculture is responsible for administering the Idaho Rural Economic Development and Integrated Freight Transportation (REDFit) loan program. The mission of the REDFit Program is to assist businesses and industries to develop and expand options for shipping freight and products to market. The state’s interest is served by maintaining competitive transportation services for Idaho’s freight shippers, reducing public roadway maintenance and repair costs, increasing economic development opportunities, increasing domestic and international trade, creating and preserving jobs, and enhancing safety.

Idaho’s Public Utility Commission
Safety is the first order of business for the Idaho Public Utility Commission (PUC). The PUC has rail inspectors that investigate highway-railroad crossing issues and safety projects throughout the state. State safety inspectors are also responsible for inspection of rail cars carrying hazardous materials in and through the state of Idaho, and enforce federal hazardous materials regulations, which the State of Idaho has adopted.

In 1999, motor carrier responsibilities were transferred to the Department of Law Enforcement and Idaho Transportation Department, with Idaho PUC retaining its jurisdiction in rail carrier matters. Approval of any new or reinstituted rail service requires approval through the Idaho PUC. Rail line abandonments also require PUC review and approval.

Pipeline safety is also under the purview of the PUC. While pipeline safety is regulated at the federal level, the PUC is responsible for pipeline inspections and enforcement of Federal pipeline safety regulations. This responsibility is envisioned to increase over time with the expansion of natural gas drilling in Idaho.

Regional Planning Organizations
A Metropolitan Planning Organization, commonly referred to as an MPO, is an association of local agencies that coordinate transportation planning and development activities within a metropolitan area. Establishment of an MPO is required by law in urban areas with populations of more than 50,000 in order for the area to use federal transportation funding. MPOs are designed to ensure coordination and cooperation among the various jurisdictions that oversee transportation within the urban area. MPO decision-making is guided by:

- A policy board, generally comprised of local elected officials and public agency officials who administer or operate major modes of transportation, and
- A technical advisory group of professional planners and engineers who are often employees of the same agencies.

An MPO has effective control over transportation improvements within the area since a project must be a part of the MPO's adopted long-range plan and be placed in their Metropolitan Transportation Improvement Program (MTIP) in order to receive federal funding. Current MPOs in Idaho include:
County and Local Agencies

County and local government play a significant role within the statewide transportation system, from planning, constructing, improving, and maintaining the local road and highway network, raising local funds for local construction and maintenance projects, adopting appropriate zoning and development regulations, and making land use decisions that affect both demand and function of the local, regional, and statewide transportation networks. Local and county agencies also compete for limited state and federal transportation funding resources, with local projects selected by ITD on a statewide basis and scheduled into the ITD Statewide Transportation Improvement Program (STIP) for state and federal funding. Local rail-highway crossing projects are selected and scheduled in the STIP based upon the crossing’s location/rating on the FRA Priority Index. Rail-highway safety project priorities and funding are determined by the ITD Roadway Design, Utility/Railroad Unit in coordination with District, local officials and, when appropriate, the ITD Highway Operations & Safety Engineer and the Manager of Office of Transportation Investments.

Regulatory Framework

One way for a state to maximize the efficient flow of goods via the trucking industry is to have similar rules and regulations to neighboring states. For carriers operating within legal limitations this is typically less of an issue as Federal Statutes outline weight and width limitations for the National Highway Network. The area where there is likely to be disparity in hauling regulations among the states is that of oversize and overweight (OSOW) permitting, as each state is authorized to develop its own permit limitations within their jurisdictional boundaries. Among other factors, the differing needs of industry, existence of federal permitting exemptions, and variance in approach to infrastructure management can lead to large gaps in permit limitations between neighboring states. When regulations vary substantially from state to state, haulers are forced to make difficult decisions about their operating model, oftentimes making a choice between compliance and profitability.

For example, if State A allowed 120,000 lbs. on a permit and State B only allows 100,000 lbs., the motor carrier has the following options when conducting a multi-state trip:

- Operate at the lower weight in both states and make more trips; or
- Operate at the higher weight in State A and the lower weight in State B, with an offloading or other type of transfer operation at a facility just within State A’s border with State B; or
- Operate at the higher weight in both states, and risk being caught breaking State B’s laws by enforcement officers, with the associated penalties involved.

With all of the above options, a carrier is faced with a decision that impacts their ease of doing business, and likely their profitability. If the states had aligned limitations, then the carrier’s decision would be much easier. This same logic can also be applied to corridors within a state. A carrier will only be able to operate at the most restrictive size and weight limitations within a given corridor. In Idaho, the US-95/SR-55 corridor running from the Port in Lewiston to the City of Boise is an example of where this concept would apply.

Figure 2-21 shows vehicle weight limits along this corridor, when operating under an oversize/overweight permit, for a single axle vary from 30,000 lbs to 22,500 lbs, from 51,500 lbs to 41,000 lbs on a two axle group, and from 64,500 lbs to 48,000 lbs on a three-axle group. Low weight allowances on one section effectively limit the entire corridor to the allowances of its “weakest link,” reducing the relevance of the areas of the corridor where higher allowances exist. The cumulative effect of lower grouping limitations on the overall gross weight of a permitted vehicle can be substantial, making this corridor less attractive to industry carriers operating under an OSOW permit. A reduction in the number of “weak links” within state corridors and increased alignment of permit regulations with neighboring states could be particularly impactful on trucking efficiency given Idaho’s primary role as a “through” state.
A comparison of Idaho trucking regulations was conducted in order to determine where Idaho stood relative to its neighboring states in regard to size and weight limitations, to highlight similarities and determine any key differences. Areas reviewed included non-permitted (legal) size and weight limits, multi-trip non-divisible load limits, and divisible load weight limits. Size and weight limitations associated with individual trip movement for non-divisible loads were not examined because these permits are generally route-specific; subject to review prior to each movement, and do not always have a maximum value associated with weights or dimensions. States whose limitations were reviewed (Montana, Nevada, Oregon, Utah, Washington, and Wyoming) all border Idaho. Overall the analysis indicated that Idaho mostly has similar or less restrictive truck size and weight limitations than
neighboring states, with the exception of its divisible load permit allowances. Some highlights of this analysis include:

- With the exception of Wyoming, which allows a greater legal length than other states, there was little to no difference in non-permitted (legal) height and length requirements among the states.
- Difference among the states in non-divisible load annual permit dimensions were minimal with the exception of Wyoming, which allows a much smaller width than the rest of the states, and Washington which allows a greater length.
- Differences in non-divisible load annual permit weight among the states varied greatly with Idaho, Wyoming, and Nevada allowing the most weight and Oregon and Washington being the most restrictive.
- Of the states authorized to issue divisible load permits, Oregon and Idaho were the most restrictive with both Utah and Washington issuing substantially higher weights for these load types.

Legal Limitations

The following table outlines the legal size and weight limitations for a standard truck and trailer combination vehicle operating within the reviewed states. These are the dimensions and weights at which a carrier can operate without obtaining a special permit. As shown in Table 2-17, for legal loads, Idaho has established regulations that blend fairly well with neighboring states with respect to overall width, height, and gross vehicle weight. However, trucks operating in Idaho that are 75’ in length will have to make accommodation if continuing on to Nevada or Utah, where maximum length is 70’ and 65’ respectively. Similarly, 85’ long combinations traveling from Wyoming would not be allowed to travel Idaho roads without a special permit.

Table 2-17. Legal Size and Weight Limitations for a Standard Truck and Trailer Combination

<table>
<thead>
<tr>
<th>State</th>
<th>Overall Width</th>
<th>Overall Height</th>
<th>Overall Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idaho</td>
<td>8’6”</td>
<td>14’</td>
<td>75’</td>
</tr>
<tr>
<td>Montana</td>
<td>8’6”</td>
<td>14’</td>
<td>75’</td>
</tr>
<tr>
<td>Nevada</td>
<td>8’6”</td>
<td>14’</td>
<td>70’</td>
</tr>
<tr>
<td>Oregon</td>
<td>8’6”</td>
<td>14’</td>
<td>75’</td>
</tr>
<tr>
<td>Utah</td>
<td>8’6”</td>
<td>14’</td>
<td>65’</td>
</tr>
<tr>
<td>Washington</td>
<td>8’6”</td>
<td>14’</td>
<td>75’</td>
</tr>
<tr>
<td>Wyoming</td>
<td>8’6”</td>
<td>14’</td>
<td>85’</td>
</tr>
</tbody>
</table>
Idaho Statewide Freight Study

For all states being considered, the legal gross weight is calculated based on the following formula:

\[W = 500 \left(\frac{LN}{N-1} + 12N + 36 \right) \]

W = the overall gross weight on any group of two or more consecutive axles to the nearest 500 pounds.
L = the distance in feet between the outer axles of any group of two or more consecutive axles.
N = the number of axles in the group under consideration.

Formula found at: www.ntda.org/LinkClick.aspx?fileticket=NiMFqXy27gw%3D&tabid=115

Standard legal weight is generally capped at 80,000 lbs.

Non-Divisible Load Limitations

A non-divisible load is a load that cannot be reduced in size and/or weight. If dividing a load would compromise the intended use, destroy the load, or take longer than eight hours to dismantle, then a load is considered non-divisible. For loads of this kind above legal limitations, special permits are issued by state agencies that authorize travel within their jurisdiction. Carriers generally have two options for permitting these loads, they can obtain a one-time trip permit or, if the agencies offer one, a multi-trip permit of some type.

Single trip permits typically do not have maximum limits associated with them as each permit is route-specific and is reviewed in some manner prior to approval. Restrictions are placed on the permit according to overall vehicle dimensions and route characteristics.

Multi-trip permits are slightly different in that they typically do not require a specific route to be valid and they have dimensional limitations. A multi-trip permit can authorize a carrier to move any number of loads within certain dimensions and weights, over a specific time period, along any routes under the jurisdiction of the issuing agency. **Table 2-18** outlines the size and weight limitations for moving general non-divisible oversize or overweight loads under a multi-trip permit in the states. As shown, Idaho has established limitations for these loads that allow for higher maximum height and weight allowances than neighboring states. This is good for Idaho companies that require these permits to conduct their day-to-day business within the state; however, should these loads need to continue on to west coast ports, or other destinations outside of Idaho, the benefit of these regulations is minimized as loads must be reconfigured at the state line or, more likely, start at the point of origin in Idaho at weight limits set by neighboring states to minimize disruption and time spent during the trip.
Table 2-18. Size and Weight Limitations for Non-Divisible OS/OW Loads Under a Multi-trip Permit

<table>
<thead>
<tr>
<th>State</th>
<th>Overall Width</th>
<th>Overall Height</th>
<th>Overall Length</th>
<th>Gross Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idaho</td>
<td>14’6”</td>
<td>15’6”</td>
<td>110’</td>
<td>200,000 lbs</td>
</tr>
<tr>
<td>Montana</td>
<td>15’</td>
<td>14’6”</td>
<td>95’</td>
<td>40,000 lbs above legal weight</td>
</tr>
<tr>
<td>Nevada</td>
<td>15’</td>
<td>14’</td>
<td>110’</td>
<td>65,975 lbs on a two axle group*</td>
</tr>
<tr>
<td>Oregon</td>
<td>14’</td>
<td>14’6”</td>
<td>105’</td>
<td>98,000 lbs</td>
</tr>
<tr>
<td>Utah</td>
<td>14’6”</td>
<td>14’</td>
<td>105’</td>
<td>125,000 lbs</td>
</tr>
<tr>
<td>Washington</td>
<td>14’</td>
<td>15’</td>
<td>125’</td>
<td>80,000 lbs</td>
</tr>
<tr>
<td>Wyoming</td>
<td>12’</td>
<td>15’</td>
<td>110’</td>
<td>150,000 lbs</td>
</tr>
</tbody>
</table>

* Overall gross is calculated using a chart based on number of tires and tire width per axle group, found here: http://www.nevadadot.com/uploadedFiles/NDOT/Doing_Business/Trucking/PCR_Green>Loading.pdf

Divisible Load Limitations

A divisible load is a load that can be reduced to a lesser size or weight without great effort or harming the load. An example of a divisible load is gravel or asphalt. Permits issued for divisible loads may not be issued for oversize travel; they are only issued for operation above weights determined by the Federal Bridge Formula. Additionally, not all states have authority to issue this permit type to carriers. Only those states that had already developed and were issuing permits for this load type at the time the Federal Government banned the hauling of divisible loads above Federal Bridge Formula weight limits on the Interstate System were allowed to continue issuance. Idaho, like its border states, is fortunate to be part of the grandfathered law, and can accommodate greater than 80,000 lbs. on interstates if divisible loads. Specifically, the following states in the region are authorized to issue divisible load permits on the Interstate Highways System at the maximum weight limits indicated:

- Idaho - 105,500 lbs
- Oregon - 105,500 lbs
- Utah - 129,000 lbs
- Washington - 139,994 lbs

In some cases, states without the authority to issue divisible load permits on the Interstate System still authorize the travel of divisible loads on their own highway system above legal weight limits. These permit types are normally created in response to industry feedback as a way to assist certain industries that are economic drivers within the state. Wyoming is an example of a state that has developed and
implemented a permit of this type. They offer a permit to haul forest products, sugar beets, gravel, and agricultural products at weights up to 5,000 lbs over legal on non-interstate highways within their jurisdictional boundaries. While this weight limit is much less than other states in the region offering divisible load permits, it does provide those industries with added hauling flexibility.

Other Regulatory Issues

Hours of Operation

The Federal Motor Carrier Safety Administration (FMCSA) of the US Department of Transportation regulates the number of hours per shift, per day, and per week that a commercial motor vehicle operator can work. These Hours-of-Service (HOS) Regulations were updated in December of 2011 to reduce the number of hours a commercial operator can work each week, and to limit the number of hours a driver can be on the road without a 30-minute break. Under the new rules, operators are limited to 70 hours of driving time per work week, 11 hours per day (which is consistent with the prior rules), and a maximum of 8 hours driving time without a 30 minute break. The new rules also require a 34 hour “restart” period between the end of the work week and the beginning of the next. These HOS Regulations employ the latest research on driver fatigue, and are intended reduce the number of fatigue-related truck crashes. These changes in regulations are consistent with the trend of the administration over the last decade, and the FMSCA will continue to collect data to evaluate the merit of reducing the driving time to 10 hours per day.40

While these changes in operating hours are anticipated to positively impact safety, they will also have implications for trucking logistics. A reduction in daily hours of operation in the future will impact trucking efficiencies by reducing the distance that a truck can travel in a day, effectively increasing the cost of over-the-road freight. Long term, this may serve as an incentive for some modal shift to more efficient transportation modes, where practical and feasible. It also can be anticipated that the trucking industry will lobby harder for efficiency improvements that may be realized through Intelligent Transportation System (ITS) improvements (discussed in the next section of this report) and, through increasing weight limits and vehicle lengths, as discussed in the previous section.

Truck Route Designation

Currently, the State of Idaho does not have a system of designated truck/freight routes. As freight demand increases in future years, and given the gulf between anticipated infrastructure improvement needs and funding, designation of freight/truck routes may to help prioritize infrastructure investments, not only on the state routes, but on also on the local arterials that feed the state freight system, and provide redundancy during events causing interruption of service on the state freight system.

Funding Sources, Opportunities & Issues

Current local highway system funding levels run far short of demand. Without additional funding, there is a projected funding shortfall of $3.6 billion dollars over the next 20 years. ITD has an annual operating budget of $584 million to cover capital and operating cost. In 2011, the Governor’s Task Force on
Modernizing Transportation Funding in Idaho confirmed Idaho’s significant and growing transportation funding shortfall. The Task Force identified a need for an additional $155 million per year for operations and maintenance, and an additional $207 million per year for capacity improvements and safety enhancements.

Currently, 54% of ITD’s budget comes from federal funding. Given the status of dueling transportation reauthorization bills in the U.S. House and Senate, the state of the Highway Trust Fund, and the national debt situation, the state’s significant dependency on federal funding has created some concern. With the need for an additional $362 million in annual funding to address Idaho highway infrastructure needs, the Idaho Legislature is scheduled to again discuss increased transportation funding in 2013.41

With a gas tax that has not been raised since 1996, and only limited authority vested with local highway districts to raise funds for the maintenance of the local system, a number of opportunities for revenue enhancement have been explored unsuccessfully by the Idaho Legislature, the Idaho Transportation Board, and the Governor’s task force, and may be revisited in the upcoming legislative session, including:

- Increasing fuel tax, or indexing to price per gallon, or consumer price index
- Vehicle registration fee increases or modifications
- Sales tax on transportation related products and services;
- New user fees, including:
 - Rental car tax
 - Toll roads
 - VMT tax
 - High occupancy toll on I-84
 - Adjustments to Highway Distribution Account
- Increasing licensing and titling fees
- Fines
- Changes in Impact Fees
- Local Option Tax
- Alternative Fuel, Propulsion Tax
- VMT Tax
- Dry Port Authority
- Local Option Tax

MAP 21
MAP-21 was signed into law on July 6, 2012. MAP-21 reauthorizes federal highway, transit, and transportation safety programs for federal fiscal year (FY) 2013 and 2014 (October 1, 2012 through September 30, 2014, although it includes some FY 2012 funding). Overall funding and the split for
highways and transit (approximately 80 percent/20 percent) are the same (plus inflation) as the previous biennium.

MAP-21 consolidates the number of federal programs by two-thirds, from about 90 programs down to less than 30. The Transportation Mobility Program replaces the current Surface Transportation Program, but retains the same structure, goals, and flexibility to allow states and metropolitan areas to invest in the projects that fit their unique needs and priorities. It also gives a broad eligibility of surface transportation projects that can be constructed. Activities that previously received dedicated funding in SAFETEA-LU, but are being consolidated under MAP-21, will be retained as eligible activities under the Transportation Mobility Program.

MAP-21 creates a new title called “America Fast Forward,” which strengthens the Transportation Infrastructure Finance and Innovation Program (TIFIA). The TIFIA program provides federal credit assistance in the form of direct loans, loan guarantees, and standby lines of credit to finance surface transportation projects of national and regional significance. TIFIA credit assistance provides improved access to capital markets, flexible repayment terms, and potentially more favorable interest rates than can be found in private capital markets for similar instruments. TIFIA can help advance qualified, large-scale projects that otherwise might be delayed or deferred because of size, complexity, or uncertainty over the timing of revenues. Each dollar of federal funds can provide up to $10 in TIFIA credit assistance and leverage $30 in transportation infrastructure investment. TIFIA is not a funding source, but a method of financing projects through assisted borrowing. TIFIA is increased substantially from the current $122 million per year to $750 million in FY 2013 and $1 billion in FY 2014.

US DOT issued Interim Guidance on State Freight Plans and State Freight Advisory Committees on October 15, 2012 to elaborate on the MAP-21 sections regarding state freight plans (sections 1117 and 1118). The interim guidance includes direction for the state’s freight improvement strategy and implementation plans.

In order to be consistent with MAP-21, the Guidance states that the improvement strategy component of the state freight plan needs to list and prioritize improvements and describe how they advance the plan’s strategic goals. The strategy also must include an analysis of impacts on supply chains and industries and on the transport of mining, agricultural, energy, timber equipment, and products. It needs to demonstrate improvements in outcomes and describe the Plan’s relationship to the state transportation plan and coordination with adjacent states.

It is anticipated that U.S. DOT and FRA will issue additional guidance on MAP-21 in early 2013, including specific funding programs and amounts.
Idaho Statewide Freight Study

References:

7 Burlington Northern Santa Fe Railway. BNSF Fact Sheet, 2010.

8 Federal Rail Administration. Rail_lines.shp.; Idaho Transportation Department. IdahoRail.shp.; Oak Ridge National Laboratory. qc15v.shp.

9 2010 Carload Waybill Sample Data. Surface Transportation Board, US Department of Transportation, Washington, D.C.

11 FRA. Rail_lines.shp.; ITD. IdahoRail.shp.; ORNL. qc15v.shp.

12 FRA. Rail_lines.shp.; ITD. IdahoRail.shp.; ORNL. qc15v.shp.

16 Webber Air Cargo. Boise Airport Air Cargo Study Kickoff. [Powerpoint.] December 2, 2012. (As provided by Boise Airport).

17 Webber Air Cargo. Boise Airport Air Cargo Study Kickoff. [Powerpoint.] December 2, 2012. (As provided by Boise Airport).

38 Idaho Transportation Department. *Idaho on the Move: A Long-Range Plan to Improve Safety, Mobility, and Economic Vitality*, 2010.

3 Vision

3.1 Developing the Vision
The study results rely on the active and collaborative participation of key stakeholders, their intimate knowledge, and collective expertise, to develop a vision, goals, and implementation strategies for a freight system that serves as a foundation for Idaho’s present economic stability, and future economic growth.

All Idahoan’s with an interest in the future of Idaho’s Freight System were encouraged to participate in the process. ITD identified the following specific stakeholder groups for which this project may have specific relevance:

- System users – public and private, including but not limited to agriculture, manufacturing, natural resources, recycling, other products and passengers;
- Owners and operators – public and private, including but not limited to air, rail, port, trucking, highway;
- Economic development professionals;
- Elected officials;
- Federal government agency representatives;
- State government agency representatives;
- Metropolitan Planning Organizations;
- Environmental organizations; and,
- General public.

A Freight Summit held in Boise December 2011 kicked-off the project with over eighty participants representing owners, operators, system users, and freight-intensive industries, as well as state and local agencies involved in transportation, economic development, agriculture, and environmental services.

The goal of the Summit was to identify key issues, opportunities, and challenges related to Idaho’s freight system. Through a series of presentations and facilitated exercises, the Summit focused on three key questions:

1. What is Idaho’s vision for the freight system? What does it look like and how does it perform?
2. How can we work together toward an integrated and coordinated freight transportation system in Idaho?
3. What does it take for us to work within Idaho’s existing policy framework?
Table 3-1 summarizes the themes that emerged during the Freight Summit.

Table 3-1. Freight Summit Themes

<table>
<thead>
<tr>
<th>Freight Summit Themes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposed features of Idaho’s ideal freight system:</td>
</tr>
<tr>
<td>- Inter-modal connectivity and collaboration</td>
</tr>
<tr>
<td>- Appropriate system capacity</td>
</tr>
<tr>
<td>- Increases Idaho’s competitive edge</td>
</tr>
<tr>
<td>- Consistent and accessible</td>
</tr>
<tr>
<td>- Funded, affordable, efficient</td>
</tr>
<tr>
<td>- Technology</td>
</tr>
<tr>
<td>- Safe</td>
</tr>
<tr>
<td>- Data/science driven</td>
</tr>
</tbody>
</table>

| Proposed opportunities to pursue: |
| - Inter/multi-modal |
| - Leverage Port of Lewiston |
| - Research and data |
| - Cooperation, collaboration and partnerships |
| - Regulatory change |
| - Increase capacity |
| - Funding |

| Proposed activities to work together: |
| - Information and data |
| - Leadership |
| - Regulatory framework and policy |
| - Funding structure |
| - Collaboration |
| - System issues |

The key stakeholders and Freight Summit identified key issues/opportunities led to a public involvement program that guided the tools used to more fully delineate the key issues and opportunities, identify a statewide vision for freight mobility, and develop key recommendations that the freight community could collaboratively implement. The key tools and the input derived from those tools are explained in the following sections. Appendix A includes the Public Involvement Program which guided the study process as well as documentation of the input received from the following tools.

Steering Committee

A Steering Committee representing the diverse interests of the freight community guided the entire study process. This group, which met four times during the course of the study, was responsible for the following activities:
Idaho Statewide Freight Study

- Confirm the Stakeholder and Public Involvement Plan
- Develop a Vision Statements, Goals and Objectives
- Recommend statewide freight performance measures
- Provide input on high-level investment scenarios for testing
- Recommend policies and investment priorities
- Make recommendations on specific strategies and activities to be included in the Idaho Freight Study and Rail Plan Update.

The Steering Committee included agricultural producers representing a variety of commodities; other freight-intensive industries and manufacturers; owners and operators representing a variety of modes; and, federal, state, and local agencies supporting transportation services, economic development, and agriculture.

In addition to four (4) full-day meetings, the Steering Committee was engaged through the review of technical memos and study documents, as well as through a series of “homework assignments”.

Interviews

Stakeholder interviews were conducted with key informants to gather an in-depth understanding of the perspectives of owners, operators, and users from various industries and modes. Additionally, a number of data- and/or issue-specific interviews were conducted to inform the team regarding particular freight issues and opportunities. Specifically, interviewees were asked to provide input on the following:

- Future vision for Idaho’s freight system,
- Opportunities to improve the freight system,
- Opportunities and challenges for cross-mode collaboration,
- Potential data sources and availability, and
- Potential recommendations.

Data/issue-specific interviews were conducted with BNSF, UPRR, WATCO, Boise Airport, Idaho Department of Agriculture, Port of Lewiston, Idaho Department of Motor Vehicles, the Idaho Public Utility Commission, and the Idaho Department of Commerce.

In addition, numerous and frequent informal discussions were conducted by team members with industry groups and coalitions, freight- and transportation-related professional organizations, special-interest groups, and members of the general public through the course of the study.

Regional Forums and Field Briefings

Regional Forums were held in Pocatello, Rexburg, Boise, Coeur d’Alene, Twin Falls, and Lewiston in July 2012. These forums provided region-specific inputs on freight system goals, performance measures, infrastructure improvements, and project prioritization. The project team also reached out to various freight stakeholder organizations to present information and gather input throughout the study process. These organizations include the Idaho Food Producers Association, the Western States Transportation
Alliance, the East Oregon/Idaho Seed Association, the Idaho Trucking Association, and the Pacific Northwest Economic Region partnership.

The input derived from the tools described above culminated in the following vision and goals.

Table 3-2. Vision for Idaho’s Freight Network

Freight Powers Idaho’s Economy

<table>
<thead>
<tr>
<th>GOAL 1: Idaho's freight system features seamless, modal connectivity while maintaining safety and efficiency, featuring:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Flexibility</td>
</tr>
<tr>
<td>• Continuity</td>
</tr>
<tr>
<td>• Multi-modal</td>
</tr>
<tr>
<td>• Accessibility</td>
</tr>
<tr>
<td>• Safe</td>
</tr>
<tr>
<td>• Efficient</td>
</tr>
<tr>
<td>• Technology-based</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GOAL 2: Idaho's freight system features effective partnerships to leverage resources and opportunities, featuring:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Collaboration</td>
</tr>
<tr>
<td>• Information</td>
</tr>
<tr>
<td>• Platform for communication</td>
</tr>
<tr>
<td>• Public/private partnerships</td>
</tr>
<tr>
<td>• Cross-modal collaboration</td>
</tr>
<tr>
<td>• Coordinated regulation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>GOAL 3: Idaho strategically invests in its freight system infrastructure while maximizing existing capacity, featuring:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Maximizing existing resources</td>
</tr>
<tr>
<td>• Accountability</td>
</tr>
<tr>
<td>• Research/data-based investments</td>
</tr>
<tr>
<td>• Performance measurement</td>
</tr>
<tr>
<td>• Prioritization</td>
</tr>
<tr>
<td>• Sustainability</td>
</tr>
<tr>
<td>• Dedicated funding</td>
</tr>
</tbody>
</table>

3.2 Issues and Opportunities

The following section identifies potential issues that can affect the achievement of the vision and goals illustrated above. Issues and opportunities identified were derived from the best available data and stakeholder input. These issues/opportunities are organized into three categories, the better to address the goals identified above.
3.2.1 Connectivity, Safety, and Efficiency

Connectivity

Highway Network

In northern Idaho, major east-west connectivity is provided by I-90, a four-lane divided highway. As shown in Figure 3-1, 2010 commercial vehicle average annual daily traffic (CAADT) volumes are in the range of 1,001 to 3,000 daily trips, except in the Post Falls area west to the Washington Border, where commercial vehicle trips are in the range of 3,001 to 5,000 trips per day. As shown in Figure 3-2, in 2040, commercial vehicle use of the I-90 corridor is anticipated to increase to a range of 5,001 to 7,300 trips per day from the Washington border to the Silver Valley. East of the Silver Valley, commercial vehicle trips in the range of 3,001 to 5,000 per day are anticipated in 2040.

In southern Idaho, the major east-west commercial corridor is I-84, the only federally-recognized major freight corridor in Idaho. I-84 connects Salt Lake City, Utah, to Portland, Oregon. Commercial vehicle volumes are in the range of 3,001 to 5,000 trips per day, except in the greater Boise and Twin Falls area, where CAADT volumes are in the range of 5,001 to 7,300 trips per day (reference Figure 3-1).

I-86 also provides connectivity between I-84 and the I-15 north-south corridor, with commercial volumes in the range of 1,001 to 3,000 trips per day. As shown in Figure 3-2, in 2040, I-86 CAADT is anticipated to increase to within a range 7,301 to 12,000 commercial vehicle trips per day, except in the greater Boise and Twin Falls area, where CAADT increase to in the range of 12,001 to 18,250 trips per day. Commercial vehicle volumes in the I-86 corridor will increase to a range of 5,001 to 7,300 in 2040.

In central Idaho, US-12 is the only east-west corridor providing connectivity between Lewiston and the Montana border. Commercial vehicle volumes on US-12 are relatively low in 2010, falling in the range of 0 to 500 commercial vehicles per day—except in the vicinity of Lewiston, where the volumes are in the range of 1,001 to 3,000 commercial vehicles per day, and just to the east of Lewiston, where commercial vehicle trips are in the range of 501 to 1,000 vehicles per day. By 2040, ITD forecasts that commercial vehicle volumes in the vicinity of Lewiston east to the Lowell area are projected to increase to a range of 1,001 to 3,000 commercial vehicles per day, with several pockets in the range of 501 to 1,000 commercial vehicles per day. East of Lowell, the commercial vehicle volumes are projected to remain below 500 vehicle trips per day. It has been postulated that the low volumes of commercial vehicle trips on US-12 are due to unfavorable conditions for commercial travel, including narrow shoulders, limited passing opportunities, poor pavement conditions, and limited route capacity. US-12 has been designated by FHWA as the Northwest Passage Scenic Byway, and there has been considerable controversy over the use of the corridor as freight route, with opponents citing a conflict between the purpose and function of a scenic byway versus a freight corridor.

US-95 is the only north-south corridor connecting southern Idaho to Idaho’s northern-most County. US-95, in fact, provides a north-south corridor between Canada and Mexico, with a northern terminus at the Canadian border crossing at Eastport, extending south of Nampa, running through the southeastern
corner of Oregon, Nevada, and Arizona, to its southern terminus in San Luis, Arizona, on the Mexican border. Despite its interstate and international connectivity, south of the I-90 corridor, commercial usage of US-95, particularly through the central Idaho is very limited, and not projected to grow substantially by 2040.

2010 CAADT on US-95 south of the I-90 corridor are generally in the range of 0 to 500 vehicle trips per day, except between Moscow and Lewiston, where commercial vehicle trips are in the range of 501 to 1,000 CAADTs. North of the I-90 corridor through Kootenai County and in the Sandpoint area, commercial vehicle CAADT are in the range of 1,001 to 3000 vehicle trips per day, with the CAADT outside those areas generally in the range of 501 to 1,000 vehicles per day. Between Copeland and the Eastport border crossing into Canada, 2010 CAADTs are only in the range of 0 to 500 trips per day.

In 2040, US-95 volumes are projected to increase to a range of 501 to 1,000 vehicle trips per day south of the I-90 corridor generally, with commercial vehicle trips north of the I-90 corridor, as well as between Moscow and Lewiston, and from Weiser to Payette, south into Canyon County ranging from 1,001 to 3,000 per day. Between Copeland and the Eastport border crossing, commercial vehicles are still only expected to increase to a range of 501 to 1,000 vehicle trips per day. It has been postulated that terrain, road conditions, safety issues, as well as route capacity limits along US-95 cause much north-south commercial freight movement to be re-directed to more freight-friendly routes in Washington and Oregon.

SH-55 serves as a north-south connector between US-95 in the New Meadows and Boise metro area. In 2010, the southern half of SH-55 was experiencing CAADTs in the range of 501 to 1,000 trips per day. CAADTs are anticipated in the range of 501 to 1,000 trips per day on the entire length of SH-55 in 2040.

I-15, also known as the Canamex Corridor, serves as the major north-south commercial corridor through eastern Idaho, is a federally designated high-priority route that extends from Alberta, Canada, through the states of Montana, Idaho, Utah, Nevada, and Arizona, to the Mexican border and beyond. Commercial usage of the corridor is heaviest between Idaho Falls and Pocatello, with 2010 commercial AADTs in the range of 3,001 to 5,000 trips per day. The remaining two-thirds of I-15 through Idaho saw an average of 1,001 to 3,000 commercial vehicle trips per day in 2010. CAADTs are anticipated to grow in this corridor between now and 2040, with the segment between Pocatello and Idaho Falls increasing to the range of 7,301 to 12,000 commercial vehicles per day. The segment north of Idaho Falls to SH-33 is expected to increase to 3,001 to 5,000 commercial vehicle trips per day, with the segment north of SH-30 realizing volumes of 1,001 to 3,000 per day in that year. The segment south of Pocatello is expected to realize CAADTs in the range of 3,001 to 5,000 trips per day in 2040.
Figure 3-1. Commercial Vehicle Average Annual Daily Traffic Volumes (CAADT), 2010

Source: Idaho Transportation Department Data
Figure 3-2. Projected Commercial Vehicle Average Annual Daily Traffic Volumes (CAADT), 2040

Source: Idaho Transportation Department Data

Rail
As seen in Figure 3-3, northern and southern Idaho are well served by Class I and short line facilities, with good east-west connectivity. Western north-central Idaho, in the Moscow and Lewiston area, has
Idaho Statewide Freight Study

some short line service. The state lacks north-south rail connectivity, and the central portion of the state lacks east-west connectivity, presumably due to topographic challenges.

In Idaho, access to Class I rail in Idaho is limited, and primarily occurs through short line feeders. The state does not have any large rail classification yards or intermodal container yards, except at the Port of Lewiston, the state’s only water port. The majority of intermodal terminals in Idaho consist of grain companies that use rail transport, in both northern and southern Idaho, and several truck terminals providing logistics services located in southern Idaho. Intermodal facilities will be discussed in more detail in a later section of this report.

There has been an increase in the formation of short-line railroads nationwide, as well as in Idaho, over the last two decades. Short line railroads keep rural areas of Idaho connected to the Class I and regional network, and often take over routes that are marginal in the Class I system. With a lower cost structure and more flexible service, short lines have been relatively successful keeping many rural lines operational. The advantages of short line operations are lower labor cost, a local ownership presence, and the ability to develop additional business, thus providing a business model for viable operations where larger railroads have been unable to thrive.¹

As demand for freight rail increases in the future, short line investment in the maintenance and expansion of existing lines will be critical to preserving and enhancing Idaho’s access to freight rail because of their role in providing freight access to Class I rail lines. Such investment is needed to enable the expansion of short line service to marginal Class I lines, and the potential expansion to provide service to new users. Short lines will play a key role in consolidating grain handling in future.

Improved access and connectivity through rail line expansion is a costly endeavor. The cost of adding an additional main passing track or rail siding is approximately $5 million per track mile. It will be important to preserve and protect existing rail lines, rail sidings, and spurs in the future, and provide incentives for rail line expansions into underserved areas where cost effective.

Port of Lewiston
According to the Port of Lewiston Five Year Strategic Plan, the national trend of rural rail abandonment has been felt by the Port, and has significantly reduced rail access into the port. Because Lewiston is located in a box canyon, all rail must travel west to reach destinations to the north, south, or east. Threats to the Port’s rail access include the potential abandonment of spur lines to Kamiah and Grangeville, effectively eliminating all rail access east of the Port and turning the Port of Lewiston into a railhead.²

Infrastructure limitations and unfavorable conditions for freight transport, including limited capacity, poor roadway geometry and pavement conditions, and safety concerns on US-95 and US-12 negatively impact truck access to the Port. With US-12’s designation by FHWA as a scenic byway, along with concerns regarding highway condition and safety, the use of the corridor as a freight route has created
significant controversy, with opponents citing a conflict between the purpose and function of a scenic byway versus a freight corridor.

National Oceanic and Atmospheric Administration (NOAA) has established a timeline with benchmarks to demonstrate the progress of salmon and steelhead on the Snake and Columbia River system. If NOAA benchmark criteria are not met, dam breaching will again be considered. If dam breaching occurs, it would eliminate the multipurpose benefits of the Snake and Columbia Rivers realized by the region, including transportation, hydroelectric power, flood control, irrigation, and recreation.3

Safety

Highway
The five-year fatality rate for Idaho has dropped from a rate of 1.86 fatalities per 100-million vehicle miles in the period 2002 to 2006, to a rate of 1.53 fatalities per 100-million vehicle miles in the 2006 to 2010 five year period. The goal for 2012 is 1.38 per 100 million vehicle miles.

According to Idaho Office of Highway Safety, in the period of 2008 to 2010, there were 67 fatal crashes and 212 serious injury crashes involving commercial motor vehicles (CMV) that have resulted in 77 people killed and 272 people seriously injured. Only 23% of the people killed or seriously injured were occupants of the CMV. Counties within the state with the highest percentages of CMV fatal and serious injury crashes were generally the most populous. Ada County accounted for 16% of those crashes, followed by Kootenai County with 8%, and Bonneville County with 7%.

Of the motor vehicle occupants killed or seriously injured in CMV crashes, 10% were partial or totally ejected, with 94% of those being unrestrained. Aggressive driving was a factor in 20% of the fatal and serious injury CMV accidents, while 19% involved distracted driving.4

As discussed previously, recent changes in HOS regulations to reduce the number of hours a commercial operator can work each week, and limit the number of hours a driver can be on the road without a 30-minute break, are likely to have a positive impact on commercial driver safety, although it will negatively impact freight efficiency.

Trucking industry representatives support an effort to increase allowable vehicle weights and lengths to counter the reductions in efficiency created by shorter HOS, but critics cite safety concerns associated with the longer and heavier vehicles. To evaluate potential safety concerns related to increasing the weight and or length vehicles, additional crash data will be needed. Specifically, there is a need to aggregate crash data by standard weight and length versus longer vehicles/overweight vehicles, and compare those accident rates to the overall accident rate associated with standard-sized and smaller trucks.

Rail
Primary public safety concerns related to the rail system are associated with rail-highway at-grade crossings. The occasional derailment or spillage of hazardous materials is a possibility that also affects
public safety, but is less likely to occur in Idaho because the state produces few hazardous materials. Notable exceptions are nuclear wastes that move in and out of Idaho’s National Laboratory near Idaho Falls and the rail right-of-way in the EPA Superfund site in northern Idaho’s Silver Valley. It is unclear from the data available if significant hazardous materials and or hazardous wastes are passing through the state, however; this is an issue that may warrant further review and evaluation.

Railroad accident data are collected by state departments of transportation, the Federal Railroad Administration (FRA), and the American Association of Railroads. All Idaho train accidents since 2009 were examined for this report. The number of total accidents each year since 2009 has been consistently 15 or 16, generally occurring in yards or sidings. Out of a total of 48 accidents since January 2009, 19 accidents, or 40%, have occurred at UPRR’s Pocatello yard. There have been a handful of main line accidents, including a derailment of four cars on the EIRR near Rexburg due to broken track and an accident on UPRR’s Nampa main line near Dietrich in which a crew failed to heed yellow, then red signals, and damaged a switch when their train blew through a junction. Figure 3-4 summarizes railroad safety issues, including problematic at-grade crossings that have been the location of multiple accidents since 2008.

Nationally, there are more than 250,000 public and private highway-rail grade crossings. In recent years, roughly 300-400 deaths have occurred annually at the Nation’s grade crossings, warranting significant attention from transportation agencies at the federal and state level. Increasing safety at railroad-highway crossings is one of the highest priorities of ITD’s Rail Program, and the Idaho Transportation Board sets aside Railroad/Highway crossing federal apportionments as well as state funding each year to address rail crossing safety projects. Funding of improvements is generally prioritized based upon the rail crossing safety index.
The crossing locations with the highest accident prediction values for 2011 can be seen in Figure 3-4. US Department of Transportation (USDOT) predicted fatality rate is the highest in the Northern Idaho Panhandle as shown in Figure 3-5. A direct correlation can be seen with the USDOT predicted fatality rate and the USDOT predicted casualty rate as shown in Figure 3-6. Figure 3-7 shows the location of
at-grade rail crossings with an Annual Average Daily Traffic (AADT) of greater than 10,000 vehicles per day. Note there are eight public crossing locations with an AADT of over 20,001 vehicles per day, and while they do not appear to correlate with the locations of multiple accidents, or the locations of high predicted fatality rates, there may be some correlation with locations of high predicted casualty rates. Rail safety issues and opportunities are explored in more detail in the Rail Needs Assessment being developed as part of the Idaho Statewide Rail Plan.

Efficiencies

Highway

Weigh In Motion Systems

Weigh-in-motion systems (WIMs) allow commercial vehicles to be weighed in mainline traffic. Vehicles equipped with transponders can be cleared through the fixed scale without leaving mainline traffic. An Automated Vehicle Identification (AVI) utilizes a radio frequency transponder that identifies the vehicle, checks associated credentials and permits status, and electronically clears the vehicle for weigh station bypass. Only those vehicles with problems or without transponders would be directed off-road to the fixed scale for further inspection or static weighing. In addition, the WIMs can potentially capture data and record truck axle weights, gross vehicle weights, truck speeds, total length and spacing measurements, and time stamp the vehicles passage.10

Currently, Idaho has weigh-in-motion technology implemented at the East Boise and Lewiston Port of Entry (POE) Facilities only. The majority of POE facilities on Idaho’s interstate system experience truck traffic backing up onto the Interstate as a result of a deficient ramp length and capacity. This creates safety issues and results in delays that negatively impact the efficiency of truck transport along these routes. Substantial benefits could be realized through the implementation of WIMS in strategic POEs throughout the state. These benefits align closely with the goals and objectives of Idaho’s LRTP:

- Improving the safety and efficiency of the commercial trucking industry and increasing the performance of roadside facilities without physically expanding them, thus protecting the public investment in the infrastructure.
- Providing safe and efficient movement of commerce through WIM and Automatic Vehicle Identification (AVI) technologies.
- Ensuring safety of traveling public by reducing ramp backups at POE fixed sites.
- Reducing the number of vehicles that are required to stop at the POE fixed sites while also verifying credentials, size, and weight on the mainline.
- Improving POE facility capability and creating staffing efficiencies by focusing services on high risk carriers.
- Enhancing the partnership with industry through the use of technology that reduces customer travel time and operating cost.11
Automatic Number Plate Recognition

Automatic Number Plate Recognition (ANPR) is a special form of optical character recognition. ANPR is a mass surveillance method that uses optical character recognition on images to read vehicle registration numbers on license plates from digital pictures. ANPR has a number of beneficial applications, including:

- **Access Control:** Access control is a mechanism for limiting access to areas and resources based on users' identities and their membership in various predefined groups. Access to limited zones may also be managed based on the accessing vehicles alone or together with personal identity. Such applications would be beneficial in creating a commercial vehicle pass system as a means to efficiently re-route emergency and essential goods, and other freight to and through affected areas during periods of highway disruption. It could be implemented when major truck freight routes are closed or severely restricted, and a limited-capacity highway detour is available nearby.

- **Border Control:** Border control is an established state-coordinated effort to achieve operational control of the country's state border with the priority mission of supporting the homeland's security against terrorism, illegal cross border traffic, smuggling, and criminal activities. Efficient border control significantly decreases the rate of violent crime and increases societal security. Automatic number plate recognition adds significant value by event logging, establishing investigateable databases of border crossings, and tracking of extremely hazardous material shipments such as radioactive waste shipments.

- **Freight Planning:** The automatic number plate recognition can be used to analyze travel behavior (route choice, origin-destination, etc.) for corridor or region-specific freight planning.

- **Law Enforcement:** Automatic number plate recognition is an ideal technology to be used for law enforcement purposes. It is able to automatically identify stolen cars based on the up-to-date blacklist, and has been used successfully in Idaho to respond to AMBER (America's Missing: Broadcast Emergency Response) Alerts. Other common law enforcement applications are red-light enforcement, speeding tickets, and enforcement on high-occupancy vehicle controls.

- **Road Tolling:** Can be used for implementation of user fees including road tolling and Vehicle Miles Traveled (VMT) taxes.

- **Traffic management systems:** ANPR can be implemented to determine traffic flow using the time it takes vehicles to pass two ANPR sites, and based on the traffic flow, proper traffic management action can be implemented for smooth freight traffic operations, and coupled with possible smart phone applications (discussed below), can be used to implement and advance warning system for delays and potential detours.

Transponders, Smart Phone GPS Systems, and Web-based Applications

Smart phone, GPS, transponder, and web-based technologies can be integrated and implemented to efficiently maintain and operate Idaho’s freight system. In addition, data can be collected to measure
system performance, identify and prioritize opportunities for system improvement, and generate data to enable transporters to realize operational efficiencies.

Transponders are already being used on a voluntary basis for the pre-clearing of weigh stations equipped with WIMS. Their application in Idaho could be expanded to include relay of safety-related information, including when the vehicle was last inspected, bills of lading, hazardous materials manifests, material safety data sheets for freight on board, and similar applications. Transponders are currently used in this manner for the tracking of extremely hazardous materials, such as fissionable materials. Transponder systems also have applicability for implementing user fees such as tolls, like the E-Z Pass system (a prepaid method of passing through toll booths that minimizes delays and disruptions by allowing vehicles to pass through toll areas without having to come to a full stop at toll stations13).

In Washington state, WSDOT is using three ongoing border data collection systems using transponder readers to obtain freight data. These border projects are designed to facilitate the movement of participating commercial vehicles over the Washington/British Columbia border by providing commercial vehicle operators, shipping lines, and border enforcement agencies with electronic information about vehicles and their cargo. One of these systems was designed to monitor and facilitate the movement of northbound trucks carrying containerized in-bond freight over the Washington/British Columbia border. This effort used the same transponder as used for the WIM system to monitor the container, record the container crossing into Canada, and automatically clear out the bond. A similar system under development will use transponders on trucks hauling containers southbound out of British Columbia into Washington. As a result of these systems, there are AVI readers at the exit gates of the American President Lines terminal at the Port of Seattle, the Maersk terminal at the Port of Tacoma, and the Blaine Customs station at the Washington/British Columbia border14.

Smart phone applications for freight transit include use for notifications regarding congested conditions, emergency alerts, alternate route planning, and pre-clearing of weigh stations. Both smart phones and transponders have the potential to be used for freight system data collection, to enable better system performance measurement, and potential improvement identification, prioritization, and evaluation.

Web-based applications have the potential to integrate and disseminate freight data for logistical planning and performance measurement purposes. Development of web-based systems that allow users to share information regarding backhaul opportunities has the potential to substantially increase system efficiencies. In Oregon, the Oregon Transportation Research and Education Consortium developed an online environment, the Oregon Freight Data Mart, to integrate, visualize, and disseminate freight data in the state of Oregon. This new online system can access the Portland Oregon Regional Transportation Archive Listing (PORTAL) database to store and retrieve freight information, and integrate Google Maps to display the freight related information.15
Rail
Positive Train Control (PTC) is a system of functional requirements for monitoring and controlling train movements to provide increased safety. The main concept in PTC is that the train receives information about its location and where it is allowed to safely travel, also known as movement authorities. Equipment on board the train enforces this, preventing unsafe movement. PTC has the potential to prevent train-to-train collisions, over speed derailments, and casualties or injuries to roadway workers as a result of unauthorized train movements into work zones. Prior to October 2008, PTC systems were voluntarily installed by various rail carriers. However, the Rail Safety Improvement Act of 2008 (RSIA) has mandated the widespread installation of PTC systems by December 2015. This mandate has the potential to substantially improve rail safety in the coming years.16
Figure 3-4. Idaho Rail Network, Rail Safety

Data Sources: Idaho Transportation Department; Association of American Railroads; Federal Rail Administration; and, Oak Ridge National Laboratory
Figure 3-5. Railroad Crossing Predicted Fatality Rate

Public At-Grade Railroad Crossings
USDOT Predicted Fatality Rate

- 0.010154 - 0.011198
- 0.011199 - 0.013231
- 0.013232 - 0.018231
- 0.018232 - 0.022470
- 0.022471 - 0.066876

Note: Less than .01 not shown

Data Source: US Department of Transportation, Federal Rail Administration
Figure 3-6. Railroad Crossing Predicted Casualty Rate

Data Source: US Department of Transportation, Federal Rail Administration
Figure 3-7. Public At-Grade Railroad Crossings, AADT of >10,000

Data Source: US Department of Transportation, Federal Rail Administration
3.2.2 Partnerships

At the freight summit, regional forums, and through stakeholder interviews and outreach, an emerging theme is a significant need and desire to forge intermodal and public-private partnerships to create transportation efficiencies and leverage cost-effective transportation system investments that can support the freight requirements of Idaho’s growing economy.

Port of Lewiston Model

The Port of Lewiston offers an excellent model for a public-private funding partnership in the provision of transportation infrastructure that can serve as an engine for Idaho’s economy. Port access is funded through a combination of federal funds and local funds, including local taxes and user fees, and private funding. The Port facilities themselves are funded through a combination of private funding and local port funding, including revenues from users and in some cases, local taxes. Tugs, barges, and steamships are funded solely through private sector funding. Funding for Navigation channels is as follows:

- Deep Draft Operations & Maintenance – 100% funded by user fees.
- Deep Draft Construction – Approximately 35% funded by local sponsor, 65% federal.
- Barge Channel Operations & Maintenance – 100% federal appropriations.
- Barge Channel Construction – Approximately 50% funded by user fees, 50% federal.

Ports also generate revenue and taxes from port operations, from business activity on port property, and from taxes paid by port tenants and port users.17

The Port uses local property taxes and user fees to leverage additional private investment and create an environment that cultivates and encourages economic activity. The concept of expanding Idaho’s port legislation to allow for the creation of dry port districts is a topic of increasing discussion, though there has been no serious consideration of new legislation in recent years.

Kootenai County, Pocatello area, and Boise all identified the desire to establish intermodal freight hubs in their region utilizing a port district model.

Boise Valley Railroad/City of Boise REDIFiT Facility

The potential partnership between Boise Valley Railroad and the City of Boise to develop an intermodal facility in concert with an industrial park is an opportunity to forge another public-private, intermodal partnership to stimulate economic development and private investment in the Treasure Valley. If successful, this partnership has the potential to significantly improve freight efficiencies in southern Idaho, thus creating a cost competitive environment for economic growth.

Inland Pacific Hub

The Inland Pacific Hub (IPH) is a nineteen county region encompassing the eastern third of Washington and the panhandle of Idaho. IPH is a public-private partnership created to “establish the Inland Pacific Hub as a multi-modal global gateway to increase international commerce”. The IPH Board has
partnered with the ITD and the Washington State Department of Transportation (WSDOT) to study the region’s capacity for economic development. The Inland Pacific Hub Transportation Study has two objectives: 1) to identify the Inland Pacific Hub’s capacity as a globally-connected, multi-modal transportation gateway; and, 2) to identify the critical infrastructure requirements needed to drive the Inland Pacific Hub’s future economic growth.

Phase 2 of the study, Transportation Investment and Project Priority Blueprint has just been completed. Recommendations of this study relevant to Idaho included:

- A regulatory strategy to work harmonize trucking regulations across the states and the Canadian border;
- Continuation of a public-private, cross-state advisory council to facilitate regional planning advocacy efforts;
- Support of local efforts to establish Port Districts in Spokane and Kootenai Counties to serve as important economic drivers in the IPH Region;
- Promotion of the establishment of a bi-state port district to unify the regional vision and give political and economic weight to the hub vision; and,
- Encourage expansion of border crossing hours with Canada.

Priority transportation investments identified by the study included:

- Expansion of US-95 from Bonners Ferry to Canada in the short-term;
- US-95 Improvements to and from the Snake River Ports in the mid-term;
- Widening of I-90 through Kootenai County in the long-term;
- Construction of the Huetter Road Bypass in Kootenai County in the extended term.

3.2.3 System Condition, Capacity, and Strategic Investment

State Highway System

Capacity Issues

While truck volumes let us know which corridors are most frequently used by trucks, it does not tell us where the congestion locations are and how the system is performing. High volume locations do not necessarily correlate with high congestion levels, and to understand where congestions occur, we can look at the volume-capacity ratio (VC ratio). According to FHWA, VC ratio is a measure of sufficiency of a roadway facility and it is calculated as the volume on a given highway segment divided by its capacity. If a ratio is greater than 1, it means that the facility is unable to discharge the demand arriving at the section, thus leading to delays and cues. The higher the VC ratio, the more congested a segment is, and the worse its operating service level.

As Figure 3-8 shows, the major interstate highways going through the southern portion of the state shows little traffic congestion. Interestingly most congestion occurs on US-12 going from Lewiston to
Missoula. The other congested corridor is US-95, which, as noted earlier, is the only vehicular route connecting northern and southern Idaho. Given the relatively low truck traffic, two major reasons can contribute to the high levels of congestion of these corridors: 1) challenging roadway geometry, including winding and narrow roadways, and 2) high volumes of auto traffic.

An analysis of volume to capacity ratios in 2010 along the major freight corridors, depicted in Figure 3-8, indicates relatively little congestion along major freight routes serving the southern portion of the state, except in the I-84 corridor, between Nampa and Boise. The southern half of SH-55 appears to experience some minimal congestion. US-95, particularly in the Coeur d’Alene and Lewiston metropolitan areas, and US-12, between Lewiston and the Orofino area (where the Lewiston Grain Growers intermodal facility is located) show substantial congestion. The volume to capacity ratio on I-90, between Coeur d’Alene and the Washington border, is indicative of moderate to substantial congestion as well.

The portions of the state highway system most prone to congestion are within the urban areas. In the Coeur d’Alene area, the only areas of congestion are on US-95, north of I-90 (with significant congestion in the City of Coeur d’Alene between milepost 431.1 and 432.5), and on I-90 between Coeur d’Alene and Post Falls, as seen in Figure 3-9. In the Lewiston area, Figure 3-10 indicates congestion on US-12, east of Lewiston, and significant congestion on SH-3 between Lewiston and Kendrick, with a volume to capacity ratio of 1.76. In the Boise area, I-184, between milepost 47 and 48, has a volume to capacity ratio of 1.26, with other significant areas of congestion on I-84 between Nampa and Boise City, and SH-21, as seen in Figure 3-11. In the Pocatello area, Figure 3-12 identifies only minor congestion on portions I-15, with significant congestion on US-30 between milepost 3.1 and 3.6, in the middle of the city. No congestion areas were identified in the Idaho Falls area. Figure 3-13 depicts the volume to capacity ratios projected in 2040, as based upon ITD’s transportation system model.
Figure 3-8. Volume to Capacity (VC) Ratio for Major Corridors in Idaho, 2010

Source: Idaho Transportation Department Data
Figure 3-9. Volume to Capacity Issues, Coeur d’Alene Metro Area, 2010

Data Source: Idaho Transportation Department
Figure 3-10. Volume to Capacity Issues in Lewiston Metro Area, 2010

Data Source: Idaho Transportation Department
Figure 3-11. Volume to Capacity Issues, Boise Metro Area

Data Source: Idaho Transportation Department
Figure 3-12. Volume to Capacity Issues, Pocatello Area

Data Source: Idaho Transportation Department
Figure 3-13. Volume to Capacity (VC) Ratio for Major Corridors in Idaho, 2040

Source: Idaho Transportation Department Data
Pavement Condition

Idaho Transportation Department maintains a pavement management system (PMS) for the state highway system, which identifies the condition of pavement based upon three indices: cracking, roughness, and rutting. Pavement condition is rated for each of these indices on a scale of 0.0 to 5.0 (with 5 indicating good pavement with no visible distress, and 0.0 indicating extremely poor condition with the need for immediate repair). As seen in Table 3-3, according to data provided by ITD for 2011, 61% of the freight system had ratings of 4 to 5. Only 5% of the system had a rating of 2 or less, with 14% having a rating between 2 and 3.

Table 3-3. Summary of Pavement Ratings by Mileage

<table>
<thead>
<tr>
<th>Rating</th>
<th>Length (mi)</th>
<th>% Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-1</td>
<td>30</td>
<td>1%</td>
</tr>
<tr>
<td>1-2</td>
<td>228</td>
<td>4%</td>
</tr>
<tr>
<td>2-3</td>
<td>809</td>
<td>14%</td>
</tr>
<tr>
<td>3-4</td>
<td>1,163</td>
<td>20%</td>
</tr>
<tr>
<td>4-5</td>
<td>3,472</td>
<td>61%</td>
</tr>
<tr>
<td>Total</td>
<td>5,701</td>
<td>100%</td>
</tr>
</tbody>
</table>

Data Source: Idaho Transportation Department

Figure 3-14 highlights the segments of pavement along the major freight corridors with ratings of 3 or less. Table 3-3 summarizes the length and percentage of pavement with a rating below 3 for the major freight corridors.

The current pavement condition reflects the Idaho Transportation Board’s decision to focus much of their recent funding on pavement treatments. The current pavement strategy is to invest approximately $100 million annually in pavement treatments that are preventive in nature. Even with this strategy, ITD’s PMS predicts that by 2021, the deficient pavement will grow to 28%.

Bridge Condition

Bridge condition is an important freight system consideration, since a bridge in poor condition can become the limiting factor for an entire corridor. Bridge condition is measured using the National Bridge Inventory (NBI) Sufficiency Rating provided by the FHWA, a method of evaluating highway bridge data ratings for each of four factors to obtain a numeric value that indicates bridge sufficiency from a scale of 0 to 100, where 0 would present an entirely insufficient bridge, and 100 would present an entirely sufficient bridge. The four factors considered include: structural adequacy and safety; serviceability and functional obsolescence; essentiality for public use; and, special reductions. Bridges with a rating of 50 or less qualify for federal replacement funds, while bridges with a sufficiency rating of 80 or below are eligible for federal rehabilitation funding.

As detailed in Table 3-4, nearly one-third of all bridges on the state system are in need of rehabilitation or replacement, as based upon the federal standard. 153 bridges, representing 7% of all bridges on the state system, have a rating of less than 50, and thus, are eligible for federal funding for full replacement.
Of those, 110 have a sufficiency rating of 10 or less. An additional 395 bridges, representing 22% of all bridges on the state system, have a rating between 50 and 80, thus qualifying for federal bridge rehabilitation funds.

Table 3-4. Summary of Bridge Ratings

<table>
<thead>
<tr>
<th>Sufficiency Rating</th>
<th>Number of Bridges</th>
<th>% Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-10</td>
<td>110</td>
<td>6%</td>
</tr>
<tr>
<td>10-20</td>
<td>4</td>
<td>0%</td>
</tr>
<tr>
<td>20-30</td>
<td>6</td>
<td>0%</td>
</tr>
<tr>
<td>30-40</td>
<td>8</td>
<td>0%</td>
</tr>
<tr>
<td>40-50</td>
<td>25</td>
<td>1%</td>
</tr>
<tr>
<td>50-60</td>
<td>51</td>
<td>3%</td>
</tr>
<tr>
<td>60-70</td>
<td>122</td>
<td>7%</td>
</tr>
<tr>
<td>70-80</td>
<td>222</td>
<td>12%</td>
</tr>
<tr>
<td>80-90</td>
<td>407</td>
<td>22%</td>
</tr>
<tr>
<td>90-100</td>
<td>909</td>
<td>49%</td>
</tr>
<tr>
<td>Total</td>
<td>1864</td>
<td>100%</td>
</tr>
</tbody>
</table>

Data Source: Idaho Transportation Department

Figure 3-15 highlights the bridges on the major freight corridors with a sufficiency rating of 50 or below. Significantly, there are a total of nine (9) bridges with a sufficiency rating of 50 or below on US-95, south of the I-90 corridor. SH-55, between US-95 and Boise, has seven (7) bridges with a sufficiency rating below 50. Additionally, I-90, I-15, and I-84 each have one (1) bridge with a sufficiency rating of 50 or below.

According to the American Society of Civil Engineers (ASCE), most bridges are designed for a 40 to 60 year life span, yet nearly 32% of the bridges on Idaho’s state highway system are 50 years or older, and another 29% will be 50 years old within the next ten years. In 2011, 164 bridges were 70 years or older, and that number increases to 233 by 2021. By 2031, over 800 bridges will be at least 50 years old. With more than 30% of the bridges on the state highway system already 50 years old, and with that number reaching 60% within the next 10 years, there is an immediate need to identify funding to address the most critical bridges in the system, to catch up on the backlog of bridges needing replacement, as well as to increasing resources for bridge inspection and management programs.
Figure 3-14. Pavement Condition Rating, 2011

Data Source: Idaho Transportation Department
Figure 3-15: Bridge Sufficiency Rating, Major Corridors

Data Source: Idaho Transportation Department
Key Highway Corridor Issues

The following summary of conditions on major corridors is based on an analysis of geo-coded data provided by ITD.

US-95 Corridor:

- Over 17% of US-95 in Idaho (representing 98.7 miles of pavement) has a pavement rating of 3 or less in 2011.
- As detailed in Table 3-5, a total of nine (9) bridges on US-95 have a sufficiency rating of 50 or below.

<table>
<thead>
<tr>
<th>Bridge Key Number</th>
<th>Milepost</th>
<th>Location</th>
<th>County</th>
<th>Sufficiency Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>18125</td>
<td>81.6</td>
<td>Weiser River</td>
<td>Washington</td>
<td>30.0</td>
</tr>
<tr>
<td>18190</td>
<td>120.6</td>
<td>East of Cambridge</td>
<td>Washington</td>
<td>23.1</td>
</tr>
<tr>
<td>18265</td>
<td>174.1</td>
<td>Little Salmon River, North of New Meadows</td>
<td>Adams</td>
<td>32.1</td>
</tr>
<tr>
<td>18270</td>
<td>176.6</td>
<td>Little Salmon River, North of New Meadows</td>
<td>Adams</td>
<td>37.7</td>
</tr>
<tr>
<td>18325</td>
<td>196.7</td>
<td>Race Creek</td>
<td>Idaho</td>
<td>42.8</td>
</tr>
<tr>
<td>18465</td>
<td>304.2</td>
<td>Clearwater River</td>
<td>Nez Perce</td>
<td>7.0</td>
</tr>
<tr>
<td>18580</td>
<td>381.6</td>
<td>Hangman Creek Overflow</td>
<td>Benewah</td>
<td>41.0</td>
</tr>
<tr>
<td>18590</td>
<td>388.6</td>
<td>Moc tired Creek</td>
<td>Benewah</td>
<td>37.8</td>
</tr>
<tr>
<td>18602</td>
<td>394.4</td>
<td>Plummer Creek</td>
<td>Benewah</td>
<td>40.8</td>
</tr>
</tbody>
</table>

Data Source: Idaho Transportation Department

- Congestion issues north of Coeur d’Alene will likely be addressed through recent, current, and planned future improvements along this portion of the US-95 corridor.
- US-95, between milepost 431.1 and 432.5 in the City of Coeur d’Alene, has a volume to capacity ratio of 1.04; with anticipated growth in volume through 2040, capacity improvements are warranted in this segment.
- Current congestion issues between Moscow and Lewiston, with anticipated growth in CAADT through 2040, are indicative of the need for capacity improvements in this segment.
- Congestion is a potential issue along the US-95 corridor between Weiser and Canyon County by 2040, which may warrant capacity improvements in that segment.
- The fatal crash cluster (3 or more fatal crashes in a general location) located in the Hayden area has likely already been addressed through recent improvements.
- A fatal crash cluster north of Lewiston supports the need for improvements in the Moscow to Lewiston segment of the corridor.
- Poor pavement condition north of Lewiston also supports the need for improvements in the Moscow to Lewiston segment of the corridor.
- US-95 corridor concerns are summarized in Figure 3-16.
US-12 Corridor:

- In 2011, nearly 42% of US-12 in Idaho (representing 69 miles of pavement) had a pavement condition rating of less than 3, though no sections had a pavement rating below 2.
- No bridges on US-12 have a sufficiency rating below 50.
- Congestion already exists between Lewiston and Orofino; with growth in CAADT from Lewiston east to Orofino and beyond projected for 2040, long-range capacity improvements will likely be needed between on this segment of US-12.
- US-12 corridor issues and concerns are summarized in Figure 3-17.

I-90 Corridor:

- Just over 20% of I-90 in Idaho (28.2 miles of pavement) had a pavement condition rating of less than 3 in 2011.
- Three bridges on I-90 have a sufficiency rating below 50; they are detailed in Table 3-6.

Table 3-6. I-90 Bridges with Sufficiency Rating <50

<table>
<thead>
<tr>
<th>Bridge Key Number</th>
<th>Milepost</th>
<th>Location</th>
<th>County</th>
<th>Sufficiency Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>17085</td>
<td>45.5</td>
<td>Pinehurst Road Grade Separation</td>
<td>Shoshone</td>
<td>49.6</td>
</tr>
<tr>
<td>30925</td>
<td>58.2</td>
<td>Nuckols Gulch Road Grade Separation</td>
<td>Shoshone</td>
<td>27</td>
</tr>
<tr>
<td>17080</td>
<td>45.5</td>
<td>Pinehurst Road Grade Separation</td>
<td>Shoshone</td>
<td>47.5</td>
</tr>
</tbody>
</table>

Data Source: Idaho Transportation Department

- Congestion already exists between Coeur d’Alene and Post Falls; with significant growth in CAADT by 2040, there is the need for long-range capacity improvements, likely from the western border through Coeur d’Alene.
- I-90 corridor conditions are summarized in Figure 3-18.

I-84/I-86 Corridor:

- In 2011, only 15.5% of I-84 Corridor (representing 85.5 miles) had a pavement condition rating of less than 3.
- Nearly 45% of I-86 (representing 56.4 miles) had a pavement condition of less than 3.
- There are no bridges on I-86 with a bridge sufficiency rating of less than 50.
- On I-84, the bridge at the West Road grade separation at milepost 205.7 has a sufficiency rating of only 25.3; no other bridges on I-84 have a sufficiency rating of less than 50.
- Congestion already exists between Nampa and the City of Boise, and with 2040 commercial volume increases, the need for additional capacity improvements is anticipated.
- I-86 is already experiencing high levels of congestions, and with significant increases in CAADT by 2040, it appears it will require some long-range capacity improvements.
- I-84/I-86 corridor conditions are summarized in Figure 3-19.
I-15 Corridor:

- Nearly 21% of I-15 (391.6 miles) had a pavement condition rating of less than 3 in 2011.
- There is only one bridge on I-15 with a sufficiency rating of less than 50. That bridge is located at milepost 118, at the Utah Avenue grade separation, and has a sufficiency rating of only 10.3.
- Currently, there is only minor congestion in a segment of I-15 within the City of Pocatello, with significant growth anticipated in this corridor through 2040, capacity improvements will likely be warranted between Pocatello and Idaho Falls, at a minimum.
- I-15 corridor conditions are summarized in Figure 3-20.

SH-55 Corridor:

- In 2011, nearly 22% of SH-55 (representing almost 30 miles) had a pavement condition rating of less than 3.
- As detailed in Table 3-7, a total of seven (7) bridges on SH-55 have a sufficiency rating of 50 or below.

Table 3-7. SH-55 Bridges with Sufficiency Rating <50

<table>
<thead>
<tr>
<th>Bridge Key Number</th>
<th>Milepost</th>
<th>Location</th>
<th>County</th>
<th>Sufficiency Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>14670</td>
<td>2.7</td>
<td>Snake River (Marsing Bridge)</td>
<td>Owyhee</td>
<td>11</td>
</tr>
<tr>
<td>14760</td>
<td>63.7</td>
<td>Payette River</td>
<td>Boise</td>
<td>33.1</td>
</tr>
<tr>
<td>14788</td>
<td>74.9</td>
<td>Fleming Creek</td>
<td>Boise</td>
<td>43.5</td>
</tr>
<tr>
<td>14790</td>
<td>78.8</td>
<td>South Fork Payette River</td>
<td>Boise</td>
<td>46.5</td>
</tr>
<tr>
<td>14805</td>
<td>99.8</td>
<td>UPRR, North Fork Payette River</td>
<td>Valley</td>
<td>46.2</td>
</tr>
<tr>
<td>14825</td>
<td>113.8</td>
<td>North Fork Payette River</td>
<td>Valley</td>
<td>39.5</td>
</tr>
<tr>
<td>14880</td>
<td>145.0</td>
<td>North Fork Payette River, Lardo Bridge</td>
<td>Valley</td>
<td>48.9</td>
</tr>
</tbody>
</table>

Data Source: Idaho Transportation Department

- SH-55 corridor conditions are summarized in Figure 3-21.
Figure 3-16. US-95 Conditions Summary

Data Source: Idaho Department of Transportation
Figure 3-17. SH-12 Conditions Summary

Data Source: Idaho Department of Transportation
Figure 3-18. I-90 Corridor Conditions Summary

Data Source: Idaho Department of Transportation
Figure 3-19. I-84/I-86 Conditions Summary

Data Source: Idaho Department of Transportation
Idaho Statewide Freight Study

Figure 3-20. I-15 Conditions Summary

Data Source: Idaho Department of Transportation
Figure 3-21. SH-55 Conditions Summary

Data Source: Idaho Department of Transportation
Local Highway System & Condition

According to the ASCE, 55% of all commercial goods movement on highways occurs on the local system. Overall capacity on the local highway system is generally adequate, with few congestion issues due to traffic volume. Capacity issues are typically relegated to peak periods, and generally attributable to poor access management on the arterial and collector system. Almost 39% of local highways were rated in fair or poor condition, with that number increasing to 43% by 2028.

Seasonal weight limits imposed on the local highway system significantly impact the freight trucking industry, and create operational challenges for transporters during the spring freeze-thaw cycle. Seasonal weight limits are generally imposed as a means to extend and preserve the useful life of the pavement, particularly on local roads with weakened or substandard base materials and soil structures in frost-susceptible regions of the state, and often as a management response to limited maintenance resources.

Current local highway system funding levels run far short of demand. Without additional funding, there is a projected funding shortfall of $3.6 billion dollars over the next 20 years. The share of local funding has steadily increased over time, with local highway jurisdictions currently generating approximately 57% of all revenues from non-user fees. The national recommended split between users and non-users is 65%/35%. Local highway jurisdictions in Idaho do not have regulatory authority to impose voter-approved taxes for local roadway maintenance and improvement, which significantly curtails their ability to respond and address local transportation infrastructure needs.21

Rail Capacity

According to FAF3 data, rail freight tonnage demand in Idaho is projected to increase by more than 32% by 2040.22 East-west rail freight capacity was an issue specifically identified in stakeholder interviews. There are currently two active rail routes providing east-west freight service through Idaho: the UPRR Corridor that connects Pocatello and Boise/Nampa; and, the BNSF Corridor that connects Sandpoint with Post Falls and Spokane.

Double stacking is one means to increase capacity through efficiency on these existing rail lines. Neither railroad has placed a priority on developing or expanding double-stack services in any of these corridors. However, looking ahead to 2040, these corridors could be developed to remedy the current situation in which Idaho finds itself: far off the nation's primary freight rail intermodal corridors. This network of rail lines would allow existing businesses, or businesses seeking to locate in Idaho, increased access to domestic, North American, and international trade flows. In addition, these corridors will take a long time to finance and begin operations if the public and private partners are willing to see them developed. In the eastern U.S., both CSX and Norfolk Southern have paired with states and federal agencies to develop high-cubed double-stacked corridors, including enlarging tunnels, lowering tracks, developing inland terminals, etc. These projects would be worth examining from the standpoint of developing such corridors throughout Idaho and the West. Initiatives of this magnitude, however, would require development of a multi-state alliance and further benefit-cost analyses.
In November of 2011, Boise Valley Railroad and the City of Boise received a matching grant from the State of Idaho to assess the feasibility of a multimodal freight center in Boise to serve southwestern Idaho. The grant was funded through the Idaho Rural Economic Development and Integrated Freight Transportation (REDIFiT) Program administered by the Idaho Department of Agriculture, in cooperation with the Idaho Transportation Department, and Idaho Department of Commerce. The proposed facility is anticipated to expand opportunities to combine rail service and local truck service, reducing overall freight costs, and improving the competitiveness of outbound Idaho-produced freight and inbound goods and materials.23

The study, completed in February, 2012, evaluated freight flows in southwestern Idaho (including the counties of Owyhee, Elmore, Ada, Canyon, Boise, Gem, Payette, Valley, Adams, and Washington) in order to estimate potential rail car volume in the region. The findings of that analysis suggested that Southwest Idaho had the potential to support and grow a multi-modal transload facility premised principally on agriculture and heavy industrial commodities. In assessing the feasibility of locating such a facility in the Boise/Treasure Valley area, it was concluded that Boise is a natural nexus for such a facility due to the geographic distribution of industries, and rail and highway infrastructure. The study also concluded that a reload and industrial park site appeared to be a viable opportunity with aggressive sales and marketing efforts.

The study then focused on facilities, identifying a two-phase approach, with the first phase including a multi-modal transload facility with approximately 50,000 square feet of warehousing capacity that will enable transloading, material handling, outside and inside storage of the commodities, including agricultural grains and bulk commodities; minerals and related aggregates; chemical, fuels, and other liquids; miscellaneous bulk materials; and, palletized, crated, and boxed goods. The cost of the first phase was estimated at $15.5 million. The second phase recommended development of a rail based regional industrial park of approximately 140 acres, requiring investment of approximately $28 million, to include the development of loop track service to the park. The study concluded that, while the site would not generate huge returns on investment, the potential of increased rail volumes could make the concept attractive to a railroad operating partner. The direct economic impact of the site would be equivalent to a moderately large manufacturing enterprise locating in the region. The study noted that the impacts associated with the “magnet effect” were difficult to quantify.24
Idaho Statewide Freight Study

References:

8 Federal Rail Administration. Rail_lines.shp.; Idaho Transportation Department. IdahoRail.shp.; Oak Ridge National Laboratory. qc15v.shp.

4 Performance Measurement, Scenario Development and Needs Assessment

4.1 Performance Measures

With the signing of MAP-21 (Moving Ahead for Progress in the 21st Century Act) and a focus on making transportation investment decisions using a performance-based process,1 performance measures will have an increasingly important role in transportation planning and operations at all levels of government. An effective set of performance measures can help organizations set meaningful goals, detect and correct problems, manage and improve processes, and document accomplishments.2

Purpose of Performance Measures

The development and application of appropriate performance measures enables evaluation of transportation programs and projects, and also help decision makers allocate limited resources more effectively than would otherwise be possible. Performance measures may generally be applied to the following purposes:

- **Prioritizing projects** – performance measures can provide information needed to invest in projects and programs that provide the greatest benefits.
- **Linking actions to goals** – performance measures can be developed and applied to help link plans and actions to individual agency/organization goals and objectives.
- **Managing performance** – applying performance measures can improve the management and delivery of programs, projects, and services. The right performance measures can highlight the technical, administrative, and financial issues critical to governing the fundamentals of any program or project.
- **Communicating results** – performance measures can help communicate the value of public investments in transportation. They can provide a concrete way for stakeholders to see commitment to improving the transportation system and help build support for transportation investments.
- **Strengthening accountability** – performance measures can promote accountability with respect to the use of resources. They reveal whether transportation investments are providing the expected performance or demonstrate need for improvement.

Potential Performance Measurement Pitfalls

While the establishment of performance measures provides many benefits, there are a few pitfalls that the states should avoid as they implement performance measurement systems. Two common pitfalls are:

- **Performance measures not linked to goals and objectives** – the fact that high quality data are not uniformly available to measure performance for each critical goal and objective can drive a
state to focus resources on areas where data are available, to the detriment of other important areas.

- **Too many performance measures** – this problem is most common in states that are beginning to incorporate performance measures. Too many measures can cause a lack of focus and also foster wide-ranging data collection efforts that consume valuable resources. As states progress in their efforts to incorporate performance measures they tend to reduce their number to the “critical few.”

Freight Performance Measures

Freight performance measures can be used to identify freight needs and deficiencies, which can then be fed back into the transportation planning and programming pipeline. Routine assessment of freight performance measures can, over time, result in freight issues becoming an accepted, integrated component of Idaho’s transportation planning and programming processes. The Idaho economy relies, in large part, on its multimodal transportation assets including highways, Class 1 and short line railroads, the Port of Lewiston, and the Boise Air Terminal, among others. Efficient freight transportation is indispensable to economic growth because in many ways freight is “the economy in motion.” As the cost of shipping freight increases, the cost of doing business also increases; a higher cost of doing business impacts Idaho’s ability to attract and retain jobs.

The freight performance measures that were considered as part of this study are linked to the goals established for the Idaho Statewide Freight Study (ISFS), the Long-Range Goals and Objectives listed in ITD’s draft Long-Range Transportation Plan (LRTP) and also support Governor Otter’s Project 60 initiative to grow Idaho’s Gross State Product from $51.5 billion to $60 billion.

Freight performance measures considered address freight demand, freight safety, freight system efficiency, and freight system conditions. Measures listed in each of the areas fall into three categories. These are:

- **Existing Freight Performance Measures** - Performance measures already in place.
- **Additional Performance Measures – Near Term** - Performance measures that are not currently tracked, but may be established with relative ease because data required are readily available; and
- **Additional Performance Measures – Future** - Performance measures that are not currently tracked, and for which key data elements are missing. Since a data collection plan will need to be developed and implemented to begin using these measures, it may be some time before they can be tracked. For these potential measures, the data collection plan should include an evaluation on whether the benefits of tracking them are greater than the costs of collecting the data.
Freight Demand

Macro-economic factors, such as population growth and household income, drive freight demand. In a state like Idaho, which has a large agriculture sector, freight demand is driven not only by internal consumption, but also by demand from other states and other countries.\(^1\) Since freight demand is directly linked to the economy, understanding demand can help Idaho reach its goal of providing a mobility-focused transportation system that drives economic opportunity, as stated in the 2011 ITD Strategic Plan.

Monitoring freight demand indicators provide valuable information for planning and programming and can help to identify strategies to reach state economic targets, such as increased stakeholder outreach and communications to attract economic opportunities.

Existing Performance Measures

Currently, there are no existing freight demand performance measures in Idaho. However, the ITD has formalized eight high-level measures, and is in the process of finalizing a ninth measure. These measures are posted on the ITD performance dashboard\(^3\) and include:

- Five year fatality rate
- Percent of pavement in good or fair condition
- Percent of bridges in good condition
- Percent of highway projects developed on time
- Construction cost at award as a percent of budget
- Administration and planning expenditures as a percent of total expenditures
- Days to process vehicle titles
- DMV transactions processed on the internet
- Construction cost at project closeout as a percent of budget (under development)

ITD also tracks a number of additional performance measures as part of the Strategic Highway Safety Plan (SHSP). These focus on crashes, fatalities, and injuries related to key safety emphasis areas. This technical memorandum identifies a broad range of performance measures that may be applied to Idaho’s freight system. Some of these measures rely on existing data and can be implemented quickly. Others require the collection of additional data; for these, ITD will need to decide whether the benefits of tracking the measures are worth the cost of collecting the data needed to track it.

In addition, the railroad companies operating in Idaho, BNSF, UP and WATCO, all assess a variety of customer service related performance measures.

\(^1\) In addition, Idaho’s location between ports on the west coast and manufacturing and population centers in the Midwest and east coast means that large volumes of freight simply pass through the state. This freight is of great national significance, but provides relatively little direct benefit to Idaho.
Additional Performance Measures – Near Term

Idaho can begin tracking current and future commodity flows to better understand the magnitude of freight activity in the state today, and the potential demand in the future. The following information should be collected and reviewed:

- Current Year Value/Tonnage of Freight Moved by Mode by Direction
- Future Year Value/Tonnage of Freight Moved by Mode by Direction
- Current Year Value/Tonnage of Key Commodities Moved
- Future Year Value/Tonnage of Key Commodities Moved

Freight Analysis Framework 3 (FAF3) data can provide information on the total tonnage and value of freight moving throughout Idaho. This data source is available at no-cost through the Federal Highway Administration (FHWA). Additional data sets, such as Transearch, can provide more specific information relative to Idaho however it does have to be purchased.

To better understand individual mode flows, modal-specific data sources should be queried as they provide more detail and more recently updated data. For rail data, the Surface Transportation Board (STB) Waybill Sample data can be used to calculate rail ton-miles and even revenue information. The Federal Aviation Administration (FAA) can provide historic air cargo data as well as markets served. The United States Army Corps of Engineers Waterborne Commerce Statistics, as well as Port of Lewiston Shipping Reports can provide additional detail about waterborne freight volumes.

A summary of these measures is provided in Table 4-1, shaded in yellow.

Additional Performance Measures – Future

Economic indicators should be tracked to provide a more direct link to Idaho’s economic development goals. The key economic indicators that are important from a freight perspective include the output, employment, and productivity of freight-dependent economic sectors. Public information is available to support metrics in these areas.

- **Output (Gross State Product) by Freight-Dependent Industry Sectors** - Output is the total amount of production, or sales an industry produces. The Gross State Product (GSP) is the sum of gross output of all industries in Idaho less their intermediate inputs. These provide an indication of the strength of a given industry sector within the state. Relevant freight-dependent economic sectors include agriculture, manufacturing, utilities, mining, construction, retail, wholesale trade, and transportation. The U.S. Bureau of Economic Analysis (BEA) and the U.S. Census Bureau both provide detailed information at the state level.

- **Employment by Freight-Dependent Industry Sectors** - Freight-dependent employment is another relevant indicator. Employment information is readily available on the Bureau of Labor Statistics (BLS) website, and through the U.S. Census Bureau’s Longitudinal Employer-Household Dynamics (LEHD) Origin-Destination Employment Statistics.
- **Productivity by Freight-Dependent Industry Sectors** - Productivity is a good supplement to employment numbers because they can help explain declines in employment. In recent years it has become increasingly difficult to increase employment in part because of economic weakness, but also because of recent dramatic gains in productivity. Therefore, it is important to understand how much of an impact productivity is having on job creation. Productivity information by industry is readily available at the BLS, although it is at a national level.

A summary of these measures is provided in Table 4-1, shaded in orange.

Table 4-1. Freight Demand Performance Measures

<table>
<thead>
<tr>
<th>Related ITD Goal</th>
<th>Mode</th>
<th>Performance Measure</th>
<th>Status (existing, data available, data not available)</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISFS Goal 1 – Idaho's freight system features seamless, modal connectivity while maintaining safety and efficiency</td>
<td>All</td>
<td>Current Year Value/Tonnage of Freight Moved by Mode by Direction</td>
<td>Data available</td>
<td>FAF3, Transearch, STB Waybill, FAA, IDA, USACE, Port of Lewiston</td>
</tr>
<tr>
<td>ISFS Goal 2 – Idaho's freight system features effective partnerships to leverage resources and opportunities</td>
<td>All</td>
<td>Future Year Value/Tonnage of Freight Moved by Mode by Direction</td>
<td>Data available</td>
<td>FAF3</td>
</tr>
<tr>
<td>ISFS Goal 2 – Idaho's freight system features effective partnerships to leverage resources and opportunities</td>
<td>All</td>
<td>Current Year Value/Tonnage of Key Commodities Moved</td>
<td>Data available</td>
<td>FAF3, STB Waybill, FAA, IDA, USACE, Port of Lewiston</td>
</tr>
<tr>
<td>LRTP Goal - ITD supports the state's economic vitality by enabling efficient movement of people and goods</td>
<td>All</td>
<td>Output/Gross Regional Product by Freight-Dependent Industry Sectors</td>
<td>Data available</td>
<td>BEA, US Census Bureau</td>
</tr>
<tr>
<td>LRTP Goal - ITD supports the state's economic vitality by enabling efficient movement of people and goods</td>
<td>All</td>
<td>Employment by Freight-Dependent Industry Sectors</td>
<td>Data available</td>
<td>BLS</td>
</tr>
<tr>
<td>LRTP Goal - ITD supports the state's economic vitality by enabling efficient movement of people and goods</td>
<td>All</td>
<td>Productivity by Freight-Dependent Industry Sectors</td>
<td>Data available</td>
<td>BLS</td>
</tr>
<tr>
<td>LEGEND</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Existing Measure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Near Term Measure</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Future Measure</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Freight Safety

Improving safety is important not only for saving lives, but also for reducing economic burdens. As reported by Idaho’s Strategic Highway Safety Plan (SHSP), in 2010 the average economic cost of a single fatality was nearly $6 million. While crash rates for heavy trucks are typically lower than those for automobiles, auto-truck crashes are likely to have severe consequences for those involved due to the size differential between trucks and automobiles. Safety at at-grade rail crossings is also an important concern in Idaho.

Freight safety measures should provide an indication of the amount of loss and damage from crashes and fatalities, including the damage to shippers, carriers and to others on the system. Measuring safety is relatively straightforward thanks to the availability of data. The National Highway Traffic Safety
Idaho has well-developed existing measures for highway safety, reported through its SHSP including several statistics related to commercial motor vehicles. These include:

- **Number of Commercial Vehicle Crashes by Type in Idaho** - This includes the number of fatalities, serious injuries, visible injuries and possible injuries. Distinguishing fatalities from non-fatalities is important, because the two types of crashes have dramatically different societal costs. In 2008, 61 percent of the fatalities were occupants of passenger vehicles.

- **Commercial Average Vehicle Miles Traveled (CAVMT) in millions** - This provides a sense of “exposure” to commercial vehicle crashes. While it is not a goal to reduce exposure to commercial vehicle crashes (increasing commercial vehicle traffic is a likely result of desired economic growth) understanding the level of exposure provides the means to calculate crash rates.

- **Number of commercial vehicle fatalities per 100 million CAVMT** - This is the fatal crash rate, which controls for the amount of vehicle traffic that actually occurs, and thus makes it a comparable longitudinal and geographic measure.

- **Number of commercial vehicle injuries per 100 million CAVMT, 2004-2008** - This is the injury crash rate, similar to the fatal crash rate.

Crashes by roadway type are also differentiated by rural and urban, and by type of roadway. For instance, 56 percent of all crashes and 73 percent of all fatal crashes involving commercial motor vehicles occurred on rural roadways. Local roadways accounted for 45 percent of all commercial vehicles crashes, while U.S. and State roadways had the highest number of fatal commercial motor vehicle crashes (50 percent of total commercial vehicle crashes). Commercial motor vehicles crashes cost Idaho nearly $289 million in 2008, which is 11 percent of the total economic cost of crashes.

A summary of these measures is provided in **Table 4-2**, shaded in green.

Additional Performance Measures – Near Term

Idaho already has a well-developed system for measuring and tracking highway performance. Two measures that can be added include:
Idaho Statewide Freight Study

- **Economic Cost of Commercial Vehicle Crashes by Year** - This measure correlates to crash rates, but can be reduced through improved operations management\(^{ii}\) and other operational improvements. Tracking these costs can visualize how commercial vehicle crashes impact the Idaho economy.

- **Number of Highway-Rail At-Grade Crashes** - Tracking the number of at-grade rail crossing crashes can provide an indication of effectiveness of the state’s efforts at improving rail crossing infrastructure and modifying driver behavior.

A summary of these measures is provided in Table 4-2, shaded in yellow.

Additional Performance Measures – Future

Additional performance metrics which could be implemented if additional data were collected include:\(^{iii}\)

- **Commercial Vehicle At-Fault Crash Rate** - By focusing on at-fault crashes, strategies can be more readily developed that targets commercial vehicle drivers.

- **Percent of containers damaged or lost at Port of Lewiston** - While the port is not represented in current measures, by working collaboratively at the Port of Lewiston, the performance of container handling can be tracked and used to improve and promote safety handling of port-related cargo.

- **Total Monetary Loss per 1,000 Operations at Boise Air Terminal** - Similar to ports, air cargo represents a relatively small fraction of freight in Idaho. Its safety can be tracked by monetary loss incurred through improper handling. However, there does not appear to be any current data available.

A summary of these measures is provided in Table 4-2, shaded in orange.

\(^{ii}\) Especially incident management.

\(^{iii}\) Source of Measures from Freight Performance Measures: Approach Analysis, Final Report, ODOT/OTREC, 2010
Table 4-2. Freight Safety Performance Measures

<table>
<thead>
<tr>
<th>Related ITD Goal</th>
<th>Mode</th>
<th>Performance Measure</th>
<th>Status (existing, data available, data not available)</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISFS Goal 1 – Idaho’s freight system features seamless, modal connectivity while maintaining safety and efficiency</td>
<td>Highway</td>
<td>Number of commercial vehicle injury crashes in Idaho</td>
<td>Existing Performance Metric</td>
<td>ITD Office of Highway Safety</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Number of commercial vehicle fatal crashes in Idaho</td>
<td>Existing Performance Metric</td>
<td>ITD Office of Highway Safety</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Commercial Average Vehicle Miles Traveled (CAVMT) in millions</td>
<td>Existing Performance Metric</td>
<td>ITD Office of Highway Safety</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Number of commercial vehicle fatalities per 100 million CAVMT</td>
<td>Existing Performance Metric</td>
<td>ITD Office of Highway Safety</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Number of commercial vehicle injuries per 100 million CAVMT</td>
<td>Data available</td>
<td>ITD Office of Highway Safety</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Economic cost of commercial vehicle crashes</td>
<td>Data available</td>
<td>ITD Office of Highway Safety</td>
</tr>
<tr>
<td></td>
<td>Highway-Rail</td>
<td>Number of highway-rail at-grade fatalities</td>
<td>Data available</td>
<td>FRA</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Commercial Vehicle At-Fault Crash Rate</td>
<td>Data available - Possible</td>
<td>ITD Office of Highway Safety</td>
</tr>
<tr>
<td>Port</td>
<td></td>
<td>Percent of containers damaged or lost at Port of Lewiston</td>
<td>Data collection required</td>
<td></td>
</tr>
<tr>
<td>Air Cargo</td>
<td></td>
<td>Total monetary loss per 1,000 operations at Boise Air Terminal</td>
<td>Data collection required</td>
<td></td>
</tr>
</tbody>
</table>

Legend

- **Existing Measure**
- **Near Term Measure**
- **Future Measure**

Freight System Efficiency

Freight system efficiency is critical to shippers because it affects the cost of shipping freight and the speed and reliability of delivering and receiving goods. It is also important to carriers because it influences their cost and profitability. An inefficient freight system hinders economic growth and impacts the overall mobility of both goods and people. An ideal set of freight system efficiency performance measures addresses each mode, provides insight into how well the freight transportation system is meeting the needs of its users, and ensures Idaho invests their limited resources in ways that maximize returns.

The FHWA’s freight performance measures program\(^{iv}\) provides actual truck speed data and is an excellent source for highway freight system efficiency measures. Rail speed data are not as readily

\(^{iv}\) From their collaboration with the American Trucking Research Institute (ATRI).
available. The Class I railroads maintain data on average train speed but it is not generally available to the public, except at the national level. A proxy for train speed is FRA track class, essentially the track speed rating; which could be used to establish a performance metric that shows the proportion of the rail network comprised of class 3 track or higher, for example.

Existing Performance Measures
Currently, there are no existing freight system efficiency performance metrics in Idaho.

Additional Performance Measures – Near Term
The FHWA, in partnership with the American Trucking Research Institute (ATRI) has developed a freight performance measurement tool (FPM)\(^5\) that compiles a monthly data set of truck position data and related information such as speed, time and date-stamp, and latitude and longitude of thousands of trucks. These data provide an excellent, almost real time, picture of highway freight performance and can be used to calculate average truck speeds on given highway segments, calculate truck speed variability, and identify bottlenecks.

For the rail mode, two near-term performance metrics are the percent of rail track miles with track speeds greater than 25 mph and the percent of rail track miles with double stack capacity. While these do not measure the actual performance of the rail network (data such as average train speeds, etc., are typically considered proprietary by the railroads and are not generally shared), they do provide a sense of train speed and rail system capacity.

The most important factors for success in air cargo development are comprehensiveness of access and timeliness of delivery. Air cargo is split between dedicated air service that utilizes specialized cargo planes, and “belly freight” that is moved in the belly of passenger aircraft. Because of the ability of air freight to share space on passenger routes, the penetration of air cargo service in Idaho is directly correlated with the comprehensiveness of passenger air services from Idaho’s major airports, principally Boise Air Terminal, as well as the Friedman Memorial (Hailey) Airport, Idaho Falls Regional Airport, and the smaller commercial service airports in Lewiston, Moscow, Pocatello, and Twin Falls.

Additional near term performance metrics are identified below:

- **Average Truck Speed on Interstate Highways** - This metric, available from the FPM partnership between FHWA and ATRI, is a high level indicator of freight highway system efficiency. Data are highly granular and can be examined at the regional and local level as well.

- **Percent of Interstate Highway Segments with Average Truck Speeds Greater than 50 miles per hour (mph)** - This is another high level indicator of freight highway system efficiency. The FPM data are broken down into three mile segments. Determining the percentage of these segments where truck speeds average 50 mph or more provides another way to look at efficiency.
• **Average Variability in Truck Speeds on Interstate Highways** - The FPM tool allows for the measurement of travel time reliability (or predictability) of corridors or specific corridor segments. Reliability is highly valued by shippers and carriers because it helps them to predict shipment times. This measurement is referred to as the “buffer index” by ATRI and can be calculated as an average for all interstate segments in Idaho, as an average for a specific interstate corridor in Idaho (I-84 for example), or as an average for a specific portion of an interstate corridor.

• **Percent of Rail Track Miles Rated at FRA Class 2 or Higher** - Railroads determine the class of track and the FRA then holds them accountable for maintaining the track to the standards set for that particular class. FRA Class 2 track is rated for a maximum freight train speed of 25 mph. This metric is a proxy for rail freight system efficiency. Railroads track their own much more detailed efficiency metrics which, due to proprietary concerns, are not generally shared with the public.

• **The Number of Locations with Restricted Double-Stacking Capability** - The ability to stack intermodal containers provides improved rail efficiency and greater cargo capacity. Currently BNSF’s Kootenai River Subdivision cannot handle Hi-TriLevel or AutoMax cars northeast of Sandpoint due to the geometrics of the line. Since the Kootenai River Subdivision is a vital cog in BNSF’s transcontinental service between the vehicle manufacturing sites in the Midwest and the ports of Seattle and Portland, this is an operational concern. Yet, it appears BNSF moves trains with these cars on the parallel Montana Rail Link between Sandpoint and Montana or unloads them in either Montana or Washington for distribution of vehicles throughout the Northwest.

• **Number of Nonstop Airline Markets Served from Idaho Air Terminals** - This metric provides an indication of potential freight coverage for belly freight.

A summary of these measures is provided in **Table 4-3**, shaded in yellow.

Additional Performance Measures – Future

The following measures could be established in the future as a way to track how the State’s transportation system serves the critical agricultural sector.

• **Percent of Major Grain Elevators with On Site Rail Access** - Tracking this metric would require establishing a threshold at which a grain elevator would be classified as “major” and would also require tracking all such sites in Idaho and distinguishing those with rail access.

A summary of these measures is provided in **Table 4-3**, shaded in orange.
Table 4-3. Freight System Efficiency Performance Measures

<table>
<thead>
<tr>
<th>Related ITD Goal</th>
<th>Mode</th>
<th>Performance Measure</th>
<th>Status (existing, data available, data not available)</th>
<th>Data Source</th>
<th>Responsible Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISFS Goal 1 – Idaho’s freight system features seamless, modal connectivity while maintaining safety and efficiency</td>
<td>Highway</td>
<td>Average truck speed on all Interstate Highways</td>
<td>Data available</td>
<td>FHWA/ ATRI</td>
<td>ITD</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Percent of Interstate Highway Segments with Average Truck Speeds Greater than 50 mph</td>
<td>Data available</td>
<td>FHWA/ ATRI</td>
<td>ITD</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Average Variability in Truck Speeds on Idaho Interstate Highways</td>
<td>Data available</td>
<td>FHWA/ ATRI</td>
<td>ITD</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Average truck speed on the I-90 corridor</td>
<td>Data available</td>
<td>FHWA/ ATRI</td>
<td>ITD</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Percent of I-90 Segments with Average Truck Speeds Greater than 50 mph</td>
<td>Data available</td>
<td>FHWA/ ATRI</td>
<td>ITD</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Average Variability in Truck Speeds on the I-90 Corridor</td>
<td>Data available</td>
<td>FHWA/ ATRI</td>
<td>ITD</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Average truck speed on the I-84 corridor</td>
<td>Data available</td>
<td>FHWA/ ATRI</td>
<td>ITD</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Percent of I-84 Segments with Average Truck Speeds Greater than 50 mph</td>
<td>Data available</td>
<td>FHWA/ ATRI</td>
<td>ITD</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Average Variability in Truck Speeds on the I-84 Corridor</td>
<td>Data available</td>
<td>FHWA/ ATRI</td>
<td>ITD</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Average truck speed on the I-15 corridor</td>
<td>Data available</td>
<td>FHWA/ ATRI</td>
<td>ITD</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Percent of I-15 Segments with Average Truck Speeds Greater than 50 mph</td>
<td>Data available</td>
<td>FHWA/ ATRI</td>
<td>ITD</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Average Variability in Truck Speeds on the I-15 Corridor</td>
<td>Data available</td>
<td>FHWA/ ATRI</td>
<td>ITD</td>
</tr>
<tr>
<td></td>
<td>Rail</td>
<td>Percent of track miles rated FRA class 2 or higher</td>
<td>Data likely available</td>
<td>FRA / Railroads</td>
<td>ITD</td>
</tr>
<tr>
<td></td>
<td>Rail</td>
<td>The Number of Locations with Restricted Double-Stacking Capability</td>
<td>Data likely available</td>
<td>FRA / Railroads</td>
<td>ITD</td>
</tr>
<tr>
<td></td>
<td>Air</td>
<td>Number of Nonstop Airline Markets Served from Idaho Air Terminals</td>
<td>Data likely available</td>
<td>FAA / Idaho Division of Aeronautics</td>
<td>ITD</td>
</tr>
<tr>
<td></td>
<td>Rail</td>
<td>Percent of Major Grain Elevators with On Site Rail Access</td>
<td>Data collection likely required</td>
<td>ITD</td>
<td></td>
</tr>
</tbody>
</table>

LEGEND

- **Existing Measure**
- **Near Term Measure**
- **Future Measure**
Freight System Condition
As part of the mobility goal of ITD’s 2011 Strategic Plan, Idaho’s infrastructure is a key component of the Governor’s vision to strengthen and diversify the state’s economy through his Project 60 initiative. Timely maintenance results in reduced lifecycle costs. Assuring system preservation helps address other goals of the transportation system, including freight transportation system performance and safety. For example, poor pavement condition can reduce travel speeds, negatively affecting freight mobility.

Maintenance and preservation of transportation infrastructure has long been a primary function of the ITD. This accounts for the fact that Idaho has well-developed highway conditions performance metrics for highways and bridges.

Existing Performance Measures
Idaho has well developed performance measures for highway and bridge conditions. These measures, which are tracked in the ITD dashboard, are very relevant to freight transportation. These measures are:

- **Percent of Pavement in Good or Fair Condition** - Pavement condition has an impact on the operating costs of commercial vehicles. ITD rates pavement conditions using good, fair, poor, or very poor categories. These ratings are determined using a combination of factors. Roughness and rutting are measured by driving a specially equipped rating van over the highway. Cracking is then measured through visual inspection of digital recordings of the highway. While this rating system makes benchmarking across states difficult (since it is not a standard measure), Idaho can, and does, track progress over time. In 2011, Idaho exceeded its target of keeping at least 82 percent of all state highways in good or fair condition, and the overall trend has been improving steady since 2006.

- **Percent of Bridges in Good Condition** - Bridges are important links on the transportation network. When bridges are in good condition, they enable goods to be moved more efficiently, and when they are in poor condition or have weight restrictions, they can impede goods movement and thus increase costs and delivery times. Bridge conditions are measured by ITD as the ratio of deck area (or plan dimension) of bridges in good condition to the deck area of the entire inventory of state bridges states as a percentage. From 2006 to 2011, overall bridge conditions have improved from 67% to 74%.

A summary of these measures is provided in Table 4-4, shaded in green.

Additional Performance Measures – Near Term
ITD also has a formalized and mature performance measures system in place with respect to roadway and bridge condition. One possible refinement to this established system is to track the condition of roads and bridges on designated freight corridors and to track bridges with width and weight restrictions. Other modal metrics should also be included, especially those dealing with the freight rail system. These are described below.
• **Percent of Pavement in Good or Fair Condition on Designated Freight Corridors** - This measure is identical to the pavement measure Idaho has already established except that it is focused on designated freight corridors. Idaho currently does not have officially designated freight corridors, but should they decide to create such a network, this measure would provide a good way to measure its condition.

• **Percent of Weight Restricted Bridges on Designated Freight Corridors** - This measure expands upon existing bridge metrics but is limited to bridges on designated freight corridors.

• **Resources Expended on Freight Transportation Maintenance Projects** - This is an ambitious measure, but one that can readily be linked to increasing transparency and engaging the public. This measure helps track the funding dedicated to freight maintenance projects, including highway, bridge maintenance, and maintenance of port and airport facilities as well as maintenance of short line rail infrastructure. The maintenance of rail lines, particularly short lines, is especially important in Idaho, since short lines are essential for connecting farms to market. Many stakeholders mentioned that short line funding is critical. Programs like The Idaho Rural Economic Development and Integrated Freight Transportation Program (REDIFIT) are designed to help short line railroads improve critical infrastructure.

Short lines are an important component of Idaho’s freight transportation system. However, many short lines do not have the financial wherewithal to do the significant maintenance their rail lines require. Tracking abandonments can help raise awareness of this issue and possibly stimulate alternative funding sources. Abandonments are filed with the STB and the information is publicly available. State-level information should also be available, since ITD must submit to an interagency working group its evaluation of alternatives to abandonment prior to the Federal STB proceedings.

A summary of these measures is provided in **Table 4-4**, shaded in yellow.

Additional Performance Measures – Future

Another measure related to rail system condition is 286K-capability. Obtaining the data for this metric will require working with various railroads.

• **Percent of Track that is 286K Capable** - The percentage of the rail network can accommodate 286,000 pound cars is an indication of how capable the network is to handle a diverse profile of freight. In Idaho no weight restrictions exist on the Class 1 mainlines, and 76.3 percent of all active tracks meet the standards for at least 286,000 pound cars. Some short lines have been upgrading their track to the 286,000 pound standard. However, impactful weight restrictions exist on the BNSF Coeur d’Alene Subdivision, the UPRR Cache Valley Subdivision, and the EIRR lines to Martin, Delco, Elgin, Ammon, and Menan, among others.

A summary of these measures is provided in **Table 4-4**, shaded in orange.
Table 4-4. Freight System Condition Performance Measures

<table>
<thead>
<tr>
<th>Related ITD Goal</th>
<th>Mode</th>
<th>Performance Measure</th>
<th>Status (existing, data available, data not available)</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISFS Goal 1 – Idaho’s freight system features seamless, modal connectivity while maintaining safety and efficiency</td>
<td>Highway</td>
<td>Percent of pavement in good or fair condition</td>
<td>Existing Performance Metric</td>
<td>ITD Dashboard</td>
</tr>
<tr>
<td>ISFS Goal 3 – Idaho strategically invests in its freight system infrastructure while maximizing existing resources</td>
<td>Highway</td>
<td>Percent of bridges in good condition</td>
<td>Existing Performance Metric</td>
<td>ITD Dashboard</td>
</tr>
<tr>
<td>LRTP Goal - Keeping transportation infrastructure in good repair and ensuring uninterrupted service is paramount.</td>
<td>Highway</td>
<td>Percent of pavement in good or fair condition on designated freight corridors</td>
<td>Data Available</td>
<td>ITD</td>
</tr>
<tr>
<td>ISFS Goal 1 – Idaho’s freight system features seamless, modal connectivity while maintaining safety and efficiency</td>
<td>Highway</td>
<td>Percent of weight restricted bridges on designated freight corridors</td>
<td>Data Available</td>
<td>ITD</td>
</tr>
<tr>
<td>LRTP Goal - Resources will be applied to maintain, improve, and expand routes and services that contribute to economic vitality.</td>
<td>All</td>
<td>Total amount expended on freight transportation maintenance projects</td>
<td>Data available</td>
<td>ITD</td>
</tr>
<tr>
<td>ISFS Goal 3 – Idaho strategically invests in its freight system infrastructure while maximizing existing resources</td>
<td>Rail</td>
<td>Short line abandonments and total length of abandonments filed</td>
<td>Data available</td>
<td>FRA, ITD</td>
</tr>
<tr>
<td>LRTP Goal - Keeping transportation infrastructure in good repair and ensuring uninterrupted service is paramount.</td>
<td>Rail</td>
<td>Percent of track that is 286K Capable</td>
<td>Data available – Need to collect</td>
<td>FRA, Railroads</td>
</tr>
</tbody>
</table>

LEGEND
- **Existing Measure**
- **Near Term Measure**
- **Future Measure**
Freight System Environmental Impacts
Data tracking freight system externalities are available due in large part to the presence of targets and performance measurement architecture in place for Federal air quality programs. Freight system performance measures related to environmental impacts are not provided here, but should be considered for the future as federal funding may be tied to developing those measures. Having a system in place to measure the air quality impacts of freight transportation is a key element for quantifying benefits associated with any program or policy to improve the freight system. It is likely that future competitive grant programs from the United States DOT will include a requirement to estimate public benefits and provide a benefit-cost ratio for each application. Being able to quantify the environmental benefits of freight transportation projects will help Idaho better position itself to win these grants. This is especially important for projects that encourage mode shift from truck to rail, where the air quality benefits are a critical component of overall benefit. Data is widely available to support these metrics.

Types of performance measures that could be included in this area include greenhouse gas emissions, particulate matter emissions, nitrogen oxide emissions, volatile organic compounds, and ozone. One non-air quality measure that could be included is the annual number of hazardous materials spills in the State.

Future Performance Measures
In MAP-21, the metropolitan and statewide transportation planning processes are continued and enhanced to incorporate performance goals, measures, and targets into the process of identifying needed transportation improvements and project selection. The cornerstone of MAP-21’s highway program transformation is the transition to a performance and outcome-based program, with states investing resources in projects to achieve individual targets that collectively will make progress toward national goals.

MAP-21 establishes national performance goals for Federal highway programs:

- **Safety**—To achieve a significant reduction in traffic fatalities and serious injuries on all public roads.
- **Infrastructure condition**—To maintain the highway infrastructure asset system in a state of good repair.
- **Congestion reduction**—To achieve a significant reduction in congestion on the NHS.
- **System reliability**—To improve the efficiency of the surface transportation system.
- **Freight movement and economic vitality**—To improve the national freight network, strengthen the ability of rural communities to access national and international trade markets, and support regional economic development.
- **Environmental sustainability**—To enhance the performance of the transportation system while protecting and enhancing the natural environment.
- **Reduced project delivery delays**—To reduce project costs, promote jobs and the economy, and expedite the movement of people and goods by accelerating project completion through eliminating delays in the project development and delivery process, including reducing regulatory burdens and improving agencies’ work practices.
Idaho Statewide Freight Study

The ITD has made significant progress in establishing performance measures to evaluate overall system safety, condition, and operation. A number of these measures have been used in this study to qualitatively evaluate future freight system investments, as detailed in the following sections, however, Idaho freight stakeholders will need to evaluate which additional measures could be developed and tracked with the intent of targeted freight system evaluation, consistent with the state’s vision for its freight system, and national performance goals, as established by the Federal Highway Administration. The availability of existing measures and the evaluation of what additional data could be reviewed to supplement these for the freight system are provided in Table 4-5.

Table 4-5. Summary of Existing and Potential Freight System Performance Measures

<table>
<thead>
<tr>
<th>Performance Measure Type</th>
<th>Mode</th>
<th>Performance Measure</th>
<th>Status (existing, data available, data not available)</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freight System Demand</td>
<td>All</td>
<td>Current Year Value/Tonnage of Freight Moved by Mode by Direction</td>
<td>Data available</td>
<td>FAF3, STB Waybill, FAA, IDA, USACE, Port of Lewiston</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>Future Year Value/Tonnage of Freight Moved by Mode by Direction</td>
<td>Data available</td>
<td>FAF3</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>Current Year Value/Tonnage of Key Commodities Moved</td>
<td>Data available</td>
<td>FAF3, STB Waybill, FAA, IDA, USACE, Port of Lewiston</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>Output/Gross Regional Product by Freight-Dependent Industry Sectors</td>
<td>Data available</td>
<td>BEA, US Census Bureau</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>Employment by Freight-Dependent Industry Sectors</td>
<td>Data available</td>
<td>BLS, LEHD</td>
</tr>
<tr>
<td></td>
<td>All</td>
<td>Productivity by Freight-Dependent Industry Sectors</td>
<td>Data available</td>
<td>BLS</td>
</tr>
<tr>
<td>Freight System Safety</td>
<td>Highway</td>
<td>Number of commercial vehicle Injury crashes in Idaho</td>
<td>Existing Performance Metric</td>
<td>ITD Office of Highway Safety</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Number of commercial vehicle fatal crashes in Idaho</td>
<td>Existing Performance Metric</td>
<td>ITD Office of Highway Safety</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Commercial Average Vehicle Miles Traveled (CAVMT) in millions</td>
<td>Existing Performance Metric</td>
<td>ITD Office of Highway Safety</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Number of commercial vehicle fatalities per 100 million CAVMT</td>
<td>Existing Performance Metric</td>
<td>ITD Office of Highway Safety</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Number of commercial vehicle injuries per 100 million CAVMT</td>
<td>Data available</td>
<td>ITD Office of Highway Safety</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Economic cost of commercial vehicle crashes</td>
<td>Data available</td>
<td>ITD Office of Highway Safety</td>
</tr>
<tr>
<td></td>
<td>Highway-Rail</td>
<td>Number of highway-rail at-grade fatalities</td>
<td>Data available</td>
<td>FRA</td>
</tr>
<tr>
<td>Performance Measure Type</td>
<td>Mode</td>
<td>Performance Measure</td>
<td>Status (existing, data available, data not available)</td>
<td>Data Source</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------</td>
<td>--</td>
<td>---</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Highway</td>
<td>Highway</td>
<td>Commercial Vehicle At-Fault Crash Rate</td>
<td>Data available - Possible</td>
<td>ITD Office of Highway Safety</td>
</tr>
<tr>
<td></td>
<td>Port</td>
<td>Percent of containers damaged or lost at Port of Lewiston</td>
<td>Data collection required</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Air Cargo</td>
<td>Total monetary loss per 1,000 operations at Boise Air Terminal</td>
<td>Data collection required</td>
<td></td>
</tr>
<tr>
<td>Freight System Efficiency</td>
<td>Highway</td>
<td>Average truck speed on all Interstate Highways</td>
<td>Data available</td>
<td>FHWA/ ATRI</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Percent of Interstate Highway Segments with Average Truck Speeds Greater than 50 mph</td>
<td>Data available</td>
<td>FHWA/ ATRI</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Average Variability in Truck Speeds on Idaho Interstate Highways</td>
<td>Data available</td>
<td>FHWA/ ATRI</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Average truck speed on the I-90 corridor</td>
<td>Data available</td>
<td>FHWA/ ATRI</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Percent of I-90 Segments with Average Truck Speeds Greater than 50 mph</td>
<td>Data available</td>
<td>FHWA/ ATRI</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Average Variability in Truck Speeds on the I-90 Corridor</td>
<td>Data available</td>
<td>FHWA/ ATRI</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Average truck speed on the I-84 corridor</td>
<td>Data available</td>
<td>FHWA/ ATRI</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Percent of I-84 Segments with Average Truck Speeds Greater than 50 mph</td>
<td>Data available</td>
<td>FHWA/ ATRI</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Average Variability in Truck Speeds on the I-84 Corridor</td>
<td>Data available</td>
<td>FHWA/ ATRI</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Average truck speed on the I-15 corridor</td>
<td>Data available</td>
<td>FHWA/ ATRI</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Percent of I-15 Segments with Average Truck Speeds Greater than 50 mph</td>
<td>Data available</td>
<td>FHWA/ ATRI</td>
</tr>
<tr>
<td></td>
<td>Highway</td>
<td>Average Variability in Truck Speeds on the I-15 Corridor</td>
<td>Data available</td>
<td>FHWA/ ATRI</td>
</tr>
<tr>
<td></td>
<td>Rail</td>
<td>Percent of track miles rated FRA class 2 or higher</td>
<td>Data likely available</td>
<td>FRA / Railroads</td>
</tr>
<tr>
<td></td>
<td>Rail</td>
<td>The Number of Locations with Restricted Double-Stacking Capability</td>
<td>Data likely available</td>
<td>FRA / Railroads</td>
</tr>
<tr>
<td></td>
<td>Air</td>
<td>Number of Nonstop Airline Markets Served from Boise Air Terminal</td>
<td>Data likely available</td>
<td>FAA / Idaho Division of Aeronautics</td>
</tr>
</tbody>
</table>
4.2 Scenario Development

To provide a framework for understanding the effects of potential future investments on freight system performance, a set of freight investment scenarios were developed and tested as a means of identifying freight system investment priorities.

Using input from multimodal freight stakeholders combined with performance measures developed explicitly for this study, a set of 20-year freight investment scenarios were crafted. Three scenarios, including one status-quo and two targeted investment scenarios, were developed by grouping investment projects and concepts identified as part of the study into distinct future scenarios. Each scenario was linked to the vision and goals for the freight system. Project “levers” were applied to the existing freight system in each scenario in order to determine how each project would affect the Idaho’s future freight system. Each scenario was then evaluated using a spectrum of performance measures. These scenarios were presented to the Steering Committee to facilitate the Committee’s efforts to determine a “preferred” investment scenario. Idaho’s freight system vision and goals, as detailed in Table 4-6, were an integral element guiding the development and analysis of the investment scenarios.
Table 4-6. Idaho Freight System Vision and Goals

<table>
<thead>
<tr>
<th>Freight Powers Idaho’s Economy</th>
</tr>
</thead>
<tbody>
<tr>
<td>GOAL 1: Idaho's freight system features seamless, modal connectivity while maintaining safety and efficiency.</td>
</tr>
<tr>
<td>GOAL 2: Idaho's freight system features effective partnerships to leverage resources and opportunities.</td>
</tr>
<tr>
<td>GOAL 3: Idaho strategically invests in its freight system infrastructure while maximizing existing capacity.</td>
</tr>
</tbody>
</table>

Scenarios Defined

Three scenarios, including one status-quo scenario, were crafted by synthesizing input gathered from Idaho’s Freight Summit, stakeholder interviews, and regional briefings. As part of this task, homework assignments were given to the Steering Committee, instructing them to define the unique aspects of the study’s goals and to identify projects, programs, and concepts related to the goals. This input guided scenario development, and the projects and concepts from the Steering Committee are integrated into each scenario, as appropriate.

The resulting three scenarios included:

1. **Scenario A: Business as Usual** - This “Status Quo” scenario assumed that current trends would continue. Currently planned or required system upgrades would be achieved, but the focus would be on highway safety and maintaining the system in a state of good repair.

2. **Scenario B: Agriculture/ Rural Focus** - This scenario assumed that in addition to maintaining the current system, targeted investments would be made to build upon Idaho’s multimodal networks most important to the agricultural community, with the intention of promoting and supporting development in the agricultural powerhouse.

3. **Scenario C: High Tech, Manufacturing/ Urban Focus** - This scenario assumed that in addition to maintaining the current system, targeted investments would be made to modernize and upgrade the systems used by Idaho’s growing technology and manufacturing sectors, with a focus on providing a high level of service to urban areas through investment in roads and multimodal connections.
Linking Scenarios to Unique Aspects of Each Goal

Table 4-7 illustrates the unique aspects the Steering Committee noted for each goal, and provides a crosswalk for how the newly crafted scenarios responded to each.

Table 4-7. Linkages between Freight Study Goals and Scenarios

<table>
<thead>
<tr>
<th>Goal</th>
<th>Unique Aspects of Goal</th>
<th>Scenario A</th>
<th>Scenario B</th>
<th>Scenario C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal 1 - Idaho’s freight system features seamless, modal connectivity while maintaining safety and efficiency</td>
<td>Multimodal connectivity</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reduce crashes</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Maintain and improve safety</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Efficient freight system</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Unencumbered freight movement</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multimodal and intermodal facilities (e.g. Dry Port Facility)</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Goal 2 - Idaho’s freight system features effective partnerships to leverage resources and opportunities</td>
<td>Engaged / active public</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Use of non-DOT funding sources (e.g. private sector, or new fees)</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Infrastructure investments that target sectors of the economy, private partnerships</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Legislative support for investing in Idaho’s transportation system</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Goal 3 - Idaho strategically invests in its freight system infrastructure while maximizing existing capacity</td>
<td>Investment in maintaining existing system</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Investment in new infrastructure</td>
<td></td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Cost effective investments</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>Investments that leverage existing resources</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Common Themes and Concepts in Each Scenario

Within each of the investment scenarios, several common themes emerged. However, in each of the scenarios, the themes are applied in different ways:
Idaho Statewide Freight Study

- **Regulatory changes** - In the Ag/Rural scenario, regulatory changes were focused on developing freight design standards on intra-city highways, whereas in the Tech/Urban scenario changes were designed to make urban areas more “truck friendly.” The Ag/Rural scenario also introduced the concept of harmonizing truck size and weight regulations with those of Idaho’s neighbors.

- **Intermodal or transload facility** - The Ag/Rural scenario focused on connections between agricultural facilities such as grain elevators to the road and rail system, and connections between transload or other bulk facilities to rail or port infrastructure. The Tech/Urban scenario assumed investments in a logistics park or other intermodal facility which could provide benefits to a variety of industries.

- **New funding** - Both scenarios included increased use of Section 130 funding to improve rail/road crossing safety. The Ag/Rural scenario also included increased REDIFiT funds and grant funding to support port or rail infrastructure upgrades.

- **Use of financing techniques** - Both scenarios included partnering with private industry to identify and invest in critical corridors and markets.

- **Strategic investments** - Both scenarios included upgrades to Idaho’s north south connecting route, US 95. The Ag/Rural scenario focused on increasing rail access, including short line access, throughout the state, while the Tech/Urban scenario invested in urban road and rail connectors.

- **Economic development coordination** - Both scenarios included coordination with economic development organizations to align transportation projects with growth and demand. Additionally, the Tech/Urban scenario assumed that ITD would work in conjunction with industry to better integrate private facility location with current or future infrastructure connections to increase accessibility and efficiency.

Project “Levers” for Each Scenario

A long list of investment concepts, programs, and projects was compiled from Steering Committee input, stakeholder conversations, and other sources. Using the stated goals and concept areas from the freight system vision, this list was pared down into a short list of projects “levers”, with a distinct set of project levers defining each of the three scenarios. Each project was tied to a specific goal area from the freight study. The projects used to define each scenario and the related goals are listed in Table 4-8.
Table 4-8. Project "Levers" and Related Concepts for Each of Three Scenarios

<table>
<thead>
<tr>
<th>Concept Areas Relating to Stated Goals</th>
<th>Project “Levers”</th>
<th>Scenarios</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Implement "truck-friendly" design standards in urban areas, intra-city routes and corridors</td>
<td>A B C</td>
</tr>
<tr>
<td></td>
<td>Benefits – Potential to improve ease of operations for trucks and “last mile” connectivity in urban areas.</td>
<td>No No Yes</td>
</tr>
<tr>
<td></td>
<td>Impacts – Potential for more trucks in urban areas, more truck miles overall, need for more frequent pavement maintenance.</td>
<td></td>
</tr>
<tr>
<td>Build intermodal facilities and connections (Goal 1)</td>
<td>Implement freight design standards and freight-corridor designations on Interstates and inter-city highways</td>
<td>A B C</td>
</tr>
<tr>
<td></td>
<td>Benefits – Potential to improve ease of operations for trucks doing business within state and for long-haul connectivity.</td>
<td>No Yes No</td>
</tr>
<tr>
<td></td>
<td>Impacts – Potential for more truck trips and through trips, more truck miles overall, need for more frequent pavement maintenance. Shipments could favor trucking over rail.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Harmonize TS&W regulations with those of neighboring states; supporting policies to reduce border crossing times</td>
<td>A B C</td>
</tr>
<tr>
<td></td>
<td>Benefits – Potential to improve ease of operations for trucks doing business within state, region, and international long-haul connectivity.</td>
<td>No Yes No</td>
</tr>
<tr>
<td></td>
<td>Impacts – Potential for more truck trips and through trips, more truck miles overall, need for more frequent pavement maintenance. Shipments could favor trucking over rail.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Improve connections with grain elevators and other agricultural connections to existing rail and road infrastructure</td>
<td>A B C</td>
</tr>
<tr>
<td></td>
<td>Benefits – Potential to improve access to market for agriculture industry and “last mile” connectivity for both truck and rail. Potential to ship more product via rail, and reduce truck trips/miles.</td>
<td>No Yes No</td>
</tr>
<tr>
<td></td>
<td>Impacts – Potential for increased truck traffic at new facility. Potential for mode shift.</td>
<td></td>
</tr>
<tr>
<td>Concept Areas Relating to Stated Goals</td>
<td>Project “Levers”</td>
<td>Scenarios</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td>5 Build one or more transload (bulk) or intermodal (container) facility, possibly located within the port or other area</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benefits – Potential to improve access to markets for targeted industries and lower cost to ship (with improved access to rail and waterway). Potential to reduce truck trips/miles.</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Impacts – Potential for increased truck traffic at new facility. Potential for mode shift.</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>6 Create a “logistics park” or other co-located industrial / multi-modal transportation hub through partnership with industry</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benefits – Potential to improve access to market for targeted industries and create economic development opportunities. Lower shipping costs through co-located modal competition. Potential to reduce truck miles.</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Impacts – Potential for increased truck traffic at new facility. Potential for mode shift.</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>7 Secure grant funds to continue building/upgrading port, rail, or intermodal infrastructure</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benefits – Potential to improve access to market for targeted industries and create economic development opportunities. Lower shipping costs through co-located modal competition.</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Impacts – As system use increases, so does the potential for increased system congestion, safety conflicts, need for more frequent maintenance, and operational improvements.</td>
<td>Yes</td>
</tr>
<tr>
<td></td>
<td>8 Increase level of Section 130, or other rail funds to improve highway-railroad grade crossings</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Benefits – Potential to improve highway-railroad crossings, enhance system safety.</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
</tr>
<tr>
<td>Concept Areas Relating to Stated Goals</td>
<td>Project “Levers”</td>
<td>Scenarios</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>------------------</td>
<td>-----------</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A</td>
</tr>
</tbody>
</table>
| 9 Increase REDIFIT funds for development and expansion of agriculture-related rail and intermodal infrastructure | **Benefits** – Potential to improve access to market for agriculture industry and lower cost to ship (with improved access to rail). Potential to ship more product via rail, and reduce truck trips/miles.
Impacts – Potential for increased truck traffic at new facility. Potential for mode shift. | No | Yes | No |
| 10 Utilize innovative financing techniques (Goal 2) | **Benefits** – Potential to improve access to markets for targeted industries and ease operations for modes where investments are made.
Impacts – Investing in highway may have potential for more truck trips and through trips, more truck miles overall, need for more frequent pavement maintenance. Investing in rail and intermodal has potential for mode shift and minimizing highway impacts. | No | Yes | Yes |
| 11 Strategic investments (Goal 3) | **Benefits** – Potential to improve access to market and lower cost to ship (with improved access to rail lines, and improved rail system efficiency). Potential to ship more product via rail, and reduce truck trips/miles.
Impacts – Potential for mode shift. | No | Yes | No |
| 12 Provide an improved north-south truck corridor through upgrading US 95 | **Benefits** – Potential to improve ease operations for trucks doing business within state, region, and international long-haul connectivity.
Impacts – Potential for more truck trips and through trips, more truck miles overall, need for more frequent pavement maintenance. Shipments could favor trucking over rail. | No | Yes | Yes |
Six additional concepts were also considered as part of the scenario analysis. Two of these concepts were implied in all three scenarios, while four concepts were excluded from the scenario analysis, as it was determined that there was not enough information to fully understand the methods for implementation and/or the effects of applying these concepts. The project concepts included and excluded are summarized in Table 4-9.
Idaho Statewide Freight Study

Table 4-9. Project Concepts Included or Excluded from All Scenarios

<table>
<thead>
<tr>
<th>Scenario Assumption</th>
<th>Project Concept</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Implied in all scenarios</td>
<td>16 Alternate Fuels For example – use of LNG and/or CNG in fleets</td>
</tr>
<tr>
<td></td>
<td>17 ITS and Technology For example – weigh-in-motion, dispatching, Smartphone, GPS,</td>
</tr>
<tr>
<td></td>
<td>transponder, web-based applications</td>
</tr>
<tr>
<td>2 Excluded from all scenarios</td>
<td>18 Governance Structure For example – statewide freight steering committee; Multi-Modal</td>
</tr>
<tr>
<td></td>
<td>Commission, District consolidation; dry port legislation</td>
</tr>
<tr>
<td></td>
<td>19 Enforcement For example – targeted traffic safety enforcement, drug testing,</td>
</tr>
<tr>
<td></td>
<td>public education, weight restrictions, pipeline inspection</td>
</tr>
<tr>
<td></td>
<td>20 Hazardous Materials Transport</td>
</tr>
<tr>
<td></td>
<td>21 Evaluation of Access Needs</td>
</tr>
</tbody>
</table>

4.3 Scenario Evaluation

The three scenarios were evaluated using a range of qualitative metrics. In the following sub-sections, first the performance measure evaluation is described in detail, and then three sub-sections provide details for each of the three scenarios. Each scenario sub-section includes a performance measures evaluation within the categories of demand, safety, efficiency, condition, and a qualitative assessment of in terms of investment, feasibility, and other considerations for the future.

Performance Measure Evaluation

For the performance measure evaluation, each scenario was examined across a spectrum of performance measures. A qualitative assessment was conducted to determine whether values in each performance measure category would increase, stay the same, or decrease if the projects in the scenario were implemented. This assessment was performed separately for each mode: road, rail, maritime, aviation, and intermodal connections. Results are presented for each mode and also summarized in an aggregate measure.

Performance Measure Analysis Methodology

The scenarios were analyzed using a selection of the freight performance measures developed for the Idaho Statewide Freight Study in Task 7. For each analysis area, one or two performance measures were chosen from those recommended in the Freight Study. In general, currently available measures were preferred over those in development, in order to increase the reliability of the forecasted conditions presented in the scenario analysis. Most measures focus on the road and rail modes, although attempts
Idaho Statewide Freight Study

were made to include measures applicable to all modes. The measures selected for each category are the following:

- **Demand** – Value/tonnage of freight moved by mode by direction
- **Safety** – Commercial average vehicle miles traveled (CAVMT); Number of highway/rail at-grade incidents and fatalities
- **Efficiency** – Percent of major grain elevators on site rail access
- **System Condition** – Percent of pavement or infrastructure in good or fair condition
- **Investment** – Freight transportation project expenditures

Each project was qualitatively analyzed using these performance measures, and then each scenario was graded based on whether performance in each area would increase, decrease, or remain the same. A summary of the performance measure results for all scenarios are included in the following sub-section.

Performance Measure Analysis Summary

The results from the qualitative analysis across performance measures are presented in Table 4-10. These measures were originally evaluated separately for each mode and then aggregated into summary measures for each scenario. Overall, the Agriculture/Rural focused and High-Tech, Manufacturing/Urban focused scenarios indicate that investment in key areas can drive increased performance in a variety of categories, although the individual results will vary based on which types of projects are selected.

Table 4-10. Qualitative Evaluation of the Three Scenarios Summary

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Demand</th>
<th>Safety</th>
<th>Efficiency</th>
<th>Condition</th>
<th>Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - "BAU"</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>B - Ag/Rural</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>C - High-Tech/Urban</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Legend

- Increase 4
- Neutral 8
- Decrease 4

Scenario A: Business As Usual

What this Scenario could mean to the Future

Truck volumes are anticipated to nearly double by 2040 while rail, inland waterway, and air cargo volumes will grow at slightly slower rates. This means that the percentage share of truck traffic on a weight basis will increase in the future, which will place additional demands on the highway system. The demands on the highway system may affect pavement condition, congestion, and safety, as well as air quality.
Idaho Statewide Freight Study

Other Considerations

- **Scale of Investment** - This scenario makes use of available funds through ITD.
- **Implementation Feasibility** - Business As Usual approach will ensure that programs are in place to provide funding to the highway system.
- **Risks** - As demand/use of the highway system increases, it will likely be more difficult in the future to maintain a state of good repair. As condition on parts of the system declines, those areas may become less attractive as business locations.
- **Users Impacted** - Congestion in urbanized areas may limit trucking and personal travel efficiencies.

Types of Projects Included

- Invest in highway system
- Maintain state of good repair
- Maintain system safety
- Use only funds available through DOT

Performance Measure Summary

Table 4-11 provides an overview of the performance measure evaluation of the Business As Usual Scenario. As shown, performance in many areas will stay the same. However, increasing demands may take a toll on the safety and the condition of the road system over time without additional investment.

<table>
<thead>
<tr>
<th>Category</th>
<th>Demand</th>
<th>Safety</th>
<th>Efficiency</th>
<th>Condition</th>
<th>Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road Network</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Railroad Network</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Maritime System</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Aviation System</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Intermodal Connectivity</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

BAU SUMMARY

<table>
<thead>
<tr>
<th>Legend</th>
<th>Increase</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Neutral</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Decrease</td>
<td>8</td>
</tr>
</tbody>
</table>

Scenario B: Agriculture/Rural Focus

What this Scenario could mean to the Future

While demand for goods will remain the same in Scenario B as in Scenario A, this alternative reflects the fact that Idaho’s agricultural commodities are in demand for exports to growing nations, as a result, emphasis in using rail and barge to get goods to market is emphasized. Trucking will still be needed, and
investments made to ensure roads provide “last mile” connectivity, but other modes are emphasized for the long haul.

Other Considerations

- **Scale of Investment** - This scenario uses existing funding sources, including REDIFIT, Section 130 Funds, TIGER, and seeks to increase them through strategic partnerships with other agencies.
- **Implementation Feasibility** - The ability to make the investments in Scenario B requires strategic partnerships and aggressive pursuit of new funding sources. It also may require the ability to use ITD (highway) dollars on non-highway projects.
- **Risks** - Infrastructure projects such as port improvements, transload or intermodal transfer facilities can bring economic benefits, but come with a high price tag. As more voices become part of the process, so do the number of requirements and needs for benefits.
- **Users Impacted** - By focusing on Idaho’s traditional agricultural industry, ITD will be supporting the continuation of Idaho as a powerhouse in the agricultural industry. As fewer trucks may make long haul trips, there is potential to reduce congestion, impact on pavement, and derive air quality benefits.

Types of Projects Included

- Improve existing road and rail connections to grain elevators
- Improve and increase short line connections to Class I Railroads
- Harmonize truck size and weight regulations with those of neighboring states
- Increase REDIFIT funds for development and expansion of agriculture-related rail and intermodal infrastructure
- Increase level of Section 130 rail funds to improve highway-railroad grade crossings
- Provide increased North-South Connections by upgrading US 95

Performance Measure Summary

Table 4-12 shows the performance of each area under the Agriculture/Rural focused scenario. The table shows that investment in these selected projects will generally have a positive impact on each mode across the categories, with the exception of aviation, due to the fact that investments will be targeted in those areas most affecting the agricultural industry. The strongest increased are projected to occur in the rail system and intermodal connectivity between the rail, water, and road networks.
Scenario C: High Tech, Manufacturing / Urban Focus

What this Scenario could mean to the Future

While demand for goods will remain the same in Scenario C as in Scenario A, this alternative reflects the fact that as population continues to grow, Idahoans will move towards urbanized areas. This will increase demand on those transportation systems by persons going to work, but also goods being manufactured and shipped out of state. These demands require a greater focus on the urban centers in order to maintain Idaho’s growth and economic advantages.

Other Considerations

- **Scale of Investment** - This scenario uses existing funding sources, including Section 130 Funds and TIGER, and seeks to increase them through strategic partnerships with industry to develop and upgrade transportation networks to drive urban economic growth.

- **Implementation Feasibility** - The ability to make the investments in Scenario C requires strategic partnerships and aggressive pursuit of new funding sources. It also may require the ability to use ITD (highway) dollars on non-highway projects.

- **Risks** - Focusing on Idaho’s urban centers can incentivize and support growth in the manufacturing industry, however may minimize ability to invest in the important rural and agricultural system.

- **Users Impacted** - By focusing on emerging industry, ITD will work in conjunction with economic development agencies and other groups supporting next generation innovation. As more trucks may be required in urban areas, there is potential for increased urban congestion and impact on air quality.

Types of Projects Included

- Develop logistics parks with co-located industry and multi-modal access
- Work progressively with industry to strategically locate private facilities according to need with current or future road and rail infrastructure

<table>
<thead>
<tr>
<th>Category</th>
<th>Demand</th>
<th>Safety</th>
<th>Efficiency</th>
<th>Condition</th>
<th>Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road Network</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Railroad Network</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Maritime System</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Aviation System</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Intermodal Connectivity</td>
<td>4</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Ag/Rural SUMMARY</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>4</td>
</tr>
</tbody>
</table>

Legend

- Increase 4
- Neutral 8
- Decrease 8
Idaho Statewide Freight Study

- Provide increased North-South Connections by upgrading US 95
- Implement "truck-friendly" design standards in urban areas, intra-city routes and corridors
- Increase level of Section 130 rail funds to improve highway-railroad grade crossings

Performance Measure Summary

Table 4-13 presents the projected changes across each of the performance measure categories and modes. This scenario includes more focus on the road and aviation sectors, but also includes some investments to improve the rail and maritime system. Intermodal connectivity between all modes increases. As this scenario does not include the investments to efficiency increases included in the Agriculture/Rural focused scenario, the overall efficiency of the system continues to remain at the same level.

Table 4-13: Qualitative Evaluation of Scenario C: High Tech, Manufacturing / Urban Focus

<table>
<thead>
<tr>
<th>Category</th>
<th>Demand</th>
<th>Safety</th>
<th>Efficiency</th>
<th>Condition</th>
<th>Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road Network</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Railroad Network</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Maritime System</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Aviation System</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Intermodal Connectivity</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>High-Tech SUMMARY</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Legend

- Increase 4
- Neutral 8
- Decrease 8

4.4 Investment Priorities

The investment scenario evaluation was an exercise undertaken to inform how different investment will impact system performance goals, and served as a foundation for establishing investment priorities for the freight system. Based upon stakeholder and Steering Committee input, a “preferred investment scenario” was developed, based on determining a set of high value concepts and project levers. The high value projects and concepts identified to move forward are summarized in Table 4-14, and essentially define freight system investment priorities. Each of these high value projects have been refined as part of the formal recommendations of this study.
Table 4-14: Preferred Scenario Projects

<table>
<thead>
<tr>
<th>Concept Areas</th>
<th>Projects “Levers”</th>
<th>High Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Increase the mobility of commercial vehicles on the road through an increased freight focus for planning, design, and regulation</td>
<td>1. Implement “truck-friendly” design standards in urban areas, intra-city routes and corridors</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. Implement freight design standards and freight-corridor designations on Interstates and inter-city highways</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>3. Harmonize TS&W regulations with those of neighboring states; supporting policies to reduce border crossing times</td>
<td>X</td>
</tr>
<tr>
<td>Links to Goal 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Build intermodal facilities and connections</td>
<td>4. Improve connections with grain elevators and other agricultural connections to existing rail and road infrastructure</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>5. Build one or more transload (bulk) or intermodal (container) facility, possibly located within the port or other area</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>6. Create a “logistics park” or other co-located industrial / multi-modal transportation hub through partnership with industry</td>
<td></td>
</tr>
<tr>
<td>Links to Goal 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Expand sources for infrastructure funding</td>
<td>7. Secure grant funds to continue building/upgrading port, rail, or intermodal infrastructure</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>8. Increase level of Section 130, or other rail funds to improve highway-railroad grade crossings</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>9. Increase REDIFIT funds for development and expansion of agriculture-related rail and intermodal infrastructure</td>
<td></td>
</tr>
<tr>
<td>Links to Goal 2 and Goal 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Utilize innovative financing techniques</td>
<td>10. Partner with agriculture and/or manufacturing industry to identify and invest in critical corridors and markets</td>
<td>X</td>
</tr>
<tr>
<td>Links to Goal 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Strategic infrastructure improvements</td>
<td>11. Increase rail capacity in key areas, particularly short lines</td>
<td>X</td>
</tr>
<tr>
<td>Links to Goal 3</td>
<td>12. Provide an improved n-s truck corridor through upgrading US 95</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>13. Invest in highway and intermodal connectors for urban areas</td>
<td></td>
</tr>
<tr>
<td>6. Align transportation policy and projects with economic development goals</td>
<td>14. Coordinate with economic development organizations to align transportation projects with projected or targeted growth and demand</td>
<td>X</td>
</tr>
<tr>
<td>Links to Goal 2</td>
<td>15. Work progressively with industry to strategically locate private facilities according to need with current or future road and rail infrastructure</td>
<td></td>
</tr>
<tr>
<td>Implied in all scenarios</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Alternate Fuels</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. ITS and Technology</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Excluded from all scenarios</td>
<td>18. Governance Structure</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td>19. Enforcement</td>
<td></td>
</tr>
</tbody>
</table>
Idaho Statewide Freight Study

<table>
<thead>
<tr>
<th>Concept Areas</th>
<th>Projects “Levers”</th>
<th>High Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>Hazardous Materials Transport</td>
</tr>
<tr>
<td></td>
<td>21</td>
<td>Evaluation of Access Needs</td>
</tr>
</tbody>
</table>

References:

5 Recommendations
The year-long Freight Study effort resulted in the identification of six key recommendations that provide a framework for future freight related actions. These recommendations, which are reflective of the broad and diverse stakeholder input gathered throughout the Freight Study process, are designed to be “implementable” by a variety of Idahoan freight stakeholders. The Idaho Transportation Board endorsed each of these recommendations at their December 2012 meeting and has asked staff to move forward with various action steps. However, it is only with the continued involvement from every Idahoan freight stakeholder will we reach the vision collaboratively identified through the Freight study planning process.

The following sections provide a description of each recommendation including the action steps that freight stakeholders can help implement over the next few years to further freight mobility in Idaho.

Recommendation 1: Create an Institutional Framework for Communication, Collaboration & Partnership
Consistent with the goal of using effective partnerships to leverage resources and opportunities, the first recommendation is to create an institutional framework to foster communication and collaboration, which will serve as the foundation for partnership.

Action steps include formalizing a Freight Advisory Committee as a standing advisory committee to guide decisions regarding freight investments. MAP-21 includes a number of provisions designed to enhance freight movement in support of national goals, including encouraging states to establish freight advisory committees. The committee should include private sector industry representatives, and coordinate membership with the Division of Aeronautics Advisory Board and the Idaho Trucking Advisory Council. The committee will report to the Idaho Transportation Board.

Other action steps include formalizing the partnership between the Idaho Departments of Agriculture, Commerce, Labor, State Patrol, and Transportation, to work collaboratively to enhance the movement of freight; coordinating with local and regional economic development organizations, and coordinating at the state level, including conducting a State-wide Freight Forums every two years, to identify inter- and intra-state freight needs, issues, and opportunities. A final action step is facilitating an understanding of the economic benefits of freight movements through Idaho through a media campaign.

Recommendation 2: Align Transportation Policy and Projects with Economic Development Strategies
Understanding the critical role of freight in support of Idaho’s economy, the second recommendation in support of partnership and collaboration, focuses on aligning transportation policy and projects with economic development strategies. This was envisioned to be accomplished through collaborating with
local economic development entities, including Chambers of Commerce; participating in the Economic Development District annual planning process, and statewide efforts to develop a Strategic Economic Development Plan; and, collaborating and coordinating with cities, counties, local EDDs and EDOs on freight projects. Additional recommendations include developing a database of public and private stakeholders as distribution list for communication and dissemination of information.

Recommendation 3: Strategically Invest in a Freight Corridor Network and in New/Expanded Multi-Modal Facilities and Connections

As based upon freight mobility issues and opportunities identified in Section 3 of this report, strategic infrastructure investments will be critical to address both capacity needs and realize the vision for seamless, modal connectivity that is essential freight system efficiency in the future.

The first action step identified is seeking funding to develop a multi-modal threshold analysis to assess the applicability, opportunity, and potential feasibility for consolidating transportation facilities and infrastructure to meet regional, multi-modal needs.

The second action step identified is to conduct a north-south, multi-modal corridor study along the general US-95 alignment. The pilot study is intended to evaluate a potential freight route via a north south rail line, to include needed inter- or multi-modal facilities; to consider the costs and benefits of market-driven investments along the corridor; and to potentially include a modal shift analysis. The methodology and findings of the pilot study would be used to frame the approach for identifying improvements for other freight corridors and strategic multi-modal corridor investments in the subsequent strategic Freight Plan. The potential cost for the pilot north-south corridor study envisioned is likely in the range of $350,000.

Also included as an action step is prioritizing public projects funding consistent with the strategic investments identified in the planning process, including using the Idaho Rail Plan currently in development to prioritize rail capacity improvements to receive federal funding, and utilizing the Freight Advisory Committee to review potential freight projects considered for state and federal funding.

It is also recommended that priority freight corridors be identified for improvements in a data driven manner, linked to National Freight Network designations, traffic volumes, permits, and user surveys, and potentially, linked to highways used for key commodities. This will also allow ITD to leverage additional federal funds for infrastructure investments on freight identified corridors.

Consistent with Map-21 provisions regarding freight, which encourage states to develop Freight Strategic Plans, it is recommended that Idaho develop a Freight Strategic Plan that builds upon this Freight Study, utilizing the methodology and findings of the pilot North-South Freight Corridor Study and the priority freight network identified in prior action steps. It is envisioned that the Freight Strategic Plan will be incorporated as an integral element of the State’s future long-range transportation plan, and
Idaho Statewide Freight Study

will play a critical role in ensure that freight system investments strategically support the growth of Idaho’s economy.

In order for identified strategic investments to be up-to-date and relevant in the face of changing conditions and opportunities, the final action step identified under this recommendation is to create and implement a process to continually identify needs and opportunities for strategic freight corridors, multimodal facilities, and freight system investments within each region. The Freight Advisory Committee, Regional Freight Forums, and partnerships with local EDDDs and EDOs will have a role in this effort.

Recommendation 4: Facilitate the Efficient Movement of Freight
Consistent with the goals of strategically investing in freight system infrastructure to maximize existing capacity, and providing a freight system with seamless, modal connectivity that is both safe and efficient, the fourth recommendation is to facilitate the efficient movement of freight. This is recommended to be implemented through establishment of freight-friendly best practices at the local, state, and federal level including design and maintenance standards tied to the freight specific network. This will require coordination and collaboration with the Association of Highway Districts and the Local Highway Technical Assistance Council, and working with local highway districts, counties, and cities to identify corridors needing freight-friendly standards.

An additional implementation action includes promoting consistent weight allowances on public highways for intra- and inter- state multi-modal freight movement. Consideration should be given to weight per axle versus overall weight restrictions, and the benefit versus cost where considered for implementation (e.g. safety and efficiency versus impact to system condition/potential damage). Consideration should also be given to how connections can be maximized with consistent design considerations between different modes.

Another action step identified in support of this goal is to reduce border crossing delays, both state and international. It is recommended that research and user surveys be utilized to identify key border crossing delays, and to assess potential mitigation measures.

Implementation of appropriate ITS technologies and applications were also identified as a potential action step in implementing this recommendation. Potentially beneficial technologies to consider include weigh-in-motion technologies, automated plate recognition, transponders, GPS, smart phone applications, and web-based applications, which are discussed in more detail in Section 3 of this report.

Recommendation 5: Expand Sources for Freight Infrastructure Funding
Recognizing both the increase in freight demand projected for the state of Idaho, and the current shortfall in funding for even maintaining the existing network, expanding resources for freight infrastructure funding is a critical recommendation, if Idaho is to provide a freight system adequate to fuel the growth of Idaho’s economy, as envisioned by Project 60.
Action steps identified under this recommendation include identifying appropriate new dedicated Idaho funding sources for strategic freight system investments, building on the Governor’s Task Force on Funding report. It will likely require an evaluation of the benefit/cost analysis of freight versus other transportation system investments.

Other action steps include evaluating other potential funding sources for strategic freight system improvements, many of which are available in adjacent states, including:

- TIFIA;
- Economic development grants;
- Dry port districts;
- Tax increments financing;
- Revenue bonds;
- Community improvement districts; and
- Others, as may be identified.

It will be essential to identify the benefits/costs, and impacts (both positive and negative) for existing and new mechanisms for public-private financing partnerships, as well. It is also recommended that an on-line clearinghouse for federal, state, local, and non-traditional funding sources and technical support be developed to improve access to public and private resources.

The final action step identified under this recommendation is to secure funding for outcome-based needs assessments/feasibility analyses, to include modal shift analysis. This could potentially be accomplished through REDIFiT or other transportation, economic development or Commerce Department grant, or funding through private industry councils and/or freight associations.

** Recommendation 6: Collect and Analyze Data**

The cornerstone of MAP-21 and future federal transportation funding is the transition to a performance and outcome-based program. Idaho will be required to invest its federal transportation resources in projects to achieve individual targets that collectively will make progress toward national goals.

MAP-21 establishes national performance goals for federal transportation programs and funding:

- **Safety**: To achieve a significant reduction in traffic fatalities and serious injuries on all public roads.
- **Infrastructure condition**: To maintain the highway infrastructure asset system in a state of good repair.
- **Congestion reduction**: To achieve a significant reduction in congestion on the National Highway System (NHS).
- **System reliability**: To improve the efficiency of the surface transportation system.
Idaho Statewide Freight Study

- **Freight movement and economic vitality**: To improve the national freight network, strengthen the ability of rural communities to access national and international trade markets, and support regional economic development.

- **Environmental sustainability**: To enhance the performance of the transportation system while protecting and enhancing the natural environment.

- **Reduced project delivery delays**: To reduce project costs, promote jobs and the economy, and expedite the movement of people and goods by accelerating project completion through eliminating delays in the project development and delivery process, including reducing regulatory burdens and improving agencies’ work practices.

Under Map 21, FHWA is directed to establish performance measures for pavement conditions and performance for the Interstate and NHS, bridge conditions, injuries and fatalities, traffic congestion, on-road mobile source emissions, and freight movement on the Interstate System. Idaho will be required to establish performance targets in support of those measures, and describe how program and project selection will help achieve the targets. Idaho will report be required report to USDOT on progress in achieving targets.¹

In order to address these federal requirements for access to federal transportation funding, it will be necessary to collect and/or purchase adequate data to support the development and maintenance of a system to allow for targeted performance modeling and evaluation. Such a system will also enable Idaho to ensure that the future investment of limited transportation funding is truly strategic, in support of Goal 3.

The first action step is the collecting and/or purchasing enhanced data in support of this recommendation. Given the shortcomings of the available free data sources, as identified in this report, in this study, the Transearch Database has been identified as a likely source of enhanced data for use in development of a statewide travel demand model, though it will be necessary to first assess the benefit vs. cost of acquiring and maintaining the data base, the usability of the data for the purpose of performance metrics within a travel demand system, and ultimately, the return on investment on the purchase of the data base.

Following the acquisition of data, it will be necessary to align data with recommended performance measures, to identify remaining gaps in data, data collection tools and methodologies, and prepare a data collection plan, develop supporting tools, and track performance measures, regularly updating them as new data becomes available. The Freight Advisory Committee will play a key role in these steps, with staff support from ITD.

References:

Idaho Statewide Freight Study

Appendix A - Public Involvement Summary

Prepared for the
Idaho Transportation Department

Project No. A013 (337)
Key No. 13337

February 5, 2013

Prepared By:

[Logo] DAVID EVANS AND ASSOCIATES INC.
Table of Contents

- Project Description .. 3
- Goals of the Public Involvement Plan .. 3
- Stakeholders, Participants and Audiences ... 4
- Outreach Activities and Schedule .. 4
- Issues to Address ... 7
- Using Public Input .. 7
- Evaluation .. 7
- Roles and Responsibilities .. 8
Idaho Statewide Freight Study and State Rail Plan

Public Involvement Plan

Project Description

The Idaho Transportation Department (ITD) is conducting a study of the statewide multimodal freight network to examine current and future transportation needs. The purpose of the study is to identify policies, programs and investments within the state’s transportation network that will facilitate the efficient movement of freight over state transportation systems, improve safety, and support economic vitality at the state and local level. In addition to the Freight Study, ITD will use the process to update to the 1996 Statewide Rail Plan in compliance with Passenger Rail Investment and Improvement Act of 2008 (PRIIA).

PRIIA tasks states with producing a State Rail Plan to establish policy, priorities and implementation strategies for freight and passenger rail transportation within its boundaries, enhance rail service in the public interest, and serve as the basis for Federal and State rail investments within the state. PRIIA requires State Rail Plans be submitted to the Federal Railroad Administration (FRA) for review and approval.

The Idaho Rail Plan will address a broad spectrum of rail issues, including:

- Identification of the State's passenger rail objectives and plans;
- An inventory of the rail system’s transportation infrastructure;
- Analysis of rail-related economic environmental impacts; and,
- Establishment of a long-range investment program for current and future passenger and freight rail infrastructure throughout the State.

The Plan will also address intermodal infrastructure, safety, and security issues, outline 5- and 20-Year Work Plans, and set the stage for a continuation of work underway across the State in adherence with PRIIA.

Goals of the Public Involvement Plan

The most useful and relevant Idaho Freight Study and Rail Plan Update will rely on effective and meaningful public involvement and input which is intentionally generated, documented, and used in the production of the Project products. The goals of this Public Involvement Plan are to:

1. Effectively communicate the process and schedule of the Idaho Freight Study and Rail Plan Update, so that stakeholders can be involved in the process at the point they find most meaningful;
2. Facilitate active and collaborative participation by key stakeholders, relying on their intimate involvement and collective expertise to help develop and recommend the vision and plan for Idaho’s freight and rail systems; and,
3. Collect public input to make a better product, by providing information, keeping the lines of communication open, and having a robust body of input available to consider when making decisions.

The intended outcome is a public that feels satisfied with the level of participation they have been offered, and has assisted the State in creating a project that best meets the overall purpose and need.

Stakeholders, Participants and Audiences

All Idahoan’s with an interest in the Idaho Freight Study and Rail Plan Update are encouraged to participate in the process. In addition, ITD has identified the following specific stakeholder groups for which this Project will have specific relevance:

- Users – public and private, including but not limited to agriculture, manufacturing, natural resources, recycling, other products and passengers;
- Operators – public and private, including but not limited to air, rail, port, trucking, highway;
- Economic Development;
- Elected Officials;
- Federal Government;
- State Government;
 - Metropolitan Planning Organizations;
- Environmental organizations; and,
- General Public.

Outreach Activities and Schedule

The outreach activities identified in Table 1 below are designed to meet the PIP goals, the products of which will inform the development of Project materials. The schedule for outreach activity implementation is also indicated in this table.
Table 1: Outreach Activity and Schedule

<table>
<thead>
<tr>
<th>Activity</th>
<th>Target Audience</th>
<th>Purpose</th>
<th>Products</th>
<th>Schedule</th>
<th>Goal</th>
</tr>
</thead>
</table>
| Freight Summit | All stakeholder groups | Present the project scope and purpose; collect issues, needs, vision, desired level and scope of involvement, preferred communication venues | ▪ List of Issues, Concerns
▪ List of inputs to inform vision, goals and objectives
▪ Volunteers for Steering Committee
▪ Meeting Summary | December 2011 | 1, 2, 3 |
| Stakeholder Interviews – Inquiry based | Key stakeholders across perspectives | More detailed inquiry regarding issues, needs, goals and objectives | Interview Summary that documents inputs and informs the development of the Rail Plan and Freight Study vision, goals, objectives and recommendations | March 2012 September 2012 | 1, 2, 3 |
| Stakeholder Interviews – relationship and status based | Key stakeholders across perspectives | Regular but intentional interviews and check-ins with key stakeholders throughout the state to keep them apprised of process and to monitor for emerging or outstanding issues about which the project team should be aware. | Interview log | Ongoing | 1, 3 |
| Steering Committee | Key stakeholders across perspectives | ▪ Adopt the Stakeholder and Public Involvement Plan;
▪ Affirm the draft Vision Statements, Goals and Objectives;
▪ Recommend Performance Measures, and
▪ Recommend Policies, Investment Priorities, and Investment Scenarios for testing.
▪ Recommend specific strategies and activities to be included in the Rail System Action Plan | ▪ Facilitated Steering Committee meetings and meeting summary documentation
▪ Final Project Stakeholder and Public Involvement Plan
| Project Website | All | Post information; solicit comments | Website | February 2012 through duration of project | 1, 3 |
Focus Groups

Specific to focus issue

As needed (up to four) to address/guide issue-specific components of the plan (potentially economic development, infrastructure, safety and security, congestion management, land use, performance measures, environmental issues, and/or financing.)

Focus group meeting summaries to inform plan development.

Focus group meetings will be triggered by the identification of up to four of the most critical issues (by topic or by region in which stakeholder engagement is essential to address). At a minimum, one focus group will be devoted to a significant rail issue, another to a significant freight issue, and the last two to those issues identified and proposed by the Project Team and/or Steering Committee.

Public Outreach

All

Use a variety of tools to enhance communication and understanding

1. Regular E-mail Blasts
2. Distribute a project one-pager to mobility managers for distribution in their areas as appropriate
3. Conduct regional stakeholder meetings to communicate the development of the draft, its vision, goals and objectives, and encourage review of the draft plan
4. Summarize public comment solicited through public outreach effort

1. Ongoing
4. September 2012

Legislative Outreach

Legislators continuing in House/Senate transportation committees and new members

Convene information-sharing opportunities with legislators as identified to inform them of the study and planning process and secure their future understanding of the strategic vision and goals.

Log of those with whom information is shared and their response/proposed follow-up

5. Ongoing throughout course of project

Public Comment

All

30-day public comment with production of draft plan

Outreach Summary Report

February 2013
Issues to Address

At the time of the printing of the draft Public Involvement Plan, a Freight Summit has been convened. At the Freight Summit a list of issues to address in the process were identified, as were a number of suggestions for potential goals and activities. Initially and summarily, issues include:

- Access and capacity;
- Collaboration;
- Economic competitiveness;
- Funding;
- Information sharing/communications;
- Infrastructure;
- Planning;
- Policy;
- Safety;
- System connectivity among modes, within state, among other states, as part of a national network;
- Movement of natural gas;
- and,
- Consistency in regulation.

Using Public Input

Input and suggestions collected through public and stakeholder involvement activities will provide technical project personnel with the information they need to produce a study and generate a plan that is most responsive to stakeholder and community needs. All issues identified will be included in the issues log, presented for project team and Steering Committee consideration, addressed, and documented in a response to public comment document included by reference to the draft and final Idaho Freight Study and Rail Plan Update.

Evaluation

In order to determine if the public involvement activities are achieving the desired results, it is critical to assess their effectiveness periodically during the study.

Information will be collected from the Freight Summit, Steering Committee, and Focus Group evaluation forms. These sheets will serve as a mini-survey by asking attendees questions related to the relevance and effectiveness of the meeting and process. An online questionnaire is another potential evaluation activity that may be used to evaluate process effectiveness.
Roles and Responsibilities

The ITD Division of Transportation Performance has lead responsibility for the conduct of the Idaho Freight Study and Rail Plan Update.

ITD has secured the services of David Evans and Associates, Inc. (DEA), who is leading a Project Team of consulting professionals to conduct the study and produce the update in the context of the public process outlined within this plan. Other Team members include professionals from Cambridge Systematics and Bracke and Associates, Inc. DEA works according to a specific scope directed by ITD, to include most of the technical elements of plan development and the bulk of the public involvement process. Given the contractual arrangement, ITD will in some cases have sole responsibility for elements of the process; in others, there is a shared responsibility.

Steering Committee members are responsible for participating in all of the meetings of the Steering Committee, reviewing public input and technical documents required to meet a given meeting objective, and working collaboratively with other members to generate recommendations that best support the needs of the entire state and range of stakeholders.

Other stakeholders and individuals with an interest in the project are encouraged to stay engaged in the process by reviewing project documents and recommendations as they become available, and for monitoring the website to stay informed about project developments and status.
March 1, 2012

Idaho Freight Study and Rail Plan Update

Steering Committee Meeting

PARTICIPANTS

Steering Committee Members
Erika Bowen, ITD Highway Planning and Program Management
John Brown, WATCO
David Doeringsfeld, Lewiston Port Authority
Kathy Fowers, Idaho Trucking Association
Joe Leckie, Idaho Public Utilities Commission
Wyatt Prescott, Idaho Cattle Association
Colleen Weatherford, BNSF Railroad

Ex Officio
Richard York, Division Administrator, USDOT Federal Motor Carriers

Project Management Team
Sonna Lynn Fernandez, Transportation Planning Coordinator, Idaho Transportation Department
Steve Grant, Communication Specialist, Idaho Transportation Department
Melissa Kaplan, Airport Planning, ITD Aeronautics
Robert Linkart, Idaho Transportation Department
Jo O’Connor, Passenger Rail, Idaho Transportation Department
Mark Wasdahl, Senior Transportation Planner, Idaho Transportation Department District 3

Project Team
Maureen Gresham, Program Manager, Idaho Transportation Department
Kevin Jeffers, Project Manager, David Evans and Associates
Marsha Bracke, Facilitator and Public Involvement, Bracke and Associates, Inc.

Support Personnel
Stephanie Latimer, Bracke and Associates, Inc.

MEETING SUMMARY

The Steering Committee held its first meeting on March 1, 2012 at the ITD Aeronautics conference room in Boise, Idaho. The purpose of the meeting was to:

• Establish a shared understanding of the project plan and schedule;
• Provide feedback on and generate a shared understanding of the project Public Involvement Plan;
• Establish and confirm a shared understanding of the role, responsibility and functionality of the Steering Committee;
• Generate a draft vision and goals for Idaho's overall freight system based on freight stakeholder input generated to date;
• Review the Data Collection Plan and identify and fill gaps, as appropriate.
This meeting summary includes a transcription of Flip Chart Notes maintained throughout the meeting, and can be found on pages 5-9.

Additional attachments to this Summary include:

1. The Agenda
2. Gresham Power Point - Project Purpose and Management
3. Jeffers Power Point - Project Overview
4. Gresham Power Point - Public Involvement Plan
5. Public Involvement Plan, revised March 1, 2012
6. Public Involvement Plan Comment Sheet
7. Steering Committee Draft Charter, revised March 1, 2012
8. Idaho Freight Summit Inputs, grouped by theme, January 20, 2012
10. Jeffers PowerPoint - Data Collection Plan Overview
11. Data Collection Plan
12. Evaluation Form

Project Overview
Maureen Gresham, ITD and Kevin Jeffers, David Evans and Associates, via power point presentations provided an overview of the project. Participants inquired about the level of detail associated with the project, and how specifically they would be able to look at issues. Mr. Jeffers explained that it is a relatively broad plan, particularly for the Freight Study portion, but that system plans, such as the ITD Rail Plan Update, will look at other elements more specifically.

Later in the meeting participants expressed some concern about the scope of this project and their ability to get through the process in the time allotted. It was pointed out that this is an important and far-reaching plan, and that a year may not be enough time to do it. Ms. Gresham pointed out that she has to work within the schedule provided, and asked 1) that the Steering Committee consider what they CAN accomplish in the time provided, and 2) that the group get through as much as it can get through in the time that they have, knowing that subsequent iterations of the Freight Study and the Rail Plan Update will build on this work.

Public Involvement Plan
Ms. Gresham used a PowerPoint presentation to present an overview of the Public Involvement Plan, and then asked the group three specific questions to which she solicited their response. These included:

1. Name one person you think that is most influential or vested in this project. Identify opportunities for that person to be best engaged.
2. What areas/topics/issue do you think would benefit most from one of the four focus group meetings we have planned for this project? Why?
3. What is missing? What other strategies should be employed and for what purpose?

The group suggested several individuals and entities that should be participating in the project. They are listed on page 5 in the Flip Chart Notes. Ms. Gresham will use this input to update the stakeholder contact list. Suggestions for potential focus group meetings included natural gas, economics, multimodal, connectivity and securing a shared understanding of the end product. One specific suggestion for the Public Involvement Plan was to add a strategy to secure meaningful legislative involvement. Pages 5 and 6 provide the Flip Chart Note transcription of the feedback taken during this session.

Steering Committee Charter
Facilitator Marsha Bracke, Bracke and Associates, Inc., invited the group to review, make recommendations, and then confirm the detail of the Steering Committee function as described in the draft Charter, noting that it is in the group’s best interest have build a shared understanding about expectations and participation in the process. The
Idaho’s Freight Vision and Goals

Ms. Bracke reviewed with the group inputs to inform the development of a draft Vision statement and goals. The Idaho Freight Summit Inputs, grouped by theme, January 20, 2012 is an important resource reflecting the scope of stakeholder input at the Summit. The materials, grouped by Ms. Bracke in an attempt to synthesize the results, were the resource document for a series of stakeholder interviews conducted over recent weeks. The stakeholder surveys were designed to confirm whether the grouping was appropriate, and to collect additional inputs to drive toward the development of a vision statement and goals. Six interviews were reflected in the Stakeholder Interview Summary, February 28, 2012, also provided to the Steering Committee to inform this discussion.

Using those materials, Steering Committee members were divided into two groups to collaborate on building draft vision statements. The statements provided from each group were more similar in scope than structure. Ideas such as connectivity, economic opportunity, safety, effectiveness and strategic approaches were represented in both visions. After discussing the purpose and meaning behind a vision statement, and specifically clarifying that the vision is to describe the final outcome, the ‘fait accompli’ that stakeholders envision for the system, the Steering Committee divided into two new groups to revise their statements with those elements in mind. Three revised vision statements were proposed:

- A safe and efficient freight network provides Idaho with economic opportunity.
- Idaho’s strategic multimodal transportation network enhances economic growth opportunities.
- Idaho’s strategic freight network is safe and efficient which provides and enhances economic opportunity.

The next step is to reduce these proposed vision statements into a single statement to share and refine with the broader stakeholder community.

Subsequently, based on inputs generated at the Idaho Freight Summit, Steering Committee members were asked write down the three things they each think need most to be accomplished to have an effective system as described in their draft vision statements. Each participate wrote three proposed goals on three different Post-It Notes. Similar proposed goals were grouped together into themes followed by a group discussion about each.

The original Post-It Note contributions are included on pages 7-8 of the Flip Chart Notes attached, followed by notes documenting discussion about each area. Per this input of the group, proposed goals would focus on the following areas:

1. Collaboration
2. Inter/Multimodal
3. Research & Data
4. Funding
5. Regulations
6. Connectivity
7. Prioritization

The next step is to craft this input into specific goal statements to share with the broader stakeholder community.

Data Collection Plan
Kevin Jeffers, David Evans and Associates, provided an overview of the Data Collection Plan using a PowerPoint presentation, and through the course of this discussion asked the group to respond to three specific questions respective to each task. Questions included:

1. What information is most critical to inform the recommendations of this study? How should it be used?
2. Are there other/better sources for the data needs identified?
3. What other data is available to support this study? What is the source of the data? How might it be utilized?

Page 8 of the Flip Chart Notes provide the input to each of the Tasks by task number. Participants were also invited to take the questions home with them and provide responses electronically once they had some time to further review and synthesize the information. These inputs are due to Ms. Gresham by March 15, 2012, and will be used to refine the Data Collection Plan and inform the data collection effort.

Through the course of this discussion, additional clarification was sought respective to the scope of this plan. Mr. Jeffers and Ms. Gresham described the scope of the ‘freight study’ is at the freight level, the results of which can be used to inform all systems’ plans (rail, highway, port, air). Given the concurrent timing and funding, the effort to update the Rail Plan is leveraging the freight study process, and that system plan will be another product that results from this process. Instead of running two distinctly different processes on overlapping issues and with overlapping stakeholders, ITD chose to work both efforts together and leverage research, outreach, and production activities.

Ms. Gresham also clarified that the Freight Study is “Idaho’s” Freight Study – not ITD’s, and encouraged the group to direct and inform its development as appropriate to the state.

Action Items
1. Ms. Gresham will update the contact list using updated information generated at today’s meeting.
2. Ms. Gresham will update the project stakeholder list with names and strategies provided at this meeting by the Steering Committee (as reflected on page 5).
3. Ms. Bracke will revise the Public Involvement Plan to incorporate Steering Committee suggestions to outreach to legislators.
4. Ms. Gresham will update the E-Blast list with updated contact information generated and with the additional stakeholder names provided at this meeting.
5. Ms. Gresham will issue a Doodle Poll to reschedule Steering Committee meetings in an attempt to maximize participation opportunities.
6. Ms. Bracke will revise the Charter to reflect Steering Committee inputs respective to participation, meeting notifications, and meeting schedule.
7. Steering Committee members will provide their responses to the Data Collection Plan questions to Ms. Gresham by March 15, 2012.
8. Ms. Bracke will prepare and Ms. Gresham will distribute the meeting summary materials by March 8, 2012.
9. The Project Team will develop a glossary of terms, to include a definition of inter- and multi-modal, as a resource for Steering Committee members and for potential inclusion in the project products.

Wrap Up
One item was left in the Parking Lot for the group to track through the process, and this was the question about the appropriate entity to fund a multi-modal facility – public or private.
Idaho Freight Study and Rail Plan Update

Steering Committee Meeting: March 1, 2012

FLIP CHART NOTES

FEEDBACK: STUDY AND SCHEDULE

- Role of “low level”
- Volume? As compared to “high level”
- Probably not looking at more specific pieces

FEEDBACK: PUBLIC INVOLVEMENT PLAN

Question 1 (additional folks and how):
- David Jordan- Clearwater Paper
 - Regional Meeting
- Motor Carrier Association
 - Interview
- Idaho Potato
 - Interview
- State weights/rules
- International Freight Agencies
 - Data and perspectives
- State Legislators
 - Explain and educate
- Williams Pipeline
 - Call Salt Lake office for name
 - Interview
- Heiskell/Scoular - distributing and exchange from truck/rail
- Agribeef/Simplot- large commodity companies
 - Include in regional meeting/ interviews
- Jerry Whitehead (on steering committee)
- Kinder-Morgan
 - Get name from John Brown
 - Solicit input/interaction
 - Add/leverage current capacity

Question 2 (potential focus group topics):
- Switching fuels to natural gas
 - Conversion of vehicles and locations of natural gas
 - By region
- Problems by mode: export/import
- #1 area- economic competitiveness (everything else falls in line)
- Economics, be competitive in other states
- Multimodal opportunities
- Paper limitations
- Connectivity
- What’s the end game? What do people think would be a meaning product? How to get all down to something meaningful
Question 3 (what's missing?)
- Look at existing studies
- Don’t see anything missing
- Pacific/Inland Hub Study
- How engage State Legislature?
- Stay in touch with private sector
 - Seats changing in both transportation committees – lots of education
- Utilize what already exists (don’t reinvent wheel)
- Be careful about putting too much weight on Regulatory construct
- Be mindful- movement of liquid natural gas
- Connections with surrounding states – bottlenecks- freight forwarders
- How Idaho fits in national network

STEERING COMMITTEE CHARTER
- At what point are we “un-appointed”
 - Two consecutive meetings
 - Send out meeting materials
 - Communicate what participation means
 - After second miss - find alternate participation opportunities
 - Give absentee members opportunity for same response
 - Information to Maureen
- Dates: June and end of August
 - Potential Regional meeting on 6/7
 - Tuesday/Thursdays
- Boise for Steering Committee
- Pre-meeting materials
 - Identify decisions to be made
 - Issues to address
 - Get out ASAP

DRAFT VISION STATEMENTS
- Provide strategic multi-model connectivity that enhances Idaho’s economic growth opportunities.
 - Safety not inherently obvious
 - Narrow statement
 - Safety, cost-effective embedded
 - To enhance economic growth – need all qualities
 - Goals and objectives isolate other issues
 - Market driven
- To develop a connected freight network that is safe, efficient and cost effective, which provides strategically focused funding opportunities and investments that increase Idaho’s competitive edge for all modes of freight transportation.
 - Reflective of Summit input
 - Strategic use of funds
 - Use better phrase than “increases Idaho’s competitive edge”
 - Similarities: Economic opportunities, strategic, connected networks, reflect that it is safe, efficient, effective, funding used to leverage

Revised Statements:
- A safe and efficient freight network provides Idaho with economic opportunity
Idaho’s strategic multimodal transportation network enhances economic growth opportunities.
Idaho’s strategic freight network is safe and efficient which provides and enhances economic opportunity.

DRAFT GOAL WORK

Collaboration

Post It Inputs:
- Establish and maintain partnerships that foster cooperation and collaboration
- Structure to collaborate and form partnerships with private sector
- Coordinate public/private partnerships to maximize system benefits
- Improve public/private partnership on planning and funding
- Cooperation, collaboration and partner - enhance partnerships for back hauls and empty loads
- Cooperation between the different modes
- Freight network that is built on cooperation, collaboration and partnerships

Discussion:
- Collaboration- key to making this plan work
- Continually ask ourselves what were trying to achieve
- Strategic network for benefit of all of Idaho

Inter/Multi-Modal (Define)

Post It Inputs:
- Pursue and leverage multi-modal facilities
- Research data/multi-modal - multi-modal feasibility study to have better understanding of the rail access
- Analyze multi-modal opportunities
- Port of Lewiston: Leverage barge/rail truck volumes
- Identify regional multi-modal freight hubs
- Develop (or provide) multi-modal facility options throughout the state

Discussion:
- Studies say that 1 in every 4 rail cars will have to be transloaded by 2014
- Look at all options to handle growth
- Inter-modal- not just companies transfer storage
- Inter-modal → multi-modal - define
- Who builds it? Public/freight community?
- Requires analysis
- Need a network that gets to my facility
- "Rail served industrial park"
- "More than one mode interacting with another"
- Maximize existing resources

Research and Data

Post It Inputs:
- Compile and leverage data to facilitate informed decisions
- Research and data - look at other plans and utilize what works from them
- Develop detailed baseline data to provide a clear vision of Idaho’s freight system

Discussion:
- Concern about lack of data- proprietary issue
- Maximize existing data

Funding

Post It Inputs:
Identify funding source for strategic investments
- Transportation funding
- State funding assistance for multi-modal freight projects

Discussion:
- What is available and what isn’t?
- Difference between investing in infrastructure and private investment
- Federal, state, private, international

Regulations
Post It Inputs:
- Uniformity in truck regulations i.e. GVW, length, safety standards
- Uniformity of truck weights with surrounding states

Discussion:
- Probably a long term fix
- Idaho - adjoining states - federal - potential pecking order

Connectivity
Post In Inputs:
- Improve north-south movement. Question of roads or rail.

Prioritization
Post In Inputs:
- Method (screening) to identify infrastructure needs across all modes

Discussion:
- How? Political, rational

DATA COLLECTION
- Task 4 - Visioning
 - National guidance on freight – Map 21
 - National Rail plan
 - Commerce- national freight vision
- Task 5 – Existing Freight System Overview
 - Make sure you are capturing freight that is not in containers
 - Make sure it captures intrastate freight regardless of modes (including pipeline)
 - Intermodal and non intermodal rail volumes
 - Where does the scope end?
 - Idaho borders or beyond?
 - For example: Columbia jetties
 - Steering committee drives
 - Freight system doesn’t end at the borders – need to recognize those systems
 - Speeds of traffic?
- Task 6 – Mobility Issues
- Task 7 – Performance Metrics
 - Hourly ATR data?
- Task 8 – Investment Scenarios
- Task 9 – Study Recommendations
- Task 10 – Rail Inventory
 - Should show up on Task 5
 - Collecting addition info on rail (but not ports/air)

CLOSING COMMENTS
Too ambitious
Need time to study issues
Think about what we can accomplish

ACTION ITEMS

1. Update contact list
2. Enhance Stakeholder list with names and strategies
3. Revise PIP to incorporate committee suggestions
4. Update e-blast list
5. Issue Doodle Poll to reschedule meetings
6. Revise Charter to reflect Steering Committee inputs
7. Get back with Maureen by March 15th with Task inputs

PARKING LOT

1. Multi-modal funding? Public? Freight community?
2. (Other parking lot items moved to Action Items)
The group will have a working lunch on site, hosted by the Idaho Transportation Department

AGENDA

Objectives
1. Establish a shared understanding of the project plan and schedule
2. Provide feedback on and generate a shared understanding of the project Public Involvement Plan
3. Establish and confirm a shared understanding of the role, responsibility, and functionality of the Steering Committee
4. Generate a draft vision and goals for Idaho’s overall freight system
5. Review the Data Collection Plan and identify and fill gaps, as appropriate

<table>
<thead>
<tr>
<th>TIME</th>
<th>TOPIC</th>
<th>REFERENCE MATERIALS</th>
<th>OBJECTIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:30 a.m.</td>
<td>MEETING START AND PROCESS OVERVIEW
INTRODUCTIONS</td>
<td>Marsha Bracke, Bracke & Associates, Inc., Facilitator
Agaenda
Contact Lists: ▪ Steering Committee ▪ Project Team</td>
<td>1</td>
</tr>
<tr>
<td>10:45 a.m.</td>
<td>Project Overview</td>
<td>Maureen Gresham, ITD Division of Transportation Performance
Kevin Jeffers, David Evans and Associates, Inc., Project Manager: Idaho Freight Study and Rail Plan Update
25 minute presentation; 20 minute facilitated discussion</td>
<td>2</td>
</tr>
<tr>
<td>11:30 a.m.</td>
<td>Public Involvement Plan</td>
<td>Maureen Gresham, ITD Division of Transportation Performance
10 minute presentation; 35 minute facilitated discussion and input; articulate next steps</td>
<td>2</td>
</tr>
<tr>
<td>12:15 p.m.</td>
<td>WORKING LUNCH (Materials Review)</td>
<td>Provided by ITD</td>
<td></td>
</tr>
<tr>
<td>1:00 p.m.</td>
<td>Steering Committee: Role, Responsibility and Functionality</td>
<td>Marsha Bracke, Bracke & Associates, Inc., Facilitator
15 minute overview; 25 minute feedback and discussion; 5 minutes confirm product</td>
<td>3</td>
</tr>
<tr>
<td>1:45 p.m.</td>
<td>Idaho’s Freight Vision – Part 1</td>
<td>Marsha Bracke, Bracke & Associates, Inc., Facilitator
Review and understand materials provided (15 minutes)
Discuss in context of end product (vision, goals, objectives) (25 minutes)
Articulate next steps
January 20, 2012 version of Idaho Freight Summit Inputs grouped by theme</td>
<td>4</td>
</tr>
<tr>
<td>2:30 p.m.</td>
<td>BREAK</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2:45 p.m.</td>
<td>Idaho’s Freight Vision – Part 2</td>
<td>Marsha Bracke, Bracke & Associates, Inc., Facilitator
Generate draft vision and goals for freight system</td>
<td>4</td>
</tr>
</tbody>
</table>
Proposed Meeting Schedule/Objectives:

June 7, 2012

Overall Freight
1. Generate a shared understanding of the existing Freight System Tech Memo and the Freight Mobility Issues and Opportunities memo
2. Refine freight vision and goals, generate draft freight objectives
3. Recommend draft Freight Performance Metrics

Rail: Freight and Passenger
4. Generate a shared understanding of the Freight Rail System Inventory Tech Memo, Passenger Rail System Inventory Tech Memo, and Rail Needs Assessment Tech memo
5. Refine freight and passenger rail vision and goals, generate draft objectives
6. Using inputs provided by the project team, recommend draft Freight and Passenger Rail Performance Metrics
7. Review and comment on initial list of freight and passenger projects identified by the Project Team

PRODUCE VISIONING MEMO

August 7, 2012

Overall Freight
1. Review Project Team’s scenario testing results
2. Recommend preferred scenarios
3. Recommend policy-level initiatives and future management tools that may enhance freight mobility
4. Recommend short and long-term strategies
5. Test inputs via vision, goals, objectives

Rail: Freight and Passenger
6. Review, discuss and recommend
 - Proposed policy changes
 - Proposed projects and screening criteria
 - Project impact analysis
7. Test inputs via vision, goals, objectives

September 18, 2012

Overall Freight
1. Review, discuss and provide input regarding:
 - Freight policies, funding, resources and management tools
 - Action plan and strategy recommendations
 - Preliminary Draft Freight Study document

Rail: Freight and Passenger
2. Review, discuss and provide input regarding:
 - Institutional and policy changes
 - Project prioritization and implementation schedule
 - Review and confirm public comment process
Freight Study and Rail Plan Update
Project Purpose and Management

PRESENTED TO: STEERING COMMITTEE
PRESENTED BY: MAUREEN GRESHAM,
TRANSPORTATION PERFORMANCE DIVISION
MARCH 1, 2012

Why Study Freight?
- Integrate movement of freight across all modes
- Strengthen partnerships between private and public entities
- Implement Long Range Transportation Goals
- Establish framework for future investments

Why Study Freight?
- Develop and preserve essential freight and passenger rail services
- Prioritize public and private actions, investments, and policy/programmatic changes
- Allow Idaho to compete for national rail related funding opportunities
- Adhere to Idaho State Code and the Passenger Rail Investment and Improvement Act of 2008 (PRIIA)

Project Coordination – Management Team
- Provides oversight on all activities
- Coordinates use of available data and resources
- Includes team members from all “walks” at ITD
 - Maureen Gresham – project manager
 - Jo O’Connor – passenger rail
 - Mark Wasdahl – highways, district coordination
 - Melissa Kaplan – airports
 - Reggie Phipps – port of entry, motor vehicles
 - Robert Linkhart – railroad crossing safety
 - Sonna Lynn Fernandez – highways
 - Steve Grant – communications

Project Coordination – Consultant Team
- Coordinating stakeholder involvement
- Conducting data collection, analysis,
- Developing all potential recommendations
- Includes national and local experts
 - David Evans and Associates
 - Cambridge Systematics
 - Marsha Bracke and Associates

Project Coordination – Steering Committee
- Guides the planning process by providing input, data, contacts
- Serves as ambassador for the project to increase awareness and build support
- Identifies and evaluates potential policies, programs and investments
- Includes key stakeholders
 - System Owners/Operators
 - System Users
 - Regulatory Agencies
Idaho Freight Study and Rail Plan

Overview

Kevin M. Jeffers, PE, PMP
David Evans and Associates, Inc.

Idaho Freight Study and Rail Plan

- Leverages state and federal funds for two purposes:
 - Freight Study - provide a framework for freight transportation investments
 - State Rail Plan - both freight and passenger rail
- The Steering Committee is helping to guide both

Study and Plan Elements

Both have common elements

- Stakeholder and Public Involvement
- Visioning
- Data Collection
- System Overview and Analysis
- Issues and Opportunities
 - Needs Assessments and Potential Projects
 - Institutional and Policy Limitations
- Performance Metrics
- Investment and Financing Scenarios
- Recommendations

Differences between the two

- Freight Study examines all transportation modes
- Freight Study provides a framework and preferred scenario to be used by decision makers
- Freight Study informs all the other modal plans
- Rail Plan only examines the one mode, but can identify issues where it interfaces with other modes
- Rail Plan must include passenger and freight rail in each element

Freight Study’s Relationship to Other Plans

- Long Range Transportation Plan
 - Improve Mobility
 - Increase Economic Vitality
- Freight Study
 - Vision
 - Preferences
 - Policies
 - Coordination Mechanisms
 - Programs
- Freight-related System and Infrastructure Plans
 - Rail Plan Update
 - Port of Lewiston Strategic Plan
 - Highway Corridor Plans

Study and Plan Elements

- Stakeholder and Public Involvement
 - Freight Summit
 - Stakeholder Interviews
 - Public Web Site
 - Transportation Board Review
 - Public Comment Period
Study and Plan Elements

• Visioning
 ▫ What is the future of our freight and rail systems? How do they need to perform?
 ▫ The Steering Committee is vital in determining this.

Study and Plan Elements

• Data Collection
 ▫ ITD roadway data
 ▫ Surface Transportation Board waybill samples
 ▫ USDOT freight data and statistics
 ▫ Bridge location and condition
 ▫ Stakeholder-provided data
 ▫ Many, many more
 ▫ Suggestions from the Steering Committee?

Study and Plan Elements

• System Overview and Analysis
 ▫ Review of the existing freight system and rail system
 ▫ Identify high-level capacities and demands

Study and Plan Elements

• Issues and Opportunities
 ▫ Assess needs of both freight and rail systems
 ▫ Identify potential improvements
 ▫ Examine institutional and policy limitations
 ▫ The Steering Committee will help identify all three

Study and Plan Elements

• Performance Metrics
 ▫ High-level
 ▫ Measurable
 ▫ Meets stakeholder needs
 ▫ Used in assessing Investment and Financing Scenarios
 ▫ The Steering Committee input is vital

Study and Plan Elements

• Investment and Financing Scenarios
 ▫ Matching potential solutions to system needs to develop scenarios
 ▫ Use performance metrics to assess each scenario for effectiveness
 ▫ Guides the recommendation discussions
Study and Plan Elements

- Recommendations – Finally!
 - High-level proposed solutions
 - Helps guide transportation policy makers
 - Can be incorporated into statewide modal plans

Study and Plan Schedule

- **Winter 2012**
 - Data Collection and System Overviews
 - Steering Committee in March

- **Spring 2012**
 - Issues & Needs Assessments, Performance Metrics
 - Steering Committee in June

- **Summer 2012**
 - Investment Scenarios & Policies
 - Steering Committee in August

- **Fall 2012**
 - Freight Study Recommendations, Freight Study to Idaho Transportation Board
 - Steering Committee in September

- **Winter 2013**
 - Rail Plan Recommendations, Rail Plan to Idaho Transportation Board
Freight Study and Rail Plan Update

Public Involvement Plan

PRESENTED TO: STEERING COMMITTEE
PRESENTED BY: MAUREEN GRESHAM, TRANSPORTATION PERFORMANCE DIVISION
MARCH 1, 2012

Freight Study and Rail Plan Update

Public Involvement Plan - Goals
- Provide opportunities for stakeholder involvement
- Facilitate active and collaborative participation by key stakeholders
- Gather information to be used in the planning process

Key Stakeholders
- Transportation Industry
 - Railroad owners/operators
 - Truck owners/operators
 - Ports

- Shipping industry
 - Carriers/containers
 - Warehousing/terminals

- Agricultural Industry
 - Produce
 - Grain
 - Dairy
 - Animal and Food
 - Beef

- Natural Resources
 - Recycling
 - Sand/gravel
 - Lumber
 - Metals/mining

- Public Agencies
 - Idaho Transportation Department
 - Department of Agriculture
 - Department of Commerce
 - Public Utilities
 - Economic Development Agencies
 - Federal and regional planning organizations
 - Cities, counties, highway districts, chambers

Key Issues
- Access and capacity
- Collaboration
- Economic competitiveness
- Funding
- Information sharing/communications
- Infrastructure
- Planning
- Policy
- Safety
- System connectivity
- Consistency in regulation

Public Involvement Plan - Tools
- Outreach
 - Website
 - E-blasts
 - Public Comment
- Freight Summit
- Steering Committee
- Stakeholder Interviews
- Focus Groups
- Regional forums

Public Involvement Plan
1. Name one person you think that is most influential or vested in this project. Identify opportunities for that person to best be engaged.
2. We have an opportunity to conduct four focus group meetings over the course of this project. What areas/topics/issues do you think would benefit most from a focus group discussion? Why?
3. What are we missing? What other strategies should we employ and for what purpose?
Idaho Freight Study and Rail Plan Update
Public Involvement Plan

Prepared for the
Idaho Transportation Department

For

Idaho Statewide Freight Study and State Rail Plan

Project No. 94485SC12
Key No. 13334 & 13337

March 1, 2012

Prepared By:
Bracke and Associates, Inc.

For:
Table of Contents

Project Description ... 3
Goals of the Public Involvement Plan .. 3
Stakeholders, Participants and Audiences ... 4
Outreach Activities and Schedule .. 4
Issues to Address ... 7
Using Public Input .. 7
Evaluation .. 7
Roles and Responsibilities .. 8
Idaho Statewide Freight Study and State Rail Plan

Public Involvement Plan

Project Description

The Idaho Transportation Department (ITD) is conducting a study of the statewide multimodal freight network to examine current and future transportation needs. The purpose of the study is to identify policies, programs and investments within the state’s transportation network that will facilitate the efficient movement of freight over state transportation systems, improve safety, and support economic vitality at the state and local level. In addition to the Freight Study, ITD will use the process to update to the 1996 Statewide Rail Plan in compliance with Passenger Rail Investment and Improvement Act of 2008 (PRIIA).

PRIIA tasks states with producing a State Rail Plan to establish policy, priorities and implementation strategies for freight and passenger rail transportation within its boundaries, enhance rail service in the public interest, and serve as the basis for Federal and State rail investments within the state. PRIIA requires State Rail Plans be submitted to the Federal Railroad Administration (FRA) for review and approval.

The Idaho Rail Plan will address a broad spectrum of rail issues, including:

- Identification of the State’s passenger rail objectives and plans;
- An inventory of the rail system’s transportation infrastructure;
- Analysis of rail-related economic environmental impacts; and,
- Establishment of a long-range investment program for current and future passenger and freight rail infrastructure throughout the State.

The Plan will also address intermodal infrastructure, safety, and security issues, outline 5- and 20-Year Work Plans, and set the stage for a continuation of work underway across the State in adherence with PRIIA.

Goals of the Public Involvement Plan

The most useful and relevant Idaho Freight Study and Rail Plan Update will rely on effective and meaningful public involvement and input which is intentionally generated, documented, and used in the production of the Project products. The goals of this Public Involvement Plan are to:

1. Effectively communicate the process and schedule of the Idaho Freight Study and Rail Plan Update, so that stakeholders can be involved in the process at the point they find most meaningful;
2. Facilitate active and collaborative participation by key stakeholders, relying on their intimate involvement and collective expertise to help develop and recommend the vision and plan for Idaho’s freight and rail systems; and,
3. Collect public input to make a better product, by providing information, keeping the lines of communication open, and having a robust body of input available to consider when making decisions.

The intended outcome is a public that feels satisfied with the level of participation they have been offered, and has assisted the State in creating a project that best meets the overall purpose and need.

Stakeholders, Participants and Audiences

All Idahoan’s with an interest in the Idaho Freight Study and Rail Plan Update are encouraged to participate in the process. In addition, ITD has identified the following specific stakeholder groups for which this Project will have specific relevance:

- Users – public and private, including but not limited to agriculture, manufacturing, natural resources, recycling, other products and passengers;
- Operators – public and private, including but not limited to air, rail, port, trucking, highway;
- Economic Development;
- Economic Development;
- Elected Officials;
- Federal Government;
- State Government;
- Metropolitan Planning Organizations;
- Environmental organizations; and,
- General Public.

Outreach Activities and Schedule

The outreach activities identified in Table 1 below are designed to meet the PIP goals, the products of which will inform the development of Project materials. The schedule for outreach activity implementation is also indicated in this table.
Idaho Freight Summit and Rail Plan Update

Public Involvement Plan Discussion Questions
Steering Committee Meeting
March 1, 2012

1. Name one person you think that is most influential or vested in this project. Identify opportunities for that person to best be engaged.

 - Commissions. Idaho Wheat, Idaho Potatoes, Etc. They facilitate farmers, freight shippers and customers.
 - Motor carrier associations. Weight limits, cross-country issues (requirements between states affects freight).
 - International freight agencies. Especially since District 1 abuts Canada (CANAMEX). D1 belongs to an international planning forum.

2. We have an opportunity to conduct four focus group meetings over the course of this project. What areas/topics/issues do you think would benefit most from a focus group discussion? Why?

 - Paper limitations discussion. Many agencies are very familiar with the rules and regulations relating to their agency but having an open discussion of how these limits affect them would be beneficial.
 - Connectivity discussion. How and where do we connect? How can we mitigate issues or enhance connections?
 - Financial discussion. Where, when, who ... economic opportunities and competitiveness.
 - What is the expected product?

3. What are we missing? What other strategies should we employ and for what purpose?

 - Where is the Idaho Legislature in this discussion? They could help reduce paper limitations.
 - Consult Don Davis and he freight study already conducted in D1 and D2. Inland Hub.
 - Off racking issues key to ITD and DMV – see Scott Stokes.
 - Don’t ‘reinvent the wheel”
IDaho FreIGHT Study AND Rail PLAN UPDATE

Purpose

It is the role of the Idaho Freight Study and Rail Plan Update Steering Committee to represent the interests of diverse freight stakeholders in providing feedback to the Idaho Transportation Department on freight mobility issues and study recommendations. The Steering Committee is not a decision-making body, but the committee has a key role in formulating recommendations that will influence the study results.

Expectations of Steering Committee Members

Project steering committee members are expected to:

• Work collaboratively, helping to ensure that the study process and products balance the varied interests of statewide stakeholders
• Serve as ambassadors for the project, disseminating project information and collecting feedback from their networks of industry contacts and affiliated interest groups
• Review and provide recommendations to the Idaho Transportation Department Executive Management Team on project products and deliverables that best meet the needs of the state as a whole.
• Accept and adhere to the parameters outlined in this charter.

Primary Steering Committee Tasks:

• Confirm the Stakeholder and Public Involvement Plan
• Develop a Vision Statements, Goals and Objectives
• Recommend statewide freight performance measures
• Provide input on high-level investment scenarios for testing
• Recommend policies and investment priorities
• Make recommendations on specific strategies and activities to be included in the Idaho Freight Study and Rail Plan Update.

Appointments

The Steering Committee will consist of 17 individuals who bring a statewide perspective of stakeholders from diverse stakeholder groups. Interest in the Steering Committee will be solicited by ITD, and ITD will determine final appointments with the Steering Committee having final say on the formation of the group.

Term of Service

The Steering Committee will be functional only for that time required to complete the planning process, and no later than April, 2013.
Meetings

The Steering Committee is planned to convene four times during calendar year 2012 in Boise. Steering Committee meetings will be of one-day’s duration.

ITD’s project consultant team provides for the services of a Certified Professional Facilitator, who will design meeting agendas and process in accordance with group objectives and conduct Steering Committee meetings on the members’ behalf.

Responsibilities

It is the responsibility of each Steering Committee member to:

- Be familiar with the project plan, purpose and schedule;
- Be familiar with and respond as appropriate to activities outlined in the Public Involvement Plan;
- Review and study meeting materials prior to attending a Steering Committee meeting;
- Come to each meeting prepared to participate and achieve meeting objectives;
- Participate in a collaborative manner, working diligently to share his/her perspective as well as to understand the perspective of others, seeking to find a solution or recommendation that best meets the collective need of all stakeholders across the state;
- Recognize that meeting time is limited and the project work is important; Steering Committee members will focus on meeting specific meeting objectives and maximizing the use of all members’ time.

Attendance

All participants are expected to be in attendance at all meetings. Given the short duration of the Steering Committee’s life, any member who misses two consecutive meetings will be offered other opportunities to participate in the process, instead of through the Steering Committee meetings.

Quorum

The Steering Committee maintains no quorum requirement. Members are expected to provide their contributions during and between meetings. Steering Committee members in attendance will continue to discuss, work, and make decisions on the work plan per the meeting agenda and priorities. Members who have not participated will be expected to not oppose those decisions or revisit those discussions.

Decision-making

Steering Committee recommendations shall be made using consent-building processes. Consensus means that all members of the group agree to support a group recommendation, having sought to understand all perspectives and generating a recommendation that they think is best for the whole. Members might not completely agree with the action, but they do agree
to support it, both within and outside the group. Consensus is not a majority vote.

Members who do no feel comfortable supporting the consensus opinion are individually responsible to disclose their concerns during the discussion, and those concerns will be reflected in the committee’s submitted product.

Recommendations

Advice and recommendations are provided to the project team for its consideration and use in the project plan and within the schedule that the project plan provides. In the event that specific recommendations are not used in the project work, the project team will report to the Steering Committee and reflect in the final response to comment document why that recommendation was not used.

Communication

The project team, in coordination with the Steering Committee Facilitator, will issue agendas and other meeting documents as early as possible prior to a meeting and no less than one week prior. Agendas will clearly identify the meeting outcome and issues to be addressed, in order to help direct Steering Committee member meeting preparation.

The Facilitator will produce a meeting summary within one week of each Steering Committee meeting. This summary will be sent to the ITD Freight Program Manager and project management team for review and distribution to the Steering Committee.

Logistics

The contact for communication about Communications about meeting logistics, process and other details are to be directed at the ITD Freight Program Manager, Maureen Gresham, 208-334-8272 maureen.gresham@itd.idaho.gov.
Responses to Summit Questions, by Individuals Following Table Top Discussions at the Idaho Freight Summit of December 13, 2011

The inputs below were transcribed verbatim from the responses individuals wrote on questionnaires subsequent to their table top discussions at the Idaho Freight Summit on December 13, 2011. In some cases handwriting was not legible or difficult to read, so sometimes a complete transcription does not exist. Comments highlighted in light blue are those submitted by table top facilitators documenting what each heard during the table top discussion. The original transcript of responses was distributed with the Idaho Freight Summit meeting summary of December 13, 2011.

This document groups those inputs into like categories in order to help understand the collective response to each of the three discussion questions. In some cases, a single input providing more than one response was divided into its parts and included in separate sections. In the ‘other’ category are those inputs where, because of the sheer number of features mentioned, the comment was not broken into separate elements.

In no case are these groupings of comments mutually exclusive – each grouping may and likely does have an impact on another. The grouping is intended to provide a sense of those features stakeholders seek in Idaho’s freight system within the context of each question posed.

This material will be used in combination with additional input and information to help form a vision, goals and objectives for the freight study and rail plan update.

I. WHAT DOES THE IDEAL FREIGHT SYSTEM LOOK LIKE TO YOU AND HOW DOES IT PERFORM?

Proposed features of Idaho’s ideal freight system:

- Inter-modal connectivity and collaboration
- Appropriate system capacity
- Increases Idaho’s competitive edge
- Consistent and accessible
- Funded, affordable, efficient
- Technology
- Safe
- Data/science driven

Inputs by feature

Inter-modal connectivity and collaboration

1. Hook up with freight passing through state - enhance existing freight network
2. Integrated and balanced between modes
3. Open dialogue
4. Multi-modal system that integrates the shipping capacities of multiple businesses for maximum shipments
5. Integrated system with rail and truck. Carrier availability throughout the year vs. seasonal
6. Truck/rail works together
7. Connectivity among modes
8. All rail and truck industries served on time every day
9. Connectivity between modes
10. Inter-modal connectivity between modes – consider planning grants?
11. Some kind of cooperative between the trucking and rail industry
12. Multi-modal and integrated between modes. Recognition that while all modes are important trucking is still dominant and needs attention in increasing weights overall and 129K. And working to base regulation on sound science so we are not limiting efficiency arbitrarily or politically
13. Using different modes
14. Multi level opportunities. Rail, Inter-modal
15. Airport has a role
16. Inter-modal - transfer stations
17. Inter-modal - hub in Boise - all along with a transload facility. Central location trucks, LTL, container and box car along with inter-modal
18. Integrated transportation system - recognize contribution of each mode. Develop more inter-modal transfer facilities
19. Rail, truck as integrated as possible with ports and that transportation efficiencies for all freight trucks be allowed to be gained for all trucks in Idaho, not just the pilot projects
20. A seamlessly integrated system of rail, truck (and Port), and air utilization that eliminates delays and barriers to commerce movement
21. Integrated freight between rail, trucking and ocean
22. An inter-modal set up with hubs in Pocatello, Twin Falls and Boise so loads wouldn’t have to be shipped to Salt Lake City to access rail lines
23. Where companies needing rail have a location "in" Idaho to ship or receive their commodities?
24. Use the Port of Lewiston more
25. Utilize Lewiston Port - maximize opportunities
26. Connect the modes – flexible. If it fits it ships - combine ship similar loads - GIS system usage - tie to type of load
27. Have different options on how to ship - be intermodal
28. A system whereby various modes must work together to perform more effectively and efficiently in the movement of goods, both inbound and outbound
29. Cohesive, uniform, all systems work together at least at a multi-state regional level if not nationwide
30. A system of hub based transload surrounded by manufacturing/industry serviced by trains coming in and trucks distributing out locally. Same for airports and barges...large loads in and truck distribute out
31. Mechanisms create collaboration for integration of modes (water, rail, truck and air). We manage Idaho like Long Beach manages a Port. More coordination of outbound freight opportunity
32. Inter-modal capacity - improved local capacity
33. Inter-modal - unified effort between all entities to move freight
34. Include trucks to take on more freight from inter-modal system
35. Freight network is developed for Idaho with several inter-modal facilities in place
36. Create freight roadway network and inter-modal connection points
37. Flexible movement of all goods
38. Sustainable roads with flexible connections
39. Seamless rail service - Class I and short line working together. Rail promotes most efficient moves - units/shuttles
40. Team tracks per community - localized delivery get freight off the roads - get to the destinations
41. Rail served sites with siding with sidings
42. Fewer local Highway Districts
43. Continuity of routes between local and state roads
44. Eliminate or at least reduce road/rail intersections
45. Eliminate truck queuing at grade crossings; both from traffic lights/stop signs on to tracks and at tracks back in to roadway intersections
46. Rail companies are accountable and reliable
47. Coordinated
48. Coordinated System
49. More collaboration needed

Appropriate system capacity

50. Create a better balance in shipping - outgoing vs. incoming
51. Having the balance between influx/outgo
52. Our team discussed struggles to have trucks at right time to ship products
53. Rail yard ramp accessible with adequate yard availability
54. Continued focus and effort on developing an infrastructure that provides more outbound freight
55. Improve infrastructure
56. Study needs to quantify demand on freight network
57. Determine from study investments in new rail facilities and investments in multi-modal facility integration
58. Quantify demand; integrate difficult routes; be realistic
59. Type or kind of system or trucks
60. A system that allows usage of trucks both ways - no "dead head hauls"
61. Pre-loaded trailers to increase time efficiency
62. Quantify demand on freight system - unknown
63. Having a sufficient amount of equipment while you want it; when you want it
64. Predictability
65. More capacity
66. Container available
67. Train space availability
68. More rail capacity
69. Rail facilities at new locations
70. Ability to accept/accommodate both large and small shipments.
71. Battling shortage of drivers that are qualified. Barrier to growing company.
72. 21 to drive - high schooler going to wait?

Increases Idaho’s competitive edge

73. Put Idaho industry on a level playing field and be a nationally consistent system
74. Positive impact to transportation system, opportunity for growth for freight and user
75. Flexible/able to adapt to market trends/needs. Cost effective
76. A system that at least puts Idaho on par with other states
77. Rail systems that move people and goods where practical. Good networking among 'freight systems' so we can learn what each other is doing and how we can benefit/help each other
78. A system that is sufficiently developed to boast about to clients
79. Tax breaks to encourage economic development
80. Economic development - getting products to market for agriculture products efficiency and synergy in Boise - incredible opportunities
81. Idaho's freight system is driven not internally but externally by freight systems passing through Idaho. Should look at opportunities to improve the existing 'pass-through' freight systems, which in turn could 'open' opportunities within Idaho
82. Idaho's freight is externally generated and driven - work with existing system to add on - more regional coordination
83. Use REDIFIT - needs economic benefits to all players. Collection points throughout state on investment. Not everywhere
84. The rail network has competition therefore providing more cost competitive alternatives to shippers. They pick up more cargo instead of dropping and moving on
85. Integrated and coordinated working with all modes of transportation
86. Access to rail, intermodal and ocean containers, located centrally in Idaho (Boise)
87. Funding
88. Using modes for the benefit of the state of Idaho. Trucks - making it easier to go further; rail - include them to be more available to help the state be more efficient
89. Potential growth is used as catalyst for freight system development
90. Investment in integration/ports
91. Strategic investments to attract the right type of industries.
92. A system that encourages private investment to either export or relocate in Idaho
93. Public/private partnership to find/facilitate

Consistent and accessible

94. Consistent freight weights for all states. Less regulation for trucks
95. Uniform truck weight regulations/restrictions - again promoting most efficient moves/haulers
96. Rules would be consistent within the state
97. Uniform from state to state on GVW limits
98. Engineered to meet the suitable regulations (LOS)
99. Highway regulations regarding height and speed (especially Interstates) would be consistent
100. Consistency among roadway regulators within Idaho; ITD, County, City, Local Highway Districts
101. Consistency of warning devises at at-grade highway/rail grade crossings
102. Consistency in application of the criteria of the “black”, “red”, “blue”, and “green” truck routes
103. Increase uniformity within state (truck weight)
104. Increase uniformity across states
105. Harmonized regulations, agriculture goods, hazmat
106. Uniform weights from state to state - trucking (federal issue?)
107. One central weight (GV) network statewide in coordination with PNW regional states.
108. There needs to be more uniformity and consistency of weights and (bridge law) sizes between different modes as well as our neighboring states
109. Aligned with neighboring state’s roadway rules
110. Size and weight
111. County roads are good condition
112. No true north-south trucking route
113. No true north-south trucking route on existing system
114. More and better north-south roads and rail roads

Funded, affordable, efficient

115. Affordable and uniform
116. System that helps pay for itself and its services - small companies as well as large corporations.
117. It is one that is **funded**. Users pay proportionate costs. The network, all modes, are deteriorated now and users recognize need but are unwilling to pay their share
118. The ideal freight system would be affordable, include all four modes,
119. Cost effective
120. Increase efficiency for end user (like what weight works best for user)
121. Increased reliance on rail - team tracks, rail -served industrial parks, etc. Rail is more efficient (costs and fuel) and saves wear and tear on roads. May require state financial participation in improving rail
122. Meets users needs for efficiency
123. Efficiency
124. Push for higher weights so more revenue can be generated. Haul more weight per carrier.
125. Can compete with prices
126. Efficient, low cost

Technology

127. GIS solution
128. Automation is leveraged
129. Information Technology on dispatch system - smart phone application available - but need to organize and apply
130. Universal dispatch system
131. Central dispatch system
132. Integrated system of dispatch
133. Challenge of chipping and dispatch service
134. Shared information
135. GIS system usage - tie to type of load

Safety

136. Safe
137. Transportation should be safe and efficient (affordable) and regulated by science
138. Study will make ??? more transparent - make investment less risky
139. Safety for operators
140. Safe with right infrastructure, accessibility to multimodal systems
Data/science driven

141. Good data clearinghouse with current data
142. Have good data system
143. Shared information
144. Regulated by science

Other

145. The ideal freight system needs to be focused on coming in as many of the different transportation modes as possible, i.e., rail, barge, truck. The system must be driven by safety, price, ???, efficiency of redundancy to oversee freight loses so that we can attract and retain businesses in Idaho. Multi-modal distribution centers will be key.
146. Multi-modal, coordinated, integrated, science driven, collaborative
147. Linked, connected, integrated, regulation streamlined and uniform, accessible, collaborative, coordinated, safe, efficient, leveraging IT to facilitate communication, dispatch and efficiency

Effective, efficient, economical and forward-looking. Integrated and not over regulated

II. NAME ONE SPECIFIC OPPORTUNITY YOU WOULD LIKE TO/YOU WOULD LIKE TO SEE IDAHO PURSUE REGARDING THE FREIGHT TRANSPORTATION SYSTEM (IN YOUR AREA OR STATEWIDE) AND/OR HOW YOU COULD HELP PURSUE SUCH OPPORTUNITIES.

Proposed opportunities to pursue:

- Inter/multi-modal
- Leverage Port of Lewiston
- Research and data
- Cooperation, Collaboration and Partnerships
- Regulatory Change
- Increase Capacity
- Funding

Inputs by opportunity:

Inter/multi-modal

148. I believe that Idaho needs an intermodal facility located somewhere within the state. However, there will need to be something offered to bring the trucking and rail industries together. Currently railroads view trucking as a competitor and vice versa
149. Inter-modal rail system - collaboration between entities
150. Inter-modal yard for piggyback trucks in Twin Falls or POI ???
151. Inter-modal rail sidings
152. Consolidation areas where truck loads could be put together for rail shipments. Specifically inter-modal (trucks on flats)
153. Inter-modal hub in Boise
154. Integrate with inter-modal
155. Market study to identify potential inter-modal location - regionally
156. Inter-modal center located in Idaho. Preferably the Pocatello area
157. Develop state rail and inter-modal plan to do good planning decisions to invest federal and state dollars in all modes of transportation
158. Inter-modal centers
159. A multi-modal facility taking advantage of air, rail, road (interstate) options
160. Multi-modal facility within the state
161. Pursue multi-modal facility
162. Multi-modal transload distribution center, Boise, Idaho
163. Multi-modal facility in Boise
164. Multi-modal distribution facilities/center
165. Look at effects of investment sin rail and multi-modal facilities
166. Pursue multi-modal facility
167. Multi-modal air, water, highway, connect the modes.
168. Multi-modal system, connectivity, access intra-state transport to a multi-modal center
169. Mega multi-modal system in place in one key location
170. Multi-modal – inter-modal feasibility study - need to understand the need for rail access at the customer level
171. Opportunities to create regional transport hub - trade offs
172. Transload locations for TOFC/COFC in Idaho – currently Salt Lake City and Hermiston, OR are closest to Boise
Facilities in adjoining states - Silver Bow, MT, Spokane, WA, Salt Lake City, UT
173. Revise the REDIFIT program to allow for investment in trucking equipment
174. REDIFIT Act – inter-modal commerce authorities
175. Rail served industrial parks where bring big scale economic development
176. Help growth - flow of products - opportunities to match needs of system by creating a north-south rail route out of middle of Idaho
177. Again, rail-served industrial parks to attract large industry - good jobs, use of resources, tax base
178. Ada County transload opportunity

Leverage Port of Lewiston

179. Increased barge/rail/truck volume at Port of Lewiston
180. To make Port of Lewiston a hub by improving north/south highway system and opening rails
181. Use the Port of Lewiston as a hub
182. One that includes ocean containers brought into the facility/Idaho to facilitate export competitiveness

Research and data

183. Need to see what other states are doing
184. Idaho could look to states that have been successful at developing freight plans to see what is working well and see what we can do to implement similar change here in Idaho
185. Better data, reduced barriers both physical and regulatory
186. Collect data from the shipping industry to benchmark - now and proper (?)
187. Need detailed data base
188. How can we use data to develop plan going forward?
189. Container Yard - provide data and willing to do research (John Coats)
| 190. | Collect data, look at financing data collection periodically (every 5 years or so); allows for more in-depth analysis, help with decision-making, reinvestment strategies |
| 191. | I would like to see Idaho pursue getting updated data to ensure any decisions made are using the most recent data. I think REDIFIT is an opportunity that Idaho should continue to pursue |
| 192. | Understand need is change between imports and exports due to freight network or lack of availability of goods (exports) |
| 193. | I-Plan data system similar to U-plan |
| 194. | I-Plan - aggregating data out of silos to make informed discussions. Who owns all of the electronic truckers data? |
| 195. | Pilot programs to see what works |
| 196. | Study to identify potential trucking and rail users and their issues and needs |

Cooperation, collaboration and partnerships

197.	Clear vision of what a freight transportation system should look like and who it would benefit and how
198.	More cooperation between ITD and private industry - lack of common sense needed
199.	Needs a champion to bring all stakeholders together and not just talk...must take action
200.	Better direct communication and operating facilitation by state agencies to the various modalities helping them coordinate. Also better communication between state agencies with local chambers so everyone knows local transportation options
201.	Seminars to bring in player peer
202.	Need barriers discussion/event
203.	This summit is a great first step. Discuss the economic impact of integrated freight systems, need to have solid data re what shipped in/out and how to grow demand for Idaho products
204.	Good beginning to start cohesion on an integrated system discussion
205.	Working better together. Figuring out which mode benefits us the most
206.	Common sense approach to haulers - we are not the enemy - we feel guilty until proven innocent
207.	Public/private partnerships will be key to strategy.
208.	Coordinated shipments from multiple businesses
209.	Help the shipping community create partnerships and networks to fill backhauls and/or locate carriers to backhaul.

Regulatory change

210.	Uniform truck weight regulations/restrictions on all roadways in state - county, state, fed
211.	Certainty for oversize shipment permitting
212.	Change regulations to allow heavier trucks
213.	Increase truck weights
214.	Uniformity of weights as a policy issue
215.	Support and encourage lifting of freeze and support 97,000 limit on 6 axles
216.	Work toward high truck weights
217.	Increase truck size and weights
218.	Look at increase weight on roads and how trucks can cover costs
219.	Truck weight limits
220.	North-South route
221.	Exit 113 Interstate 15. Future as a hub
Centralized weight and size across the state is the first step to improving the transportation system. We can support this with data, pilot project, real-time industry feedback.

Unify highway Districts, IDA, FHWA to remove federal freeze on interstate

Work to eliminate the federal freeze on truck weights on the interstate system

Look at efforts of pilot study of increased truck size and weights

129,999 GVW for truck statewide - uniform the trucking industry behind the interstate load. Better communication between haulers and their customers

No oversight of local highway districts - example - intra-state - may be dealing with no one with technical oversight - roads regulated by 6 local highway districts

Hours truck drivers can work

Revise regulations on shipping/trucking

Freight networks

Look at opportunities to improve the existing 'pass-through' freight systems, which in turn could 'open' opportunities within Idaho

Increase capacity

Increase the rail system - preserve rail corridors

Expansion of and broader use of reliable cost efficient rail transportation. Current rail operations are too few, too expensive and too unreliable

Look at savings in pavement costs by converting truck freight to rail freight and send savings to rail improvements

Make sure of the Snake River Water Way afforded access to the Ports on the West Coast. Today it’s cost prohibitive

Integrate freight as part of consolidated feasibility and environmental studies

Not enough trucks in Idaho

Focus create ways on driver recruitment and retention

Regulation needs to change to gain more efficiency

Moving potatoes and potato products to markets in a timely fashion

Funding

Can public funds pay for private capital needs - redifit is too limiting

Determine if spending ITD funds to improve rail infrastructure will lighten loads on roads and save money on pavement rehabilitation

Idaho needs to fund the system. Bridges deficient, airports not able to accommodate heavier loads

Lobby Efforts for increased Transportation Funding

Cost of transportation

III. What does it take for us to work together within Idaho's existing policy framework? Does anything need to change and if so, what and why?

Proposed activities to work together:

- Information and data
- Leadership
Inputs by activity:

Information and data

246. Peer State Review would be helpful
247. Policy is probably not the problem. Look at other states to see if there are models that work. Share these success stories here to get people to want to collaborate based on economic benefits
248. Knowledge and dialogue
249. More education, more opportunities like this to get stakeholders together to talk through the issues
250. We need more knowledge about the state of the current freight hauling system. We need more knowledge about other states efforts to improve their systems. We need ideas on how to break through the truck vs. rail issue
251. Need to look at the NCR-17 Report, Economic Importance of Railroads in Idaho
252. Education business, forecast what shipping in Idaho will look like in 3-5 years so business can plan ahead
253. Review existing successful collaborative programs
254. Need more current and detailed data to aid in planning and to know where we are truly starting - disagreement at our table that inbound/outbound is unbalanced - trucks are difficult to find
255. Get the data and the data will drive decision-making
256. Needed information beforehand in order to discuss the policy framework (presentation was not enough)
257. Does study presuppose that inter-modal is essential to an effective freight system?
258. Review sound science on hauling science to help see regulation
259. Comprehensive review of region on an multimedia platform

Leadership

260. Need to focus on current/future business needs. Not what we can do, not what we want to do...but what the Idaho businesses need to continue to grow and compete in a global market
261. State leadership on focusing government investments
262. Legislative support
263. Have a unified Vision for all of Idaho for transportation and economic development
264. Need a champion for working together
265. Communication (forums between the Idaho Transportation group would be a big help. Currently I am unaware of any group that would or does provide this type of platform or forums

Regulatory framework and policy
Government/Commerce/ITD on same page - partnerships create the policy framework - get support of legislature

Make a better case for change with our legislation

Policy governing trucks need to incentivize cooperation and coordination with rail, barges, planes. Most Idaho policy fosters separation and independence vs. cooperation and collaboration

Limited but effective policy initiatives to assist private enterprise

Railroad dictates policy - they build their own rail - they set the standards and are regulated by the feds

Policies need to reflect that users - create relationships and incorporate plans/policies

Seems like a review of current policy/legislation that do not seem to give the trucking industry room to work more within other forms of transportation

Work toward not constraining ourselves in policies. Helping rail and truck be more efficient

Is the REDIFIT loan program too limiting? Need in some areas for trucking infrastructure improvement

Consistency statewide - truck weights, lengths, regulations, etc.

More alignment among various entities management state's complex road system - ITD, county road districts, city, etc.

Rail and truck transportation stakeholders need to work more closely together and be incentivized to do so. Cannot continue to work in separate silos

Sound science should guide regulation - integrate local highway districts requirements with state

Sound science should guide regulation - integrate local highway districts requirements with state

Develop continuity of regulations across state lines

We need more consistency and uniformity. It's costing too much to move freight from one mode to another because of the different regulations and requirements

Consistency between states and local need to be done

I think one of the biggest challenges for freight is the difference between state and federal regions. It would be beneficial for the freight system to be consistent across states. We also need to work together on how such a project would be funded

Hazardous materials rail car inspection regulations do not allow inspection on non-RR private property, only RR and public property, a loophole that is a safety issue

Regulations are arbitrary

Too many regulations that are not consistent with adjoining states

Certainty for oversize shipment permitting

Change regulations to allow heavier trucks

Weight restrictions or opportunities across region or national

Be careful of increasing truck weights in Idaho because of the effort to existing road services and budgets and to safety of other road users. Vehicles with heavier weight requires increased stopping distances

Uniformity of truck weights as a policy issue

Suggest including some entities from states adjacent to Idaho to eliminate ‘conflicting regulation’ for communications at earliest stages of project to identify each party’s expectations, limitations, etc.

Funding structure
322. Existing tax on ports for services such as aircraft avionics potentially limits the amount of business such companies attract. This could directly impact the level of inbound shipping required and therefore reduce levels of success and overall greener generation. This business could be lost to neighboring states or others without such a tax in place

324. Dry Port legislation and taxing ability is needed (Pocatello, Idaho Falls, Boise, DEA)

325. May need inter-modal authority to have taxing authority

326. City/County authorities okay, but lack of taxing ability hurts us. Idaho is passed by when companies consider relocated because no dry ports (and we don't always even know it)

327. New railroad subsidies to help fund infrastructure projects

328. Lobby Efforts for increased Transportation Funding

329. Include funding in equation. Look forward to future needs and plan to accommodate them

Collaboration

330. To recognize that we cannot operate independently, that the legislature supports 'all' modes equally regulations increase size and volume/cost

331. Would like to see expansion of government programs to include other avenues than tying everything to rail

332. Having the opportunity to be a part of the system/policy framework go to regional summits to involve more

333. Message needs to be delivered by the business community

334. All players at the table. No forcing one mode over another. Shippers’ choice. Make various modes

335. interstate (external) freight systems

336. Open, honest available in one location when possible

337. We must pursue improvement in statewide coordination. Set aside turf for a while

338. Continue with regular freight limits firm or statewide working group

339. Also multi-state issue at port level - need coordination at Lewiston/Portland/Seattle to work efficiently

340. Quit looking at self-interests. Truck and rail work together. Private and public entities work together. Dream?

341. That rails and trucks need to work together. They are not always in competition

342. Sounds like highway/trucking community needs to encourage or provide incentives to cooperate with other modes of transportation

343. Bring trucking to the table by encouraging the industry to collaborate with other modes of freight transportation

344. Coordination of effort

345. Work with external partners to develop continuity and make investments

346. Incorporate representatives from other states into study on TAC or workgroup

347. Move forward with ideas from this summit to try to act unified/focused inter-modal cooperation to improve/develop better transportation

348. This was a good start. Initiate the dialogue to pursue various opportunities to the benefit of all

349. This summit is a good start

350. No significant changes. Need money. Environmental groups will be a tremendous problem

351. More of these types of meetings on a regular basis

352. Continued focus and open forums such as today. However, it’s important to prioritize the issues a focus on the most critical matters first
System issues

323. Idaho is generally good for freight. We just need to fix the inflow/outflow issues. Make it easy for industry and new companies to do business in our state
324. Keep quality of life as an Idahoan, shipping out would reduce this
325. Get right assets at the right place
326. Not concerned about in/out balance because value added is more important/balance our global economic service.
327. Supply/demand imbalance comments, especially from our public official scared me. Supply and demand in the long term SHOULD BE BALANCED. Also, based on comments from a Tier I railroad (they ask the question 'do we want to service the area", if we don't balance supply and demand we run the risk of further deterioration in our transportation system
328. Mining booming - how do we move this 'product'? No freight network in central Idaho
329. Opportunity - 129,000 to the extent TSA integrated, throughout to be give to how that might impact a multi-modal facility, class 1 or SC partners
330. Develop inter-modal and multi-modal locations to help facilitate progress and freight movement efficiency
331. Local highway districts are 'killing us' i.e., breakup limits or unique regulation without science
Idaho Freight Study and Rail Plan Update

Interview Series 1
Six Interviews To Date
February 28, 2012

DRAFT Interview Summary

Vision Statement
Proposed via Summit Inputs:

- *Inter-modal connectivity and collaboration*
- *Appropriate system capacity*
- *Increases Idaho’s competitive edge*
- *Consistent and accessible*
- *Funded, affordable, efficient*
- *Technology*
- *Safe*
- *Data/science driven*

Comments:

- All reinforced in some way through interview discussion.
- Nothing identified as missing
- Distinctions made on some points:
 1. Intermodal – concern that it may not be as viable as many hope that it is; need to study to ensure it can be supported. Others vigorously support the idea
 2. Concern that the features don’t emphasize the important role of trucking.
 3. May be more practical to look at a regional network, rather than the state, with the loop through southern Idaho, north to Spokane, and back down through Ontario, with the inner part of that circle needing the remote access and Boise providing an intermodal hub.
 4. Need to ensure sufficient short line capacity
 5. Leverage technology to maximize the system

Proposed Vision Statements:

- Most said existing bullets worked with their individual caveats
- Three ‘near’ statements proposed include:

 1. We have to lure more business and manufacturing to southern Idaho and get products in and out of the state as efficiently and effectively as possible.

 2. Need to have something that is efficient, properly funded, keep up with the times, flexible to support inbound and outbound, including a north-south corridor.
3. Consistent and accessible, intermodal connectivity and collaboration, Regional View.

Distinction for Vision re Freight, Rail, Passenger:

Generally all felt that one vision statement should apply equally across the freight system and be the target for all modes. Interviewees questioned whether that would be appropriate regarding passenger rail, thinking that that system has different facilities, demands, requirements and purposes than the freight system. One said if the same facilities are used, the vision should be the same, but most thought it required some separate thinking.

Opportunities/Goals

Proposed Opportunities/Goals Via Summit Inputs

- Inter/multi-modal
- Leverage Port of Lewiston
- Research and data
- Cooperation, Collaboration and Partnerships
- Regulatory Change
- Increase Capacity
- Funding

Three prominent opportunities to pursue:

1. Transportation hub in Boise with regionally focused system/need technology to do so
2. Intermodal facility in magic or treasure valley area
3. Leveraging the use of technology to be widely connected in the region (Boise has a lot of resources - Micron/HP - understand most advanced levels of communication - good partnership opportunities) - Boise on that intermountain loop could take on some of the stuff coming out of salt lake - well connected with salt lake and serve intermountain area more efficiently.

4. Improve the permitting process. ITD sometimes doesn’t understand us or we get confused in understanding what we need to permit a load to get somewhere – a lot of times we get one and pay for it and after we send it in they say it is the wrong one. Don’t know if its them or us but our guys feel like it’s overregulated. Especially since we have to haul equipment around.

5. Communication between rail and truck/coordination and cooperation

6. Reduce regulations for truckers on the road – what else are they going to do? Not productive on down time. National issue but is a concern.
7. **Regulatory change** – make sure we’ve got the right policies and procedures in place for a safe and efficient system. Inconsistent weight limits hinder us – we need to level the playing field in order to stimulate the free flow of goods.

8. **Regulatory changes** (ID 105 GVW vs. surrounding states at 129 GVW - huge detriment to effective freight system)

9. Go up to 129K where it is safe and ITD determines roads can handle it

10. **Research Coordinate** between highway districts (not necessarily elimination but guidelines) – have been times where we’ve been stopped by highway districts – don’t go over their statutory limits but statutory limits should be changed

 There was recognition among one interviewee that OR, WA and CA have lower limits (like Idaho) and other surrounding states are higher. The degree to which the weights were an issue were partially contingent on where folks were sending their trucks.

11. Look at a north-south route and figure out how to move efficiently from the inner areas of the state out (mines, for example, don’t know if there is the right infrastructure for that). Make sure the industries we have in the state have the right transportation resources they need

12. **Funding**

13. Funding is critical in our state. With fuel tax and registration being main source of income for highways - inflation has hit but tax and registration (especially cars) has not increased. Cost of maintaining and building roads has gone up but rate per gallon of tax on fuel hasn’t gone up at all. Need to look at this and other ideas to maintain and expand.

14. Spend money on our roads – make sure they are as safe as anyone else’s – we’ve used up more than we’ve put in.

15. Make sure rail capacity doesn’t get exceeded, again. Don’t know how we do that, but the market need is there the money will come (from the railways not the state)

What’s missing?

Only one set of responses:

- Better roads
- Better railways
- Better access without artificial regulations
- Make sure we do so safely both for citizens and roads – don’t want to destroy our infrastructure as that is false economics – if we raise weight limits and destroy roads it won’t help
- If we raise limits and axles on trucks it saves roads (science says) – seek a general agreement that is the science and it is true (or the contrary) – respond to that
Idaho Freight Study and Rail Plan

Data Plan Overview

Kevin M. Jeffers, PE, PMP
David Evans and Associates, Inc.

March 1, 2012

Objectives of this presentation:
• To present an overview of the data collection plan, which serves as a foundation for this study; and
• To seek your input into potential sources of data to support the project.

Purpose of the Data Plan:
• To provide an overview of the extent of data proposed for use in this study;
• To providing insights on how the data will be used; and,
• To create a tracking tool for Task 3.2 - Data Collection Work.

Organization: Section 2
• Data needs are organized by task;
• Table summarizing data, source, and responsibility for data collection;
• Explains how data will be used in each task;
• Data collected/findings of earlier tasks roll forward into later tasks.

Organization: Section 3
• Summary of Data Requirements: Consolidates all data identified by Task in Section 2.0;
• Table format in Section 3.0 may be used as a tracking tool for data collection efforts.

Organization: Section 4
Additional Supporting Information:
• Inventory of Supporting Documentation;
• Stakeholder Interviews - Perspectives to be represented;
• Previous Stakeholder Interviews - Conducted as part of 2010 study “Idaho on the Move”
Data Plan Overview

Questions for Each Task:

- What information is most critical to inform the recommendations of this study? How should it be used?
- Are there other/better sources for the data needs identified?
- What other data is available to support this study, what is the source of the data, and how might it be utilized?

Data Collection By Task

- **Task 4** - Visioning – Table 1
- **Task 5** - Existing Freight System Overview – Table 2
- **Task 6** - Freight Mobility Issues – Table 3
- **Task 7** - Freight Performance Metrics – Table 4
- **Task 8** - Freight System Investment Scenarios – Table 5
- **Task 9** - Freight Study Recommendations – Table 6
- **Task 10** - Rail System Inventory – Table 7
- **Task 11** - Passenger Rail System Profile & Analysis – Table 8
- **Task 12** - Rail Needs Assessment – Table 9
- **Task 13** - Identify Rail Projects – Table 10
- **Task 14** - Rail System Performance Metrics – Table 11
- **Task 15** - Institutional, Policy, and Rail Financing – Table 12
- **Task 16** - Rail Service and Investment Program – Table 13
- **Task 17** - Idaho Rail Plan Production – Builds on all prior tasks & data

Discussion

Questions? Comments?

Feedback on Data Plan

- Please provide comments by March 15, 2012
- Comments can be e-mailed to Kevin Jeffers at: KMJe @ deainc.com
Data Collection Plan

Prepared for the
Idaho Transportation Department

For
Idaho Statewide Freight Study and State Rail Plan

Project No. 94485SC12
Key No. 13334 & 13337

February 28, 2012
Table of Contents

1. Introduction .. 1

2. Data by Technical Tasks .. 2
 Task 4 - Visioning ... 2
 Task 5 – Existing Freight System Overview .. 3
 Task 6 – Freight Mobility Issues and Opportunities ... 6
 Task 7 – Freight Performance Metrics .. 7
 Task 8 – Freight System Investment Scenario Testing .. 9
 Task 9 – Freight Study Recommendations ... 9
 Task 10 – Rail System Inventory ... 10
 Task 11 – Passenger Rail System Profile and Analysis ... 11
 Task 12 – Rail Needs Assessment ... 12
 Task 13 – Identify Rail Projects .. 13
 Task 14 – Rail System Performance Metrics .. 14
 Task 15 – Institutional and Policy and Rail Financing .. 16
 Task 16 – Rail Service and Investment Program ... 17

3. Data Summary ... 18

4. Other Supporting Documents .. 21
1. Introduction

As part of Task 3.1, this Data Collection Plan has been developed to be a single data resource for the Idaho Transportation Department’s (ITD) Idaho Statewide Freight Study and Rail Plan, providing an overview of data that will be gathered and a brief explanation of how those sources could be used in the study.

This Plan should be viewed as a tool for use throughout the duration of the Statewide Freight Study and Rail Plan development. This is a tool that may be used in several ways, including:

- Providing an overview of the extent of data proposed for use in this efforts (including data name, source of information, year of data, assumed data format);
- Providing insights on how the data will be used; and
- A tracking tool for Task 3.2 - Data Collection Work.

This Plan is organization in two ways for ease in finding the information sought.

- **Section 2.0 - By Task** – As outlined in Task 3.0 of the Scope of Work, Section 2.0 presents data needs organized by task. In this section, data needs are consolidated in snapshot table format with supporting descriptions of how data could be used in the task, and identification of any critical notes regarding data availability impacts to schedule. Additionally, this section identifies whether a DEA Team member or the ITD will be assigned collection responsibility for each item.
- **Section 3.0 – Summary** - Section 3.0 summarizes the data by task in Section 2.0 and summarizes it for ease in data collection. The table format in Section 3.0 may be used as a tracking tool for data collection efforts.
- **Section 4.0 – Additional Supporting Info** – While most technical tasks will rely, at least partially, on data to for technical analysis, additional resources will be viewed as part of “context-setting” for the efforts. Section 4.0 outlines those resources that have been indentified for reference by the DEA Team.

Please note, while extensive data is outlined in the following sections, the ability to secure and fully utilize the identified resources has not yet been determined. The majority of freight systems are operated by the private sector and the ability to receive hard-copy private sector data for public study is always a challenge. Railroads, trucking companies, shippers and others interests lie in protecting their bottom line and not disseminating information that may benefit their competitors. Thus, as supplement to this hard-copy data collection effort, you will note that several tasks rely on anecdotal information collected during stakeholder interviews with private sector owners, operators, and users will supplement public sector data received to ensure a complete picture of the Idaho freight transportation system is presented in this study.

Additionally, the quality and geographic coverage of data will be considered after data collection is complete. When data is in hand, the DEA Team will determine data suitability for use in these studies.
2. Data by Technical Tasks

As outlined in Task 3.0 of the Scope of Work, this Section of the Data Collection Plan presents data needs organized by task for the technical tasks of this study. In this section, data needs are consolidated in snapshot table format with supporting descriptions of how data could be used in the task. Identification of any critical notes regarding data availability that could impact the schedule are also noted. Additionally, this section identifies whether a DEA Team member or the ITD will be assigned collection responsibility for each item. For ease in seeing the “big picture” of data collection by DEA Team member of ITD, refer to Section 3.0 – Data Summary.

Task 4 - Visioning

This task involves developing a vision for the freight and rail system in Idaho. This will record the Overall Freight Mobility Vision, Goals and Objectives. The types of data required to accomplish Task 4 include the sources found in the following table. Note, a list of relevant documents and studies is included in Section 4.0 (Table 15), which will be further supplemented by the literature review completed in support of this task as well as others. Additionally, the list of stakeholders proposed to be interviewed as part of this study, and the list of stakeholders DEA interviewed previously for ITD (as part of the 2010 effort) is also provided in that section (Tables 16 and 17).

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Task 4 Data Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Source</td>
</tr>
<tr>
<td>Literature Review (conducted as part of this study)</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Idaho Freight Summit Summary (conducted as part of this study)</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Stakeholder Interview Summaries (conducted as part of this study)</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Focus Group Summaries (conducted as part of this study)</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Steering Committee Summaries (conducted as part of this study)</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Stakeholder Interview Summaries</td>
<td>DEA Team</td>
</tr>
</tbody>
</table>

Data will be used for this task in several ways:

1. To provide input into establishing a vision statement for the State’s freight system, as well as goals and objectives to support this vision.
2. To articulate the role of freight and passenger rail in Idaho.
3. To establish passenger service objectives.

Expected output (including what future task(s) results feed in to):

1. Output will be a Visioning Summary Memo. The results of interviews will feed into Task 6 – Freight Mobility Issues and Opportunities.
2. The results of interviews will feed into Task 12 – Rail Needs Assessment.
3. The Task 4 Tech Memo will be fed into Task 9 – Freight Study Recommendations.

Schedule (including how data availability may impact the schedule):

1. This task is scheduled for completion by 6/15/12.
2. Information must be secured by 4/30/12 to ensure time to review and incorporate into Task 6.
3. Ability to schedule Interviews and Focus groups in a timely manner may limit the DEA Teams’ ability to establish vision, goals and objectives on time and may stall Tasks 6, 9 and 12.

Task 5 – Existing Freight System Overview

In this task the DEA Team will examine the existing freight system in Idaho. This includes producing an overview of truck, rail, air, and marine modal systems - including employment, commodities, market shares, and projected volumes for each mode. It also involves producing an overview of intermodal facilities including employment, commodities, market shares, and projected volumes. The types of data required to accomplish Task 5 include the sources found in the following table.

Table 2
Task 5 Data Requirements

<table>
<thead>
<tr>
<th>Item</th>
<th>Source</th>
<th>Year</th>
<th>Probable Format</th>
<th>To Be Secured By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Freight Analysis Framework (FAF3)</td>
<td>FHWA</td>
<td>2010</td>
<td>Access</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Freight Analysis Framework (FAF3)</td>
<td>FHWA</td>
<td>2010</td>
<td>GIS</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Idaho Highway Network</td>
<td>ITD</td>
<td>2012</td>
<td>GIS files</td>
<td>ITD</td>
</tr>
<tr>
<td>ADT and Truck ADT – All Highways</td>
<td>ITD</td>
<td>Most recent</td>
<td>GIS files</td>
<td>ITD</td>
</tr>
<tr>
<td>Designated Truck Network and LCV or heavy haul network</td>
<td>ITD</td>
<td>Most recent</td>
<td>GIS files</td>
<td>ITD</td>
</tr>
<tr>
<td>Idaho Rail Network</td>
<td>ITD</td>
<td>Most recent</td>
<td>GIS files</td>
<td>ITD</td>
</tr>
<tr>
<td>Idaho Intermodal Network (point file including airports, water ports and intermodal facility locations)</td>
<td>ITD</td>
<td>Most recent</td>
<td>GIS files</td>
<td>ITD</td>
</tr>
<tr>
<td>Intermodal Rail Volumes, Commodities (existing and expected future)</td>
<td>AAR, BTS, FHWA</td>
<td>Most recent</td>
<td>Excel or Word</td>
<td>DEA Team</td>
</tr>
</tbody>
</table>
Idaho Statewide Freight Study and State Rail Plan - Key No. 13334 & 13337

Data Collection Plan

February 28, 2012

<table>
<thead>
<tr>
<th>Item</th>
<th>Source</th>
<th>Year</th>
<th>Probable Format</th>
<th>To Be Secured By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine Port Commodities, Volumes (existing and expected future)</td>
<td>BTS, FHWA</td>
<td>Most recent</td>
<td>Excel or Word</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Air Cargo Commodities, Volumes (existing and expected future)</td>
<td>BTS, FHWA</td>
<td>Most recent</td>
<td>Excel or Word</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Census Data-Statewide, County, SMSA</td>
<td>US Census</td>
<td>2010</td>
<td>Access or Excel</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Demographic Data</td>
<td>ITD/Boise State</td>
<td>Most recent</td>
<td>Access or Excel</td>
<td>BSU</td>
</tr>
<tr>
<td>Idaho Employment Data (including specifics for Truck, Rail, Marine and Aviation Industries)</td>
<td>ITD/Boise State</td>
<td>Most recent</td>
<td>Access or Excel</td>
<td>BSU</td>
</tr>
<tr>
<td>Goods Dependent Industry Data</td>
<td>ITD/Boise State</td>
<td>Most recent</td>
<td>Access or Excel</td>
<td>BSU</td>
</tr>
<tr>
<td>Econometric Forecasts</td>
<td>ITD/Boise State</td>
<td>Most recent</td>
<td>Access or Excel</td>
<td>BSU</td>
</tr>
<tr>
<td>Port of Entry Data (commercial vehicle data including number, sizes, weights and citations)</td>
<td>Idaho Port of Entry</td>
<td>Most recent</td>
<td>Access, Excel, or PDF</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Port of Entry Data (commodities transported at each POE, overlegal permit data by route, motor carrier fee revenues)</td>
<td>Motor Carrier</td>
<td>Most recent</td>
<td>Access, Excel, or PDF</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Transporter Data</td>
<td>Bureau of Transportation Statics</td>
<td>Most recent</td>
<td>Access, Excel, or PDF</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Rail Network (includes location, owners, all track rights, density code, signal system type)</td>
<td>FRA</td>
<td>2010 or most recent</td>
<td>GIS</td>
<td>DEA Team</td>
</tr>
</tbody>
</table>

Data will be used for this task in several ways:

1. The Freight Analysis Framework (FAF3) will be used to query commodity flows for truck, rail, maritime and air freight. Data will be presented in graphical form to illustrate directional flows (inbound, outbound, intra- and through trips), top commodities by mode, and key trading partners by mode.
2. All FAF3 data will be presented for today (2010) and the future (2035) in both tons and dollars.
3. Econometric data provided by Boise State will be used to evaluate how much the economy is expected to grow in the future, and specifically, what industries are expected to grow. Understanding future demand serves to inform investment decisions that support the development and maintenance of infrastructure systems adequate to meet those future needs. While a 30 year planning period is generally used for capital analyses (as investment decisions are typically evaluated based upon the accounting useful life), 2035 is proposed as the future year for analysis as it coincides with data available for FAF forecast. Additionally, the FAF will enable us to examine international trade flows, as the data set reflects both U.S. and international import/export activity. This information can be used to infer how mode usage for freight transportation may change in the future. Econometric data from Boise State will also be used to validate the FAF3 future (2035) year calculations (i.e. If BSU says that agriculture is growing by x%, we will verify that the FAF says agriculture is growing at close to same x% and freight flows in the FAF are representative). FAF3 growth values are fairly aggressive and do not always adequately reflect regional or State economic downturns. If possible, the econometric data will be used to control for this potential over-estimate. Additionally, the economic data will be used to present a very general overview of freight-dependant industry growth/contraction, as part of study context.

4. Future year flow data will be used to identify demand-driven future infrastructure needs, and evaluate future investment scenarios to meet those needs.

Expected output (including what future task(s) results feed in to):

1. Output will be a Tech Memo documenting the Freight System.
2. Maps will be prepared to show the State’s rail system, highway system, truck routing, intermodal/port system, air cargo system, as well as “trade flow” maps depicting modal freight activity, and other maps to support the description of the State’s freight system. The detail of these maps will be dependent upon the availability of data.
3. This task feeds into Task 6 – Freight Mobility Issues and Opportunities and Task 7 - Freight Performance Metrics.
4. The Task 5 Tech Memo will be fed into Task 9 – Freight Study Recommendations.

Schedule (including how data availability may impact the schedule):

1. This task is scheduled for completion by 5/7/12.
2. Information must be secured by 3/15/12 to ensure time to review and incorporate into the task.
3. The ability to secure appropriate information from private sector stakeholders may limit the scope/content of this task.
4. In the event ITD does not have the specified GIS files available, the DEA Team can access the National Transportation Atlas Database (NTAD) to download the most recent publicly available data sets for Idaho. These files will be used, as downloaded, as part of the study. Using a
national database, without the benefit of local data to validate the data, the accuracy of the analysis may be somewhat diminished.

Task 6 – Freight Mobility Issues and Opportunities

Using input from stakeholders and the public, the DEA Team will examine freight service system issues and opportunities. Focus in this task will be placed on both defining a freight network/strategic corridors and identifying opportunities for multi-modal freight system integration. The types of data required to accomplish Task 6 include the sources found in the following table.

Table 3 Task 6 Data Requirements

<table>
<thead>
<tr>
<th>Item</th>
<th>Source</th>
<th>Year</th>
<th>Probable Format</th>
<th>To Be Secured By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results from Task 5 - Existing Freight System Overview</td>
<td>DEA Team</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stakeholder Interview Summaries (conducted as part of this study)</td>
<td>DEA</td>
<td>2012</td>
<td>MS Word</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Focus Group Summaries (conducted as part of this study)</td>
<td>DEA</td>
<td>2012</td>
<td>MS Word</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Stakeholder Interview Summaries</td>
<td>DEA for ITD</td>
<td>2010</td>
<td>MS Word</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Motor Carrier Permits and Port of Entry Policies (Idaho Transportation Board, IDAPA, adjacent state policies, including REDIFIT program rules, motor carrier statutes and administrative rules)</td>
<td>ITD, WADOT, MDT, UDOT, ODOT</td>
<td>Current</td>
<td>PDF/Website/MS Word</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Motor Carrier and Freight Legislation, current & proposed (including REDIFIT program rules, Motor Carrier Statutes and Administrative Rules)</td>
<td>ID, WA, MT, UT, OR</td>
<td>Current</td>
<td>PDF/Website/MS Word</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Western States Transportation Alliance Policies and Interstate Agreements</td>
<td>WSTA</td>
<td>Current</td>
<td>Website</td>
<td>DEA Team</td>
</tr>
</tbody>
</table>

See Section 4.0 – Inventory of Supporting Documents for additional resources.
Data will be used for this task in several ways:

1. Trend information produced in Task 5 will be used to assess and anticipate future freight system needs.
2. Anecdotal information from stakeholder interviews and focus groups will be used to identify system issues, needs and opportunities.
3. Other relevant studies found in Section 4.0 of this Plan will also be consulted to ensure that previously identified system needs and opportunities are brought forward in this study’s discussion.

Expected output (including what future task(s) results feed in to):

1. Freight Mobility Issues and Opportunities Memo.
2. Identified issues will move forward into Task 7 for consideration. An assessment will be made at that time whether performance measures could be developed to track/monitor the issues’ improvements over time.
3. The Task 6 Tech Memo will be fed into Task 9 – Freight Study Recommendations.

Schedule (including how data availability may impact the schedule):

1. This task is scheduled for completion by 6/21/12.
2. Information must be secured by 4/30/12 to ensure time to review and incorporate into task.

Task 7 – Freight Performance Metrics

The DEA Team will develop a series of indicators to begin to measure the performance of the Idaho Freight Transportation System. Areas that the indicators will cover include Freight Demand, Freight Safety, System Efficiency and System Condition. This task builds on the inputs and outputs of Tasks 5 and 6, which enable us to develop performance measures related to capacity and demand, as well as maximizing existing resources. Additionally, the types of data required to address system performance metrics related to system condition and safety, as part of Task 7 include the sources found in the following table. Note, this task will be conducted concurrently with Task 14 – Rail System Performance Metrics. All freight and passenger rail-related information is presented in that section of this Plan.

Table 4 Task 7 Data Requirements

<table>
<thead>
<tr>
<th>Item</th>
<th>Source</th>
<th>Year</th>
<th>Probable Format</th>
<th>To Be Secured By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results from Task 5 - Existing Freight System Overview</td>
<td>DEA Team</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Results from Task 6 - Freight Mobility Issues and Opportunities</td>
<td>DEA Team</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Truck Crash Statistics</td>
<td>FMSCA</td>
<td>2010 or most</td>
<td>PDF Tables</td>
<td>DEA Team</td>
</tr>
</tbody>
</table>
Idaho Statewide Freight Study and State Rail Plan - Key No. 13334 & 13337

<table>
<thead>
<tr>
<th>Item</th>
<th>Source</th>
<th>Year</th>
<th>Probable Format</th>
<th>To Be Secured By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idaho Crash Data</td>
<td>ITD or Idaho State Police</td>
<td>recent</td>
<td></td>
<td>ITD</td>
</tr>
<tr>
<td>Speed and Congestion Data - All Highways</td>
<td>ITD</td>
<td>2011 or most recent</td>
<td>GIS</td>
<td>ITD</td>
</tr>
<tr>
<td>Pavement Condition on Major Corridors</td>
<td>ITD</td>
<td>2011 or most recent</td>
<td>GIS files</td>
<td>ITD</td>
</tr>
<tr>
<td>Bridge Location and Condition</td>
<td>ITD</td>
<td>2011 or most recent</td>
<td>GIS files</td>
<td>ITD</td>
</tr>
</tbody>
</table>

Data will be used for this task in several ways:

1. Modal information will be examined to produce performance measures across the freight system. However, the DEA Teams ability to develop quantitative measures in each of these categories depends on data availability and quality. Additionally, the intent is to use publicly available data for these measures so that ITD will be able to reproduce and track the systems’ performance annually (or at some regular frequency).

2. Data collected in GIS will be used to screen the system and develop performance thresholds. This will be done through spatial queries.

3. Areas identified as needs, or requiring improvement, in Task 6 will be evaluated to determine whether they are candidates for targeted performance measure development.

4. This performance evaluation will utilize well-developed measures for the highway systems demand, condition and operations. Airport and port-related measures will be focused on demand.

Expected output (including what future task(s) results feed in to):

1. Multi-modal performance measures.
2. Freight Performance Measures Summary Memo.
3. The Task 7 Tech Memo will be fed into Task 9 – Freight Study Recommendations.

Schedule (including how data availability may impact the schedule):

1. This task is scheduled for completion by 6/21/12.
2. Information must be secured by 4/30/12 to ensure time to review and incorporate into task.
3. This information will be presented to the Steering Committee for vetting during Meeting #2.
Task 8 – Freight System Investment Scenario Testing
In this task the DEA Team will test up to three (3) 20 year freight investment scenarios. The types of data required to accomplish Task 8 include the sources found in the following table.

<table>
<thead>
<tr>
<th>Item</th>
<th>Source</th>
<th>Year</th>
<th>Probable Format</th>
<th>To Be Secured By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results from Task 5 – Freight System Overview</td>
<td>DEA Team</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Results from Task 7 – Performance Measures</td>
<td>DEA Team</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stakeholder Interview Summaries (conducted as part of this study)</td>
<td>DEA Team</td>
<td>2012</td>
<td>MS Word</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Focus Group Summaries (conducted as part of this study)</td>
<td>DEA Team</td>
<td>2012</td>
<td>MS Word</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Stakeholder Interview Summaries</td>
<td>DEA Team</td>
<td>2010</td>
<td>MS Word</td>
<td>DEA Team</td>
</tr>
</tbody>
</table>

Data will be used for this task in several ways:

1. To identify required infrastructure based upon low, medium, and high growth scenarios for existing freight volumes (truck, rail, air and marine).
2. To evaluate investment scenarios to ensure the adequacy of infrastructure to handle future freight needs.
3. To identify opportunities and business activities that may enhance the efficiency/performance of freight system.

Expected output (including what future task(s) results feed in to):

1. Tech Memo documenting the scenarios, the findings of the scenario testing, the “preferred” scenario.
2. The Task 8 Tech Memo will be fed into Task 9 – Freight Study Recommendations.

Schedule (including how data availability may impact the schedule):

1. This task is scheduled for completion by 8/21/12.
2. Information must be secured by 6/21/12 to begin developing scenarios.

Task 9 – Freight Study Recommendations
In this task the DEA Team will develop final recommendations for the Idaho freight system. Special attention will be paid to making actionable recommendations related to Freight Policies, Funding,
Resources, and Management Tools. The types of data required to accomplish Task 9 include the sources found in the following table.

<table>
<thead>
<tr>
<th>Table 6</th>
<th>Task 9 Data Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Source</td>
</tr>
<tr>
<td>Results from Tasks 4 - 8</td>
<td>DEA Team</td>
</tr>
<tr>
<td>See Section 4.0 – Inventory of Supporting Documents for additional resources</td>
<td></td>
</tr>
</tbody>
</table>

Data will be used for this task in several ways:

1. Identify key freight bottlenecks, safety or environmental concerns, and capacity concerns that require immediate solutions.
2. Identify those deficiencies, chokepoints or issues that will worsen in the future and require long-term solutions.

Expected output (including what future task(s) results feed in to):

1. Recommendations for policy-level initiatives and future management tools that may enhance freight mobility in Idaho.
2. Develop recommended short- and long-term strategies, including identifying responsible parties and potential costs.

Schedule (including how data availability may impact the schedule):

1. This task is scheduled for completion by 4/2/13.
2. Information must be secured by 8/21/12. The ability to test and vet the scenarios may impact data availability to begin this task on time, but likely will not impact the final deliverable date.

Task 10 – Rail System Inventory

In this task the DEA Team will examine the existing rail system in Idaho. The types of data required to accomplish Task 10 include the sources found in the following table.

<table>
<thead>
<tr>
<th>Table 7</th>
<th>Task 10 Data Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Source</td>
</tr>
<tr>
<td>Build upon Task 5 Data Collected – Rail-centric Data</td>
<td>DEA Team</td>
</tr>
</tbody>
</table>
Data will be used for this task in several ways:

1. The STB Rail Waybill Data for Idaho will be used to present current (2010) freight rail statistics by carrier.
2. The Freight Analysis Framework (FAF3) data queried in Task 5 will be used to determine future (2035) freight rail volumes in Idaho. Data will be presented in graphical form to illustrate directional flows (inbound, outbound, intra- and through trips), top commodities, and key trading partners.
3. AAR statistics will be used to present rail employment data within Idaho and revenue by rail operator.
4. Statistics gleaned from the FRA information will be presented and moved forward for consideration in Task 14 rail performance measure development.

Expected output (including what future task(s) results feed in to):

1. Outline of Idaho’s rail planning institutional structure.
2. Freight Rail System Inventory Technical Memorandum.
3. The Task 10 Tech Memo will be fed into Task 17 – Idaho State Rail Plan.

Schedule (including how data availability may impact the schedule):

1. This task is scheduled for completion by 5/7/12.
2. Information must be secured by 3/15/12 to ensure time to review and incorporate into the task.

Task 11 – Passenger Rail System Profile and Analysis

In this task the DEA Team will describe and analyze existing and currently planned rail passenger service on Amtrak’s Empire Builder route. Proposals for new or expanded intercity rail operations in the future
will be described. This will incorporate information received from stakeholders and ITD. The types of data required to accomplish Task 11 include the sources found in the following table.

Table 8 Task 11 Data Requirements

<table>
<thead>
<tr>
<th>Item</th>
<th>Source</th>
<th>Year</th>
<th>Probable Format</th>
<th>To Be Secured By</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-offs at Sandpoint</td>
<td>Amtrak</td>
<td>Most recent</td>
<td>Excel</td>
<td>DEA Team</td>
</tr>
<tr>
<td>On-time performance data (Sandpoint and Spokane-bound)</td>
<td>Amtrak</td>
<td>Most recent</td>
<td>Excel</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Timetables, frequencies and times of day trains 7 & 8</td>
<td>Amtrak</td>
<td>Most recent</td>
<td>Excel</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Total riders per train-mile</td>
<td>Amtrak</td>
<td>Most recent</td>
<td>Amtrak</td>
<td>DEA Team</td>
</tr>
<tr>
<td>FRA Cost Recovery Ratio</td>
<td>Amtrak</td>
<td>Most recent</td>
<td>Amtrak</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Census Data</td>
<td>US Census</td>
<td>2010</td>
<td>Excel</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Demographic Data</td>
<td>ITD/Boise State</td>
<td>Most recent Access or Excel</td>
<td>BSU</td>
<td></td>
</tr>
</tbody>
</table>

Data will be used for this task in several ways:

1. Information produced in Task 11 will be used to assess current passenger rail service and anticipate future passenger system needs.
2. Anecdotal information from stakeholder interviews and focus groups will be used to identify system issues, needs and opportunities.
3. Other relevant studies/information found in Section 4.0 of this memo will also be referenced to ensure that previously identified system needs and opportunities are brought forward in this study’s discussion.

Expected output (including what future task(s) results feed in to):

1. Passenger Rail System Inventory Technical Memorandum.
2. The Task 11 Tech Memo will be fed into Task 17 – Idaho State Rail Plan.

Schedule (including how data availability may impact the schedule):

1. This task is scheduled for completion by 5/7/12.
2. Information must be secured by 3/15/12.

Task 12 – Rail Needs Assessment

In this task the DEA Team will evaluate the rail system needs in Idaho. The types of data required to accomplish Task 12 include the sources found in the following table.
Table 9 Task 12 Data Requirements

<table>
<thead>
<tr>
<th>Item</th>
<th>Source</th>
<th>Year</th>
<th>Probable Format</th>
<th>To Be Secured By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results from Task 10 – Rail System Inventory</td>
<td>DEA Team</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stakeholder Interview Summaries – Rail-centric (conducted as part of this study)</td>
<td>DEA Team</td>
<td>2012</td>
<td>MS Word</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Focus Group Summaries – Rail-centric (conducted as part of this study)</td>
<td>DEA Team</td>
<td>2012</td>
<td>MS Word</td>
<td>DEA Team</td>
</tr>
<tr>
<td>See Section 4.0 – Inventory of Supporting Documents for additional resources</td>
<td>DEA Team</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Data will be used for this task in several ways:

1. Trend information produced in Tasks 10 and 11 will be used to assess and anticipate future rail system needs.
2. Anecdotal information from stakeholder interviews and focus groups will be used to identify system issues, needs and opportunities.
3. Other relevant studies found in Section 4.0 of this memo will also be referenced to ensure that previously identified system needs and opportunities are brought forward in this study’s discussion.

Expected output (including what future task(s) results feed in to):

2. Identified issues will move forward into Task 13. An assessment will be made at that time whether performance measures could be developed to track/monitor the issues’ improvement over time, and if specific rail projects should move forward to address the issues.
3. The Task 12 Tech Memo will be fed into Task 17 – Idaho State Rail Plan.

Schedule (including how data availability may impact the schedule):

1. This task is scheduled for completion by 6/21/12.
2. Information must be secured by 4/30/12 to ensure time to review and incorporate into task.

Task 13 – Identify Rail Projects

The DEA Team will compile information for each project identified by the Steering Committee and ITD. The types of data required to accomplish Task 13 include the sources found in the following table.
Data will be used for this task in several ways:

1. Information produced in Task 12 will be used to compile information for each project identified to address freight rail needs and passenger rail needs, including validating project costs; timeframes for completion; and levels of support.
2. Anecdotal information from stakeholder interviews and focus groups will be used to identify system issues, needs and opportunities.
3. Other relevant studies found in Section 3.0 of this memo will also be referenced to ensure that previously identified system needs and opportunities are brought forward in this study’s discussion.

Expected output (including what future task(s) results feed in to):

1. The Task 13 Tech Memo will be fed into Task 17 – Idaho State Rail Plan.

Schedule (including how data availability may impact the schedule):

1. This task is scheduled for completion by 6/21/12.
2. Information must be secured by 4/30/12 to ensure time to review and incorporate into task.

Task 14 – Rail System Performance Metrics

The DEA Team will develop a series of indicators to begin to measure the performance of Idaho’s Rail System. Areas that the indicators will cover include Rail Service Demand, Rail Safety, System Efficiency and System Condition. The types of data required to accomplish Task 14 include the sources found in the following table.

<table>
<thead>
<tr>
<th>Table 11 Task 14 Data Requirements</th>
</tr>
</thead>
</table>

Table 10 Task 13 Data Requirements

<table>
<thead>
<tr>
<th>Item</th>
<th>Source</th>
<th>Year</th>
<th>Probable Format</th>
<th>To Be Secured By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Results from Task 12 – Rail Needs Assessment</td>
<td>DEA Team</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stakeholder Interview Summaries – Rail-centric (conducted as part of this study)</td>
<td>DEA Team</td>
<td>2012</td>
<td>MS Word</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Focus Group Summaries – Rail-centric (conducted as part of this study)</td>
<td>DEA Team</td>
<td>2012</td>
<td>MS Word</td>
<td>DEA Team</td>
</tr>
</tbody>
</table>
Data will be used for this task in several ways:

1. Rail data will be examined to produce rail-centric performance measures for both freight and passenger rail systems. The DEA Team’s ability to develop quantitative measures in each of these categories depends on data availability and quality. Additionally, the intent is to use publicly available data for these measures so that ITD will be able to reproduce and track the systems’ performance annually (at some regular frequency).
2. State Rail Plans from neighboring states and other recent state rail plans will be reviewed for applicable qualitative performance metrics.
3. FRA data gathered in Task 10 will be a primary source for freight rail performance measurement.
4. Amtrak data gathered in Task 11 will be a primary source for passenger rail performance measurement.
5. Data collated in GIS will be used to screen the system and develop performance thresholds. This will be done through spatial queries.
6. Areas identified as needs or requiring improvement, in Task 12, will be evaluated to determine whether they are candidates for targeted performance measure development.
7. This task will run concurrently with Task 7 freight performance measure development.

Expected output (including what future task(s) results feed into):

1. Rail-centric performance measures in categories of Rail Demand, Rail Safety, System Efficiency and System Condition for passenger and freight systems.
2. Rail Performance Measures Summary Memo. As subset of the freight rail measures will be considered for incorporation into the Task 7 freight performance measure report.
3. The Task 14 Tech Memo will be fed into Task 17 – Idaho State Rail Plan.

Schedule (including how data availability may impact the schedule):

1. This task is scheduled for completion by 6/21/12.
2. Information must be secured by 4/30/12 to ensure time to review and incorporate into task.
3. This information will be presented to the Steering Committee for vetting during Meeting #2.

Task 15 – Institutional and Policy and Rail Financing

The DEA Team will first research and describe current rail project funding sources from local, regional, statewide, and Federal agencies, as well as innovative financing and project delivery tools, drawing heavily on existing work / reports (some of which are listed in the table). Second, it will identify and evaluate rail financing alternatives in Idaho and identify institutional and policy improvements that could aid in achieving Idaho’s short- and long-term transportation goals for the rail mode. The types of data required to accomplish Task 15 include the sources found in the following table.

<table>
<thead>
<tr>
<th>Table 12</th>
<th>Task 15 Data Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Source</td>
</tr>
<tr>
<td>Results from Tasks 12,13,14</td>
<td>DEA TEAM</td>
</tr>
<tr>
<td>Summary of existing rail policies / programs in Idaho</td>
<td>ITD (Phone interview)</td>
</tr>
<tr>
<td>National Rail Freight Infrastructure Capacity and Investment Study</td>
<td>AAR</td>
</tr>
<tr>
<td>Innovative project delivery tools (PPP and TIF) (Innovative Project Delivery)</td>
<td>FHWA</td>
</tr>
<tr>
<td>State Rail Plans listed in Section 4.0</td>
<td>AAR</td>
</tr>
</tbody>
</table>

Data will be used for this task in several ways (including procedures and analytic tools employed to process data):

1. Idaho rail system needs (from Tasks 12, 13, and 14) will be compared against existing funding / financing sources.
2. Oregon DOT recently published a rail funding study that reviews possible funding mechanisms for application to passenger and freight rail that should be reviewed. Other more recent State Rail Plans will have summaries of available federal rail funding sources.
3. Appropriate funding and finance sources (Federal, state and local) will be identified for each type of project.
4. Peer state rail funding programs will be summarized and explored for potential application in Idaho.

Expected output (including what future task(s) results feed in to):

1. Summary Memo documenting the proposed policy changes.
2. Summary Memo of recommended sources to pursue for funding rail projects in Idaho.
3. Summary Memo documenting the recommended framework for continuing actions, including items for future study.
4. The Task 15 Tech Memo will be fed into Task 17 – Idaho State Rail Plan.

Schedule (including how data availability may impact the schedule):

1. This task is scheduled for completion by 9/25/12.
2. Information must be secured by 8/1/12.

Task 16 – Rail Service and Investment Program

In this task the DEA Team will draft a rail service and investment program that comprises prioritization of capital projects and service improvements that will support Idaho in meeting its rail system objectives. New projects as well as projects that are currently underway or already planned by rail stakeholders will be included in the investment program. The types of data required to accomplish Task 16 include the sources found in the following table.

<table>
<thead>
<tr>
<th>Table 13</th>
<th>Task 16 Data Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Item</td>
<td>Source</td>
</tr>
<tr>
<td>Results from Task 9 – Freight Study Recommendations</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Results from Task 14 – Rail Needs Assessment</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Build upon Task 15 Data Collected</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Stakeholder Interview Summaries (conducted as part of this study)</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Focus Group Summaries (conducted as part of this study)</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Stakeholder Interview Summaries</td>
<td>DEA Team</td>
</tr>
</tbody>
</table>

Data will be used for this task in several ways (including procedures and analytic tools employed to process data):

1. Prepare a comprehensive list of capital projects and service improvements.
2. Perform evaluation of proposed projects identified based on performance metrics established in Task 14.
3. Rank projects according to ability to meet performance metrics, i.e. screening criteria.
4. Conduct project impact analysis based on FRA-approved analysis method (public vs. private sector benefits calculation, benefit-cost analysis, economic impact analysis).
5. Data collated will be presented in GIS format to show spatial representation of capital improvements.

6. Develop a service and investment program that contains the following elements: capital project types; project description; project benefits; project funding; correlation of amount of funding to benefits; and project considerations.

Expected output (including what future task(s) results feed in to):

1. Rail Service and Investment Program Technical Memorandum.
2. The Task 16 Tech Memo will be fed into Task 17 – Idaho State Rail Plan.
3. Service and improvement program database.

Schedule (including how data availability may impact the schedule):

1. This task is scheduled for completion by 11/26/12.
2. Information must be secured by 8/21/12.

3. Data Summary

This section of the Data Collection Plan provides a table summarizing all data needs in an easy to use form for collection tracking. This table is organized by alphabetically by item and grouped by data to be collected by the DEA Team or ITD. This form may be used to ensure all necessary data is obtained for this study.

Table 14 Summary of Data Requirements

<table>
<thead>
<tr>
<th>Item</th>
<th>For use in Task(s)</th>
<th>Source</th>
<th>Probable Format</th>
<th>To Be Secured By</th>
<th>Data Secured (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADT and Truck ADT – All Highways</td>
<td>5</td>
<td>ITD</td>
<td>GIS files</td>
<td>ITD</td>
<td></td>
</tr>
<tr>
<td>Air Cargo Commodities, Volumes (existing and expected future)</td>
<td>5</td>
<td>BTS, FHWA</td>
<td>Excel or Word</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>Bridge Location and Condition</td>
<td>7</td>
<td>ITD</td>
<td>GIS files</td>
<td>ITD</td>
<td></td>
</tr>
<tr>
<td>Census Data</td>
<td>5, 11</td>
<td>US Census</td>
<td>Excel</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>Demographic Data</td>
<td>5, 10,11</td>
<td>Boise State</td>
<td>Access or Excel</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>Designated Truck Network and LCV or heavy haul network</td>
<td>5</td>
<td>ITD</td>
<td>GIS files</td>
<td>ITD</td>
<td></td>
</tr>
<tr>
<td>Econometric Forecasts</td>
<td>5</td>
<td>Boise State</td>
<td>Access or Excel</td>
<td>ITD</td>
<td></td>
</tr>
<tr>
<td>Focus Group Summaries (conducted as part of this study)</td>
<td>4, 6, 8, 12,13</td>
<td>DEA</td>
<td>MS Word</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>FRA Cost Recovery Ratio</td>
<td>11</td>
<td>Amtrak</td>
<td>Amtrak</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>For use in Task (s)</td>
<td>Source</td>
<td>Probable Format</td>
<td>To Be Secured By</td>
<td>Data Secured (Y/N)</td>
</tr>
<tr>
<td>--</td>
<td>----------------------</td>
<td>--</td>
<td>----------------------------------</td>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>Freight Analysis Framework (FAF3)</td>
<td>5, 10</td>
<td>FHWA</td>
<td>Access and GIS Files</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>Goods Dependent Industry Data</td>
<td>5</td>
<td>Boise State</td>
<td>Access or Excel</td>
<td>ITD</td>
<td></td>
</tr>
<tr>
<td>Idaho Crash Data</td>
<td>7</td>
<td>ITD or Idaho State Police</td>
<td>Excel and/or GIS</td>
<td>ITD</td>
<td></td>
</tr>
<tr>
<td>Idaho Employment Data (including specifics for Truck, Rail, Marine and Aviation Industries)</td>
<td>5</td>
<td>Boise State</td>
<td>Access or Excel</td>
<td>ITD</td>
<td></td>
</tr>
<tr>
<td>Idaho Freight Summit Summary (conducted as part of this study)</td>
<td>4</td>
<td>DEA</td>
<td>MS Word</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>Idaho Highway Network</td>
<td>5</td>
<td>ITD</td>
<td>GIS files</td>
<td>ITD</td>
<td></td>
</tr>
<tr>
<td>Idaho Intermodal Network (point file including airports, water ports and intermodal facility locations)</td>
<td>5, 10</td>
<td>ITD</td>
<td>GIS files</td>
<td>ITD</td>
<td></td>
</tr>
<tr>
<td>Idaho Rail Network</td>
<td>5, 10</td>
<td>FRA, ITD</td>
<td>GIS files</td>
<td>ITD</td>
<td></td>
</tr>
<tr>
<td>Idaho Rail Statistics</td>
<td>10</td>
<td>AAR</td>
<td>PDF</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>Idaho Rail Waybill Data</td>
<td>10</td>
<td>STB</td>
<td>Text File</td>
<td>ITD</td>
<td></td>
</tr>
<tr>
<td>Innovative project delivery tools (PPP and TIF)</td>
<td>15</td>
<td>FHWA</td>
<td>PDF / Website / MS Word</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>Intermodal Rail Volumes, Commodities (existing and expected future)</td>
<td>5, 10</td>
<td>AAR, BTS, FHWA</td>
<td>PDF</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>Literature Review</td>
<td>ALL</td>
<td>various</td>
<td>PDF, website, MS Word</td>
<td>DEA</td>
<td></td>
</tr>
<tr>
<td>Marine Port Commodities, Volumes (existing and expected future)</td>
<td>5</td>
<td>BTS, FHWA</td>
<td>PDF</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>Motor Carrier and Freight Legislation, current & proposed (including REDIFIT program rules, Motor Carrier Statutes and Administrative Rules)</td>
<td>6,</td>
<td>ID, WA, MT, UT, OR</td>
<td>PDF / Website / MS Word</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>Motor Carrier Permits and Port of Entry Policies (Idaho Transportation Board, IDAPA, adjacent state policies, including REDIFIT program rules, motor carrier statutes and administrative rules)</td>
<td>6</td>
<td>ITD, WADOT, MDT, UDOT, ODOT</td>
<td>PDF / Website / MS Word</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>National Rail Freight Infrastructure Capacity and Investment Study</td>
<td>15</td>
<td>AAR</td>
<td>MS Word</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>On-offs at Sandpoint</td>
<td>11</td>
<td>Amtrak</td>
<td>Excel</td>
<td>DEA Team</td>
<td></td>
</tr>
</tbody>
</table>
Data Collection Plan

February 28, 2012

Idaho Statewide Freight Study and State Rail Plan - Key No. 13334 & 13337

<table>
<thead>
<tr>
<th>Item</th>
<th>For use in Task (s)</th>
<th>Source</th>
<th>Probable Format</th>
<th>To Be Secured By</th>
<th>Data Secured (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-time performance data (Sandpoint and Spokane-bound)</td>
<td>11</td>
<td>Amtrak</td>
<td>Excel</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>Pavement Condition on Major Corridors</td>
<td>7</td>
<td>ITD</td>
<td>GIS files</td>
<td>ITD</td>
<td></td>
</tr>
<tr>
<td>Port of Entry Data (commercial vehicle data including number, sizes,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>weights and citations)</td>
<td>5, 10</td>
<td>Idaho Port of Entry</td>
<td>Access, Excel or PDF</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>Port of Entry Data (commodities transported at each POE, overlegal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>permit data by route, motor carrier fee revenues)</td>
<td>5, 10</td>
<td>Motor Carrier</td>
<td>Access, Excel or PDF</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>Port of Entry and Freight Legislation , Current and Proposed (including REDIFIT program rules, Motor Carrier Statutes and Administrative Rules)</td>
<td>6, 15</td>
<td>ITD, WADOT, MDT, UDOT, ODOT, CDOT</td>
<td>DEA</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>Rail Crossing Database (includes crossing number, RR, road f class,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AADT, signals, day thru, night thru, total trains/day, posted</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>speed, safety info (predicted casualty and fatality rates)</td>
<td>10</td>
<td>FRA</td>
<td>GIS</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>Rail Network (includes location, owners, all track rights, density</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>code, signal system type)</td>
<td>5, 10</td>
<td>FRA</td>
<td>GIS</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>Rail Safety Statistics</td>
<td>10</td>
<td>FRA</td>
<td>Text files</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>Speed and Congestion Data - All Highways</td>
<td>7, 14</td>
<td>ITD</td>
<td>GIS files</td>
<td>ITD</td>
<td></td>
</tr>
<tr>
<td>Stakeholder Interview Summaries</td>
<td>4, 6, 8, 12, 13,</td>
<td>DEA for ITD (2010)</td>
<td>MS Word</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>Stakeholder Interview Summaries (conducted as part of this study)</td>
<td>4, 6, 8, 12, 13, 14, 16</td>
<td>DEA</td>
<td>MS Word</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>State Rail Plans listed in Section 4.0</td>
<td>14, 15</td>
<td>PDF</td>
<td>DEA Team</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steering Committee Summaries (conducted as part of this study)</td>
<td>4</td>
<td>DEA</td>
<td>MS Word</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>Summary of existing rail policies / programs in Idaho</td>
<td>15</td>
<td>ITD (Phone interview)</td>
<td>Verbal / MS Word</td>
<td>DEA Team/ITD</td>
<td></td>
</tr>
<tr>
<td>Timetables, frequencies and times of day trains 7 & 8</td>
<td>11</td>
<td>Amtrak</td>
<td>Excel</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>Total riders per train-mile</td>
<td>11</td>
<td>Amtrak</td>
<td>Amtrak</td>
<td>DEA Team</td>
<td></td>
</tr>
</tbody>
</table>
4. Other Supporting Documents

In addition to raw data collection outlined in Sections 2.0 and 3.0, the following table provides an overview of documents considered relevant for reference in this study. As noted in the table, these documents will be either be secured by ITD or by the DEA Team.

Table 15 Inventory of Supporting Documents

<table>
<thead>
<tr>
<th>Document Name</th>
<th>Source</th>
<th>To Be Secured By</th>
</tr>
</thead>
<tbody>
<tr>
<td>Idaho</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Idaho Long Range Plan</td>
<td>ITD</td>
<td>ITD</td>
</tr>
<tr>
<td>Idaho Airport Systems Plan</td>
<td>ITD</td>
<td>ITD</td>
</tr>
<tr>
<td>Port of Lewiston Five-Year Strategic Plan</td>
<td>Port of Lewiston</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Idaho Rail Plan</td>
<td>ITD</td>
<td>ITD</td>
</tr>
<tr>
<td>REDIFIT Feasibility Study for Boise Valley Railroad Transload Facility</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>Treasure VALLEY Truck Freight Travel Survey</td>
<td>Compass Idaho</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Local plans related to freight mobility (to be identified)</td>
<td>Various</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Idaho rail funding program information</td>
<td>ITD</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Regional/National</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inland Pacific Hub Study</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>National Rail Plan</td>
<td>FRA</td>
<td>DEA Team</td>
</tr>
<tr>
<td>CANAMEX Corridor Plan</td>
<td>DEA Team</td>
<td></td>
</tr>
<tr>
<td>AAR National Rail Freight Infrastructure Capacity and Investment Study</td>
<td>AAR</td>
<td>DEA Team</td>
</tr>
<tr>
<td>Amtrak North Coast Hiawatha Route Feasibility Study</td>
<td>Amtrak</td>
<td>DEA Team</td>
</tr>
<tr>
<td>MT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Statewide Rail Plan</td>
<td>MTDOT</td>
<td>DEA Team</td>
</tr>
</tbody>
</table>
Up to 25 targeted stakeholder interviews will be conducted, including the list of individuals identified in the following table.

Table 16 Stakeholder Interviews

<table>
<thead>
<tr>
<th>Perspective</th>
<th>Date Conducted</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td></td>
</tr>
<tr>
<td>Beets</td>
<td></td>
</tr>
<tr>
<td>Fruit</td>
<td></td>
</tr>
<tr>
<td>Dairy</td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td></td>
</tr>
<tr>
<td>Feed</td>
<td></td>
</tr>
<tr>
<td>Hay</td>
<td></td>
</tr>
<tr>
<td>Grains</td>
<td></td>
</tr>
<tr>
<td>Other Users</td>
<td></td>
</tr>
<tr>
<td>Grocer</td>
<td></td>
</tr>
<tr>
<td>Manufacturing</td>
<td></td>
</tr>
<tr>
<td>Retailers</td>
<td></td>
</tr>
<tr>
<td>Recycling</td>
<td></td>
</tr>
<tr>
<td>Natural Resources</td>
<td></td>
</tr>
<tr>
<td>Trucking</td>
<td></td>
</tr>
<tr>
<td>Air</td>
<td></td>
</tr>
<tr>
<td>Warehousing</td>
<td></td>
</tr>
<tr>
<td>Rail, short lines</td>
<td></td>
</tr>
<tr>
<td>Operators</td>
<td></td>
</tr>
<tr>
<td>State Police</td>
<td></td>
</tr>
<tr>
<td>FHWA</td>
<td></td>
</tr>
<tr>
<td>FRA</td>
<td></td>
</tr>
<tr>
<td>Agencies</td>
<td></td>
</tr>
</tbody>
</table>

As Identified in the Literature Review (see Task 4)
In addition, the following economic development stakeholders in were 2010 as part of ITD’s Long Range Transportation Plan, “ITD On the Move”, in order to understand the economic development community’s perception of the link between transportation and the economy. These interviews with stakeholders having commerce and economic interests in Idaho will also be considered as part of this study.

Table 17 Previous Stakeholder Interviews

<table>
<thead>
<tr>
<th>Agency/Company</th>
<th>Name</th>
<th>Date Conducted</th>
<th>Area of Interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dept of Labor Panhandle Region</td>
<td>Alivia Body</td>
<td>03/16/10</td>
<td>Economic - District 1</td>
</tr>
<tr>
<td>Jobs Plus</td>
<td>Steve Griffitts</td>
<td>04/06/10</td>
<td>Economic - District 1</td>
</tr>
<tr>
<td>Boundary County EDC</td>
<td>Mike Sloan</td>
<td>03/11/10</td>
<td>Economic - District 1</td>
</tr>
<tr>
<td>Silver Valley EDC</td>
<td>Vince Rinaldi</td>
<td>04/08/10</td>
<td>Economic - District 1</td>
</tr>
<tr>
<td>NIC Small Business Development Center</td>
<td>William Jhung</td>
<td>04/06/10</td>
<td>Economic - District 1</td>
</tr>
<tr>
<td>Bonner County EDC</td>
<td>Karl Dye</td>
<td>04/12/10</td>
<td>Economic - District 1</td>
</tr>
<tr>
<td>CDA Tribe</td>
<td>Jim Kackamn</td>
<td>04/08/10</td>
<td>Economic - District 1</td>
</tr>
<tr>
<td>Panhandle Area Council</td>
<td>John Austin</td>
<td>04/06/10</td>
<td>Economic - District 1</td>
</tr>
<tr>
<td>Inland NW Partners</td>
<td>Patty Shea, Avista</td>
<td>04/07/10</td>
<td>Economic - District 1</td>
</tr>
<tr>
<td>Inland Pacific Hub</td>
<td>John Goedde</td>
<td>04/07/10</td>
<td>Economic - District 1</td>
</tr>
<tr>
<td>Kootenai Tribe</td>
<td>Patty Perry</td>
<td>04/14/10</td>
<td>Economic - District 1</td>
</tr>
<tr>
<td>Department of Labor North Central Region</td>
<td>Kathryn Tacke</td>
<td>03/31/10</td>
<td>Economic - District 2</td>
</tr>
<tr>
<td>Port of Lewiston</td>
<td>Dave Doeringsfeld</td>
<td>04/13/10</td>
<td>Economic - District 2</td>
</tr>
<tr>
<td>Clearwater EDA</td>
<td>Deb Smith</td>
<td>04/08/10</td>
<td>Economic - District 2</td>
</tr>
<tr>
<td>Swift Transportation</td>
<td>Otto Welch</td>
<td>04/08/10</td>
<td>Economic - District 2</td>
</tr>
<tr>
<td>Nez Perce Tribe</td>
<td>Anne McCormick</td>
<td>05/12/10</td>
<td>Economic - District 2</td>
</tr>
<tr>
<td>Boise State University</td>
<td>Jim Hogge</td>
<td>04/08/10</td>
<td>Economic - District 3</td>
</tr>
<tr>
<td>Idaho Department of Labor – SW Regional Economist</td>
<td>Janell Hyer</td>
<td>04/15/10</td>
<td>Economic - District 3</td>
</tr>
<tr>
<td>Boise Chamber of Commerce</td>
<td>Ray Stark</td>
<td>04/08/10</td>
<td>Economic - District 3</td>
</tr>
<tr>
<td>Idaho Department of Labor – South Central Regional Economist</td>
<td>Jan Roeser</td>
<td>03/31/10</td>
<td>Economic - District 4</td>
</tr>
<tr>
<td>Southern Idaho Economic Development Organization</td>
<td>Jan Rogers</td>
<td>04/08/10</td>
<td>Economic - District 4</td>
</tr>
<tr>
<td>Agency/Company</td>
<td>Name</td>
<td>Date Conducted</td>
<td>Area of Interest</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>----------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Idaho Department of Labor – Southeastern</td>
<td>Tanya Alabain</td>
<td>04/05/10</td>
<td>Economic - District 5</td>
</tr>
<tr>
<td>and East Central Regional Economist</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 County Alliance of Southeastern Idaho</td>
<td>Kathy Ray</td>
<td>04/08/10</td>
<td>Economic - District 5</td>
</tr>
<tr>
<td>Regional Development Alliance, Idaho Falls</td>
<td>Tim Solomon</td>
<td>04/08/10</td>
<td>Economic - District 6</td>
</tr>
<tr>
<td>Custer Economic Development Association, Challis</td>
<td>Jolie Turek</td>
<td>04/08/10</td>
<td>Economic - District 5 & 6</td>
</tr>
<tr>
<td>(R6)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Idaho Freight Summit and Rail Plan Update

Steering Committee Meeting #1 (March 1, 2012)

1. Did you think your participation at the Steering Committee meetings was worth your time?
 Yes – 3
 No - 0

2. What did you like most about today’s meeting?
 Interaction, points of view, desire to create real value, great people all the way around!
 - Good interaction with the group.
 - Creating a unique (non-governmental) vision for freight in Idaho.

3. What did you like least about today’s meeting?
 - N/A
 - Good job
 - Too much to do in a one day meeting. It would be great to have maybe less work at the meeting buy having homework prior to the meeting.

4. How would you improve today’s meeting (i.e. meeting purpose, different time of day, meeting format, duration, location, etc.)? Please provide specific suggestions.
 - N/A
 - OK
 - Start the meeting earlier in the day.

5. Having concluded today’s meeting, what are the 2-3 issues you think the Steering Committee must be most attentive to between now and the next meeting? How should that be done?
 - Ensure that we focus on true multi-modal freight improvements and not limit activity to highways only. Dependent events analysis will be very important.
 - Doing a good job, but staying on task will be difficult with the depth of all issues to discuss.
 - Develop goals and action plans; review data plan and make suggestions.

6. Use the space below to provide any additional comments regarding this meeting:
 - Very ambitious for the timeline to accomplish value of activity.
 - I would rather have an additional meeting and produce a good product than hurry through and have a marginal product.
- This is a very important plan to be glossed over. The schedule is too ambitious to be completed in 6 months. Having more time will allow us to make better scenarios and understand issues.
Idaho Freight Study and Rail Plan Update

Steering Committee Meeting

PARTICIPANTS

Steering Committee Members
- John Anderson, McCall Municipal Airport
- Travis Blacker, Idaho Growers Shippers Association
- Erika Bowen, ITD Highway Planning and Program Management
- David Doeringsfeld, Lewiston Port Authority
- Kathy Fowers, Idaho Trucking Association
- Winston Inouye, Idaho Policy Advisors/ Mini-Cassia Commerce Authority
- Bill Ince, Union Pacific Railroad
- Patrick Kole, Idaho Potato Commission
- Joe Leckie, Idaho Public Utilities Commission
- Rick Naerebout, representing Bob Naerebout, Idaho Dairymens Association
- Dave Player, representing Jerry Whitehead, Idaho Transportation Board
- Wyatt Prescott, Idaho Cattle Association
- Deb Smith, Clearwater Economic Development
- John Watts, representing John Brown, Watco Companies
- Colleen Weatherford, BNSF Railroad

Ex Officio
- Randy Rogers, US Maritime Administration

Project Management Team
- Scott Frey, Federal Highways Administration - Idaho
- Carleen Herring, Region IV Development Association
- Laura Johnson, Idaho State Department of Agriculture
- Melissa Kaplan, Idaho Transportation Department Division of Aeronautics
- Daniel Kuhn, Utah Department of Transportation
- Reggie Phipps, Idaho Transportation Department
- Greg Seibert, Idaho Department of Commerce
- Ted Vanegas, Idaho Transportation Department Division of Transportation Performance

Project Team
- Maureen Gresham, Program Manager, Idaho Transportation Department
- Kevin Jeffers, Project Manager, David Evans and Associates
- Marsha Bracke, Facilitator and Public Involvement, Bracke and Associates, Inc.

Support Personnel
- Stephanie Latimer, Bracke and Associates, Inc.

MEETING SUMMARY

The Steering Committee meet on Thursday, June 14, 2012 to accomplish the following meeting objectives:
1. Understand the purpose and scope of the project
2. Understand the freight system as it exists today
3. Identify the desired future for the freight system and how to measure success
4. Understand the rail freight and passenger rail system as it exists today
5. Provide additional inputs into the content of a rail needs assessment

Attachments to this Summary include:

A. The Agenda
B. Flip Chart Transcript
C. Gresham PowerPoint - Project Purpose, Scope and Discussion Questions
D. Steering Committee Inputs June 14, 2012 - Additional Issues and Opportunities
E. Draft Freight Vision and Goals

Objective 1: Understand the Purpose and Scope of Project

The facilitator kicked off the meeting with introductions and a review of the Steering Committee roles and responsibilities, per the Charter the group generated at the March 1, 2012 meeting.

Given questions posed at the end of the last meeting and an expression by some of feeling overwhelmed, Maureen Gresham, ITD provided another overview of the purpose and scope of this project (See Attachment C - Gresham PowerPoint). She discussed ITD's intent to finish the Freight Study by November in order to inform discussion with legislators - but reminded the group that the plan belongs to the stakeholders; if they need to continue on and to work on more iterations, she is receptive and willing. This first study she sees as just a first step in starting the process of planning for freight movement on a statewide basis in Idaho.

Maureen closed her presentation with three questions around which she conducted a discussion with the group. The facilitator recorded questions and responses on flip chart notes, which are transcribed and included as Attachment B to this summary. The following provides the three questions and a summary of the group's response.

1. What is the one thing you want to get out of this effort?

 The Steering Committee seeks to produce something that propels the state toward a better infrastructure, identifying a few specific things they can do to get there.

2. How much time are you willing to give the effort outside of the Steering Committee meetings?

 Participants expressed a mixed reaction to this question, some indicating they would do what they need to represent their interests, others indicating a need to reach out to others—emphasizing the importance of the regional meetings, and others identifying the integration of the Freight Study Vision and Goals into their respective operations as a key implementation activity.

3. What is your biggest concern about the scope of the project?

 The biggest concerns participants articulated about the scope of the project included:

 - Data - the need for more data, having data that can talk together, data integrity, the methodology of collecting and reporting data, and finding a balance between spending all the
project time looking for data and knowing when some shape needs to be given to the state's Freight Study and Rail Plan Update with the data that is available.

- The differences between public and private operations - the influence of decisions respective to profitability, confidentiality of data and other related distinctions.
- Securing broad public input - specific questions were asked about securing County involvement and an appreciation for regional forums Maureen has already scheduled to secure that broader engagement.

Objective 2: Understand the freight system as it exists today

A Draft Freight Study Overview and a Draft Freight System Issues and Opportunities Report was distributed to Steering Committee members in the week prior to the meeting, as was a copy of 50-slide PowerPoint presentation designed to distill that information (go to http://itd.idaho.gov/freight/freightstudy.html for copies of referenced materials). Steering Committee members were asked to review that material prior to the meeting. Kevin Jeffers, DEA Project Manager, provided a shorter PowerPoint presentation and overview of the two documents. The purpose of the discussion was to generate a shared understanding of the system as a whole as it is understood to date, and to respond to specific questions in order to help complete the two documents. Those questions and a summary of the ensuing discussion follow. The facilitator maintained a record of the responses to the question on flip charts, which have been transcribed and are included in Attachment B for further reference.

1. Given our data limitations, how could we supplement those limitations as we move forward?

A number of specific suggestions for places to go for data were identified, although Kevin indicated that some of those have been requested already, to no avail. There was concern about the integrity of and the availability of data from private sources. The Department of Agriculture was identified as a key data source. Other suggestions included sitting down with the different providers of data and discussing it together to get a shared understanding of what it means, knowing that not all data is equal or crosswalks effectively. Some suggested some corrections to existing data, and others asked at what point progress needed to occur regardless of the range of data available. Generating an effective methodology for collecting and using data across sectors and systems was discussed as a potential long-term goal.

2. Are there additional issues and opportunities (gaps) that haven’t been identified? What are they?

The group ran out of time to discuss additional issues and opportunities collectively, but they did have available to them the Idaho Freight Summit Inputs, grouped by theme, January 20, 2012 (also provided at the March 1). They were asked to document on paper on an individual basis the issues and opportunities or gaps they could see that were not already documented in the Freight Summit paper or the Draft Freight Issues and Opportunities document. Those suggestions have been transcribed verbatim and are included as Attachment D for further consideration and use as appropriate. There was also an individual request to refer to "multi-modal" facilities rather than "inter-modal" facilities in the presentation, reports and meeting documentation.

Objective 3: Identify the desired future for the freight system and how to measure success

The facilitator reviewed with the group the freight system vision and goals as developed in response to input the Steering Committee provided at its March 1, 2012 meeting. The vision and goals are included as Attachment E. Maureen Gresham reported that she had been sharing this material as a draft with primarily public but some private stakeholders around the state, and that to date it has been well received, and specifically so the Vision.
Given that the consultant will be asked to develop scenarios for what the freight system will look like in the future, the Steering Committee was asked to provide some detail around each of the three goals so that the consultant would have a sense of what the Steering Committee thinks the environment would look like when these goals are realized.

By way of reference material, the group had a copy of the Idaho Freight Summit Inputs, Grouped by Theme, January 20, 2012, in addition to the draft reports just discussed. Committee members were asked to consider and reflect on the inputs in those documents as they participated in the exercise. The Steering Committee did seek a better understanding of the scenarios and how their input will be used to inform them. They moved forward with the process still with questions about what the scenarios were intended to do and look like, and some with questions about what the final product will look like that they are working to build.

The Steering Committee divided into three groups, with the facilitator working to ensure as much diversity within the three different groups as possible. Each group took one goal and set of characteristics that helped generate that goal, and responded to the following discussion questions:

1. What does the freight system physically look like having achieved this goal?
2. What specific action must be taken in order to get achieve it?

The Project Management Team participants took the entire set of vision and goals, and studied and came back with suggestions respective to system-wide performance measures that might indicate progress toward achieving the goals. Summarily, participants returned with the following draft recommendations:

Goal 1: Idaho's freight system features seamless, modal connectivity while maintaining safety and efficiency.

This group envisioned the realization of this goal as:
- Increased weight limit on trucks (interstate, intrastate, north/south and long/short haul)
- North/South route through Idaho
- Rail transload facilities featuring double tracks and public/private partnerships
- Improvements to bridges and highways, including passing lanes

Goal 2: Idaho’s freight system features effective partnerships to leverage resources and opportunities.

This group envisioned the realization of this goal as:
- A non-profit broker available to manufacturers and producers to facilitate their transportation shipments, working with trucks, rail, planes, port, etc. (like UPS/FedEx for freight)
 - In this scenario, the manufacturer and the producer are the customer. They are not required to use the broker.
 - Sometimes the issue is "information," and a broker can help with that.

Goal 3: Idaho strategically invests in its freight system infrastructure while maximizing existing capacity.

This group envisioned this goal as series of steps, to include:
- Educate the public
- Identify freight projects and prioritize
- Educate the decision-makers (legislators)
- Find state and federal funding
- Consolidate, coordinate and achieve some consistency across highway districts
- Generate a defined program of projects and funding strategies
Respective to potential performance measures, the group came back with the following suggestions by Goal:

Goal #1
- Border crossing time
- Warehouse square footage
- Volume of freight in, out and thru (?)
- Jobs related to transportation
- Travel time/safety metrics
- Cost/ton/mile

Goal #2
- Effective partnerships (is not a goal, is a strategy for accomplishing Goal #1)

Goal #3
- Strategic investments
- Miles of system
- Number of terminals
- Money spent
- Condition

Ultimately, the group looking at performance measures proposed that the first goal was really an ultimate goal of the freight system, and the second "goals" could really be articulated as strategies to achieve the goal. Because of mixed feelings among the group as to whether goals 2 and 3 should be maintained as goals or strategies, Maureen Gresham took an action to work with the Project Management Team to generate a proposed solution.

Participants provided feedback to the proposals, some challenging suggestions based on the barriers associated with achieving them, and some embracing concepts (such as the freight broker) as innovative and helpful ideas. The facilitator recorded feedback on flip charts, and those notes have been transcribed and are included in Attachment B- Flip Chart Notes. The suggestions made by the group by goal, and the feedback generated through the discussion, will be resource material to the consulting team as its develops system scenarios for Steering Committee review and consideration.

Objective 4: Understand the rail freight and passenger rail system as it exists today

A Draft Freight Rail Inventory and Passenger Rail System Profile and Analysis was distributed to Steering Committee members in the week prior to the meeting, as was a PowerPoint presentation designed to distill that information (go to http://itd.idaho.gov/freight/freightstudy.html for copies of referenced materials). Steering Committee members were asked to review that material prior to the meeting. Kevin Jeffers, DEA Project Manager, provided a shorter PowerPoint presentation and overview of the two documents during the meeting. The purpose of the discussion was to generate a shared understanding of the rail freight and passenger rail system as it exists today, and to identify additional information and data that the group considered important to completing the two documents.

The facilitator posted the following two specific questions for which the project team sought answers:

1. What else do you need to see as part of a rail needs assessment?
2. What other data should we secure and where might we find it?
In response, participants suggested more detailed railroad accident fatality data, identification of used and unused rail sidings, and a discussion about rail upgrades and highway alignment. Ultimately, all participants in the group took an action to provide specific responses to these two questions to Maureen by June 28th 2010.

Parking Lot

During the course of the day the group submitted the following three items, which were addressed as indicated, to the Parking Lot.

1. Improvement to rail infrastructure. This item, and specific details yet to be provided, remains in the Parking Lot for future consideration as the Rail Plan is developed.
2. What is driving the plan? It was suggested that those who produce and need deliver the commodities are the real customer, and the freight system itself is a tool to make that happen. This item and more discussion around it as a premise for the plan remains in the Parking Lot for future consideration as the Freight Study and Rail Plan update is developed.

Evaluation

Steering Committee and Project Management Team members completed written evaluation forms, which were collected and transcribed by the facilitator and are available upon request. Summarily, participants still found themselves overwhelmed with the scope of the project, appreciated meeting process to keep the discussion on track, and made specific suggestions regarding effective communication.

Action Items

1. Maureen will meet with the Project Manage Team to discuss goals and scenarios per the Steering Committee discussion.
2. All participants will provide comments to Maureen by June 28 in response to the questions regarding needs of the Rail system and analysis.
Idaho Freight Study and Rail Plan Update

Steering Committee Meeting
Thursday, June 14, 2012
10:30 a.m. – 5:00 p.m.

The group will have a working lunch on site, hosted by the Idaho Transportation Department

AGENDA

Objectives
1. Understand the purpose and scope of the project
2. Understand the freight system as it exists today
3. Identify the desired future for the freight system and how to measure success
4. Describe what the environment might look like in that desired future
5. Understand the freight and passenger rail system as it exists today
6. Identify the desired future for the freight and passenger rail system and how to measure success

<table>
<thead>
<tr>
<th>TIME</th>
<th>TOPIC</th>
<th>REFERENCE MATERIALS</th>
<th>OBJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:30 a.m.</td>
<td>MEETING START AND PROCESS OVERVIEW</td>
<td>▪ Agenda</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Marsha Bracke, Bracke & Associates, Inc. Facilitator</td>
<td>▪ Contact Lists: Steering Committee and Project Team</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Recap since last meeting</td>
<td>▪ March 1 2012 Steering Committee Meeting Summary</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Final PIP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Final Charter</td>
<td></td>
</tr>
<tr>
<td>10:50 a.m.</td>
<td>Understand the purpose and scope of the project</td>
<td>▪ Discussion Questions</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>□ Maureen Gresham, ITD Division of Transportation Performance</td>
<td>▪ What is the one thing you want to get out of this effort?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Marsha Bracke, Bracke and Associates, Facilitator</td>
<td>▪ How much time are you willing to give the effort outside of the Steering Committee meeting?</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20 minute discussion</td>
<td>▪ What is your biggest concern about the scope of the process?</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Project Visual</td>
<td></td>
</tr>
<tr>
<td>11:10 a.m.</td>
<td>Understand Today's Freight System</td>
<td>▪ Freight System Overview</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>□ Kevin Jeffers, David Evans and Associates, Inc., Project Manager: Idaho Freight Study and Rail Plan Update</td>
<td>▪ Freight Mobility Issues and Opportunities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presentation and Facilitated Discussion</td>
<td>▪ Issues and Opportunities Discussion Questions</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Given our data limitations (reference slide 9), how could we supplement those limitations as we move forward?</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>▪ Are there additional issues and opportunities (gaps) that haven’t been identified? What are they?</td>
<td></td>
</tr>
<tr>
<td>12:30 p.m.</td>
<td>WORKING LUNCH (Materials Review)</td>
<td>▪ Draft Freight Vision and Goals</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>□ Provided by ITD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1:15 p.m.</td>
<td>Describe the desired future for Idaho's Freight System</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Facilitated Discussion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Time</td>
<td>Event</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>3:00 p.m.</td>
<td>Understand Today’s Rail Freight/Passenger System</td>
<td>□ Kevin Jeffers, David Evans and Associates, Inc., Project Manager: Idaho Freight Study and Rail Plan Update Presentation and Facilitated Discussion ▪ Rail System Overview ▪ Passenger Rail System Profile and Analysis ▪ Rail Needs Assessment Discussion Questions ▪ What else do you need to see as part of a rail needs assessment? ▪ What other data should we secure and where might we find it?</td>
<td></td>
</tr>
<tr>
<td>3:45 p.m.</td>
<td>Describe the desired future for Idaho’s Rail Freight/Passenger System</td>
<td>□ Facilitated Discussion</td>
<td></td>
</tr>
<tr>
<td>4:30 p.m.</td>
<td>Wrap Up and Next Steps</td>
<td>Review and confirm meeting schedule and objectives</td>
<td></td>
</tr>
<tr>
<td>5:00 p.m.</td>
<td>ADJOURN</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Proposed Meeting Schedule/Objectives:

August 22, 2012

Overall Freight
1. Review Project Team’s scenario testing results
2. Recommend preferred scenarios
3. Recommend policy-level initiatives and future management tools that may enhance freight mobility
4. Recommend short and long-term strategies
5. Test inputs via vision, goals, objectives

Rail: Freight and Passenger
6. Review, discuss and recommend
 - Proposed policy changes
 - Proposed projects and screening criteria
 - Project impact analysis
7. Test inputs via vision, goals, objectives

September 25, 2012

Overall Freight
1. Review, discuss and provide input regarding:
 - Freight policies, funding, resources and management tools
 - Action plan and strategy recommendations
 - Preliminary Draft Freight Study document

Rail: Freight and Passenger
2. Review, discuss and provide input regarding:
 - Institutional and policy changes
 - Project prioritization and implementation schedule
 - Review and confirm public comment process
 - Preliminary Rail Freight and Passenger Rail document
What is the one thing you want to get out of this effort?

- How can I help you?
- What program can accomplish?
- Better infrastructure to get products to market
- Practical, effective way to collect ideas and generate implementable plan
- Better understanding of freight
- Movement
- Intent- implementation
- 2-3 critical action items to facilitate freight movement
 - Study with ITD top priorities
- Identify general or specific corridors (inform ITD corridor planning)

How much time are you willing to give the effort outside of the Steering Committee Meeting?

- Not necessarily about time – about integrating
- As much as I need to represent our interests
- Important project – reaching out to others – need to hear from them
- Regional meetings good opportunity
- Opportunity to be proactive

What is your biggest concern about the scope of the process?

- To get meaningful useful product
- Data
 - Talk about today/vet with this group/homework
- Methodology of collecting and reporting
- Don’t know what it looks like when it’s close – how to determine if it’s “good” or not
 - Will talk today about your desired conditions
 - Process: where now/goings/how?
 - Varied level of detail
 - Getting there
- How address needs at County level?
 - Regional Freight Forums
 - Focus groups
 - Summit – need shared vision
- Feasibility and implementation on private facilities – funding implications
 - Your plan
- Private and public infrastructure – affects data/confusion
- Issue of profitability
 - This group can discuss/address
- Regardless, government has a great impact
 - Right process, right group, first step
 - Won’t resolve everything – right entities
FEEDBACK: ISSUES AND OPPORTUNITIES

Given our data limitations (reference slide 9), how could we supplement those limitations as we move forward?

- Ask BNSF – have 2011 data
- Sources related to potato availability
- American Trucking Association
 - Compare re Idaho
 - Kathy will ask
- WATCO – provide short line data
- Review – Class 3? Is it captured?
- Separate and understand what you have from various sources
- Sit down together to sift through/understand “hand off”
- Are we counting “pass thru”?
- POC info aggregated
- Department of Ag- Dairy and other – before first
- UPRR – 2011 available ask
- Air Carrier Airports should have good data by carrier
- There are the specific areas where data doesn’t provide adequate information? Then where do we go?
- How much do we need to achieve on broader goals?
- Does the status of the data have to be an impediment?
- Trace back requirements on products will help with data – issue of propriety
- Federal not as up to date as Idaho
- Is 2011 reflective? (depends on community)
- Should we consider a broader range of dates?
- Port data/including Washington ports/lower granite pool
- Data helps us answer specific questions
- Strategic needs for data to inform next iteration – standard
- State – Association – Industry – Product
- Be cognitive of connectivity among systems/states to inform decisions
- Exports – Department of Ag data differs overview data – consult
- Be careful about rail and truck data
 - Couched to their agenda
 - Look at how they go where they go
 - Have to look outside the state
- How system works – strategic decision
- Data will help inform

MEASURING GOALS

Goal #1
- Increase weight limit on trucks – interstate and intrastate, north/south, long haul/short haul
- Rail – have transload facilities, double tracks, public/private partnership
- Bridge/highway improvements – passing lanes

Goal #2
- Manufacturer and producer work with nonprofit entity to serve as broker get work done
• Idaho freight brokerage-ship – work with trucks, planes, port, etc
• (FedEx, UPS)
• Manufacturer and producer are customer
• “Information”

Goal #3
• Education of public
• Identify freight projects, prioritize
• Education the decision makers (legislators)
• Finding the means for funding – state/federal
• Consolidation, consistency, coordination of highway districts
• Defined program of projects and funding strategies

FEEDBACK

• Good, important ideas but bigger piece at play, how to pull together in profit driving economy
• Plan – help define landscape to take good ideas to inform policy that helps the public section
• Don’t know that these descriptions “functionally hit the road”
• Optimistic, but how do I take all this and use it?
• Competing agendas
• Give an honest view of landscape so we all know how we fit in? Take these items and turn them into action/functionality policy
• Re brokerage/info system “F-way” – can help consumers – info system
• Don’t see a role for government other than money and priority decisions; no enforcement/safety... maybe we don’t want that
• See benefit of clearinghouse – don’t reinvent where – use “cooperative” structure
• Maintain the competitive/independent nature
• ITD finance/kick off “cooperative”
• Bring volume and logistics together
• If increase rail infrastructure, impacts safety at rail crossings
• Consider cost of life factor on rail crossings
• Impressed by cooperation, i.e.: increase weight limits
• Not necessarily agree that #2 and #3 are not measurable – they are strategies, not goals. What do you think?
• Goal 3 Action #1: Educating the public – lots of money
• New/consistent truck weights and impacts on bridge/highways – working together to accomplish
• Feds effect truck weights
• Get obstacles out of the way (like lesser government)
• Clear obstacles through this process
• Important goal – collaboration/partnership – private/state partnerships – understand needs and deliver
• Education - understand current system, implications, cost
• Cooperation of entities – good for Idaho and potential legislation – go together
• Education – take advantage of every opportunity
• Long run – better for everyone
• Intrigued with freight cooperate (an option, a tool)
• Exercise illuminates challenges for committee – many ideas/complex issue
• Long – iterative process
- Keep at it
- Idaho not taking advantage with geographic location – great location
- Need to connect infrastructure (cost) with economic development (value) – necessary
- Need for existing companies and potential new ones – where we are and where we are going
- How do we finalize goals – want it to be orderly – need to define better
- Encourage different stakeholders to look at larger picture from high level
- Healthy Idaho will benefit all (UT, OR, WA, US)
- Any thing you do that makes things work better is good
- You’ve done a great job of identifying issues and questions to address
- Inbound emphasis – facilitate inbound – cooperative?
 - Economy of scale

RAIL NEEDS DISCUSSION QUESTIONS

- More detailed RR accident fatality data
- Rail sidings – currently unused? Industrial uses?
 - Spurs into industrial properties
- RR upgrades and highway alignment/risk of derailment

ACTION ITEMS

1. Maureen – Meet with PMT, goals/scenarios with SC
2. RRs provide specific responses to RR questions
3. Provide comments to Maureen by June 28th

PARKING LOT

4. Improvement to rail infrastructure
5. What is driving? Commodities
Freight Study and Rail Plan Overview

What is the Rail Plan?
- Systems level analysis of infrastructure
- Action plan with specific projects, responsible parties, cost estimates
- Complies with Idaho State Code and the Passenger Rail Investment and Improvement Act of 2008 (PRIIA)

What is the Freight Study?
- High level analysis of freight movement in, out and throughout Idaho
- Identification of key trends, barriers, implications
- Framework for future investments
 - System Plans
 - Policy, programs, policy

Connection Between Two Efforts

Freight Study
- Vision, Performance Measures, Scenarios
- Policies, Coordinating Mechanisms, Programs

Freight Related System/Infrastructure Plans
- Rail Plan Update
- Airport Systems Plan
- Port of Lewiston
- Highway Corridor Plans
Where do we go from here?

- What is the one thing you want to get out of this effort?
- How much time are you willing to give the effort outside of the Steering Committee meeting?
- What is your biggest concern about the scope of the process?
Deeper look at rail infrastructure needs/conditions
More emphasis on the “meta-analysis”; the gentlemen from UDOT talked about this
 – How we interact with surrounding states and the nation (big picture)
Everyone is always quick to say that inter-modal is the answer to everything. I know that a study has been done that has said that the Treasure Valley was the best location for something like this. However, we need to find out if any rail provider is even interested in doing this first
Inter-modal programs have been successful, but the risk associated with starting them is huge and I’m sure rail will not do anything without firm commitments from the industry.
The majority of the conversation today focused on data. A brainstorming discussion on specific opportunities for each mode of transportation may help to prioritize issues/opportunities
Given what the USDOT gentlemen said makes me more concerned of the November 2012 deadline. Need to have the consultant work closely with organizations to gather [?] policies. Seems like a daunting task. Maybe initial system should be prioritized with data at the forefront.
I would like to know more about the regulatory systems for the Highway networks not managed by ITD. All the Highway Districts? How create? What is takes to change them and their jurisdiction?
Add a short summary of intermodal commerce authorities in Idaho
Rail logistics – recognizing how freight moves – unit trains, etc.
What are the best opportunities that Idaho has to plug into the western U.S. transit system and how do we make that happen?
Address – pass through traffic of freight differently/separately from freight that O’s or D’s in Idaho
Address/clarify that Federal weight limits apply only on the Interstate
Discuss/explain National Truck Network in Idaho and how it affects/relates to freight in Idaho
Discuss/explain Idaho’s permitting process for freight in Idaho (Highway)
We need a process by which ITD’s program development can reflect freight interests/needs in the identification and prioritization of projects
Identify Idaho’s 129k Pilot network (a map and description).
Freight System Vision and Goals

- Goals are intended to be broad, the objectives will be specific and measurable.
- Characteristics provided in italics are intended to help describe the inputs and features provided by stakeholders to date that inform the development of this goal statement.

Freight powers Idaho’s Economy

Goal 1: Idaho’s freight system features seamless, modal connectivity while maintaining safety and efficiency.

- Flexible
- Continuity
- Multi-Modal
- Accessibility
- Safety
- Efficiency
- Technology

Goal 2: Idaho’s freight system features effective partnerships to leverage resources and opportunities.

- Collaboration
- Information
- Platform for communication
- Partnerships
- Cross-modal collaboration
- Private/public
- Regulation

Goal 3: Idaho strategically invests in its freight system infrastructure while maximizing existing capacity.

- Funding
- Maximizes existing resources
- Research and data
- Accountability
- Measurements
- Prioritization
- Sustainability
September 19, 2012

Idaho Freight Study and Rail Plan Update

Steering Committee Meeting

PARTICIPANTS

Steering Committee Members
- John Anderson, T-O Engineers
- Erika Bowen, ITD Highway Planning and Program Management
- John Brown, WATCO
- David Doeringsfeld, Lewiston Port Authority
- Kathy Fowers, Idaho Trucking Association
- Sandy Lindstrom, representing Dan Harbeke, Union Pacific Railroad
- Winston Inouye, Idaho Policy Advisors/Mini-Cassia Commerce Authority
- Joe Leckie, Idaho Public Utilities Commission
- Rick Naerebout, representing Bob Naerebout, Idaho Dairymens Association
- Dave Player, representing Jerry Whitehead, Western Trailers
- Colleen Weatherford, BNSF Railroad

Ex Officio
- Randy Rogers, US Maritime Administration

Project Management Team
- Charles Gillin, Idaho Transportation Department
- Laura Johnson, Idaho State Department of Agriculture
- Melissa Kaplan, Idaho Transportation Department Division of Aeronautics
- Robert Linkart, Idaho Transportation Department
- Reggie Phipps, Idaho Transportation Department
- Lori Porecca, Federal Highways Administration
- Randy Shroll, Department of Commerce
- Ted Vanegas, Idaho Transportation Department Division of Transportation Performance
- John Watts, Veritas/WATCO

Project Team
- Maureen Gresham, Program Manager, Idaho Transportation Department
- Erika Witzke, Cambridge Systematics
- Marsha Bracke, Facilitator and Public Involvement, Bracke and Associates, Inc.

MEETING SUMMARY

The Steering Committee meet on Wednesday, September 19, 2012 to accomplish the following meeting objectives:

1. Identify preferred scenario concepts
2. Provide input to the Rail Needs Assessment

Attachments to this Summary include:
A. The Agenda
B. Flip Chart Transcript
C. Witzke PowerPoint - Freight Study Preferred Scenario Process and Results
D. Witzke PowerPoint - Rail Needs Assessment

Process Needs

Maureen Gresham kicked off the meeting by reviewing the purpose of this process - to answer the questions of 1) where are we? 2) where do we want to go (vision)? and 3) how do we get there? She pointed out that it will take multiple parties together to achieve the vision. This work lays the framework for recommendations, which she will, and expects others will, take back to their boards and staffs to provide input on, act on, and help the entire state move forward. Maureen reported that she has been sharing the group's proposed Vision and Goals widely, and that it is well received and no changes proposed.

Objective 1: Identify Preferred Scenario Concepts

Ericka Witzke, Cambridge Systematics, made a presentation describing how the two proposed scenarios were derived based on a list of performance measures and activities collected and proposed through the stakeholder outreach process. Discussion related to that presentation was maintained on flip charts by the facilitator and is included as Attachment B to this meeting summary. The PowerPoint presentation is attached and included as Attachment C. The presentation solicited discussion around a number of specific questions, including:

Are there other measures we should look at?

- Performance measures were identified as a point of concern by some, with suggestions about how to identify the most meaningful performance measures. Specifically individuals suggested:
 - Look at volume and cost of freight, rather than value
 - Indicate how transportation affects cost, looking at demand and efficiency
 - Consider how to measure secondary impacts and more than one measure
 - Identify what can be reasonably tracked over time
 - Confirm whether risk is a factor
 - Consider the economic benefit
 - Factor in opportunity cost
 - Reconsider the Port Freight measurements-recognizing that perhaps offload/backload number per hour would be more appropriate and meaningful
 - Measure the "right" and a limited number of things, to include the right service, time, condition and price all specific to Idaho

Maureen invited recommendations for additional and specific performance measures from the group, noting that the group will approve the final performance measures at the next meeting.

Is there another role that you see you have related to performance measures?

- Rick Naerebout reported the Department of Agriculture would have aggregated statewide information for dairy data and measurements. There were no other responses to this question.

Ericka reviewed the list of projects - or levers - used in the different scenarios, and the process of applying measures to scenarios based on the levers selected. Reiterating that the proposed concepts were illustrative, the group participated in its own process of identifying which levers to include in preferred scenarios.
With the list of levers generated through the Freight Study outreach process in hand, the Steering Committee divided into three diverse groups; a fourth was comprised of Project Management Team members participating in the meeting. John Brown and John Watts were not present at the time this process started, and provided their own contribution to the final outcome when group reports were collected.

Groups were instructed to:

1. Pick the top 5 levers that comprise their collective preferred scenario and describe each to ensure a shared understanding of the meaning and intent, and
2. Identify if any of the other levers included in the material should not be included in the proposed scenarios

Work groups completed this task and reported back to the large group, with the following results drawn respective to the project levers by number and by the number of times they were identified:

<table>
<thead>
<tr>
<th>YES</th>
<th>NO</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steering Committee Groups</td>
<td>John Brown / John Watts</td>
<td>Project Management Team</td>
</tr>
<tr>
<td>10, 10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>11</td>
</tr>
<tr>
<td>12, 12, 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>3, 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>Too industry specific; leave on yes list</td>
</tr>
<tr>
<td>16</td>
<td>Market driven, off list</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Already covered, off list</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Already covered, off list</td>
<td></td>
</tr>
</tbody>
</table>

All levers that did not make this list or are not identified on the NO list, will remain on the preferred scenario proposal.

Based on this exercise, the Project Team will come back to the next meeting with specific recommendations, identify potential costs as low, medium, and high (as possible), and use that to confirm priorities and assignments in the resulting product. Items 16, 19 and 20 will not appear in the next product.

Objective 2: Provide Input to the Rail Needs Assessment

Ericka presented an overview about the Rail Needs Assessment. Discussion related to that presentation was maintained on flip charts by the facilitator and is included as Attachment B to the meeting summary. The PowerPoint presentation is attached and included as Attachment D. The presentation solicited discussion around a number of specific questions, including:

Does this reflect your understanding of the rail system?

- The group discussed maps, noting the following concerns:
 - The extent to which the short rail lines are presented (or not)
References to compliance instead of capacity or physical restrictions
Discomfort with the 07 maps and what that communicates

Suggestions included:
Generate maps showing all active and all inactive lines, ownership, and the potential correlation with origination/termination traffic by volume
Discuss capacity in terms of restrictions rather than compliance
Consider appropriate message respective to the 07 maps if they are going to be used

What additional rail system needs have we not identified?

Maureen pointed out the requirement to identify funded, committed projects lists over 1-5 years and more general needs and expectations out 6-20 years, and the challenge of doing that for planning purposes while maintaining the privacy needs of the rail lines. The Minnesota Rail Plan was identified as an example of where that specificity was provided, with the note that Minnesota has a robust passenger rail system influencing that communication. The group discussed the need for rail information to show prospective businesses where access exists; conversely, they discussed the opportunity to show rail where commerce has a need, and the rail lines can respond accordingly.

Representatives from Individual rail lines said they would send Maureen what they could, and the facilitator pointed out the question has been asked and the promise made several times before; the information needed is still not available. Ultimately, the Steering Committee asked Maureen to put her request in writing and each railroad will respond accordingly. One individual pointed out that with the rail lines showing in the 07 map such additional capacity, that it is realistic that there may not be a long list of projects or investments planned in the short term.

Maureen also distributed a draft copy of the Rail Plan Update Outline, which proved to be miscopied and not all pages available. She will send the outline to the group electronically for their review and comment.

Action Items

1. Cambridge Systematics will provide a definition to the term ‘value’ if it is going to be used in the Freight Study
2. The Project Team will develop and present recommendation for performance measures and the preferred scenario concepts at the next meeting for Steering Committee review and decision-making
3. All Steering Committee members with comments about the map and rail data are invited to review Tech Memo 10 as soon as possible and send those comments to Maureen
4. The Project Team will produce a map showing all active and inactive lines
5. Maureen will send a specific written request of informational needs to the railroads, who will respond accordingly in a timely fashion
6. Maureen will send out an electron copy of the Rail Plan Update outline
7. All will review the Rail Plan Update outline and provide comments to Maureen

The next meeting, originally scheduled for October 9, will be rescheduled for later in the month to foster a greater amount of participation by Steering committee members (who had a number of conflicts with the October 9 date). A doodle calendar will be issued to identify and confirm the best meeting date.

The Steering Committee participated in a meeting evaluation process, the results of which are listed verbatim in the Attachment B, Flip Chart Transcript, page 4.
ATTACHMENT A: AGENDA

IDAHO FREIGHT STUDY AND RAIL PLAN UPDATE STEERING COMMITTEE MEETING

September 19, 2012
The group will have a working lunch on site, hosted by the Idaho Transportation Department

AGENDA

Objectives

Overall Freight
1. Identify preferred scenario concepts

Rail: Freight and Passenger
1. Provide input to Rail Needs Assessment
2. Review and discuss Rail Focus Group results

<table>
<thead>
<tr>
<th>TIME</th>
<th>TOPIC</th>
<th>REFERENCE MATERIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:30 a.m.</td>
<td>Welcome and Introductions</td>
<td>Agenda</td>
</tr>
<tr>
<td></td>
<td>□ Marsha Bracke, Bracke and Associates, Inc.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Facilitator</td>
<td></td>
</tr>
<tr>
<td></td>
<td>□ Maureen Gresham, ITD</td>
<td></td>
</tr>
</tbody>
</table>
| 10:45 a.m. | Presentation: Preferred Scenario Process and Results | • Power Point Presentation: Preferred Scenario Process and Results
| | | • About Scenarios Document
| | | • Scenario Placemats |
| 12:15 p.m. | WORKING LUNCH | |
| 12:45 p.m. | Identify Preferred Scenario Concepts | • Scenario Project Summary & Selection Worksheet |
| | □ Facilitated Process | |
| 2:45 p.m. | BREAK | |

Freight Study

Rail Plan Update

3:00 p.m.	Presentation: Rail Needs Assessment	• Power Point Presentation: Rail Needs Assessment
	□ Erika Witzke, Cambridge Systematics	
	□ Facilitated Discussion	
	1. Does this reflect your understanding of the rail system?	
	2. What additional rail system needs have we not identified?	
3:45 p.m.	Presentation: Inputs	• Rail Focus Group Flip Chart Transcripts
	□ Maureen Gresham, ITD	• Draft Outline of Rail Plan Update
	□ Facilitated Discussion	
	1. Does this outline appear to fulfill your need for the Rail Plan?	
	2. What changes would you propose?	
Proposed Meeting Schedule/Objectives:

October 9, 2012

Overall Freight

1. Review, discuss and provide input regarding:
 - Freight policies, funding, resources and management tools
 - Action plan and strategy recommendations
 - Comment on study recommendations

Rail: Freight and Passenger

2. Review, discuss and provide input regarding:
 - Rail Vision and Goals
 - Recommend criteria for evaluating rail projects
 - Process for completing Rail Plan Update
ATTACHMENT B
Flip Chart Transcripts September 19, 2012

PRINCIPLES OF MEETING CONDUCT
▪ Participate
▪ Listen...
▪ Be open to new ideas
▪ Be solutions oriented
▪ One person speaks at a time
▪ Respect one another
▪ Phones/e-mail - off

FREIGHT DISCUSSION NOTES
▪ Balance freight through, generated in Idaho, coming into Idaho
▪ Comments on performance measurements
▪ Definition of current/future year value
▪ Look at volume and cost of freight (value changes)
▪ These look like outputs
▪ How is the transportation adding value/affecting cost?
▪ These are indicators of how industry is responding
▪ Need to look at demand/efficiency
▪ How do you measure secondary impact (yogurt plant)?
▪ Gross Regional Product/Employment - can't look at just one thing
▪ Next meeting - recommend final performance measures
▪ What are we reasonably going to be able to track over time?
▪ Should risk be a factor?
▪ Have to consider in context of other factors/economic benefit
▪ REDIFIT - not just agriculture
▪ State highway network and local road network - truck weight issues
▪ Scenario overview - just discuss purpose

Question 1:
▪ Burden of regulatory system - cost/efficiency? Safety? Down/Wait times, etc. - index to inform the regulatory environment
▪ Port Freight System - none/2 in 20 years? Why just this one? Bigger one - personal/employee safety
▪ Port - offload/backload # per hour
▪ Rail Safety - FRA rating for rail crossings/number of trains
▪ Measure right: service, time, condition, price - measures those 4 things - focus on that and drill down for Idaho
▪ Opportunity cost - adding things that don't exist
▪ Opportunity cost - I95 for full trucks
▪ Compare to "Connect Oregon" - getting infrastructure funding
▪ Abandonment - what about airlines and roads? For rail - what is the underlying reason. Might not be a good measure - market driven

Question 2:
▪ State Department of Agriculture aggregates Dairy data
SCENARIO PROCESS
1. Pick top 5 levers and 18-21 (and not on table): On flip charts write a definition of what this means/entails
2. In time available: review remaining levers, indicate yes/no/add, identify 1 lever, if any, that should not be included

GROUP REPORTS

- #3 - self explanatory
- #7 - ongoing program; legislature funding needed; drives #6 and #5
- #10 - self explanatory
- #11 - self explanatory
- #12 - connect north and south Idaho
- #16 - should not be included (this is our protest vote)

- #2 - designate freight corridors and freight design standards (map to define corridors;, working with industries to identify, standards re passing lanes, rest areas, rail crossings)
- #8 - Increase Section 130 (increases safety and minimizes risk at grade crossings)
- #3 - Harmonize TS &W regulations (legislative action, coordination with other states)
- #14 - coordinate with economic development organizations (big value/low cost, statewide committee for communications, aligns with #15 and #2)
- #17 - ITS and Technology (integrating technology, decrease regulatory costs, create data)

- #12 - improve US95 north/south straighten/widen - improve flow of freight, enhance use of Port, accelerate exports/import, grow access to rail, BNSF north vs. South
- #7 - The coordination of the #3 concept area" makes sense, as we believe all sources of funding for infrastructure improvement can be utilized
- #4 - Improve connections with grant elevators and other ag connections to rail and road by c/b evaluations
- #10 - build partnerships with agriculture and manufacturing industries to identify strategic investments in freight corridors

PM TEAM
- Access (rail, water, air, rail heads/highways, intermodal) - #4, 5, 11
- Partnerships (Ag, Manufacturing, industry, EOOs) - #10
- Funding (federal, state, private, CDBG, RCBG,. Redifit) - #7

JOHN B
- 1 (already doing), 5, 6,7, 8, 11
- Tie to goals
- Lower cost of freight
- Law foundation - maximize ability to deliver overall
- overarching plan to achieve goals

DISCUSSION
- #6 allows all to work together - collect and disperse
- Maybe started funding root of problem - with 7 can make 6/15 happen
- Projects vs. funding vs. political will
- Need to define return on investment
RESULTS

<table>
<thead>
<tr>
<th>SC Teams</th>
<th>PM Team</th>
<th>SC Teams</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>John</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3, 3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>4</td>
<td>Too industry specific; leave on yes list</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>5</td>
<td>Too industry specific; leave on yes list</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>6</td>
<td>Too industry specific; leave on yes list</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>7</td>
<td>One team combined all of concept area 3 into one number 7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10, 10</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>11</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12, 12, 12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>16</td>
<td>Market driven, off list</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td>Generally prefer less government, but seek levers specific to:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Local Highway Districts (one entity per county?)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Dry Port Legislation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Freight Steering Committee</td>
</tr>
<tr>
<td>19</td>
<td></td>
<td>19</td>
<td>Already covered, off list</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>20</td>
<td>Already covered, off list</td>
</tr>
</tbody>
</table>

All levers stay on the list with the exception of 16, 19 and 20, and anything associated with 18 that is not specifically included. 7, 10, 11 and 12 all made the list three times, 3, 4, 5, and 8 made the list twice each.

SCENARIOS NEXT STEPS

Will come back with specific recommendations (potential costs/low, medium high) and confirm priorities, assignments for Action Plan

RAIL DISCUSSION

- Indicate short lines on rail materials for accurate depiction of how it works
- Map - reality in Idaho, official per STB
- One map - all active, all inactive
- Second map - with ownership
- Appendices
- See and check Tech Memo 10 regarding maps - send comments to Maureen
- Consider how this correlates with origination/termination traffic (volumes)
- Concern about reference to double-stacks - misnomer - what about high/wides/etc., other restrictions, tunnels, etc.
- "286 and above"
- "All are 286"
- Uncomfortable with '07 maps - if used, lots of bullet points to indicate caveats - our whole rail line is red
- All kinds of projects planned
- Indicate anticipated investment - broad
- Idaho's plan to show need to support rail line improvements
- List of improvement needs/broad sense of planned improvements
- Need to know who's coming so we can determine where/how much investment - have capacity now
- Requirement 1-5 year, 6-20 year
- Minnesota volume comparison
- Funded, committed project lists
- Needs in time frames
- Passenger influence
- Something that tells us needs and how to address
- Maureen - ask each entity with a specific written request of what we need - railroads respond

ACTION ITEMS
1. Define "value"
2. Develop/present recommendations at next meeting
3. See and check Tech Memo 10 - send comments to Maureen
4. Produce a map showing all active/inactive lines - Maureen
5. Maureen send a specific written request of informational needs to railroads
6. Railroads respond to Maureen's request
7. Maureen send rail Update outline
8. All - review Rail Plan outline and provide comments to Maureen

PARKING LOT
- *Nothing submitted to Parking Lot*

EVALUATION

<table>
<thead>
<tr>
<th>+</th>
<th>△</th>
</tr>
</thead>
<tbody>
<tr>
<td>Productive meeting - Erika's definitions helped. Process progressing, understanding</td>
<td>Long meeting</td>
</tr>
<tr>
<td>Appreciate that we come together with dedicated time and focus</td>
<td>So many documents, products out - summary</td>
</tr>
<tr>
<td>Informative - people/entities in room</td>
<td>Milestones - handling of documents - file sharing to go pick up</td>
</tr>
<tr>
<td>Tangibly looking at levers - big step</td>
<td>- Names on both sides of table tents</td>
</tr>
<tr>
<td>Perspective and various ideas from different interests - better perspective/issues</td>
<td>Don't know where I'm at and don't know what I did until next meeting</td>
</tr>
<tr>
<td>Think I made progress but don't know what</td>
<td>Struggling to figure out what rail has to do with ITD - ITD's role</td>
</tr>
<tr>
<td>Like length - tough to get job done</td>
<td>Who is target audience of final report?</td>
</tr>
<tr>
<td>Starting to come together, handouts useful</td>
<td>Documents/data revisions - what happened with that?</td>
</tr>
<tr>
<td>Like breakouts - forces us all to participate - railroad and trucking together</td>
<td>Is what we're doing more staff than Steering Committee driven</td>
</tr>
<tr>
<td>Great lunch</td>
<td>Still don't know what final product will look like</td>
</tr>
<tr>
<td>God to see progress since last time here</td>
<td>Refer back to goals more often - understand design interface between fright study and rail plan</td>
</tr>
<tr>
<td>Looking forward to seeing to fruition</td>
<td>Presentation on rail - what is and isn't required by feds/adds value</td>
</tr>
<tr>
<td>Discussion - greater understanding of more perspectives</td>
<td>Levers - don't want to leave other specifics out - "access" etc.</td>
</tr>
<tr>
<td>Interaction with group - learn</td>
<td></td>
</tr>
</tbody>
</table>
Connecting the Dots...

Freight System Vision and Goals

Freight powers Idaho’s Economy
1. Idaho’s freight system features **seamless, modal connectivity** while maintaining **safety and efficiency**
2. Idaho’s freight system features **effective partnerships** to leverage resources and opportunities
3. Idaho **strategically invests** in its freight system infrastructure while maximizing existing capacity.

Freight Performance Measures

Transportation System “Dashboard” Performance Measures

Why Use Performance Measures?

- Link actions to goals/objectives – e.g. overall ITD and Freight Study
- Manage performance/target setting – improve the management and delivery of programs, projects, and services
- Resource allocation/prioritize projects – invest where greatest need/benefits
- Communicate results – highlight the value of public investments in transportation, concrete way for stakeholders to see ITD’s commitment to improving the system and build support for investments
- Strengthen accountability – promote accountability for use of taxpayer resources

Freight Performance Measures

Types

- Freight Demand
- Freight Safety
- Freight Efficiency
- Freight System Condition
- Other (not reviewed)
 - Environment
 - Economic Impacts
 - System Investment

Evaluation

- Existing Freight Performance Measures
 - Currently tracked by ITD
- Additional Performance Measures – Near Term
 - Not currently tracked, but data required is available
- Additional Performance Measures – Future
 - Not currently tracked
 - Key data elements need to be developed
 - Need to evaluate benefits vs. costs of data collection

Freight Performance Measures

Types

- Table 5 – Summary of Freight System Performance Measures
- Other areas covered:
 - Safety
 - Efficiency
 - Condition
 - Multimodal

Freight Demand

Linking Performance Measures to Goals

Freight Performance Measures

Types

- Freight Demand
- Freight Safety
- Freight Efficiency
- Freight System Condition
- Other (not reviewed)
 - Environment
 - Economic Impacts
 - System Investment

Evaluation

- Existing Freight Performance Measures
 - Currently tracked by ITD
- Additional Performance Measures – Near Term
 - Not currently tracked, but data required is available
- Additional Performance Measures – Future
 - Not currently tracked
 - Key data elements need to be developed
 - Need to evaluate benefits vs. costs of data collection

Freight Performance Measures

Types

- Freight Demand
- Freight Safety
- Freight Efficiency
- Freight System Condition
- Other (not reviewed)
 - Environment
 - Economic Impacts
 - System Investment

Evaluation

- Existing Freight Performance Measures
 - Currently tracked by ITD
- Additional Performance Measures – Near Term
 - Not currently tracked, but data required is available
- Additional Performance Measures – Future
 - Not currently tracked
 - Key data elements need to be developed
 - Need to evaluate benefits vs. costs of data collection

Freight Performance Measures

Types

- Freight Demand
- Freight Safety
- Freight Efficiency
- Freight System Condition
- Other (not reviewed)
 - Environment
 - Economic Impacts
 - System Investment

Evaluation

- Existing Freight Performance Measures
 - Currently tracked by ITD
- Additional Performance Measures – Near Term
 - Not currently tracked, but data required is available
- Additional Performance Measures – Future
 - Not currently tracked
 - Key data elements need to be developed
 - Need to evaluate benefits vs. costs of data collection

Freight Performance Measures

Types

- Freight Demand
- Freight Safety
- Freight Efficiency
- Freight System Condition
- Other (not reviewed)
 - Environment
 - Economic Impacts
 - System Investment

Evaluation

- Existing Freight Performance Measures
 - Currently tracked by ITD
- Additional Performance Measures – Near Term
 - Not currently tracked, but data required is available
- Additional Performance Measures – Future
 - Not currently tracked
 - Key data elements need to be developed
 - Need to evaluate benefits vs. costs of data collection
1. Are there other measures we should look at?
2. Is there another role that you see you have related to performance measures?

Objective of Scenarios

Understand how different investments may relate to the performance of the freight system

Freight System Needs

Conceptual Example, Only

Focus on Preservation

Conceptual Example, Only

Question – Preserve or Expand

Conceptual Example, Only

Cost to Preserve

Cost to Expand

Funding Available
Support Freight?
Conceptual Example, Only

How were Scenarios Determined?
- Freight Summit
- Stakeholder Interviews
- Regional Briefings
- Steering Committee Homework Assignment
 - Unique Aspects of Study Goals
 - Identifying Projects, Programs, & Concepts to Goals

What we heard...
Future Scenarios
Choosing a new future for the Idaho Freight System
- Scenario A – Status Quo
 - Baseline "no build" future scenario
 - Reflects "business as usual" investments in existing system
- Scenario B – Agriculture and Rural System Needs
 - Focus on needs of agricultural industry
 - Investments trend more toward rural areas
- Scenario C – Technology/Advanced Manufacturing and Urban System Needs
 - Focus on needs of the emerging technology/advanced manufacturing industries
 - Investments trend more toward urban areas

Refining Scenarios
Link Scenarios to unique aspects of each goal

<table>
<thead>
<tr>
<th>Goal</th>
<th>Unique Aspects of Goal</th>
<th>Scenario A</th>
<th>Scenario B</th>
<th>Scenario C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goal 1</td>
<td>Idaho's freight system features seamless, modal connectivity while maintaining safety and efficiency</td>
<td>Multimodal connectivity</td>
<td>Reduce crashes</td>
<td>Unencumbered freight movement</td>
</tr>
<tr>
<td>Goal 2</td>
<td>Idaho's freight system features effective partnerships to leverage resources and opportunities</td>
<td>Effective partnerships</td>
<td>Unencumbered freight movement</td>
<td>Multimodal and intermodal facilities (e.g., Dry Port Facility)</td>
</tr>
<tr>
<td>Goal 3</td>
<td>Idaho strategically invests in its freight system infrastructure while maximizing existing capacity</td>
<td>Strategic investments</td>
<td>Unencumbered freight movement</td>
<td>Multimodal and intermodal facilities (e.g., Dry Port Facility)</td>
</tr>
</tbody>
</table>
Refining Scenarios
Link Scenarios to unique aspects of each goal

<table>
<thead>
<tr>
<th>Goal</th>
<th>Unique Aspects of Goal</th>
<th>Scenario A</th>
<th>Scenario B</th>
<th>Scenario C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Maximizing existing infrastructure while strategically investing</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Engaging active public</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3.</td>
<td>Unencumbered freight movement</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Investment in maintaining existing system</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5.</td>
<td>Strategic investments that leverage existing resources</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Refining Scenarios
Link Scenarios to unique aspects of each goal

<table>
<thead>
<tr>
<th>Goal</th>
<th>Unique Aspects of Goal</th>
<th>Scenario A</th>
<th>Scenario B</th>
<th>Scenario C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Maximizing existing infrastructure while strategically investing</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Engaging active public</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3.</td>
<td>Unencumbered freight movement</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Investment in maintaining existing system</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5.</td>
<td>Strategic investments that leverage existing resources</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Refining Scenarios
Link Scenarios to unique aspects of each goal

<table>
<thead>
<tr>
<th>Goal</th>
<th>Unique Aspects of Goal</th>
<th>Scenario A</th>
<th>Scenario B</th>
<th>Scenario C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Maximizing existing infrastructure while strategically investing</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Engaging active public</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3.</td>
<td>Unencumbered freight movement</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Investment in maintaining existing system</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5.</td>
<td>Strategic investments that leverage existing resources</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Refining Scenarios
Link Scenarios to unique aspects of each goal

<table>
<thead>
<tr>
<th>Goal</th>
<th>Unique Aspects of Goal</th>
<th>Scenario A</th>
<th>Scenario B</th>
<th>Scenario C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Maximizing existing infrastructure while strategically investing</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Engaging active public</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>3.</td>
<td>Unencumbered freight movement</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Investment in maintaining existing system</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>5.</td>
<td>Strategic investments that leverage existing resources</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>
Refining Scenarios

Decide how unique attributes will be reflected in Scenarios (2)

- Concepts implied in All Scenarios:
 - Alternative fuels
 - Intelligent Transportation Solutions (ITS)
- Concepts we heard, but excluded from All Scenarios:
 - Needs and access evaluations
 - Governance structure
 - Enforcement
 - Hazardous materials transport

Refining Scenarios

Identify projects that represent unique attributes of Scenarios (1)

<table>
<thead>
<tr>
<th>Concept Area</th>
<th>Project/ “Lever”</th>
<th>Scenario A</th>
<th>Scenario B</th>
<th>Scenario C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Increase the mobility of commercial vehicles on the road through an increased height issue for planning, design, and regulation (Goal 1)</td>
<td>Implement “truck-friendly” design standards in urban areas, intra-city, and interstate highways</td>
<td>no</td>
<td>yes</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td>Harmonize TIR/M regulations with those of neighboring states, supporting policies to reduce under crossing times</td>
<td>no</td>
<td>yes</td>
<td>na</td>
</tr>
<tr>
<td>2. Build intermodal facilities and connections (Goal 1)</td>
<td>Improve connections with grain elevators and other agricultural connections to existing rail and road infrastructure</td>
<td>no</td>
<td>yes</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td>Material to rail related (bound or exchange) container facility, possibly located within the port or other area</td>
<td>no</td>
<td>yes</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td>Create a “logistics park” or other co-located industrial/multi-modal transportation hub through partnership with industry</td>
<td>no</td>
<td>yes</td>
<td>na</td>
</tr>
</tbody>
</table>

Refining Scenarios

Identify projects that represent unique attributes of Scenarios (2)

<table>
<thead>
<tr>
<th>Concept Area</th>
<th>Project/ “Lever”</th>
<th>Scenario A</th>
<th>Scenario B</th>
<th>Scenario C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Increase rail capacity in key states, particularly short lines</td>
<td>Coordinate with economic development organizations to align transportation projects with projected or targeted growth and demand</td>
<td>no</td>
<td>yes</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td>Coordinate with economic development organizations to align transportation projects with projected or targeted growth and demand</td>
<td>no</td>
<td>yes</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td>Coordinate with economic development organizations to align transportation projects with projected or targeted growth and demand</td>
<td>no</td>
<td>yes</td>
<td>na</td>
</tr>
<tr>
<td></td>
<td>Work progressively with industry to strategically locate private facilities according to need with current or future road and rail infrastructure</td>
<td>no</td>
<td>yes</td>
<td>na</td>
</tr>
</tbody>
</table>

Refining Scenarios

Identify projects that represent unique attributes of Scenarios (3)

<table>
<thead>
<tr>
<th>Concept Area</th>
<th>Project/ “Lever”</th>
<th>Scenario A</th>
<th>Scenario B</th>
<th>Scenario C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Do you have any questions about the scenarios and how they were determined?</td>
<td>Questions / Comments</td>
<td>Scenario Screening Results</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concept Area</th>
<th>Project/ “Lever”</th>
<th>Scenario A</th>
<th>Scenario B</th>
<th>Scenario C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Do you have any questions about the scenarios and how they were determined?</td>
<td>Questions / Comments</td>
<td>Scenario Screening Results</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Connecting the Dots...

“Preferred Scenario”

Freight Performance Measures

- Develop Scenarios
- Use Performance Measures to Screen Scenario Concepts

Scenarios Help Inform the Future

Investment decisions may impact the system positively or negatively

Freight Performance Measures

Select Measures

- **Demand**
 - Freight tonnage

- **Safety**
 - Commercial Average Vehicle Miles Traveled
 - Highway - Rail At Grade Incidents/Fatalities

- **Efficiency**
 - Grain Elevators On Site Rail Access

- **System Condition**
 - Percent of Pavement (or other infrastructure) in Good or Fair Condition

- **Other**
 - Freight Transportation Project Expenditures

Apply Measures to Scenarios

Qualitative Application

Scenario A - “Business As Usual”
Apply Measures to Future Scenarios

Scenario B - Ag/Rural
Apply Measures to Future Scenarios
Scenario C – High-Tech, Manuf/Urban

Apply Measures to Future Scenarios

<table>
<thead>
<tr>
<th>Category</th>
<th>Demand</th>
<th>Safety</th>
<th>Efficiency</th>
<th>Condition</th>
<th>Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road Network</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rail/Road Network</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maritime System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aviation System</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermodal Connectivity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Use for SUMMARY</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scenario Comparison

Apply Measures to Future Scenarios

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Demand</th>
<th>Safety</th>
<th>Efficiency</th>
<th>Condition</th>
<th>Investment</th>
</tr>
</thead>
<tbody>
<tr>
<td>A – “BAU”</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B – Ag/Rural</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C – High-Tech/Urban</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preferred Scenario Discussion

Idaho Statewide Freight Study

PREFERRED SCENARIO
PROCESS & RESULTS

Idaho Statewide Freight Study
RAIL NEEDS ASSESSMENT
Idaho Statewide Rail Plan

Impacts on Rail System Use
- Economy, Trade and Economic Development
- Environment / Energy Use
- Land Use / Community Impacts
- Safety and Security

Population
Idaho more than doubled in size between 1970 and 2010

Gross Domestic Product
Idaho’s rail system helps to support the state’s $60 billion economy

Idaho’s Industry Mix
Defining economic characteristic - relative size of natural resources & energy sector (includes agriculture, mining, and utilities)

- Ag and mining rely on rail more than most sectors to transport high volume/high weight products
- Idaho’s “freight-intensive” industries comprised 42% of state’s economy (2011), far higher than their 25% for the U.S.
Environment and Energy

- U.S. accounts for only 5% of the world population, but accounts for 21% of global CO₂ emissions
- U.S. transportation sector accounts for 33% of global transportation CO₂ emissions

U.S. Greenhouse Gas Emissions by Transportation Mode, 2006

Freight Environmental Footprint

Rail offers opportunity to improve air quality, reduce GHG emissions, and reduce energy consumption

- In 2010, railroads moved a ton of freight with an average of 484 miles per gallon of fuel consumed.
- Railroad fuel efficiency has increased 106 percent since 1980.

Green-House Gas Emissions from U.S. Freight Sources

Source: AAR

Land Use and Community

- Freight is a driver of land use
- Be proactive - think about:
 - demand and impact on multimodal transportation network,
 - land use conflicts,
 - noise and light pollution,
 - perceived safety and congestion impacts, and/or
 - other deterrents from overall community quality of life
- Don't forget about Support Facilities and Design Standards

Blending Freight Activity with Non-Freight Land Use

- Townhomes Backing to Commercial Facility with Significant Truck Movements – NO!
- New Housing Adjacent to Active Rail Facilities – NO!
- New Subdivision – NO!
- Facility design standards that minimize noise and light pollution – Yes!

Source: Photos courtesy of Atlanta Regional Commission, FHWA

Safety and Security

- 1,292 public railroad crossings in Idaho
- ~25% have advanced warning devices (319)
- FY12 rail safety*:
 - needs ~2.1M
 - program ~2.6M

Public At-Grade Railroad Crossings

Source: Idaho Public Utilities Commission

Freight Rail System
System Today

- 1,627 rail miles
- UP RR - ~880 miles of track, trackage rights for 89% of ID system
- BNSF - ~120 miles of track, trackage rights ~440 miles

Source: ITD, FRA, Oak Ridge Nat’l Lab., Railroads

Average Trains per Day

- Class I rail lines most heavily used
- Most short lines see less than a few daily trains

Source: ITD, FRA, Oak Ridge Nat’l Lab., Railroads

Double-Stacking

Double-stacking = ability to stack intermodal containers
- Majority of Class I rail lines
- Montana Rail Link

Source: ITD, FRA, Oak Ridge Nat’l Lab., Railroads

Double-Stack Intermodal Capability by Line

- Class I rail system 286 lb, with many lines 315 lb compliant
- ~76% of system 286 lb, or higher
- ~14% of system <268 lb

Source: ITD, AAR, FRA, ORNL, American Short Line and Regional Railroad Association, Railroads

Freight Rail System Operations

Volume to Capacity Analysis

- Many factors affect rail productivity
 - Number of tracks
 - Presence of sidings
 - Types of trains operated
 - Length of trains
 - Train frequency
 - Signal system
 - And others...

U.S. Freight Rail Network - Today

2005 Train Volumes Compared to 2005 Train Capacity

U.S. Freight Rail Network - Future
2035 Train Volumes Compared to 2035 Train Capacity*

Changes Since 2007 AAR Report
Reasonableness of Forecasts and Results
- Recession lowered overall freight industry forecasts
- Commodity mix is changing
- Technology and productivity improvements
- Introduction of passenger rail

Passenger Service
Amtrak
- Current Empire Builder - Chicago to Seattle/Pavlid - Sandpoint, Idaho station map (see map)
- Past Pioneer Service - Chicago to Seattle via Denver and Salt Lake
- "Restoration of the Pioneer would enhance Amtrak's route network and produce significant economic benefits. This project would require significant expenditures for initial capital costs and ongoing operating costs not covered by fare box revenues"
October 25, 2012

Idaho Freight Study and Rail Plan Update

Steering Committee Meeting

PARTICIPANTS

Steering Committee Members

- Erika Bowen, ITD, Planning and Program Management
- Colleen Weatherford, BNSF
- Deb Smith, Clearwater Economic Development
- Kathy Fowers, Idaho Trucking Association
- Rob Eaton, Amtrak
- Dan Harbeke, Union Pacific Railroad
- Rick Naerebout, Idaho Dairymen’s Association
- John Brown, WATCO
- David Player, for Jerry Whitehead (Idaho Transportation Board)
- John Watts, WATCO

Ex Officio

- Randy Rogers, US Maritime Administration

Project Management Team

- David Coladner, ITD Transportation System Management
- Robert Linkart, Idaho Transportation Department
- Glenn Miles, Kootenai Metropolitan Planning Organization
- Ted Vanegas, ITD Transportation Performance
- Reggie Phipps, ITD Division of Motor Vehicles

Project Team

- Maureen Gresham, Program Manager, Idaho Transportation Department
- Erika Witzke, Cambridge Systematics

MEETING SUMMARY

The Steering Committee met on Thursday, October 25, 2012 to accomplish the following meeting objectives:

Rail: Freight and Passenger
 1. Generate draft Rail Vision and Goals
 2. Confirm development of Rail Plan Update next steps

Overall Freight
 1. Confirm/document level of agreement around performance measures and preferred scenario
 2. Generate draft action plan

Attachments to this Summary include:
A. The Agenda
B. Witzke PowerPoint - Freight Performance Measures Recommendations
C. Witzke PowerPoint – Freight Recommendations

Meeting Overview and Status Update

Maureen Gresham kicked off the meeting by recapping the action items from the September 19th meeting and providing updates, as requested. As part of this, she presented an overview of the work conducted on the freight study and rail plan, to date, and the various points in the study the Steering Committee was asked to review materials and provide feedback. All of these materials have been posted in the project dropbox, this includes all tech memos - note that the documents are the original drafts and that comments received on these memos will be included in the final report.

The Freight Study recommendations developed during this meeting will be presented to the ITD Board in November. The Rail Plan will continue until April 2013. Additional public involvement will need to occur for the Rail Plan and the Steering Committee will be asked during the meeting for input on the various methods to engage the public. Additionally, over the course of the next few months the project team will determine how best to incorporate freight rail comments on the Rail Needs Assessment tech memo.

The Steering Committee briefly discussed the data required to finalize the Freight Study in a manner that all Steering Committee members are satisfied.

Objective 1: Generate draft Rail Vision and Goals

Maureen Gresham provided the group with the Freight System Vision and Goals and asked for feedback from the committee – how should these be adjusted to reflect the rail system, and how should passenger rail be incorporated. The flipchart transcript is provided on Page 4.

Objective 2: Confirm development of Rail Plan Update next steps

Maureen Gresham provided the group with an outline of the Idaho Statewide Rail Plan report and asked for comments from the group. As noted, the Rail Plan will continue through April 2013.

Ted Vanegas outlined initial thoughts on how to engage public stakeholders on the passenger components of the Rail Plan, and asked for feedback from the Steering Committee. The group also talked about freight rail perspectives on different types of passenger service on freight rail (intercity vs. commuter rail). They also spoke of the need to revisit passenger service now, as air service continues to be cut from Boise. The flipchart transcript starts on Page 4.

Objective 3: Confirm/document level of agreement around performance measures and preferred scenario

Erika Witzke provided an overview of the recommended performance measures that will move forward into development and eventual implementation. As part of this a discussion surrounded the measures of success determined for the study – how will we know we are achieving the Vision and Goals of the study? The group revised these to state:

- Idaho goods transported effectively
- Freight transportation costs are competitive
- Freight-related crashes decline
The group also discussed the recommended performance measures and suggested a few edits. The flipchart transcript starts on Page 4.

Objective 4: Generate draft action plan

Erika Witzke provided a recap of the scenario planning presented at the Sept. 19th meeting and described how the breakout activity of that meeting led to the recommendations and the suggested actions presented at this meeting.

As a group each of the 7 recommendations and actions were discussed and adjusted based on committee feedback. The flipchart transcript is provided on Page 6.

Action Items

1. Tech Memos posted in dropbox will be renamed to reflect that these are original documents and do not include comments received to date from the Steering Committee.
2. UP provided information requested in April 13th email. If this meets ITD requirements, Maureen will forward to Watco so they can provide information to the study in a similar manner.
3. Query the Steering Committee on outreach mechanisms for Rail Plan public outreach.
4. Amtrak will provide the Steering Committee with demographic data of Amtrak users.

This is the last scheduled meeting of the Steering Committee prior to the completion of the Freight Study. Maureen will work with the group over the next two weeks to finalize input prior to presentation to the ITD Board on Nov. 14th. Maureen asked, and the participants are willing, to continue meeting to discuss freight issues in the state as part of an on-going freight committee.
Flip Chart Notes

Rail Vision and Goals

- Vision more specific to rail
- Link to industry and job growth
- System capacity
- Maximize traffic
- Multimodal opportunities
- Movement of goods and people
- Safety – freight, pedestrians, trespassers
- Crashes
- At-grade crossings
- Passengers have economic impacts on the state
- System preservation and condition
- Land use
- Sustainability
- Reuse, rail-trails
- Forecasting – understanding system use today and in the future
- Access to rail
- Rail line availability
- Transport time, delays
- Frequency of service
- Consider success measures rewording... “as compared to”...national stats
- Three goal themes – OK, measures of success “too simple”
- Overall safety
- Be inclusive, freight and people
- Efficient, Time saving
- Mobility
- Incremental approach

Passenger Rail Outreach

- Look outside of state
- Colorado, Utah coalition
- Look at communities that touch Pioneer Route
- Pioneer may need to be studied
- Are there other state routes
- Need to define route types
- Airlines are moving out
- Request demographic data
- Needs versus desires

Performance Measure Recommendations

Comments on Measures of Success
First cut comments

- Goods increases
 - Replace increases with facilitated
 - How do you consider whether there are no goods to transport
• Economy factors
 o Costs decline
 o Too general, too singularly focused
 o Change decline to competitive
 o Statements should be more positive
 o Need more specifics as a next step

Final cut comments
• Increases change
• Provide effective
• Improves goods
• Freight transportation costs are competitive (to what?)
 o Add value
• Environmental (under efficiency)

Comments on Performance Measures
• Demand
 o Concern over effect of economy – look at agriculture, fairly inelastic
 o Terminology may be confusing to general public/elected officials
 o Need baseline data
 o Need to understand volumes of data
 o Look at potential growth
 o Change “direction” to “origin and destination”
 o Don’t count twice
 o Calculate intrastate
 o HPMS sample data – volumes on roadways
 o Total freight tonnage (or units) compared to fuel consumption and/or environmental impacts
• Safety
 o Look at incidences for rail – look at percentages of total incidents
 o What all does FRA offer?
 o Leading indicators show big picture
 o Have to measure back to a constant
• Efficiency
 o Change transportation system to freight system
 o By mode and has access
 o Volume on corridor
 o Take speed out (there are policy controls) – look at it from a modal perspective and commodity typical times
 o Look at average travel time for segments
 o Passenger measures
 o % highways that accommodate LCVs (longer combination vehicles)
 o Travel time reliability
 o FHWA truck routes
 o Take into account construction, main detours
• Condition
 o “rail line” not just “short line”
 o Bridge – might be speed issue
 o % of highways not all weather (on freight network), spring break up
 o Weight restrictions need to be clarified – affects all corridors
 o 4 – focus on location, related to industry
 o Vertical and width clearance on network
Recommendations

Revisions noted by Steering Committee highlighted in red and strikethrough text.

<table>
<thead>
<tr>
<th>Proj #</th>
<th>Recommendation / Action Steps</th>
<th>Role / Responsibility</th>
<th>Priority</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>18</td>
<td>Recommendation 1: Create an Institutional Framework for Communication, Collaboration & Partnership (Goal 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 18 | 1. Formalize a **Freight Committee** as a standing advisory committee to guide decisions regarding freight investments. | | 9 | • MAP-21 suggestion
• How to coordinate with Trucking Council? Include private sector, industry, building/materials |
| 10, 18 | 2. **Formalize a partnership between** (include the Idaho Departments of Agriculture, Commerce, Labor, and Transportation) **1** to enhance the movement of freight. | | 8 | MOU/MOA? Inter-Agency (gov’t)
Need to develop substance, forum authority, purpose
Need to provide technical expertise to Freight Committee |
| 18 | 3. Encourage **Regional Forums** as an on-going platform to communicate regional needs, issues, and opportunities. | | 2 | Need to expand participation |
| 18 | 4. Encourage **Statewide Freight Forums** every 5 years as an on-going platform to communicate needs, issues, and opportunities. | | | |

<table>
<thead>
<tr>
<th>Proj #</th>
<th>Recommendation / Action Steps</th>
<th>Role / Responsibility</th>
<th>Priority</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Recommendation 2: Align Transportation Policy and Projects with Economic Development Goals Strategies (Goal 2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>1. Participate in the Economic Development District annual planning process (SEDDs).</td>
<td></td>
<td>8</td>
<td>Current statewide initiative to develop a statewide Strategic Economic Development Plan</td>
</tr>
<tr>
<td>14</td>
<td>2. Collaborate with local Chambers of Commerce.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3. Collaborate with local economic development entities.</td>
<td></td>
<td>9</td>
<td>Could include Chambers of Commerce</td>
</tr>
<tr>
<td>10, 14</td>
<td>4. Contribute to a database of public and private stakeholders to gather and distribute information.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2, 14</td>
<td>5. Identify and disseminate Educate on land use policies that support freight system investment.</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>2, 14</td>
<td>6. Collaborate with cities/counties on freight strategies</td>
<td></td>
<td>1</td>
<td>Note: EDD and Local EDO’s have city/county reps on their boards</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Proj #</th>
<th>Recommendation / Action Steps</th>
<th>Role / Responsibility</th>
<th>Priority</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Recommendation 3: Invest in a Freight Corridor Network and Strategically Invest in New/Expanded Multi-Modal Facilities and Connections (Goal 1, 3)</td>
<td></td>
<td></td>
<td>Recommendations 3 & 4 have been combined to focus on infrastructure</td>
</tr>
<tr>
<td>Proj #</td>
<td>Recommendation / Action Steps</td>
<td>Role / Responsibility</td>
<td>Priority</td>
<td>Considerations</td>
</tr>
<tr>
<td>-------</td>
<td>--</td>
<td>-----------------------</td>
<td>----------</td>
<td>---</td>
</tr>
<tr>
<td>1</td>
<td>Identify priority freight highway corridors for improvements in a data driven manner.</td>
<td></td>
<td>4</td>
<td>• Link to National Freight Network designation (2013)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Traffic volumes, permits, and user surveys</td>
</tr>
<tr>
<td>12</td>
<td>Conduct N-S pilot corridor study using the US-95 general alignment to establish process to identify modal connections, benefit/cost methodology, and data needs.</td>
<td></td>
<td>6</td>
<td>• Expand corridor concept to include consideration of potential freight route via N-S rail line, to include needed inter- and/or multi-modal facilities.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Consider cost/benefit of market driven freight investments along corridor to potentially include modal shift analysis.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Methodology and findings of the pilot study could frame the approach for identifying improvements for other freight corridors and strategic multi-modal corridor investments in subsequent strategic Freight Plan.</td>
</tr>
<tr>
<td>3</td>
<td>Develop a Freight Plan, utilizing methodology and findings of pilot N-S Freight Corridor Study and the priority freight network.</td>
<td></td>
<td>3</td>
<td>• Identify other strategic freight corridors.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Identify 5 year Action Plan.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Leverage additional federal investments (MAP-21).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Include performance measures.</td>
</tr>
<tr>
<td>4</td>
<td>Prioritize public project funding to strategic investments identified in planning process (i.e. freight study, rail plan, Freight Advisory Committee review, pilot study, comp plan).</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Create and implement process to continually identify needs/opportunities for strategic freight corridors and investments in each region.</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Implement freight-friendly local, state, and federal design and maintenance standards and tie to freight specific network. (move to recommendation #5, combine with Action 1)</td>
<td></td>
<td>2</td>
<td>• How can the local highway districts be engaged in this effort?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Evaluate benefit/cost/impacts of design standards for local and regional freight corridors that are “truck-friendly”</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Develop best practices library for freight friendly design standards</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>• Implement consistent design standards for designated freight corridors</td>
</tr>
</tbody>
</table>

Recommendation 4: Strategically Invest in New/Expanded Intermodal Facilities and Connections (Goal 1, 3)

<table>
<thead>
<tr>
<th>Proj #</th>
<th>Recommendation / Action Steps</th>
<th>Role / Responsibility</th>
<th>Priority</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>8, 11</td>
<td>Use Rail Plan to prioritize rail capacity improvements to receive federal funding.</td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4, 5</td>
<td>Create and implement process to continually identify needs/opportunities for strategic multi-modal investments in each region.</td>
<td></td>
<td></td>
<td>Regional freight forums?</td>
</tr>
<tr>
<td>4, 5</td>
<td>Create and implement process to identify potential locations for multi-modal facilities.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proj #</td>
<td>Recommendation / Action Steps</td>
<td>Role / Responsibility</td>
<td>Priority</td>
<td>Considerations</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>4, 5</td>
<td>4. Analyze applicability, opportunity and potential feasibility for consolidating transportation facilities and infrastructure to meet regional demand (e.g., intermodal, transload/multi-modal facilities, etc).</td>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>5. Identify needs and prioritize strategic investments.</td>
<td></td>
<td>*9</td>
<td>Identify priority freight corridors
Location-specific economic development needs as identified through Regional Forums and/or Idaho Freight Partnership
Validate & prioritize need through modal shift analysis</td>
</tr>
</tbody>
</table>

Recommendation 5: Facilitate the Efficient Movement of Freight (Goal 1, 3)

<table>
<thead>
<tr>
<th>Proj #</th>
<th>Action Steps</th>
<th>Priority</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1. Implement freight-friendly best practices at the local, state, and federal level including design and maintenance standards and tie to freight specific network. Implement best practices for design and maintenance of public highways.</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2. Collaborate with other northwestern states and FHWA to identify and implement consistent weight uniformity in weight allowances restrictions, at least in the Pacific Northwest region.</td>
<td></td>
<td>This will take federal action. Not focused on least common denominator, either</td>
</tr>
<tr>
<td>3</td>
<td>3. Revise consistent weight restrictions allowances for state highways on public highways for consistency with surrounding states and along corridors where the rail does not provide service.</td>
<td>*6</td>
<td>Consider weight per axle versus overall weight restrictions.
Should be consistent with surrounding states.
Will require coordination with local highway districts.
Consider benefit/cost where implementing (safer, more efficient, damage/system condition)
Analysis triggered by industry
Axle and overall restriction/consistency</td>
</tr>
<tr>
<td>5</td>
<td>4. Revise weight restrictions and design standards for local public roads.</td>
<td>5</td>
<td>Will require coordination with local highway districts.</td>
</tr>
<tr>
<td>17</td>
<td>5. Implement best practices to reduce border crossing delays through user surveys and research</td>
<td>5</td>
<td>State and national</td>
</tr>
<tr>
<td>17</td>
<td>6. Evaluate cost/benefit of ITS technologies and applications and prioritize their implementation.</td>
<td>*</td>
<td>Weigh-in-motion technologies
Automated plate recognition
Transponders
GPS
Smart phone applications
Web-based applications
Others, as identified
For state highway, coordinate with Bob K.</td>
</tr>
<tr>
<td>17</td>
<td>7. Implement ITS and relevant technologies on priority freight corridors.</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Recommendation 6: Expand Sources for Freight Infrastructure Funding (Goal 3)

<table>
<thead>
<tr>
<th>Proj #</th>
<th>Action Steps</th>
<th>Priority</th>
<th>Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>7, 10</td>
<td>1. Support an online funding clearinghouse with funding sources and technical support to improve access to public and private resources.</td>
<td>2</td>
<td>Federal, state, local and non-traditional (same comment for next 3 action steps)</td>
</tr>
<tr>
<td>Proj #</td>
<td>Recommendation / Action Steps</td>
<td>Role / Responsibility</td>
<td>Priority</td>
</tr>
<tr>
<td>--------</td>
<td>------------------------------</td>
<td>-----------------------</td>
<td>----------</td>
</tr>
<tr>
<td>7, 10</td>
<td>2. Evaluate other potential funding sources for strategic freight system improvements.</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>7, 10</td>
<td>3. Evaluate creating a dedicated Idaho funding source for strategic freight system investments.</td>
<td>9</td>
<td>Research benefit/cost/impact of freight vs. other transportation system investments.</td>
</tr>
<tr>
<td>7, 10</td>
<td>4. Identify benefits/costs/impacts for creating existing and new mechanism(s) for public-private financing partnerships.</td>
<td>3</td>
<td>TIFIA, Dry Port Districts, Tax Increment Financing, Revenue Bonds, Community Improvement Districts, Others, as identified</td>
</tr>
<tr>
<td>7, 10</td>
<td>5. Secure funding for outcome-based needs assessment/feasibility analyses to include modal shift analysis.</td>
<td>1</td>
<td>REDIFIT or other transportation, economic development, or commerce department grant, or funding through private industry councils and/or freight associations</td>
</tr>
</tbody>
</table>

Recommendation 7: Develop Data and Supporting Tools (all goals) Collect and Analyze Data

1. Prepare **data collection plan**
 - Identify data gaps/needs
 - Identify data collection tools/methodologies
 - **2**

2. Collect/purchase data
 - **7**
 - Assess:
 - RIO
 - Benefit/cost of what to obtain/how usability

3. Align data with recommended **performance measures**
 - 5

4. **Monitor/track performance measures**, regularly update as new data are available
 - 5

5. **Develop glossary of terms/definitions**
 - 5

6. **Develop supporting tools**
 - 5
Idaho Freight Study and Rail Plan Update

Interview Series 1
Six Interviews To Date
February 23, 2012

DRAFT Interview Summary

Vision Statement
Proposed via Summit Inputs:

- Inter-modal connectivity and collaboration
- Appropriate system capacity
- Increases Idaho’s competitive edge
- Consistent and accessible
- Funded, affordable, efficient
- Technology
- Safe
- Data/science driven

Comments:

- All reinforced in some way through interview discussion.
- Nothing identified as missing
- Distinctions made on some points:
 1. Intermodal – concern that it may not be as viable as many hope that it is; need to study to ensure it can be supported. Others vigorously support the idea
 2. Concern that the features don’t emphasize the important role of trucking.
 3. May be more practical to look at a regional network, rather than the state, with the loop through southern Idaho, north to Spokane, and back down through Ontario, with the inner part of that circle needing the remote access and Boise providing an intermodal hub.
 4. Need to ensure sufficient short line capacity
 5. Leverage technology to maximize the system

Proposed Vision Statements:

- Most said existing bullets worked with their individual caveats
- Three ‘near’ statements proposed include:

 1. We have to lure more business and manufacturing to southern Idaho and get products in and out of the state as efficiently and effectively as possible.
2. Need to have something that is efficient, properly funded, keep up with the times, flexible to support inbound and outbound, including a north-south corridor.

3. Consistent and accessible, intermodal connectivity and collaboration, Regional View.

Distinction for Vision re Freight, Rail, Passenger:

Generally all felt that one vision statement should apply equally across the freight system and be the target for all modes. Interviewees questioned whether that would be appropriate regarding passenger rail, thinking that that system has different facilities, demands, requirements and purposes than the freight system. One said if the same facilities are used, the vision should be the same, but most thought it required some separate thinking.

Opportunities/Goals
Proposed Opportunities/Goals Via Summit Inputs

- Inter/multi-modal
- Leverage Port of Lewiston
- Research and data
- Cooperation, Collaboration and Partnerships
- Regulatory Change
- Increase Capacity
- Funding

Three prominent opportunities to pursue:

1. Transportation hub in Boise with regionally focused system/need technology to do so
2. Intermodal facility in magic or treasure valley area
3. Leveraging the use of technology to be widely connected in the region (Boise has a lot of resources - Micron/HP - understand most advanced levels of communication - good partnership opportunities) - Boise on that intermountain loop could take on some of the stuff coming out of salt lake - well connected with salt lake and serve intermountain area more efficiently.
4. Improve the permitting process. ITD sometimes doesn’t understand us or we get confused in understanding what we need to permit a load to get somewhere – a lot of times we get one and pay for it and after we send it in they say it is the wrong one. Don’t know if its them or us but our guys feel like it’s overregulated. Especially since we have to haul equipment around.
5. Communication between rail and truck/coordination and cooperation

6. Reduce regulations for truckers on the road – what else are they going to do? Not productive on down time. National issue but is a concern.

7. Regulatory change – make sure we’ve got the right policies and procedures in place for a safe and efficient system. Inconsistent weight limits hinder us – we need to level the playing field in order to stimulate the free flow of goods.

8. Regulatory changes (ID 105 GVW vs. surrounding states at 129 GVW - huge detriment to effective freight system)

9. Go up to 129K where it is safe and ITD determines roads can handle it

10. Research Coordinate between highway districts (not necessarily elimination but guidelines) – have been times where we’ve been stopped by highway districts – don’t go over their statutory limits but statutory limits should be changed

 There was recognition among one interviewee that OR, WA and CA have lower limits (like Idaho) and other surrounding states are higher. The degree to which the weights were an issue were partially contingent on where folks were sending their trucks.

11. Look at a north-south route and figure out how to move efficiently from the inner areas of the state out (mines, for example, don’t know if there is the right infrastructure for that). Make sure the industries we have in the state have the right transportation resources they need

12. Funding

13. Funding is critical in our state. With fuel tax and registration being main source of income for highways - inflation has hit but tax and registration (especially cars) has not increased. Cost of maintaining and building roads has gone up but rate per gallon of tax on fuel hasn’t gone up at all. Need to look at this and other ideas to maintain and expand.

14. Spend money on our roads – make sure they are as safe as anyone else’s – we’ve used up more than we’ve put in.

15. Make sure rail capacity doesn’t get exceeded, again. Don’t know how we do that, but the market need is there the money will come (from the railways not the state)

What’s missing?
Only one set of responses:

- Better roads
- Better railways
- Better access without artificial regulations
- Make sure we do so safely both for citizens and roads – don’t want to destroy our infrastructure as that is false economics – if we raise weight limits and destroy roads it won’t help
- If we raise limits and axles on trucks it saves roads (science says) – seek a general agreement that is the science and it is true (or the contrary) – respond to that

Addressing Barriers

Activities for coordination proposed in Freight Summit inputs:
- Information and data
- Leadership
- Regulatory framework and policy
- Funding structure
- Collaboration
- System Issues

Interviews – primary barriers and how to address them:

1. People may be willing to collaborate and knock down barriers, but committing to a change or a compromise is very difficult.
2. Start by getting local entities on same page for trucking regulations
3. Trucking/Rail competition and trust and ability to coordinate
4. This kind of study and the kind of meeting that we had like the Summit to help bring all the interested parties back together to help us better understand one another.
5. Shrinking driver availability
6. Overcome weight issues to support the volume; get ITD and highway districts to break down barriers and address funding/weight issue
7. Intermodal would be interesting because it would take some freight off the highways and put on rail. Not at capacity now as business is down, but probably were about five years ago. Double or triple track their railway. State of Idaho probably doesn’t have enough money to get UPRR to invest unless they see a return on investment for them.
8. People working together – you have to work together and put biases aside
9. Whose responsibility is it? For example, the intermodal transit center – whose responsibility is it to get that infrastructure in place?
10. Competing interest between rail and truck. Don’t know how to fix, but need to start a dialogue. I firmly believe it would not adversely affect either one and with an intermodal environment, would probably help both. If on train car I can’t haul it and reduces my rate. There are too many factions so don’t know how to go about putting a coalition together to address this. Bigger trucking corporations
might be able to work that, but smaller ones will feel like it’s stealing from them. Put together a group right way to talk it through and see how to address their mutual interests. Right people sit down but don’t know who they would be.

11. Regulations on carriers, drivers, railroad. Too much regulation is hurting us all economically. It increases costs for all of us. Within the state, I don’t think that things are that out of whack other than lack of intermodal station. Can get an overweight permit, that’s available. Idaho’s been good with that. (historically anyway). But when you cross state lines and rules change you have an issue. There might be an opportunity to look at interstate coordination – come back through a national effort.

12. Maybe there is a way to focus on the collective and individual in a way that is leverages everyone’s economic interest so that they might be motivated to work together to that end. But all of us need to start thinking a little bit differently about how we start protecting our own mode and rather about how to be most efficient and better.

Additional Data Sources

1. Idaho Wheat has a good study on wheat transport, which provides some data, and an explanation of how wheat moves that might be of interest.

2. Idaho Potato Commission report at least monthly and maybe monthly - Market News on volume going in and out of the state – shows trucks and weight – provide history and perspective of our industry

3. USDA, ERS census surveys, etc., we take a look at markets, flow of goods, etc. where we get a lot of our data.

4. Need to understand our access to where freight is generated and where it is going to; what the balances are in terms of what is coming in on one mode into the state vs. going out on that mode; identify what is to be gained per our understanding of what is coming/going empty. We need to understand what types of product tend to go on each mode to see if there is extra capacity that can be used, or whether the nature of the product going out vs. that coming in does not lend itself to modes with the capacity to support it. Heard at Summit that rail comes in with more freight than it takes out – ships coal in but what we’re shipping out doesn’t necessarily fit that mode but they’re more time sensitive-smaller shipments going to more remote locations.

5. I think that the Rail Plan is just a summary of rail capabilities, volume, facilities, etc., not necessarily recommendations. Information like that can be used for folks on ReDiFit to inform decision-making there. Make it a useful plan.
Regional Freight Forums Executive Summary

ITD conducted 6 regional forums to

a) provide interested individuals updated information on the Idaho Freight Study,

b) gather input on goals, commodities, performance measures and potentials strategies, and

c) provide a forum for regional freight partners to share ideas, issues and opportunities.

Each forum was co-hosted with the local economic development district.

Average attendance was 19 with a total number of 119 attendees.

Attendees included private industry, local city, county and highway district representation, state partner agencies including Department of Agriculture and Department of Labor, economic development/chamber representatives, state and congressional delegates and/or representatives.

The general consensus from meeting participants was that the meeting was worth their time. Meeting participants also indicated they would like to see annual forum, either regionally and/or statewide and would like to use more of the time period to discuss local issues.

Meeting participants identified goods and commodities important to their region. Key items not included on the list provided to them for brainstorming included dairy, manufactured goods, oversized loads, and energy related products (nuclear, windmills, etc.).

Most attendees agreed with the goals but wanted to see more specificity and to address safety more directly.

Recommended performance measures included jobs retained/introduced, reduction in dead-head loads, crash rates related to tonnage and trips, number of bottlenecks reduced, export numbers, consistency in policies, transit times, and shipping benefit/costs.

The number one strategy identified statewide is increased wight limit restrictions.

The strategy most often identified in north Idaho is improved north/south connectivity with truck weight limit restrictions a close second and dry port legislation a close third.

The strategy most often identified in eastern Idaho is truck weight limit restrictions consistent with surrounding states with development of an oversized load corridor policy.
Idaho Rail Plan Update Focus Group Meeting
Tuesday, August 14, 2012
Boise, ID

PARTICIPANTS
- John Watts, WATCO
- Colleen Weatherford, BNSF
- Maureen Gresham, ITD
- Phone:
 - Paul McDonald, UPRR
 - Don Harbeke, UPRR
 - Joe Arbona, UPRR
 - Sandy Lindstrom, UPRR
 - Tim Grant, UPRR
 - Lisa Key, DEA
 - Erika Witzke, Cambridge Systematics

FACILITATOR
- Marsha Bracke

MEETING EXPECTATIONS
- Talk through issues
- Understand and support plan
- Have a document that will help guide us over the next decade – development, reality, business
- Listen
- Document – informative directional, guidance – all wholly support
- Competitive balance

PRINCIPLES OF MEETING CONDUCT
- Participate
- Listen
- Be solutions oriented
- Focus on topic at hand
- Each entity has one/equal voice
- Start and stop on time
- Cell phones off

NEEDS ASSESSMENT FEEDBACK
- Trains per day current and future – BNSF
- Levels of service
- Capacity
- Old data
- State – does not take into account investments that will occur
- Clarify: intermodal, multimodal, transload, industrial park
Whenever possible use real Idaho data and not extrapolate national
Question relevance of projecting to 2040
Some issues, like emissions, may not be as important in Idaho – can have unintended consequences
PUC discussion (?)
P 17 – Federal funding – no discussion about Idaho
P 26 – Level of specificity and accuracy
P 30, 40, 41 – Point of section is good – needs context – more complete discussion

SOLUTIONS
Provide relevant, accurate response – add/supplement; provide offline
Not necessary – just put material in context
Education and Information
How rail network works
Pros and cons of use
Partners
Intermodal facility criteria with information germane to Idaho (also include in Rail Plan)
Abandonment process and criteria

SUGGESTIONS FOR PLAN TO ADDRESS INCLUDE
Needs to discuss why X facility is needed in a given location
Must be listed to get federal money
Is this overreaching?
Suggest – if x then maybe x
FRA – must list projects
Process for new business/infrastructure
Includes rail that exists
What/who’s on it
Volume to determine viability/develop future.
Articulate strategies if abandoned–what can happen rails/trails, solicit new business, etc.
Plan recommends strategies
Paint a picture of what the network looks like
”Field to Factory” (what it takes for shipper to get it there and make money)
What do shippers need for rationale, sequential connectivity?
Where are the shippers?
What are they shipping?
How? Address efficiency
Map
AAR Waybill Data
Take freight study and use it to inform rail plan
Take to Steering Committee
ACTION ITEMS
1. Entities provide list of investments over last 5 years by type if possible
2. UPRR provide safety/crossing data to Maureen
3. Maureen – provide context to issues sheet
4. Maureen – talk to Joe Leckie about abandonment processes
5. Erika – look at AAR Waybill data to see how specific it gets
6. Maureen – send FRA regulations to participants

OTHER
- UPRR opposed to providing information about where customers are located